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SIMPLE GENERAL APPROXIMATIONS FOR A RANDOM VARIABLE AND
ITS INVERSE DISTRIBUTION FUNCTION BASED ON LINEAR

TRANSFORMATIONS OF A NONSKEWED VARIATE*

HAIM SHOREf

Abstract. Linear transformations of a nonskewed random variable are employed to derive simple general
approximations for a random variable having known cumulants. Introducing the unit normal variate, these
become linear normal approximations.

Some nonskewed variates with explicit inverse cumulative density function are then used to derive
general approximations for the inverse DF of the approximated variable.

The approximations are applied to the binomial, Poisson, Fisher’s z and F, gamma (chi-square in
particular) and the distributions and their accuracy examined.

Simple general approximations for the loss function of a random variable either continuous or discrete
are developed. A simple approximation for the loss function of the Poisson distribution is then derived and
demonstrated by an example from inventory analysis.

Two further examples from interval estimation and from hypothesis testing highlight the usefulness of
the new approximations.

Key words, approximations, binomial, chi-square, distributions, F distribution, gamma distribution,
hypothesis testing, inverse distribution function, loss function, normal approximation, Poisson, distribution

1. Introduction. Many of the statistical problems that a practitioner encounters
are difficult to solve due to their inherent mathematical nontractability. If, for instance,
he wishes to find a sample size needed in estimating the ratio of the variances of two
normal populations for a nonstandard confidence or precision level he will find it
mathematically impossible and otherwise difficult to accomplish since available tables
are confined to standard values only. Sensitivity analysis of optimal solutions in
inventory analysis, to take another example, is rarely possible even though derivation
of the optimal solution with today’s computing facilities is easy to attain.

A need thus arises for approximations which while accurate enough will preserve
that degree of simplicity required to derive closed form expressions for various decision
variables incorporated in statistical models.

With regard to the majority of existing approximations this simplicity requirement
is rarely met. For example, while most approximations based on transformations of
the normal deviate (general ones like the Cornish-Fisher expansion (1937) or approxi-
mations aimed for individual distributions like Bailey’s (1980) are highly accurate their
algebraic structure is too complex for the aforementioned objective.

In this paper we develop a series of simple general approximations based on
linear transformations of a standardized nonskewed random variable.

In 2 we show that by a proper choice of the linear transformation any random
variable (either nonskewed or skewed) with known cumulants may be approximated
by a random variable with a symmetrical distribution, where accuracy is determined
by the ensuing approximate equality of the first three or four cumulants. The structure
these approximations assume when the standard normal variate serves as the
approximating variable is shown in 3.

In 4 several symmetrical random variables having explicit inverse DF are
employed to derive simple general approximations for the inverse of a skewed variate.
Section 5 repeats the latter for a nonskewed variable.

* Received by the editors January 31, 1984, and in final form December 10, 1984.
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The above linear transformations are applied in 6 to the binomial, the Poisson,
Fisher’s z and F, gamma (chi-square in particular) and the distributions, and their
accuracy demonstrated.

Simple general approximations for the loss function ofa random variable expressed
in terms of the distribution function are derived in 7, and demonstrated for the
Poisson. A problem from inventory analysis exemplifies their usefulness.

Eventually, by employing some of the above approximations we arrive in 8 at
approximate explicit expressions for the decision variables oftwo problems in statistical
inference commonly encountered by applicants.

Comparison of the new approximations with existing ones in terms of both
algebraic tractability and accuracy is deferred to a projected paper currently under
preparation.

2. Presentation of general approximations. Let X be a standardized random vari-
able, the distribution of which depends on a certain parameter, n, so that as n tends
to infinity X approaches normality.

Assume that l,., the rth cumulant of X, is of order n 1-r/2, and denote the cumulative
density function of X by F(x).

Let Z be a standardized random variable with a symmetrical distribution and
known partial moments, Mi, where

IMi Z dG(z)
1/2

and G(. is the cumulative density function. Let (x, z) be a pair of values of the
respective variates related by F(x)= G(z)= P.

In this paper we examine a linear transformation of z that approximates x, where
the transformation, denoted :, has the general algebraic structure

P< 1/2,
(1) - A2z+B:,_, P> ..
" has mean, variance, third and fourth cumulants equal to, respectively,

(2) E(f)=(A2-A)M+1/2(B2+B),
V() (A22 + AI)(M2 MI) + 2A2AI M21

(3)
+ (B2- B)[(B2- B)+M(A+ A)],

3 (a- A31)(M3 3MM1 + 2M31)
(4) + 3(A2A,- A=A)(M2M,-2M) + 3(A. A)(B2- B1)(1/2M2 M)

+(A2- A,)(B2- B1)-M,,

1"4 A+ A4)(M4 4M3 M, +6M_M-3M)
+ 4(A32 A, + A2 A31)(M3 M1 3M2M2+ 3M4) + 6A22 A21(2M2M2 3M4)

(5) + 2(B2- B,)[(A32 + A31)(M3 3M2 M1 + 3M31)
+ (AA, + A2A2)3M,(M2 M21)]

+(B2 B,)2[(A2 + A)(M M1) +2AA M12]

+ 1/2(B2- B1)3(A2 + A,)M1 +6(B2- B,)4- 3.

Let us now consider a few special cases.
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First, if X has a symmetrical distribution we should have 13 --0. This we obtain
by putting A1 A2- A, which necessarily leads to B1 --BE-- B since then E(X) -0.

The solution for this case is (see Appendix A for details)

A=[1 + M(2/ME)/EB]/(EM2)1/2

(6)
B [ 14 + 3 0.5M4/M2]/[(2/M2)3/2(M M4/M2 M3 ].

This approximation has its variance and fourth cumulant identical with those of X to
O(B2). If M4 3/2 then B is O(n-1) and we achieve identity to O(n-2).

Second, let A 1- C, A2= 1 + C and B1 =-hC, BE’--hC. Then

(2a)

(3a)

(4a)

E(2)=C(2MI-h),
V(2) 2M2+ C2(2M2-4M),

13 6C(M3 2M2M1)+ 2C3(M3-6M2 M1 + 8M3),

14 2(1 +6C2+ C4)(M4-aM3M1+6M2M-3M)

(5a) + 8(1 C4)(M M,- 3MzM]+ 3

+6(1 C2)Z(2M:M-3MI) 3.

To have E()=0 we first put h 2M. To find C we equate ’3 13 to obtain a cubic
equation,

(7)

where

C + 3C(U V)-(13/2)/V= O,

U= M3- 2M:M,
V= Ma-6M:M, + 8M3 U-4MI(M:- 2M).

On condition that I]/(16 V-) + (U V)3=> 0, the only real root of (7) is

(8)
Ca { 13/(4 V) + [l/( 16 V2) + U/V)3]/:}1/3

+ { 13/(4 V) l/(16 V:) + U/V)3]/2}1/3.
However, equality to O(n -3/:) is obtained for the third cumulant if the term O(Ca)
in (7) is neglected and we obtain the simpler

(9) Cb la/ (6 U).

For U 0 this solution yields equality of the variance and the third cumulant to O(n-)
and O(n-3/:), respectively. For the majority of special cases we have examined, the
more complex Ca does not add much to the accuracy of the approximation, so the
simpler Cb should be preferred.

Third, let

(10) A 1 C1, A2 1 + C2, B -hC, B2- -hUE,

where C C- D, C2 --C + D, and h, C and D have yet to be determined.
Introducing this solution into (2)-(4), we have

(2b) E(f()=(C,+C:)(MI-h/2)=C(2M-h),
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V([) 2M2+ C+ C)(M_-M- hM1 + h2/4)

(3b) 2C2C,(M2 hM1 + h2/4) + 2(C2- C1)(M2- hM,)

2M2+ D2(2M2-4M,h + h2) + C2(2M2-4M) +4D(M2 Mh),

I3 [( C3+ C3) + 3(C C2) + 3( C_+ C1)](M3 3M2 M, + 2M3)
+ 3[(C- C) C2C(C2+ C1) + (C2 + C1)](M2M-2M)
3h(C- C)(C2- C + 2)(1/2 M2-M)

(4b) +h2(C2-C1)2(C2+C1)M1
2C(C2+ D2+6D+ 3)(M3 3M2 M1 +2M)
+6C(-C2+ D2+2D+ 1)(M2M1-2M3)
+24hCD(D+ 1)(1/2M2- M)+ 12CD2h2M1.

The expression for ’4 is cumbersome and will not be given here.
From (2b) in order to have zero mean, we first have h 2M1.
Now assume that C is O(n-1/2) and D is O(n-1). Neglecting terms which are

O(n-) in (4b) we obtain thereof

(11) C (13/6)/U= O(n-I/2),
which is identical with Cb (9).

Introducing this solution into the expression for 14 and neglecting terms which
are O(r/-2) we obtain for D

(12) D={14-(2M4-3)-12C2[M4-4M3M+4M2M2]}/[8(M4-hM3)].
Under the above assumption this solution yields equality of the variance, the third
and the fourth cumulants to O(n-1), O(n-1’/2) and O(n-2), respectively. Note that for
D to be O(n-) we should have M4=.

For a nonskewed X we have C 0, and D > 0. However D is not equal to B (6)
and the latter should be preferred when approximating nonskewed X since it results
in an approximation identical with X to O(B2) in both its variance and fourth cumulant.

3. General approximations based on linear transformations of the unit normal
variate. The partial moments of the standard normal variate, hereafter denoted z, are

M1-l/(2"rt’) 1/2 M2-" 1/2, M3-(2/Tr)/2 M4 -.
Introducing first into (6) we obtain a normal approximation for a nonskewed variate

where

Azi + B, Z < O,
’=[Azl-B, z>0,

A= 1 + (2/’n’)’/2B 1 + (1/4)14, B=(’n’/32)1/214.

For a skewed variate in order to solve (7) we have

U= M3-2M2M=1/2(2/,rr)/-= M 0.3989,

V= M3-6MM1 +8M3 [(4- 7r)/(27r)](2/r) 1/2 0.1090,
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hence from (8)

C, {13/0.4360+ [l/0.1901 + 49.0132]1/}1/3
+ {13/0.4360-[I/0.1901 + 49.0132]/2}/3,

and from (9) and (11)

Cb (’rr/18)1/13 0.417813 C.

Also we have h 2M1 M3 =0.7979.
Finally from (12) we have

D 14 6.5408C2)/6.9070 0.1448( 14 1.1417132).

In 6 we apply these approximations to some commonly used distributions.

4. General approximations for the inverse cumulative function of a skewed variate. In
this section we introduce for z several random variables with known inverse distribution
function so that general approximations for the inverse DF of X can be derived. The
headings of the subsections specify the respective z. The concluding subsection notes
some of the considerations relevant to the choice of the appropriate approximation in
applications.

4.1. Shore’s approximations for the inverse unit normal distribution function. Re-
cently we have presented several approximations for the inverse of the standard normal
distribution function (Shore (1982)), among which the most accurate is

(13) z2=-5.5310{[(1-P)/P]1193-1}, P>-_1/2

and the simplest is

(14) z3 -0.4506 In [(1 P)/ P] + 0.2253 =0.2253 In {e[P/(1 p)]2}, P>1/2.

These approximations have M2 =-, M4 =-32, identical with those of the unit normal.
The partial moments of (13) are (see detailed derivation in Appendix B)

M1 0.4002, M2 1/2, M3 0.7990, M4 .
These are very close to those of the standard normal distribution.

For (13) we have (see (7)) U=0.3988, V=0.1112; hence from (8),

Ca { 13/0.4448 + l]/O. 1978 + 46.1266] 1/2}1/3

and from (9) and (11)

+ {13/0.4448 [ 1/0.1978 + 46.1266]1/2} 1/3,

Cb 0.4179/3 C.

Also we have h 2M 0.8004. Finally from (12)

D 0.1453(14-1.1344/]).

The partial moments of (14) are (see Appendix B)

M 0.4249, M2 1/2, M3 0.7738,
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which lead to

Finally

U 0.3489, V 0.1128, h 0.8498,

Ca { 13/0.4512 + l/0.2036 + 29.592111/2}1/3
+ {/3/0.4512 [//0.2036 + 29.592111/2}1/3,

Cb 0.4777/3 C.

D 0.1484(14 1.4949 l).
4.2. The logistic variate. Let

(15) z4 0.5513 In [P/(1-P)]

be a standardized logistic variate, the partial moments of which are

M1 0.3821, M2 1/2, M3 0.9064, M4 2.0996.

Introducing into (8), (9) and (12) we get

U 0.5243, V 0.2064, h 0.7642,

Ca {13/0.8256+[1/0.6816+ 16.391211/2}1/3

+ {13/0.8256-[1/0.6816+ 16.391211/2}1/3,

Cb=0.317913=C.
Finally

(16)

which has partial moments

M1 =0.4330,

We obtain

Therefore

D 0.0888(14-1.2-1.2203132).
4.3. The uniform variate. A standardized uniform variate on the interval (0, 1) is

zs=(12)l/2(p-1/2),

M_=1/2, M3--0.6495, M4=0.9.

U=0.2165, V=0, h=0.8660.

Ca Cb C 0.7698/3

which yields equality with the approximated variable of the third cumulant!
Finally

D 0.3703(14+ 1.2 1.0670/).

z5 approximates x as a linear function of its distribution function with both mean and
the third cumulant preserved. Yet the density function of the resultant approximation
is a constant. Expectedly, the accuracy associated with this approximation will for the
majority of approximated distributions be below acceptable standards, therefore it will
not be elaborated upon any more in this paper. Notwithstanding, we chose to present
the approximation here for two reasons. First, it occasionally occurs in simulation
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studies that we wish to replace a constant factor by a random one that will only roughly
exhibit the characteristic behaviour of the original agent. If accuracy is not of prime
concern and the distribution of the simulated factor is unspecified, the above
approximation may prove an easy and simple application tool for the aforementioned
purpose. Second, since the uniform approximation, when differentiated, results in a
constant it may well replace more complicated expressions that appear in the target
function of optimization models, thus assisting in deriving closed form solutions.
However, the robustness of the optimal solution to deviations from the exact values
should be carefully studied in order to avoid improper application of this approxi-
mation.

4.4. Comparison of the approximations for applicability---a note. When applied to
individual distributions the above general approximations may differ on accuracy. Yet
even when no dominance may be noticed in terms of the latter, we hold the view that
no approximation may a priori be discarded on grounds of redundancy. In attempting
to derive closed form solutions to stochastic models some approximations may prove
fruitful in certain cases and some in others. For example: 2 by our experience usually
results in the more accurate approximations. However z3 obviously leads to more
tractable solutions since on differentiating it with respect to P/(1- P) an expression
linear in this term results, from which the optimal value of P may be easily isolated
(see a demonstration to inventory analysis in 7).

Consequently, while the zi of this section have been introduced in an increasing
order of simplicity (as judged for instance by the criterion referred to above) they
are most likely to be associated with a decreasing order of accuracy. A practitioner
should be advised to select the approximation not only to suit the needs of accuracy
but also in accordance with the simplicity requirements, as presented by the case on
hand.

5. General approximations for the inverse cumulative function of a nonskewed
variate. Introducing the partial moments of the zi of 4 into (6) we obtain

for g2: B 0.3112/4, A 1 d-/4,
for z3: B 14, A 1 + 0.2124/4,
for z4: B 0.1791(/4-1.2), A= 1 +0.1368(/4-1.2).

6. Approximations for the inverse distribution function of individual distributions.
6.1. The binomial variate. Let x be a standardized binomial with parameters (n, p),

that is

x (y-/)/ty (y- np)/[np(1 p)]l/2,

where y, here and in subsequent subsections, is the unstandardized deviate.
For x we have

13=(1-2p)/o", 14=[1-6p(1-p)]/o2.

As is common practice in approximating the binomial by a continuous variate (see
for example Benedetti (1956), we apply a continuity correction, and to approximate
x substract from each of the above approximations the term 1/(2t). To conserve space
and in view of an earlier remark that solution (9) yields accuracy comparable to that
of the more complex solution (8), the latter is discarded here and in subsequent
subsections. The interested reader may work out this solution for himself from the
respective general equations given in earlier sections.
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The resultant approximations are"

For solution (9)"

:=[l+0.4178(1-2p)/o’]z-(5-4p)/(6o’), z>0,

=[1 +0.4179(1-2p)/tr]z2-(5-4p)/(6cr), z2>0,

:= [1 +0.4777(1-2p)/tr]z3-(O.9059-O.8118p)/o’,

= [1 +0.3179(1-2p)/tr]Zn-(O.7429-O.4859p)/tr,

where

For solution (10)"

= (1-C)zi-hC- 1/(2tr),
(1 + C)z,- hC- 1/(2),

C C D, C2= C + D, h 2M.

For zl we have

C =0.4178(1-2p)/tr,

for z2 we have

C =0.4179(1-2p)/o,

for z3 we have

C =0.4777(1-2p)/tr,

for z4 we have

D -(1/)[0.0e05 + 0.2075p( -p)],

D -(1/tr2)[0.0195 + 0.2125p(1 -p)],

D -(1/tr2)[0.0734 + 0.0030p(1 p)],

z3>0,

z4>0.

h =0.7979,

h =0.8004,

h =0.8498,

C=0.3179(1-2p)/cr, D=-(1/tr2)[O.O196+O.lO66cr:Z+O.O993p(1-p)], h=0.7642.

Some comparative values of for the various approximations, together with values
derived from the standard commonly used approximation

o z- 1/(2r),

are given in Table 1. Values are the unstandardized . The upper part of the table
contains values derived from (9) while the lower values derived from solution (10)
(same order is preserved in all subsequent tables). Values of derived from z are
missing (here and in subsequent tables) since they are nearly identical with those
derived from z2. Also only P > 1/2 is referred to, because the same accuracy obtains for
P<1/2.

Table 1 shows no uniform dominance in terms of accuracy, although z2 is usually
the more accurate. Expectedly solution (10) yields better accuracy than solution (9)
though the simpler latter results in accuracy which probably is satisfactory for most
applications.

For nonextreme values (say P < 0.99) all of the approximations constitute a vast
improvement in accuracy over the traditional approximation, )}o, without losing in
simplicity since linearity of the approximating variable is preserved. Uniform domin-
ance over o is exhibited by z.

Finally, note that the parameters we have chosen to show in Table 1 represent
distributions which are far from normal (tr is small and p is distant from 0.5).
Notwithstanding the accuracy achieved is high, far tail probabilities not excluded.
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TABLE
Comparative values of approximations for the binomial.

Exact

Z2
Z3
Z4

Z2
Z3
Z4

P
Zl

Exact

Z

Z3
Z4

n =5 p =.05 n =5 p=.25

0.7738 0.9774 0.9988
0.75 2.00 3.04

0 2

-.410 0.199 0.706

0.101 1.178 2.084
0.100 1.148 2.371
0.056 1.138 2.399

0.103 1.105 1.947
0.110 0.986 2.007
0.065 1.004 2.099

0.6328 0.8965 0.9844 0.9990
0.34 1.26 2.15 3.08

2 3 4

1.063 1.954 2.815 3.716

0.992 2.061 3.123 4.238
1.115 1.993 3.073 4.576
0.967 1.970 3.204 4.921

1.020 2.033 3.040 4.096
1.144 1.967 2.978 4.386
1.033 1.909 2.987 4.486

n 15 p .15 n 25 p .10

0.6042 0.9383 0.9964
0.26 1.54 2.69

2 4 6

2.248 4.018 5.609

1.972 4.085 6.045
2.180 3.959 6.204
1.954 3.989 6.557

1.990 4.060 5.981
2.203 3.927 6.102
2.045 3.863 6.158

0.7636 0.9020 0.9666 0.9905 0.9977
0.72 1.29 1.83 2.35 2.83

3 4 5 6 7

3.247 4.102 4.912 5.692 6.412

3.057 4.093 5.087 6.050 6.962
3.094 3.982 4.953 6.040 7.249
2.940 3.952 5.060 6.300 7.679

3.059 4.080 5.061 6.010 6.909
3.098 3.963 4.909 5.968 7.146
2.961 3.870 4.865 5.978 7.217

6.2. The Poisson variate. Let x be a standardized Poisson with parameter A, that
is x (y h)/h 1/2.

Since the Poisson is the limiting case of the binomial (that is p--> 0 and n- c so
that pn tr

2 const. h), the former may be approximated by setting p 0 and np h
in the approximations for the latter.

To conserve space these approximations are not given here. However, they are
utilized to form Table 2, where some comparative values of the approximate unstan-
dardized are presented. Again we also exhibit values derived from the traditional

-o Zl 1 / (2o’).

The pattern revealed in Table 2 is similar to that of Table 1. Z2 usually gives the
more accurate results, while among the logistic variates (z3 and z4) z3 is better. Note
the improvement in the accuracy for far tail probabilities of approximations z3 and z4
as we move from solution (9) to (10). This improvement, unnoticeable for z2, is due
probably to the relatively longer tail of the logistic distribution as compared with that
of the standard normal (recall that solution (10) gives near equality of both 13 and/4).
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TABLE 2
Comparative values of approximations for the Poisson.

Exact

Z

Z3
24

Exact

0.5 h 1.0

0.607 0.910 0.986 0.998
0.27 1.34 2.20 2.88

0 2 3

-.016 0.740 1.349 1.829

-.020 1.166 2.142 2.923
0.093 1.096 2.132 3.178
0.003 1.064 2.161 3.268

-.006 1.152 2.104 2.865
0.138 1.053 1.998 2.952
0.057 1.012 1.998 2.994

0.736 0.920 0.981 0.996
0.63 1.41 2.08 2.65

2 3 4

1.130 1.910 2.580 3.150

1.068 2.148 3.109 3.947
1.110 2.053 3.053 4.101
1.002 2.032 3.123 4.266

1.072 2.136 3.084 3.911
1.122 2.018 2.969 3.964
1.027 1.958 2.945 3.978

A =2.0 A =3.0

0.677 0.947 0.995
0.46 1.62 2.57

2 4 6

2.297 3.937 5.281

2.022 4.115 5.910
2.151 3.978 6.033
1.964 4.010 6.312

2.026 4.103 5.885
2.166 3.943 5.941
2.022 3.874 5.957

0.647 0.815 0.966 0.996
0.38 0.90 1.82 2.65

3 4 6 8

3.369 4.270 5.864 7.301

2.995 4.094 6.080 7.900
3.195 4.068 5.924 8.086
2.942 3.933 6.039 8.493

3.000 4.092 6.069 7.879
3.210 4.067 5.887 8.007
3.026 3.922 5.828 8.046

6.3. The gamma variate (including chi-square). For the gamma distribution with
parameters (t, r), the mean is r a, the standard deviation is (r/t2) 1/2, and the kth
cumulant of the standardized variate is Ik (k-1)!r1-k/2. We obtain

13=2r-1/2, 14=6r-1"
In particular, for a X

2 variate with v degrees of freedom (r v/2, t 1/2) we obtain

/z=v, tr=(2v)1/2, 13=(8/v)1/2 and 14 =12/v.
Introducing into the approximations of 3 and 4 we get the following.

For solution (9)"
:=[1 + 1.1817/(v)l/2]Zl-O.9429/(v)l/2, zl >=0,

=[1 + 1.1820/(v)t/2]z2-O.9461/(v)l/2, z2 O,

:=[l+l.3511/(v)l/2]z3-1.1482/(v)l/2 z3>_--0,

=[1 +0.8992/(v)1/2]z4-O.6872/(v)l/2, z4>=0.
For solution (10)"

{(1-C1)zi-hC1, zi<0,
x

(1 + C2)zi- hC2, zi > 0,
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where

For Z we have

for Z2 we have

for Z3 we have

for Z4 we have

C C O C2 C + D, h 2M1.

C =1.1817/v1/2, D=O.4151/v, h=0.7979,

C 1.1820/v1/2, D=0.4250/v, h =0.8004,

C= 1.3511/v1/2, D=0.0060/v, h=0.8498,

C 0.8992/u/2, D 0.1987/u-0.1066, h 0.7642.

Some comparative values of these approximations, together with values derived from
the simple :o z are given in Table 3. For solution (9) the logistic approximations
seem to be the more accurate, z4 slightly better than z3. For solution (10) it is z3 which
is usually the more accurate.

TABLE 3
Comparative values of approximations for the X2.

P
Z1

Exact

z

Z2
Z3
Z4

Exact

Z2
Z

Z4

z
z

Z4

v=lO

0.7 0.8 0.9 0.95 0.99 0.995
0.524 0.842 1.282 1.645 2.326 2.576

11.781 13.442 15.987 18.307 23.209 25.188

12.345 13.764 15.731 17.356 20.404 21.519

11.929 13.842 16.498 18.727 23.002 24.572
12.251 13.801 16.134 18.283 23.030 25.038
11.711 13.418 15.986 18.352 23.579 25.790

11.878 13.850 16.588 18.887 23.294 24.912
12.250 13.801 16.135 18.285 23.034 25.043
11.826 13.418 15.812 18.019 22.893 24.955

v= 25

0.7 0.8 0.9 0.95 0.99 0.995
0.524 0.842 1.282 1.645 2.326 2.576

28.172 30.675 34.382 37.652 44.314 46.928

28.708 30.951 34.062 36.631 41.450 43.214

28.311 31.033 34.812 37.985 44.069 46.302
28.829 31.010 34.292 37.317 43.997 46.823
27.925 30.404 34.134 37.571 45.163 48.374

28.279 31.038 34.869 38.086 44.253 46.517
28.829 31.010 34.293 37.318 44.000 46.826
28.132 30.404 33.822 36.972 43.929 46.872
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6.4. Fisher’s and the F distribution. Fisher’s is defined by 0.5 In F, where
F has an F distribution with vl and v2 degrees of freedom. Let

rl=l/(v-l), r2=l/(v2-1), /x=0.5(r2-r), r=[O.5(r+r2)]/;
standardization of is based on Fisher’s normal approximation to , and rl and r2 are
defined in accordance with Fisher’s suggestion so as to normalize the standardized
(for details see Johnson and Kotz (1970, Ch. 26, Section 4)).

From Wishart (1947), an approximate formula for the cumulants of the standard-
ized is

lk 0.5(k-2)! [rk- + (--1)krk-]/rk.

Thus
/3 2/or, 14 2r + 6( x/ or).

Introducing these into the equations of 3 and 4 simple approximations for
ensue. However, of more interest to applied statisticians are approximations for the
inverse of the F distribution. These are easily derived from the above approximations.
In particular, let us consider that based on z3 and solution (9):

(1-0.477713)z3-0.405913, z3<=0,
(-/z)/tr=

(1 +0.477713)z3-0.405913, z3=>0.

TABLE 4
Comparative values of the approximation for F.

Exact

Exact

Exact

Exact

v 10 v2= 5

0.75 0.90 0.95

1.89 3.30 4.74

2.08 3.39 4.72

0.975 0.99 0.995

6.62 10.10 13.60

6.48 9.80 13.34

v 30 v 30

0.75 0.90 0.95

1.28 1.61 1.84

1.31 1.57 1.78

0.975 0.99 0.995

2.07 2.39 2.63

2.01 2.35 2.64

v 20 v 10

0.75 0.90 0.95

1.52 2.20 2.77

1.59 2.17 2.68

0.975 0.99 0.995

3.42 4.41 5.27

3.29 4.28 5.21

v 40 v2=24

0.75 0.90 0.95

1.30 1.64 1.89

1.33 1.61 1.84

0.975 0.99 0.995

2.15 2.49 2.77

2.08 2.45 2.77
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Introducing in terms of F, a simple approximation for F in terms of its distribution
function is readily derived"

/3= [P/(1 p)]O.9012r+SpO.8610 , exp [BP0.4506cr + 0.8069/z]
where

p={-1, P<1/2,
1, P>1/2.

Some comparative values of/3 are introduced in Table 4.

6.5. The t distribution. For a variate with v degrees of freedom we have all odd
order cumulants identically zero. For the standardized t, that is x t(1-2/v)’/2 we
have 1 6/( v 4).

Introducing it into the expressions of 3 and 5 we get:

for zv A= 1 +(3/2)/(v-4), B=6(’rr/32)/2/(u-4),
for z2" A= 1 +(3/2)/(v-4), B= 1.8672/(v-4),

for z3" A= 1 + 1.2744/(v-4), B=(3/2)/(v-4),

for z4" A=O.8208/(v-4)+0.8358, B 1.0746/(v-4)-0.2149.

Values of the approximate unstandardized t, together with values derived from
;o z are shown in Table 5. Though for small P z performs worse than z3 and z,

TABLE 5
Comparative values of the approximations for t.

exact

Z

Z3
24

exact

Z

Z3
Z4

v=10

0.70 0.80 0.90 0.95 0.99 0.995
0.524 0.842 1.282 1.645 2.326 2.576

0.542 0.879 1.372 1.812 2.764 3.169

0.586 0.941 1.433 1.839 2.601 2.880

0.395 0.830 1.434 1.942 2.914 3.271
0.543 0.873 1.368 1.824 2.832 3.259
0.548 0.871 1.357 1.805 2.795 3.213

v=20

0.70 0.80 0.90 0.95 0.99 0.995
0.524 0.842 1.282 1.645 2.326 2.576

0.553 0.860 1.325 1.725 2.528 2.845

0.553 0.887 1.351 1.734 2.452 2.715

0.490 0.849 1.347 1.766 2.568 2.863
0.592 0.868 1.284 1.667 2.514 2.872
0.593 0.870 1.288 1.674 2.525 2.885
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no uniform dominance may be noticed for higher values. All three of the new approxi-
mations obviously dominate o in terms of accuracy, having the additional advantage
of expressing x explicitly in terms of its distribution function.

7. Simple general approximations for the loss function of a random variable (con-
tinuous or discrete) and an application to the Poisson distribution. The loss function of
a continuous variable, Y, is defined by

(17) L(y)= (t-y)f(t) dt=o. (x-u)f(x) dx=o. [1- F(x)] dx,

wheref(. and F(. are the density and cumulative distribution functions, respectively,
and x and u are in standard units.

Likewise for a discrete variable we have

(17a) L(y) . t- y)f( t) o. E (x u)f(x) o. 2 1 F(x)].
t--’y

The loss function plays a central role in many stochastic optimization models which
incorporate it as a major component of their target function. Outstanding examples
are inventory control problems, like the well-known "newsboy problem", and optimiz-
ation problems associated with Bayesian statistics. Deriving a simple approximation
for L(y) may enhance the development of closed form solutions for these problems.

To start with, we first develop general approximations for the loss function of a

continuous variable.
In 2 we introduced a general approximation for x based on solution (9)

(18) :=((1-c)z-hc, z<-O,
(l+c)z-hc, z>-O.

Deriving dx from (18), introducing it in terms of dz into the rightmost wing of
(17) and integrating, we obtain for P < 1/2

(19a) L(y)=o.{(1-c)[Lz(P)-Lz(1/2)]+(1 +c)Lz(1/2)}=o.{(1-c)Lz(P)+2cLz(1/2)}
and for P > 1/2
(19b) L(y)= o.(l + c)Lz(P)

where Lz(P) is the loss function of Z at G(z)= P.
Let us now introduce the various approximating zi presented in 3 and 4, together

with the respective c.
First, approximating Lz(P) for the standard normal deviate from Shore (1982)

0.4115P/(1 P)- z,
Lz(P)

0.4115(1-P)/P,

where P (zl), and (. is the cumulative standard normal distribution function,
we obtain

o.[(1-0.417813)0.4115P/(1-P)-x], P<1/2,
(20) L(y)=

o’[(1 + 0.417813)0.4115(1- P)/ P], P>1/2.
Note that to derive (20) we introduced from (18) o’(1-0.417813)z=o.(:+hc)=
o.[-k-()/3], and also put the exact

Lz(1/2) =0.3989.
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Next we derive the loss function of Z2, Z3 and z4, as defined in 4.
To do that, note that

Lz(P) [1- G(z)] dz= (1-G)[Oz/OG] dG.

Thus for z2 we obtain

’ G-0.8807 -0.90.6598 (l-G) dG, P<1/2,
Lz(P)

P

0.598 {[(-a/a]/ataa, P>1/2
P

which is most unlikely to lead to any useful results in the sense expounded above.
For z3 we have

Lz(P) 0.4506 (I/G) dG -0.45061n P

which on introduction into (19) yields

o’{-(1 0.4777/3)0.4506 In P+ 0.30/3}, P <1/2,
L(y)

-o-(1 +0.4777/3)0.4506 In P, P>1/2.
Likewise for z4 we get

or{-(1 0.3179/3)0.5513 In P+ 0.24/3}, P <1/2,
L(y)

-tr(1 +0.3179/3)0.5513 In P, P>1/2.
To derive a simple approximation for the loss function of a discrete variate let us draw
a graph of 1- F(x) (the vertical axis) as a function of x (the horizontal axis). From
simple geometric considerations it can be easily verified that

L(y) ,=,2 1 F(x)] 0- 1 F(x)] dx + (1/0")0.5 x=u"l/o.f(x)
(21)

=0"{Iu [1-F(x)] dx}+O.5[1-F(x)].
The above first term on the right side is virtually the loss function ofX were it regarded
as a continuous variate, so that the second term may be considered a continuity
correction. Introducing for the "continuous" loss function its approximation as derived
above (19) we finally have for a discrete variate

tr{(1-c)Lz(P)+2cLz(1/2)}+O.5(1-P), P<I’.(22) L(y)
tr(1 + c)Lz(P)+0.5(1 P), P>

To demonstrate the accuracy associated with the above approximations we apply them
to the Poisson loss function which is being in extensive use in the formulation of
stochastic inventory control models.

Introducing the respective parameters in (22) we obtain for zl

tr{(1-O.4178/0")O.4115P/(1-P)-x}-O.5P, P<1/2,
(23) L(y)=

0-(1 +0.4178/0-)O.4115(1-P)/P+O.5(1-P), P>1/2,

where we used 0-(1-0.4178/0")z 0-[x+ hc+ 1/(20")]=0-x+(5/6).
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For far tail probabilities we may substitute

for P < 1/2" 0.5P by 0.5P/(1 P),

for P > 1/2" 0.5(1 P) by 0.5(1 P)/P,

so that (23) simplifies to

o’{(1-1.6329/o’)O.4115P/(1-P)-x}, P<1/2,
(23a) L(y)--

cr(l+l.6329/o’)0.4115(1-P)/P, P>1/2.
Introducing for x in terms of P from one of the approximations of 6, L(y) is
expressible in terms of P only, which is very useful in application to inventory control
models.

For z3 we obtain likewise

-or(1 0.4777/o’)0.4506 In P+ 0.8- 0.5P, P<1/2,
(24) L(y)=

-cr(l+0.4777/r)0.4506 In P+0.5(1-P), P>1/2,

and for Z4

-tr(1 -0.3179/cr)0.5513 In P+0.74-0.5P, P<1/2,
(25) L(y)=

-cr(l+O.3179/tr)O.55131nP+O.5(1-P), P>1/2.
Since (24) and (25) are of the same algebraic structure a choice between them has to
be made in terms of accuracy. Comparison shows that in terms of maximum deviation
(25) is uniformly dominant. Table 6 presents some values for approximations (23),
(23a) and (25). In terms of maximum deviation (23) generally yields the most accurate

TABLE 6
Comparative values of the approximations for L(y).

L(y)
(exact)

App. (23)
App. (23a)
App. (25)

L(y)
(exact)

App. (23)
App. (23a)
App. (25)

0 2 3 4 5 6 7 8 9

0.0183 0.0916 0.2381 0.4335 0.6288 0.7851 0.8893 0.9489 0.9786 0.9919

4.0000 3.0185 2.1098 1.3481 0.7815 0.4103 0.1954 0.0848 0.0336 0.0123

4.0030 3.0199 2.0844 1.2815 0.7729 0.3798 0.1792 0.0791 0.0325 0.0122
4.0028 3.0152 2.0472 1.1156 0.8825 0.4092 0.1861 0.0805 0.0327 0.0122
4.4410 2.9108 1.9517 1.2984 0.7785 0.4166 0.2053 0.0926 0.0383 0.0144

8 10 12 14 16 18 20 22 24

0.0220 0.0774 0.1931 0.3675 0.5660 0.7423 0.8682 0.9418 0.9777

8.0159 6.0812 4.2852 2.7529 1.5872 0.8114 0.3672 0.1464 0.0504

8.0222 6.0850 4.2562 2.6727 1.6110 0.7600 0.3419 0.1414 0.0526
8.0219 6.0817 4.2331 2.5659 1.7774 0.8047 0.3519 0.1432 0.0529
8.4767 5.8954 3.9818 2.5883 1.5719 0.8382 0.4023 0.1718 0.0648



GENERAL APPROXIMATIONS FOR A RANDOM VARIABLE 17

results, but as expected no meaningful differences in accuracy may be noticed between
(23) and (233) for tail probabilities. Equation (25) performs best in middle range
probabilities.

To demonstrate the applicability of the above approximations we take a simple
standard model where inventory supply is periodical, and it is required to determine
the reorder level and order quantity which simultaneously minimize the total cost per
unit time. The well-known fundamental equation is

T- Sd/Q+ (g- ld)IC + ICQ/2 + (Trd/ Q)L(R),

where S is the order cost; d the mean demand per unit time; the mean lead time;
C the unit cost; I the interest rate; 7r the loss of revenue per item in case of shortage;
R the reorder level; Q the order quantity; and T the total cost per unit time. Demand
in the lead time is assumed to be Poisson with mean cr2= ld. To find the optimal reorder
level, R*, let us introduce for (R-ld) from of the Poisson based on z3, and for
L(R) from (23a) (assuming P*= F[(R*-ld)/cr]>0.5), to obtain

T= Sd/Q+ ICcr{(1 + 0.48/cr)[0.4506 In [P/(1- P)] + 0.2253] 0.91/or}
(26)

+ ICQ/2 + (rd/Q)cr(1 + 1.63/or)0.4115(1 P)/P.

Differentiating with respect to (1- P)/P and with respect to Q and equating to zero
we obtain

(27) (1-P*)/P*= l.O950(ICQ*/Trd)[(cr+O.48)/(cr+l.63)],

(27a) Q.)2 (2/IC)[Sd / rd(cr + 1.63)0.4115(1 P*)/P*]

from which

(28) Q*= r{0.4506(1 + 0.48/r) + [0.2030(1 +0.48/o’)2+2Sd/(ICo’2)]/2}.
Introducing (28) into (27) and then into x, we obtain the optimal value of the reorder
level

(29) R*= ld- (or + 0.48){0.4506 In [(1- P*)/P*]-0.2253}-0.91.

To demonstrate the accuracy of this solution let S 50, d 20 items, 1/2 time unit,
C=2, I=0.10, 7r=5, r=/d=10. Then Q*- 101.6 (28), (1-P*)/P*=O.1692 (27),
and from (29) R*= 12.83. The exact optimal solution is Q*= 102, R*= 13 with an
associated cost of T 20.9201.

To demonstrate the usefulness of the above solution, suppose that costs incurred
by a change in the current inventory policy leave us indifferent to a deviation of +/-p%
in Q*. What then is the permissible range of variation of the relevant parameters of
the model (assuming cr unchanged)? From (28) we find:

(Sd)/(IC) {[Q*/r- 0.4506(1 + 0.48/r)]- 0.2030(1 + 0.48/cr)}(r/2)
0.5{(Q* 1.6164)2- 2.6123}.

Thus for a permissible change in Q* of say +30% from its current value, the relevant
Sd/IC may be allowed to vary from -51% to +72% from its current value before a
change in policy needs to take place. Finally note that (28) implies Q* being indepen-
dent of 7r, unlike R* which increases with 7r (see (29)).

8. Two approximate solutions in statistical inference.
8.1. Determining sample size in estimating the ratio of the variances of two normal

populations---an approximate solution. Let r and r2 be the unknown variances of two
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normal populations. Let A try/tr2 be the ratio of the two variances, which has to be
estimated by two random samples of equal size n. It is required to choose n so that
the positive relative sampling error will not exceed Pl% with probability (1- a), and
that the relative negative sampling error will not exceed P2% with probability (1- 32).

Let F_(n 1, n 1) be the (1 a) 100 percentile of an F distribution with

Vl v2 n- 1 degrees of freedom and let S/S2 be the samples’ ratio.
Since A/ is distributed as F with v v2 n- 1 degrees of freedom we obtain

the following conditions:

(30) Fl_,(n-1, n-1)<_- 1 +p/100,

(31) F(n- 1, n- 1)_>- 1-P2/100.

In order to determine a proper n we use/, where =0, and solve (30) and (31), each
separately, for the equality sign to obtain

(32) n,= {0.4506 ln[[(1-a,)/a,]2e]/[ln (1 +p/100)]}2+2 (+ for i= 1,- for i=2).

To select the sample size, choose max (n, n).
To improve the accuracy of the above solution the numerical coefficient in (32)

was readjusted for the commonly used range" a-<_ 0.10 to give 0.4630.
The accuracy of this solution is demonstrated in Table 7.

TAaLE 7
Approximate sample size needed to estimate Asorne representative values.

t =0.10 tz =0.05 al =0.01

exact

10
15
20
30
60

el 1

(%) app.

132 10.1
97 15.1
79 20.1
61 29.5
40 58.1

(%) app.

198 9.8
140 14.7
112 19.5
84 29.2
53 58.9

el
(%) app.

385 10.1
252 15.3
194 20.5
139 30.9
84 62.0

8.2. Optimal hypothesis testing---an approximate solution.
8.2.1. Introduction. Let 0 be an unknown parameter of a statistical population.
We wish to test the null hypothesis Ho: 0 0o, assumed to be true with probability

Po, against the one-sided simple alternative hypothesis Ht: 0 01 < 0o, assumed to be
true with probability p 1-po. Let the decision criterion of the test be: If <
0or.- reject Ho, otherwise do not reject, where is an unbiased most efficient estimate
of 0, based on a random sample of n observations, and 0or. is the boundary (critical)
value of the acceptance region of the test. 0r. is SO chosen that

Pr( < 0or./no) a, Pr( > 0or./HI) ,
and a and/ are respectively the type 1 and type 2 error probabilities associated with
the test.

It is common practice among applicants to choose the decision variables of the
test (namely n, a and/3) arbitrarily, with little or no regard to the sampling cost and
to the costs (gains) incurred by wrong (correct) decisions.

Here we formulate, within the framework of traditional statistical hypothesis
testing, a simple optimization model which takes account of the above costs. By
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employing some of the approximations derived earlier we arrive at explicit expressions
for the optimal values of the decision variables of the test and demonstrate its accuracy
for the special case where 0 is an unknown variance of a normal population.

8.2.2. The model. Let the costs (gains) of the test be:

Go-the gain realized by correctly not rejecting Ho,
Co-the cost of making a type 1 error,
Gl-the gain realized by correctly rejecting Ho,
C,-the cost of making a type 2 error,
C(n)-the cost of sampling n observations.

Except for C(n) all other costs and gains are assumed independent of a,/3 and n.
To test optimally the hypotheses under consideration, we seek an optimal solution

(a*,/3*, n*) which maximizes the expected value of the net gain, that is

(33)

subject to

(34)

where

max {EV po[(1- t Go aCo] +Pl[(1- fl G, flC,] C n

Ep -po[oDo-flD1]-flD,- C(n)}

Ocr.= g(ot)= h(fl),

Do=Go+Co,

Ep poGo+ (1 po)G,

and g(a) and h(/3) are the boundary values of 0, expressed in terms of a and fl,
respectively.

8.2.3. Testing optimally for the standard deviation of a normal population. Let tr

be an unknown standard deviation of a normal population.
To test the null hypothesis Ho" tr =tro against Hi" tr tr, <tro, a random sample

of n observations is drawn and the sample standard deviation, S, is calculated.
The optimization problem is to find (a,/3, n) that maximizes (33) subject to the

feasibility condition

(34a) a 2 2 2oX() ()

where X2(v) is the Fth fractile of a chi-square distribution with v n- 1 degrees of
freedom.

Introducing for the unstandardized X
2 from 6.3 (using z3) we obtain

[(2’) 1/2- 1.9107]ZF + v- 1.6238, F < 1/2,
(35) X2F=[[(2)’/2+l.9107]ZF+).,--1.6238, F>1/2,

where z is the Fth fractile of z3. Presenting into (34a) we have

(34b)

from which

(36)

Q (o-)+(oZ z,_,)(2)
1.9107[cro2z + cr2z,_, + 0.85(cr-cr)] =0

,12 2112(cr(2)z o’z,_/3)/(o’] O-o) + o(,,,-,i:,).
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Using a Lagrange multiplier, A, the target function becomes

(37) max {EV+ AQ}.

Introducing from (34b) into (37) and differentiating with respect to v/2, a and
/3, where from z3 we use

Oz/OF=O.4506/[F(1- F)],
we obtain

O(EV+ AQ)Iov/= 0 2A (cry- o’])u ’/2 + 2/A (r2oz,, o’] z,_t -OC(n)lOv ’/z,

which by (36) becomes approximately

(38) O(EV+ )tQ)/ou’/=O A(r-r2)ul/2-oC(n)/ov’/2,
(39) O(EV+AQ)/Oa=O=2.Zl93poDoa(1-oe)-AcrZo[(2v)/--1.9107],

(40) O(EV+AQ)/O=O=2.2193(1-po)D,(1-)+ArZ[(Zv)/2+l.9107].
Isolating A from (38), introducing it into (39) and (40) and then presenting for ZF
from (14) into (34b) we finally obtain the optimality and feasibility conditions

(41) a*(1-a*)=0.6372[r/(O’o2-cr2)][1 1.3511/(v*)’/z][OC/Ov/]/(poDo),

(42) /3"(1-fl*) =0.6372[r2/(ro2-er2)][1 + 1.3511/(v*)/Z][oC/Ov’/Z]/[(1-po)D],

(43)

where

{0.4506 In [a*/(1- a*)]-0.2253}

W{-0.4506 In [/3"/(1-/3")]+0.2253}+ T=0,

W (er2/r)[(2 u*)/+ 1.9107]/[(2u*) ’/2- 1.9107],

T (1 r2/r)(v* 1.6238)/[(2u*)/- 1.9107].

Solving the quadratic (41) and (42) for a* and /3* in terms of v*, and introducing
into (43) we obtain an equation in v*, the roots of which may be easily identified.

Conditions for the existence of an optimal solution (besides the trivial nonnegativ-
ity ones related to the above quadratic equations) have yet to be established.

Example. Suppose a plant is suffering from large fluctuations in its daily output
which management wishes to diminish by installing some electronic devices to control
production processes.

Currently the standard deviation of daily production is O’o items and the expected
standard deviation under improved control is r items.

The annual cost of achieving the desired improvement is estimated by Co, and
the expected net gain is G per year.

A pretest of n days is designed and the annual cost of installing and running the
control devices within the examination period is a + bn.

All costs are given in fixed prices for the expected depreciation period.
Management assigns a credibility of 100p% to the supplier’s claim concerning

the expected STD.
Construct an optimal test.
Solution. We have C(n) a+ bn so that oC(tI)/Oltl/2-- 2by /2. Introducing into

(41) and (42), and assuming that a*,/3*< 1/2 (a*,/3* being the optimal values) we
obtain thereof

(41a) a* 1/2-{(1/4) ko[(v*) ’/2- 1.35111} ’/2,
(42a) /3* =1/2-{(1/4)- k[(v*)’/2 + 1.3511]} ’/2,
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where

ko 1.2744b[ tro/( tr crl2) ]/( Po Do),

k 1.2744b[ tr21/ tr crl)]/[(1- po) D1].

Introducing the above a* and/3* into (43) we obtain an equation in u*, the roots of
which may be isolated by any standard routine installed in a hand calculator or a PC.
Alternatively by trial and error we may put in (41a) and (42a) differing values of ,,
calculate the respective a* and /3", and stop when these values result in a feasible
solution (namely maintain relationship (34a) or its approximate equivalent (43)).

A numerical example. Suppose

5000, tr 2700, Po 0.3,

Do 18,900, D=485, C(n)=450+lOn=460+lOu

(assume all costs are in 1025). We obtain ko=0.00317, k =0.01545.
Introducing into (41a) and (42a) and then into (43) we derive the root u*= 20.6,

thence a* 0.010 and/3* 0.100.
Table ....gives values of (a,/3, u) in the vicinity of the above solution, and the

associated EV calculated from

EV EV- Ep -56704 339.5/3 (460+ 10u).

(Since Ep is a constant it need not be specified.) To make the transition from a

to/3 and vice versa through the binding feasibility condition (34a), we used the highly
accurate Wilson-Hilferty approximation

XF U{1 --2/(9U) + ZF[2/(9U)]/2}3,
where ZF is the Fth fractile of a unit normal variate.

The results, as shown in Table 8, indicate that the ap.proximate solution is
practically the optimal one (the difference in the associated EV between v 20 and
v 18 is negligible and may partially be attributed to the use of the above W-H
approximation).

TABLE 8
Values of (a, fl, u) in the vicinity of the approximate optimal solution, and the associated EV.

(from (41a))
(from..(34a))

EV

(from (42a))
(from (34a))

EV

16 17 18 19 20 21 22

0085 .0089 .0092 .0096 .0100 .0104 .0107

.2591 .2087 1676 1328 1000 .0804 .0624

-756.0 -751.1 -749.3 -749.5 -750.6 -756.3 -761.9

.0909 .0933 .0955 .0978 .1000 .1021 .1042

.0266 .0211 .0168 .0132 .0100 .0082 .0065

-801.7 -781.3 -767.7 -758.2 -750.6 -751.4 -752.2

9. Conclusions. Simple general approximations for a random variable, based on
linear transformations of standardized nonskewed random variables were derived.
Whenever available the inverse distribution function of the latter were employed to

approximate that of the former. Demonstration for five commonly used distributions
shows that despite their simplicity the new approximations preserve an acceptable
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degree of accuracy and may be employed to derive solutions for various statistical
problems which are currently algebraically untractable. A full report on the accuracy
and algebraic manipulability of the new approximations in comparison with existing
ones for the above distributions and others is under preparation. The common four
parameter density function which all ofthe above general approximations share requires
some further characterization.

Appendix A: Derivation of the solution for AI = A2 A, B ---B2 B. Assuming
that the required approximation has the algebraic structure of (1), we look for solutions
for A and B that yield approximate equality of the variance and the fourth cumulant,
namely,

(A.1) 232ME-4ABMl + B2-[(2M2)1/EA-Ml(2/ME)l/EB]E+[1-2M2/ME]B2= 1

and

(A.2)

Assume that

2A4M4 8A3BM3 + 12A2B2M2 8AB3M1 + B’- 3 14.

1 2M/M2]B2 << 1.

Then this term in (A.1) may be neglected and we obtain therefrom:

(A.3) A [1 + M(2/M2)l/2B]/(2M2) /2.

Introducing it into (A.2) and neglecting terms which are O(B2) we have

(A.4) B 4 d- 3 M4/(2M)](M32/8)1/2/[M1 M4/M2 M3].

For the unit normal we have

which yield

M1 1/(27r) 1/2, M2=0.5, M3=(21’rr) 1/2, M4 1.5

A= 1 +(2/’a’)l/2B 1 + (1/4)/4,

B (,n./ 32) l/21,.
The term in (A.1) was therefore properly neglected and we obtain equality of the
variance and the fourth cumulant to O(14). Similar arguements apply to z2, the partial
moments of which are developed in Appendix B.

Likewise introducing the partial moments of the logistic variate (these are given
in Appendix B) we obtain A and B, given in 5.

Appendix B: Derivation of the partial moments of approximations (13) and

(14). Equation (13) is a linear transformation of the general term GP-I(1-G)q-, the
ith ’partial moment’ of which is

I Gp-I(1 G)q-] dG.
1/2

The complete beta function ratio, B(p, q), is defined by

B(p, q) GP-(1 G)’- dG,
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and the incomplete beta function ratio at x is defined by

Ix(p, q) 1/B(p, q)] Gp-I(1 G)q-1 dG.

Since 1 GP-I(1- G)q-1 dG= [1-/(p, q)]B(p, q), the above ’partial moment’ may be
calculated in terms of B(p, q) and/(p, q)-

(a.1) Mi =[1 I1/2( ip- + 1, iq- + 1)]B( ip- i+ 1, iq- + 1).

For (13) we have p-1 =-0.1193, q-1 =0.1193, so that the ’partial moments’ using
(B.1) are

fi/1 [1-I1/2(0.8807, 1.1193)]B(0.8807, 1.1193)=0.42765,

fi/2 [1-11/2(0.7614, 1.2386)]B(0.7614, 1.2386)=0.37166,

fiT/3 1 11/2(0.6421, 1.3579)]B(0.6421, 1.3579) 0.32730,

//4 [ 1 11/2(0.5228, 1.4772)]B(0.5228, 1.4772) 0.29146.

Introducing these into the expressions derived for the partial moments of (13), the
values given in 4.1 ensue.

To derive the partial moments of (14) we have the partial moments of the standard
form logistic variate

y=ln[G/(1-G)].

These are (see Johnson and Kotz (1970, Ch. 22))

M1 0.6931, M2 1.6449, M3 5.4096, M4 22.7288.

Introducing these into the expressions derived for the partial moments of (14) the
values given in 4.1 result.
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AN EXHAUSTIVE ANALYSIS OF MULTIPLICATIVE CONGRUENTIAL
RANDOM NUMBER GENERATORS WITH MODULUS 231-1*

GEORGE S. FISHMAN" AND LOUIS R. MOORE III

Abstract. This paper presents the results of an exhaustive search to find optimal full period multipliers
for the multiplicative congruential random number generator with prime modulus 231 1. Here a multiplier
is said to be optimal if the distance between adjacent parallel hyperplanes on which k-tuples lie does not
exceed the minimal achievable distance by more than 25 percent for k 2, , 6. This criterion is considerably
more stringent than prevailing standards of acceptability and leads to a total of only 414 multipliers among
the more than 534 million candidate multipliers.

Section reviews the basic properties of linear congruential generators and 2 describes worst case
performance measures. These include the maximal distance between adjacent parallel hyperplanes, the
minimal number of parallel hyperplanes, the minimal distance between k-tuples, the lattice ratio and the
discrepancy. Section 3 presents the five best multipliers and compares their performances with those of
three commonly employed multipliers for all measures but the lattice test. Comparisons using packing
measures in the space of k-tuples and in the dual space are also made. Section 4 presents the results of
applying a battery of statistical tests to the best five to detect local departures from randomness. None were
found. The Appendix contains a list of all optimal multipliers.

Key words, congruential generator, discrepancy, lattice test, random number generation, spectral test

Introduction. This paper presents the results of an exhaustive search to find
optimal multipliers A for the multiplicative congruential random number generator
Zi-= AZi_l(mOd M) with prime modulus M 231-1. Since Marsaglia (1968) showed
that k-tuples from this and the more general class of linear congruential generators
lie on sets of parallel hyperplanes it has become common practice to evaluate multipliers
in terms of their induced hyperplane structures. This study continues the practice and
regards a multiplier as optimal if for k 2,. , 6 and each set of parallel hyperplanes
the Euclidean distance between adjacent hyperplanes does not exceed the minimal
achievable distance by more than 25 percent. The concept ofusing this distance measure
to evaluate multipliers originated in the spectral test of Coveyou and MacPherson
(1967) and has been used notably by Knuth (1981). However, the criterion of optimality
defined here is considerably more stringent than the criteria that these writers proposed.
In fact, among the more than 534 million full period multipliers A examined in this
study, our research identified only 414 optimal multipliers.

First proposed by Lehmer (1951), the multiplicative congruential random number
generator has come to be the most commonly employed mechanism for generating
random numbers. Jannson (1966) collected the then known properties of these gen-
erators. Shortly thereafter Marsaglia (1968) showed that all such generators share a
common theoretical flaw and Coveyou and MacPherson (1967), Beyer, Roof and
Williamson (1971), Marsaglia (1972) and Smith (1971) proposed alternative procedures
for rating the seriousness of this flaw for individual multipliers. Later Niederreiter
(1976), (1977), (1978a, b) proposed a rating system based on the concept of discrepancy,
a measure of error used in numerical integration. With regard to empirical evaluation,
Fishman and Moore (1982) described a comprehensive battery of statistical tests and

* Received by the editors September 10, 1984, and in revised form December 5, 1984. This research
was supported by the Office of Naval Research under contract N00014-26-C-0302.

f Curriculum in Operations Research and Systems Analysis, University of North Carolina, Chapel Hill,
North Carolina 27514.

Curriculum in Operations Research and Systems Analysis, and School of Business Administration,
University of North Carolina, Chapel Hill, North Carolina 27514.
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illustrated how they could be used to detect local departures from randomness in
samples of moderate size taken from these generators.

Although the theoretical rating procedures have existed for some time, with the
exception of Hoaglin (1976), Ahrens and Dieter (1977) and Knuth (1981), little use
has been made of them. The present study, by its sheer exhaustiveness, removes this
deficiency for generators with M 231- 1. Section 1 reviews the basic properties of
linear congruential generators. Then 2 describes the worst case performance measures
that have been proposed to rate generators in k dimensions. These include the maximal
distance between adjacent parallel hyperplanes, the minimal number of parallel hyper-
planes, the minimal distance between k-tuples, the lattice ratio and the discrepancy.
These concepts are described in this study principally in terms of the space of k-tuples
and, where appropriate, in terms of the dual lattice space. However, in order not to
obfuscate central concepts the exposition relies on a minimal use of formal lattice
theory.

Section 3 presents the five best multipliers and compares their performances with
those of three commonly employed multipliers for all these measures but the lattice
test. The Appendix contains a list of all optimal multipliers. Also, lattice packing
measures are presented and again show the dominance of the five best over the three
commonly used multipliers. Packing measures in the dual space are also computed.
This last concept is identical with Knuth’s figure of merit for evaluating generators.
Our results indicate that with regard to this criterion the five best perform better than
all 30 multipliers listed in Table 1 of Knuth (1981, pp. 102-103). Bounds on discrepancy
are also computed and discussed.

Section 4 presents the results of a comprehensive empirical analysis of the local
sampling properties of the best five, using the procedures in Fishman and Moore
(1982). No evidence of departures from randomness was detected.

1. Linear eongruential generators. A linear congruential generator produces a
sequence of nonnegative integers

(1) {Zo, Zi =-- AZi_ + C(mod M); 1, 2,...}

where the modulus M, and multiplier A are positive integers and the seed Zo and
constant C are nonnegative integers. For purposes of conducting sampling experiments
on a computer, the elements of the sequence Z are normalized to produce the sequence

(2) U { Ui Z/M I, 2, .},

whose elements are treated as if they were sampled independently from the uniform
distribution on the interval [0, 1). The objective in assigning values to M, A, Z0 and
C is to make the errors incurred in this treatment of U tolerable ones. Here errors are
principally of two types, one being the approximation of a continuous phenomenon
on (0, 1) by the discrete sequence U and the other being the distributional distortions
in U induced by the use of the deterministic generator (1). In addition, computational
considerations play a role in choosing M, A and C.

One property of the generator (1) is the period

(3) T min {k >_- 1: Z.+ Z. for all n _-> M}.

The larger M is, the larger T can potentially be, and consequently the denser the
points of U are in [0, 1). The more dense these points are, the smaller the continuity
error is.
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Table 1 lists several types of linear congruential generators that are or have been
in common use. Here A, C, Zo in the table guarantee maximal period for the correspond-
ing modulus M. Note that types 1 and 2 give full periods whereas the remaining
generators give only one fourth of the numbers between 1 and 28. Moreover, types 4a
and 4b do not produce equidistributed sequences. Also, the use of M-28 enables
one to replace division and multiplication by less time consuming shift and add
operations. Although M 28 1 does not allow this substitution directly, a procedure
due to Payne, Rabung and Bogyo (1969) enables one to retain part of this improved
efficiency. Note that A is a primitive root of M if AM--=l(modM) and
Al(modM) forO<Q<M-1.

TABLE
Linear congruential generators: Zi AZi_I + C(mod M).

Generated sequence
Type M C A Z is a permutation of T

2 odd mod4 {0, 1,. ., M- 1}
2 prime 0 primitive 1, , M

root of M
3a 2 0 5 (mod 8) (mod 4)
3b 2 0 5 (mod 8) 3 (mod 4)
4a 2 0 3 (mod 8) or 3 (mod 8)
4b 2 0 3 (mod 8) 5 or 7 (mod 8)

{0, 1,. ., M- 1} 2
{1,... ,M-l} M-1

{4j+ 1;j 0, 1,... ,2-2-1} 2-2

{4j+3;j=0, 1,... 2/-2-1} 2-2

{Sj + and 8j + 3; j 0, 1,- , 2-3 1} 2/-2
{Sj+5andSj+7;j=0,1,...,2-3-1} 2-2

Source: Jannson (1966); A, C and Zo guarantee maximal period for the modulus M 2 with/3 -> 3.

Today only linear congruential generators of types 2 and 3 are commonly used.
On IBM computers with a word size of 32 bits and C-0, the generator called
SUPER-DUPER (Marsaglia (1972)) uses M--23:z, A =69069 and Zo= odd integer to
give a period T 23. For generators of type 2 with prime number modulus M 23 1,
APL (Katzan (1971)) uses A--16807, the SIMSCRIPT II programming language
(Kiviat, Villanueva and Markowitz (1969)) uses A=630360016, SAS (1982) uses
A 397204094 and the IMSL Library (1980) gives the user the choice of A 16807 or
A 397204094. The resulting period is T 23- 2.

2. Theoretical measures of performance. In practice, it is relatively common to use
the pseudorandom numbers produced by (1) in groups or k-tuples. Consider the sequence
of points

(4) Wk ={W,k (Zi+,,’" ", Zi+k); i= 1, 2,...}

and the normalized sequence

(5) Vk { ,k (Z+,IM, Z+k.IM) i= 1, 2,’" "}.

Ideally one wants the sequence of points Vk to be equidistributed in the k-dimensional
unit hypercube for k 2, 3,.... However, the form of the generator (1) limits the
extent to which one can achieve this ideal. For example, observe that an ideal generator
of the integers I={1,...,M-l} produces (M-l)k equidistributed points in k-
dimensional space whereas a generator of type 2 produces only M-1 points in this
space.

Although this constancy of the number of points is itself sobering, it is one of
two importance issues. To illustrate the second issue, Fig. 1 shows a plot of 2-tuples
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FIG. 1. Zi AZi_n(mod 61).

for the generators Zi=7Zi_(mod61) and Zi=31Zi_(mod61) where 61 is a prime
number and 7 and 31 are primitive roots of 61. Although no one would seriously use
either of these generators to produce random 2-tuples, a comparison of Figs. l a and
lb arouses a concern that holds for more realistic generators as well. Notice that the
distribution of points in Fig. b is considerably less uniform than the distribution in
Fig. l a. Since such differences in two and higher dimensions are attributable entirely
to the choice of multiplier and since there are an enormous number of candidate
multipliers, a deep analysis of k-tuples generated by (1) across all those multipliers is
needed to assess the extent to which the resulting sequences Vk depart from the ideal
of equidistributedness.

Several theoretical procedures have been proposed to make this assessment. They
include:

(1) maximal distance between adjacent parallel hyperplanes (spectral test);
(2) minimal number of parallel hyperplanes;
(3) minimal distance between points;
(4) ratio of lengths of longest and shortest minimal basis vectors (lattice test);
(5) discrepancy.

Although diverse in what they measure, the procedures share a common unifying
concept. All follow from recognizing that, with the exception of generators of types
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4a and 4b, the k-tuples Wk can be regarded as points in a regular lattice. Moreover,
generators of types 4a and 4b lead to k-tuples on two intermeshed regular lattices.
Ahrens and Dieter (1977), Beyer, Roof and Williamson (1971) and Coveyou (1970)
provide detailed descriptions of this relationship to lattice theory. To keep the focus
of attention on the assessment of interest, the present paper presents only the features
of lattice theory that are essential for describing these procedures. Also, unless otherwise
noted our description applies for generators of type 2. Comparable analyses can be
performed for each other type of generator.

2.1. Maximal distance between adjacent parallel hyperplanes. Observe that Zi can
be written in the form

i-1

(6) Zi =- ZoA’(mod M) ZoA’ M , K,_mAm, >- 1
m=0

where Kj [AZ_/MJ, j 1, 2, . Now for k->_ 1, q (qo, ", qk-1) and y consider
the k-dimensional hyperplane

H(q, y) (Xo," ", Xk-1): qxj =y
j=0

and in particular the family of parallel hyperplanes"

(7) Hk(q) {Hk(q, y)" y 0 (mod 1)}.

Observe that the elements of Vk in (5) lie on hyperplanes in Hk(q) in (7) if

(i)

and

qo," ", qk-1 integer

k-1

(ii) q(A) , cbA =- 0 (modM).
j=0

These restrictions are sufficient since for any V/,k in Vk the quantity

1 k-1 ZoAi(8) y, =- , jiZi+g =q(A)+ ki
g=o M

where

k-1 i+j-1

(9) k,=- qj Z Ki+j-mAm.
j=l m=0

Restriction (i) insures that k is an integer and restriction (ii) insures that y- ki is an
integer. These restrictions hold throughout the remainder of this paper.

For the ensuing analysis it is convenient to extend Vk modulo one to the set

Vk* { V* (Vo*, , v*_) integer}
(10)

LI{V* (Vo*,..., Vk*-) -= V,k(mOd 1); i- 1,..., T}.

Since (i) and (ii) hold, the points in V also lie on hyperplanes in Hk(q). Then the
set of all hyperplanes containing at least one point of Vk* is

(11) Hk*(q) Hk(q): y E qdv, V* e Vk*
j=0
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Moreover, one can index these hyperplanes by the set of integers

(12) Y*k(q) Y* , qv" V* V*k
j=0

We now use these representations to show that for specified k_-> 1 and q the
k-tuples in Vk lie on a set of parallel hyperplanes for which the Euclidean distance
between adjacent hyperplanes is fixed. The set of hyperplanes is H*k(q) and for y and
z in Yk*(q) the Euclidean distance between Hk(q, y) and Hk(q, z) is lY--Zl/(jk--- ...21/2

/j

To prove the result, it suffices to show that the Y*k(q) is composed of all integer
multiples of some fixed constant Ik(q), for then the Euclidean distance between adjacent
hyperplanes in Hk*(q) is

Ik(q)
(13) dk(q; A, M)= (- /"231/2"

By way of proof,, note that if V and V’ are two elements of Vk* then V" V’- V
is also in Vk* and therefore for y and z in Yk*(q) one has y-z in Y*(q). Also, for any
integer j and point V* in Vk* the point V’-jV* is also in V* so that z-jy, for
Y Yk*(q), is also in Yk*(q). Therefore, it follows that all elements of Yk*(q) are multiples
of

Ik(q) min {ly*l > o; y* Yk*(q)},

thus establishing (13). Without loss of generality we take

(iii) Ik(q)- 1.

Since many different vectors q satisfy (i), (ii), and (iii) for a given multiplier A
and induce families of parallel hyperplanes, additional criteria are needed to enable
one to characterize the extent of equidistributedness of the k-tuples Vk in (5) in the
k-dimensional unit hypercube for each possible multiplier. One such criterion is the
maximal distance between adjacent parallel hyperplanes which is a worst case measure
for a particular multiplier A. It is

(14) d*k(A,M)= max q
qO,’",qk-I \j=0

subject to restrictions (i), (ii) and (iii). In particular, note that the constraint (iii)
eliminates the numerator of (13) from the maximization (14).

When using (14) to compare k-tuple performance for several multipliers for a
type of generator, one prefers the multiplier that gives the minimal maximal distance
since this implies smaller empty regions in the k-dimensional unit hypercube for this
multiplier than for the other multipliers. However, there is a limit to how small this
maximal distance can be; in particular, it is known that (Cassels (1959, p. 332))

(15) M1/kd*k(A, M) >- "Yk

(3/4) 1/4 k=2,
2-1/6, k =3,
2-1/4, k =4,
2-3/10, k 5,
(3/64) 1/12 k =6.
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To illustrate the significance of these bounds, note that with the modulus M
231-1 one has

.2008 x 10-’,
/.6905 10-3,

d*(A, 231-1) ->_ .3906 x 10-2,

/.1105 x 10-1,
(..2157 x 10-1,

k=2,
k=3,
k =4,
k=5,
k=6,

indicating the relative coarseness of the grid of points in as few as four dimensions.
Using multivariable Fourier analysis, Coveyou and MacPherson (1967) advocated

using the minimized "wave number"

(1 qj2..)1/2\j=0

(s.t. q0," ", qk-1 integer and q(A)=-0(mod M)) to determine the relative desirabilities
of alternative multipliers; hence the name spectral test. Shortly thereafter, it became
apparent (Coveyou (1970), Beyer, Roof and Williamson (1971)) that one could perform
equivalent studies using (14) by viewing the k-tuples as being arranged on parallel
hyperplanes and exploiting the mathematical properties of the so-induced lattice
structure. In fact, it turns out that the physical interpretation of results can be more
easily understood in the space of Wk whereas the computational procedures are more
easily understood by working in the dual space of q. We return to this issue in 3.

2.2. Minimal number of parallel hyperplanes. A second measure ofequidistributed-
ness, suggested by Marsaglia (1968), is the number of parallel hyperplanes
Nk(qo,’’’, qk-1; A, M) on which all the k-tuples lie. If this number is small for a
particular multiplier A, then this is an indication that there exist large regions in the
k-dimensional unit hypercube that contain no k-tuples.

Observe that with restriction (iii) gives the upper bound

k-1

(16) Nk(qo, qk-1, A, M) <-_ I 1.
j=0

Using the development in Dieter (1975), one also observes that

k-1 k-1

(tb)-<y,< . (qj)+, i= 1,..., T
j=o j=o

where Yi is defined in (8) and

-x if x<0, if x<0.

Because of the restrictions (i) through (iii) the number of distinct yi is precisely the
maximal number of parallel hyperplanes that pass through the k-dimensional unit
hypercube. This number is

(17)
k-1 k-1 k-1

Nk(qo,’’’, qk_l;A,M)= (q)-+ (qj)+= [tbl-1.
=0 j=0 j=0

Note that all these hyperplanes may not be occupied.
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As before, there exist many vectors q that satisfy restrictions (i), (ii), and (iii). A
worst case measure here is

(18) N*k(A, M)=min N’k(qo, qk-1; A, M)
q

subject to the restrictions. When using this criterion to choose among several multipliers,
one prefers the one that gives the maximal minimal Nk(qo," ", qk-1; A, M). As in the
case of distance between hyperplanes, an upper bound exists on N*k(A, M), namely
(Marsaglia (1968))

N*k(A, M)<=(k!M)1/k, k= 1,2,. .
In particular, for M 231-1 the bounds are

N*k(A, M) <-_

’65536, k=2,
2344, k 3,
476, k =4,
191, k=5,
107, k =6.

Again, these bounds are limiting, and encourage one to search for multipliers that can
come close to the bounds.

Knuth (1981, p. 92) points out that the ordering of several multipliers A1, , Ap
according to the maximal distance measure d(A, M) may differ from the ordering
established by the minimal number of parallel hyperplanes measure N*k(A, M). In
particular, he notes that N*k(A, M) "is biased by how nearly the slope of the lines or
hyperplanes matches the coordinate axes of the cube." That is, N*k(A, M) may be
relatively large when d’(A, M) is also relatively large. Since in this case one inclines
to discount the multiplier because of sparseness indicated by d’(A, M), there is some
justification for valuing d*k(A, M) more highly than N*k(A, M) as a measure of
performance. Section 3 takes this into consideration when searching for optimal
multipliers.

Although d*k(A, M) provides a more definite evaluation of a multiplier than
N*k(A, M) does, the latter quantity has at least one readily appealing attribute that
justifies its consideration. We illustrate this feature for the type 3 generator with
A =65539 and M 231. This generator is known as RANDU and was a standard
feature of the IBM Scientific Subroutine Library on 360/370 series computers for many
years. Observe that 65539 216+ 3 so that

Moreover,

Zi+l=-(216+3)Zi

Zi+2 (6 236 + 9)Zi

Zi+2=6Zi+I-9Z,

Z,+_-6Zi+I +9Z O

Ui+2-6 U+x + 9 U =- O

(mod 231),

(mod 231),

(mod 231),

(mod 231).

(mod 1)

indicating that N3"(65539,231)-< 16, a devastating indictment of RANDU in three
dimensions. Therefore, the valuable feature of N*k(A, M) is that it can on occasion
identify a poor multiplier with relatively little computational ettort.
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2.3. Distance between points. Smith (1971) has suggested an alternative measure
of equidistributedness based on the minimal distance between k-tuples

(19) l[klc*k(a, M) min (Zi+j Zm+j)2

i

Since the total number of points is fixed at T, the smaller C*k(A, M) is for a given A,
the more clustered are points in the k-dimensional unit hypercube. Therefore, when
comparing several multipliers in k dimensions one prefers the one that gives the
maximal C*k(A, M).

Whereas d*k(A, M) measures distance between adjacent parallel hyperplanes,
C*k(A, M) measures distance between nearest points. An alternative, but equivalent
interpretation is to view 1/C*k(A, M) as the maximal distance between adjacent parallel
hyperplanes in the dual space of q. The observation enables one to establish the upper
bouds for C*k(A, M) k-2, 3,’" (Cassels (1959, p. 332))"

(20) c’(A, M) <-_ 11TkM1/k

where Yk is defined in (15). This duality relationship also facilitates the computation
of C*k(a, M) using the algorithm in Dieter [1975].

2.4. Discrepancy. The concept of discrepancy originated in the study of how well
equidistributed sequences perform in sampling procedures designed to approximate
the volumes of regions in the k-dimensional unit hypercube and in numerical integra-
tion. Having recognized the relationship between this problem and that of measuring
the performance of a random number generator, Niederreiter (1977) adapted the
discrepancy measure to this latter problem and gave bounds for it.

Consider the sequence of k-tuples { Wi,k’,i--1,’’’, T} defined in (4). For N
1,. ., T discrepancy in k dimensions for a multiplier A and a modulus M is defined
as

(21) D)(A, M) mRax
number of Wl,k, WN,k in R volume of R

N Mk

where R ranges over all sets of points of the form R
{(Wl, ", wk)lal --< Wl </31," ", ak <- Wk < fig}. Here a and/3 are integers in the range
0-< a </3j < M for 1 _-< j -< k so that the volume of R is

k

II (- ).
j=l

Niederreiter (1977), (1978a) gave upper and lower bounds for D)(A, M) for gen-
erators of types 1, 2 and 3 for arbitrary N <-T. In particular, the upper bound for
generators of type 2 is

D)(A, M) <-_+k min (N, (M- N)1/2)
E*

1
M N q(mod m) r(q, M)

max (0, N-(M- N)1/2)
N q(mod M)

q(A)--0(mod M)
r(q, M)
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where the asterisk denotes exclusion of qo qk-1--O,

k-1

r(q, M)= E r( qj, M),
j=0

1 if q=0 (modM),
r( M)q,

M sin llq/MII if q 0 (mod M),

and
Iltll-- min (t, 1 t).

Note that this bound holds for any local sample of N successive k-tuples from the
generator as well as for a global evaluation of performance when N T.

At present there exists no algorithm, other than total enumeration, for computing
this upper bound and this situation is likely to remain so. However, the form of the
bound enables one to establish a valuable relationship between the spectral test and
discrepancy. Note that sin rllq/MIl>O in the bound and that the number of such
terms is a function of q(A). Recall that the quantity

is minimized, subject to q(A)=-O (mod M), to find the maximal distance between
adjacent parallel hyperplanes. If this minimized quantity turns out to be small for a
multiplier A, then the congruence occurs frequently for 0-< Iq-ll < Mj 1, , k. This
clearly adds positive terms to the second summation and therefore the upper bound
is large. If for an alternative multiplier A’ the minimized quantity turns out large, the
congruence holds less frequently and the upper bound is smaller than in the previous
case. Thus the results for the spectral test convey useful information about the bounds
on discrepancy.

For generators of types 1 and 2, Niederreiter (1976, 1978a) also gave the lower
bound

M) for 2 <_- k <_- 6,
(22) D)(A, M) ->

7r/2(27r+l)kpk)(a,m) for k->7

and the upper bound

(23)

where

(24)

and

D)(A, M) <+min 1, log M+

+ (log 2)’-((2 log M)+4(2 log M)k-’)/2pk)(A, M)

+ 2’(2k-:- l)(J + k- 2)/k-1
P(k)(A’M)

pk)(A, M)= min
q(mod M)
(o,...,o)

q(A)-0(mod M)

]max (1, Iqul)
[_j =o

J (log M)/log 2.

Comparable results exist for generators of type 3.
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With the exception of k 2 no algorithm exists for computing pCk)(A, M). Ahrens
and Dieter (1977, Thm. 5.17) gave the stronger lower bound

(25) D)(A, M)>= 1 min hm [I [q,[
a (o,-. -,o) i=o

q(A)=-0(mod .4)

where m denotes the number of nonzero qi,

(26) ,m
m/m (m-1)mHn

and

if m 2 or 3,
if m>_4

[m/2]+l
/4,.- (-1)(7)(tm/2]+l-j)"-/(m-1)!

For k 2 Borosh and Niederreiter (1983) showed that

(27) p(-)(A, M) min (Iq,l" [tM-q,AI)
O<-_[ql<=M/2

for some satisfying qo tM-qA. This result makes the bounds in (22) and (23)
operative for k 2.

Niederreiter (1977), (1978b) provided additional bounds for k 2. For type 2

((28) DT)(A, M) <= 2 + a, T
i=l

and

(29) DT)(A, M)<-[2+C(K) log T]/T

where a, , ap are the partial quotients in the continued fraction expansion of A! M,
K=max(al,...,ap) and C(K)=2/log2 for 1-<K_-<3 and C(K)=
(K + 1)/log (K / 1) for K >_-4. Expressions (28) and (29) also hold for type 3 generators
with 2/T replaced by 1/T and with a,..., ap being the partial quotients of A/2-z.
Earlier, Dieter (1971) derived closely related results based on continued fractions to
nearest integers rather than regular continued fractions.

Borosh and Niederreiter (1983, Table 2) have carried out a systematic search for
multipliers of type 3 and type 4 for k- 2. In particular, they gave maximal period
multipliers with K <= 3 for/3 6, 7,..., 35 for each type.

2.$. Lattice test. Beyer, Roof and Williamson (1971) and Marsaglia (1972) pro-
posed an alternative figure of merit, for evaluating alternative multipliers, based on
the concept of squareness. We use Fig. 1 to illustrate this concept. Clearly one can
construct a vast number of parallelograms of varying areas that include no interior
points. The presumption of the lattice test is that one prefers multipliers that produce
parallelograms of minimal area whose sides are close, if not equal, in length; hence,
the notion of squareness, where angles are neglected.

Now the minimal volume of a k-dimensional parallelepiped generated by k-tuples
from (1) subject to (ii) is Mk-. In evaluating a particular multiplier, the objective of
the lattice test is to find the basis vectors t, , tk that come closest in k dimensions
to achieving this squareness for parallelepipeds ofvolume Mk-. To measure the extent
of the departure from equidistributedness in k dimensions Beyer, et al. and Marsaglia

generators
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recommended the quantity

maxl_<_i<=/
(30) Rk(A)

minl<=i<__k let,I
that is, the ratio of the lengths of the longest and the shortest basis vectors. Clearly
Rk(A)-> 1 and presumably one prefers multipliers for which Rk(A) is close to unity.

It is worthwhile noting that the basis vectors al," ", ak play an implicit role in
the previously mentioned tests as well. For example, one can show that for k 2 the
maximal distance between parallel hyperplanes is

d*(A, M)(I,=I=-la, a:l=/I,,l=)
where we take et: to be the longer vector.

Although the figure of merit in (30) has intuitive appeal, there is no universal
agreement about its usefulness in identifying good multipliers. Marsaglia (1972, p.
275) suggested a generator of type 3 called SUPER-DUPER with M 2s and A
69069. It has R:z(A)= 1.06, Rs(A)= 1.29, R4(A)= 1.30 and R(A)= 1.25; an appealing
generator as evaluated by the lattice test. For this generator Niederreiter (1978, pp.
1027-1028) showed that p(:)(A, M) <= 69069 so that (22) gives D)(A,M) >-

1/(469069)=.362010-5. But Borosh and Niederreiter gave a multiplier A=
3039177861 for M =2s- with p:Z)(A, M)=.2517M and ei=1 ai 51 for which (28)
based on M 2s- gives D)(A, M) <= (1 + 51)/23= .484 10-7. This result illustrates
that although SUPER-DUPER has the appealing figure of merit R(69069)= 1.06,
there exist multipliers with A -= 5(mod 23-) that dominate it by a substantial margin in
k 2 dimensions with regard to discrepancy.

3. Analysis. This section presents results of an investigation based on the evalu-
ation of {d’(A, M); k=2,..., 6} for all multipliers A that are primitive roots of
M 2sl- 1, using an algorithm of Dieter (1975), as described in Knuth (1981, algorithm
S). Hardy and Wright (1960) show that the number of primitive roots for M prime is
(M 1 where

(M- 1) number of integers not exceeding and relatively prime to M- 1.

This quantity is called the Euler totient function. Since b(M- 1)/(M- 1)--" .249 for
M=231-1 (Ahrens and Dieter (1977, p. 7, 6)) one has b(231- 2) 534723428, a not
inconsequential number.

To find the primitive roots, one notes that if B is the smallest primitive root of
the prime modulus M, then every primitive root has the form

A B (mod M)

where I is an integer whose largest common factor with M- 1 is unity. Since one also
can show that for every such I there exists a pair of multipliers B(mod M) and
Bt-l-(mod M) with identical lattice structures, it suffices to investigate only half of
all the primitive roots. In the present case 7 is the smallest primitive root of 231-1 so
that only 267361714 multipliers require examination. Note that the multiplier with
exponent M- 1- I produces the same sequence as the multiplier with exponent I
does, but in reverse order.

Clearly one needs to adopt a screening procedure to identify and collect those
multipliers that "perform well". For present purposes, the multipliers of most interest
are those that "perform well" in k 2,..., 6 dimensions relative to the constraints
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imposed on all lattices in these dimensions. Consider the ratios

S,(A, M)= /d*(A, M)M/k, k= 2,..., 6.

As seen from (15), 0< SI,k(A, M)=< 1. Now the closer S,(A, M),..., S,6(A M) are
to unity the better the performance is of this multiplier with regard to the achievable
bounds in 2,..., 6 dimensions. Therefore, one way to perform the screening is to
identify all multipliers for which

min S,k(A, M) _-> S, 0 < S < 1

for specified S.
Initially we chose S =.75. Since preliminary computations indicated that there

were an unmanageable number of multipliers that satisfied this criterion, we changed
S to .80. This resulted in a total of 207 optimal multipliers, as listed in the Appendix.
Recall that there are actually twice this number of optimal multipliers. The abrupt
reduction in the number of optimal multipliers when shifting from S .75 to S .8 is
itself notable. Also note that any multiplier for which S,k(A, M) > .8 for k 2, , 6
guarantees that for each k the distance between adjacent hyperplanes does not exceed
the minimal achievable distance by more than 25 percent.

For each selected multiplier and k 2, , 6 we also computed the ratios

S2,k(A, M)= N*(A, M)/(k!M)k

and

S3,k(A, M)= C*k(A, M))’kM1/k,
again using Dieter’s algorithm.

Table 2 presents these ratios for the multipliers with the five largest min S,k(A, M).
It also presents results for A 16807 which is in APL and IMSL, for A 397204094
which is in IMSL and SAS, for A 630360016 which is the SIMSCRIPT II multiplier,
and for A 7. This last multiplier illustrates the contrasts that are possible in perfor-
mance.

Table 2 allows one to make several notable observations:
(a) The first five multipliers perform considerably better than the remaining

multipliers in the table with regard to the screening measures {S.k(A, M)} and with
regard to {S2,k(A, M)} and {S3,k(A, M)}.

(b) For each of these five multipliers S,2(A, M),. , S1,6(A M) are remarkably
close.

(c) The measures S3,2(A,M),’’ ",S3,6(A,M) are also remarkably close and
behave essentially as S1,2(A,M),’..,S,6(A,M). As expected, S,2(A,M)=
$3,2(A M).

(d) $2,2(A, M),..., $2,6(A M) show considerably more variation; no doubt a
reflection of the suboptimality of these multipliers with regard to this criterion.

We now turn to another method of evaluating performance which derives from
the concept of packing a lattice with spheres (see Cassels (1959)). Recall that C*k(A, M)
is the distance between nearest points in the unit hypercube of k-tuples. Then the
volume of a sphere with this diameter is

Lk(A,M)=
7rk/2(C*k(A, M)/2)k

r(k/2+l)

where F(. denotes the gamma function. Suppose one packs the lattice with such
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TABLE 2

Performance measures for selected multipliers in Z AZi_(mod M)a.
(M=23-1)

Multiplier
A

74293"8285 S
$2

950706376 S
$2
$3

1226874159

s
62089911

$2
s

1343714438 S

$3
16807 S

S
s

397204094 $1
$2
$3

630360016 S
S
s

7 1000
1000 $2
1000

Dimension (k)
2 3 4 5 6

.8673 .8607 .8627 .8320 .8342

.8362 .6613 .6618 .6021 .6075

.8673 .8751 .8507 .7838 .7983

.8574 .8985 .8692 .8337 .8274

.9211 .8183 .6555 .6806 .6822

.8574 .9093 .8412 .7565 .7646

.8411 .8787 .8255 .8378 .8441

.8273 .7240 .7815 .6492 .6822

.8411 .8877 .8468 .7107 .7743

.8930 .8903 .8575 .8630 .8249

.7169 .7537 .7430 .7153 .6603

.8930 .8286 .7712 .8150 .7385

.8237 .8324 .8245 .8262 .8255

.8676 .6404 .6492 .6702 .7103

.8237 .7785 .7906 .7874 .7747

.3375 .4412 .5752 .7361 .6454

.2565 .3264 .5714 .6754 .5888

.3375 .5404 .6162 .6187 .5889

.5564 .5748 .6674 .7678 .5947

.5966 .5038 .6239 .6597 .4206

.5564 .5543 .7302 .7849 .6417

.8212 .4317 .7832 .8021 .5700

.8823 .4373 .6534 .7173 .5047

.8212 .6354 .6441 .7983 .5510

.1420 4.882 27.62 78.13 152.6

.1221 3.413 16.81 41.19 74.77

.1420 .02650 .02921 .06746 .2201

S1 k/d(A, M)M/k, $2= N*k(A, M)/(k!M)/k and $3 C*k(A, M)3,kM’/k.

spheres centered on each of the M-1 points Vk in (5) and at the origin. Note that
these spheres merely touch and that since there are only M k-tuples, the proportion
of the unit hypercube packed with these spheres is MLk.(A, M).

Let

tOk(A, M)= 2kMLk(A, M).

Using the lattice packing constants in (15) and (20) one has

3.63, k 2,

/ 5.92, k 3,
tok(A, M) -< 9.87, k 4,

[14.89, k=5,
123.87, k=6.

Table 3 lists tOk(A, M) for the five best and the three other commonly employed
multipliers. The benefits of the five multipliers is again apparent since their packings
are considerably better across dimensions than those for the more commonly used
multipliers.



38 G. S. FISHMAN AND L. R. MOORE III

TABLE 3
Packing measures in the sample space.

tOk(A, M)= "n’kl2M[c(A, M)]klF(kl2+ 1)

(M=231-1)

Multiplier
A

742938285
950706376
1226874159
62089911

1343714438
16807

397204094
630360016

Upper bound

Dimension (k)
2 3 4 5 6

2.73 3.97 5.17 4.40 6.17
2.67 4.45 4.94 3.69 4.77
2.57 4.14 5.07 2.70 5.14
2.89 3.37 5.17 5.36 3.87
2.46 2.80 3.86 4.51 5.16
41 .93 .00 1.35 1.00

1.12 1.01 2.80 4.44 1.67
2.45 1.52 1.70 4.83 .67

3.63 5.92 9.87 14.89 23.87

Knuth (1981, p. 102) has also used this concept of packing to rate multipliers.
However, his approach relates to packing spheres in the dual space of
qo/M,’’’, qk-1/M. This is done by noting that in addition to d*k(A, M) being the
maximal distance between neighboring parallel hyperplanes in the space of Vk, the
quantity 1/Md*k(A, M) is the minimal distance between points in the dual space of
qo/M,’’’, qk-1/M. Therefore, the volume of a sphere with radius 1/2d*k(A, M) in
the dual space is

k/2

Wk(A, M)-
F(k/2+ 1)[2Md*(A, M)]"

Now observe that restrictions (i) and (ii) determine that the hypercube [-1, 1)k contains
exactly 2kMk-1 k-dimensional points q/M. In particular, the exponent k-1 instead
of k on M is due to restriction (ii). Therefore, the volume of this hypercube packed

TABLE 4
Packing measures in the dual space.

tZk(A, M)=
r(k/2+ 1)M[d*k(A, M)]

(M=23t-1)

Multiplier
A

742938285
950706376
1225874159
62089911

1343714438
16807

397204094
630360016

Upper bound

Dimension (k)
2 3 4 5 6

2.73 3.78 5.47 5.94 8.04
2.67 4.30 5.63 6.00 7.66
2.57 4.02 4.58 6.15 8.63
2.14 4.34 4.23 4.77 7.99
2.46 3.42 4.56 5.73 7.55
.41 .51 1.08 3.22 1.73

1.12 1.13 1.96 3.97 1.06
2.45 .48 3.71 4.94 .82

3.63 5.92 9.87 14.89 23.87
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with spheres is

/xk(A, M) 2kMk-1Wk(A, M)=
k/2

r(k/2 + 1)M[d*k(A, M)]k’

which is the measure of packing in the dual space. This quantity is identical with the
figure of merit suggested by Knuth (1981, p. 101). Note that because of the lattice
structure in the dual space this result is invariant when the hypercube is translated by
a vector of integers.

Table 4 lists Izk(A, M) for the multipliers of interest. Again note the better
performance of the top five. Knuth remarks that one might say that any multiplier for
which tZk(A, M) ->_ .1, k 2, , 6 passes the spectral test and any multiplier for which
txk(A, M) --> 1 k 2, , 6 passes the test with flying colors. By this standard the top
five multipliers are untouchable. In fact, since Sl,k(A M)>-.8 k =2,..., 6 for all
multipliers in the Appendix, those multipliers have

2.32, k 2,

[3.03, k=3,
k(A, M) _-> 4.04, k=4,

]4.88, k=5,
16.26, k=6,

indicating that all meet the Knuth criterion and dominate all multipliers listed in Knuth
(1981, pp. 102-103).

Table 5 presents bounds on discrepancy computed from (25) and (28) and reveals
several interesting results. First, note that the intervals for k 2 can in no way be

TABLE 5
Bounds on discrepancy.

Multiplier
A

742938285 Lower
Upperb

950706376 Lower
Upper

1226874159 Lower
Upper

62089911 Lower
Upper

1343714438 Lower
Upper

16807 Lower
Upper

397204094 Lower
Upper

630360016 Lower
Upper

7 Lower
Upper

Dimension (k)
2 3 4 5 6

.1492
3.446
.2680

3.725
1.967

10.52
.4236

6.333
.2541

3.772
1488
5952

.4256
4.517
.1502

2.980
3571400
14286000

.5970 42.89 42.89 42.89

1.072 9.607 10.08 10.08

7.869 7.869 7.869 14.86

1.694 1.694 1.694 4.328

1.016 1.016 1.016 7.045

5950 5950 5950 5950

1.702 1.702 1.702 28.61

6008 1.546 1.546 4.057

14286000 14286000 14286000 14286000

k-ILower bound= 108x 1/min (h,l-Ii=0 qi Upper bound= 108x(2+/P=l ai)/T.
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regarded as narrow. Second, the top five multipliers do not dominate A-397204094
and 630360016 unambiguously, as in the earlier tables. This lack of discrimination on
the part of the lower bounds on discrepancy may be due to the fact that discrepancy
is not a rotation invariant measure. That is, it is developed along the lines of the
classical serial test in Statistics in which the sides of the cells are parallel to the
coordinate axes and hence discrepancy detects the worst case with regard to this
orientation only. By contrast, d*k(A, M) measures the worst case with regard to all
possible orientations. Although one can argue that many statistical testing procedures
rely exclusively on this Cartesian product space specification, the fact that our study
reveals so many multipliers that perform well on the more stringent measure d*(A, M)
encourages us to recommend this criterion for general use.

As mentioned earlier the Appendix contains a list of all multipliers for which
min2<=k<__6 Sl,k(A, M)->-.80. A perusal of this list reveals six multipliers for which
S3,k(A M)2.80. While these multipliers do not rank as high as the five best with
regard to min2__<k<__6 SI,k(A, M), their relatively good bivariate behavior with regard to
SI.k(A, M) and S3,k(A, M) encourages us to examine them more closely. Table 6 shows
how these multipliers perform with regard to lattice packing in the sample space and
in the dual space. A comparison of these results with those in Tables 2 and 3 makes
clear that these multipliers are equally acceptable with regard to lattice packing
considerations. Whether or not some other justifiable basis exists for choosing these
multipliers over the best five is not apparent at present.

TABLE 6
Packing measures for multipliers with

St,k(A, M)=>.8 and S3,k(A M)-->.8
k=2,.. ’,6.

Multiplier
A

809609776

1567699476

1294711786

1554283637

857010188

1582405117

Upper bound

Dimension (k)
2 3 4 5 6

oak(A, M) 3.17 3.76 4.51 4.51 8.26
tZk(A, M) 3.17 4.23 4.55 5.07 6.71
(.O (A, M) 2.88 3.66 4.98 6.55 9.96
tZk(A, M) 2.88 3.15 4.37 5.72 6.71
Oak(A M) 3.08 2.72 4.95 5.44 9.85
tZk(A, M) 3.08 4.73 4.73 4.17 5.65
Oak(A, M) 2.56 3.71 4.71 6.08 7.79
tZk(A, M) 2.56 4.15 4.27 5.74 6.38
Oak(A, M) 2.39 4.16 5.97 5.21 7.74
/xk(A M) 2.39 4.20 6.39 5.95 5.08
Oak(A, M) 3.09 3.13 4.02 4.85 8.02
tZk(A, M) 3.09 4.25 5.24 4.88 5.78

3.63 5.92 9.87 14.89 23.87

4. Empirical evaluations. In addition to evaluating the global properties of a
multiplier, one needs to consider the local randomness properties of subsequences of
moderate length that a generator with this multiplier produces. This evaluation is
usually performed by statistically testing these subsequences to detect departures from
randomness. Fishman and Moore (1982) described a comprehensive battery of tests
for this purpose, and we apply the same battery here to test the five best multipliers.
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Recall from (2) that U1, U2," are the random numbers normalized to (0, 1).
Hypotheses to be tested include:

Ho: { Ui; i= 1,..., n} is a sequence of i.i.d, random variables.
Hi: {Ui; i= 1,. ., n} have a uniform distribution on (0, 1).
H2: (U2i_, U2i) 1,- ., n/2 have a uniform distribution on the unit square.
H3: (U3i-2, U3i-, U3i) i--1,’", (n-2)/3 have a uniform distribution on the

unit cube.
H4: Ho, H, H and H3 hold simultaneously.

For each multiplier we collected 100 consecutive subsequences of n 200,000
numbers. For each subsequence and each hypothesisj a test statistic To was computed.
Then for hypothesis j, To, , Tloo,j were subjected to the battery of tests. Let To have
continuous cumulative distribution function (c.d.f.) Gj under hypothesis j. Then G(To)
and P, 1- G(T) are distributed uniformly on (0, 1) and for 0< < 1

I%(t) =I 1<o,,(Po),
g/t=l

where In denotes the indicator function on the set B, is an empirical c.d.f. If is true

sup IF,,(t) tl

has the Kolmogorov-Smirnov (K-S) distribution,

V,,y n Ito, tl(F,,,y( t)) dt

has the uniform distribution on (0, 1) (Dwass 1958) and for large n

Aa=n {[F.,y(t)-t]/t(1-t)} dt

has a distribution given by Anderson and Darling (1952), (1954) and is denoted by
A-D. The quantity D,,j measures the absolute deviation between the empirical and
the hypothesized c.d.f.; V,, measures the proportion of F,, that lies below the
hypothesized c.d.f.; and A2, is a weighted measure ofthe extent of deviation, principally
in the tails, of the empirical c.d.f.

Since Fishman and Moore (1982) provided complete descriptions of the testing
of Ho,"" ", H4, here we merely review the most essential details. In particular each
test statistic To was chosen as follows. To test Ho we relied on a comprehensive analysis
of runs-up and runs-down statistics. For H1 we chose a chi-squared goodness-of-fit
statistic with 212 4096 cells. For H_ the serial test statistic was used for nonoverlapping
2-tuples with a total of 4096 cells in the unit square. For H3, a serial test statistic was
used for nonoverlapping 3-tuples and 4096 cells in the unit cube.

The hypothesis H4 is omnibus in character. Recall that Pu 1-G(Tj) i=
1,...,100j=0,1,...,3andset

x, - Po
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where -1 is the inverse of the unit normal distribution. Under/-/, Xij has the unit
normal distribution and Xio, XI," ", X3 have a multinormal distribution function q.
Let X,min min (X,o,""", Xi.3) and Xi, (Xi,o,... Xi,3). Then under H4

and

i,4 1 0(-Xi,min, Xi,min, -Xi,min, Xi,min)

T/,4 1 g(Xi, Xi, Xi, Xi,max),

each have the unit normal distribution. Since T/,4 and T/,4 measure how likely one is
to encounter values as extreme as Xi,mi and Xi, they provide valuable information
about the truth of Ho, , H3. Accordingly we used { T,4; 1, , 100} and { T,4;
1, , 100} to test H4. As an interim result a test of the multinormality of Xi,o, , Xi.3
was also performed.

Table 7 presents the P values for Ho," , H4 and the multinormality test for the
five best multipliers. Although several multipliers show some small P values, no
systematic rejection occurs across the K-S, V and A-D tests and across hypotheses.
If one feels compelled to rank the multipliers, one might regard A 950706376 as first
and A 1343714438 as last. However, we emphasize that in a table with so many
entries some low values are to be expected when all hypotheses are true. In summary
we conclude that, in addition to having optimal global properties, the five multipliers
show no empirical aberrations.

TABLE 7
P values for testing hypotheses.

Multiplier
A

742938285

950706376

1226874159

62089911

1343714438

H4
Multi-

Test Ho H H2 H normality min max
(1) (2) (3) (4) (5) (6) (7) (8)

K-S .735 .499 .306 .633 .922 .776 .802
V .853 .012b .971 .491 .463 .278 .353

A-D .408 .231 .406 .796 .990 .545 .870
K-S .361 .304 .636 .766 .163 .244 .529
V .974 .827 .616 .493 .443 .401 .322

A-D .269 .254 .497 .629 .173 .279 .417
K-S .738 .115 .081 .903 .151 .220 .532
V .378 .468 .646 .395 .183 .425 .749

A-D .442 .083 .172 .914 .166 .420 .802
K-S .232 .506 .493 .073 .578 .121 .132
V .618 .923 .773 .193 .160 .305 .345

A-D .328 .457 .539 .139 .377 .151 .144
K-S .771 .068 .024b .845 .635 .904 .230
V .849 .440 .158 .781 .577 .365 .404

A-D .806 .099 .041 b .863 .542 .903 .195

.05 < P Value -<_ 0.1.

.01 < P Value -<_ .05.
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Appendix1.

A miknS,,k rnnS3.k A rnnS,.k mnS3,

742938285 0.8319 0.7838 1760624889 0.8112 0.7943
950706376 0.8274 0.7565 1442273554 0.8111 0.7110
1226874159 0.8255 0.7107 959387418 0.8110 0.7790

62089911 0.8249 0.7385 1113127164 0.8108 0.7726
1343714438 0.8236 0.7747 1446285050 0.8107 0.7677
2049513912 0.8232 0.6545 231487336 0.8107 0.7820
781259587 0.8212 0.7699 231487336 0.8107 0.7820
482920380 0.8204 0.7489 403636263 0.8102 0.7946
1810831696 0.8198 0.7652 365870474 0.8098 0.7375
502005751 0.8196 0.6930 1683348964 0.8098 0.7113
464822633 0.8191 0.7368 56469953 0.8095 0.7021
1980989888 0.8186 0.7345 391539936 0.8095 0.7495
329440414 0.8184 0.7271 621389603 0.8093 0.7676
1930251322 0.8182 0.7199 1697836722 0.8092 0.7616
800218253 0.8182 0.7386 209720443 0.8092 0.7582
1575965843 0.8181 0.7242 1651132469 0.8090 0.7805
1100494401 0.8170 0.6828 1036489797 0.8090 0.7381
1647274979 0.8168 0.7124 1094002855 0.8088 0.7044
62292588 0.8166 0.7594 958373200 0.8088 0.7173

1904505529 0.8166 0.7577 1882462218 0.8087 0.7956
1032193948 0.8164 0.7470 1901918329 0.8087 0.7586
1754050460 0.8155 0.7455 1482800924 0.8084 0.7763
1580850638 0.8154 0.7723 1609286051 0.8078 0.7430
1622264322 0.8154 0.7076 1873448661 0.8075 0.6724

30010801 0.8152 0.7441 1394633840 0.8075 0.7039
1187848453 0.8150 0.7312 1691910501 0.8075 0.7119
531799225 0.8148 0.7179 155279822 0.8075 0.6776

1402531614 0.8147 0.7277 1499553667 0.8073 0.7992
988799757 0.8145 0.7567 2117906721 0.8073 0.7198
1067403910 0.8144 0.7545 1337239139 0.8072 0.7897
1434972591 0.8142 0.7517 1257701541 0.8072 0.7358
1542873971 0.8142 0.7938 1061023798 0.8072 0.7087
621506530 0.8141 0.7158 659947220 0.8071 0.6689
473911476 0.8139 0.7548 147280.2766 0.8071 0.7432
2110382506 0.8139 0.7783 1709954462 0.8069 0.7457
150663646 0.8138 0.7012 1437555212 0.8069 0.7240
131698448 0.8136 0.7740 2112159807 0.8069 0.7122

1114950053 0.8133 0.7568 1610356818 0.8068 0.7029
1768050394 0.8130 0.7509 1362323644 0.8068 0.6809
513482567 0.8127 0.7803 1528100852 0.8068 0.7778
513482567 0.8127 0.7803 644912347 0.8067 0.7856
1626240045 0.8127 0.7308 1640011312 0.8063 0.7232
2099489754 0.8127 0.7468 1267201170 0.8062 0.7771
1262413818 0.8127 0.6294 809609776 0.8061 0.8222
334033198 0.8125 0.6849 292397876 0.8061 0.7322
404208769 0.8124 0.7266 1022131410 0.8061 0.7509
257260339 0.8124 0.7366 1636624282 0.8061 0.7595
1006097463 0.8121 0.7780 672536717 0.8060 0.7532
1393492757 0.8121 0.7484 1292868648 0.8059 0.6673

1The remaining 207 multipliers can be computed as follows: Set B 7; for each multiplier A find the
smallest integer I such that A= BX(mod M). Then the multiplier A*= BM-l-X(mod M) has the same

properties as A.
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mikn St,, mikn S3,k A min $1 rnn S

964028288
1493834601
1037566960
743722486
1509089937
1567699476
1947306937
1076532097
1957811727
628467148

1040895393
786824435
556530824
87921290

1457913431
385787459

1567316532
930959341
1588813465
1035519219

36944245
1891356973
1897412292
754680739
1971204812
1888847798
1571.641634
1117435554
569170662
927407259
1490690267
235716977
149289625
1660576129
1517266187
1229881012
707656279
1869095734
995560464
539146268

1604187179
2082150220
370594724
2044924591
916100787
1037414126
1838122410
1265438464
1007804709
1257431879
2061749697
737009774
408432740
876389446

1294711786

0.8115 0.7029 965146404
0.8059 0.6905 737154017
0.8058 0.7469 764970606
0.8058 0.7659 1074109599
0.8057 0.7264 1039219247
0.807 0.8428 428641844
0.8053 0.7164 1522856686
0.8052 0.7503 1019054714
0.8052 0.6839 805874727
0.8051 0.7540 1165699491
0.8049 0.7252 258880375
0.8049 0.7909 1554283637
0.8049 0.7320 1155862579
0.8047 0.7402 848396760
0.8047 0.7980 915892507
0.8046 0.7590 614779685
0.8046 0.7568 391842496
0.8044 0.7790 380006810
0.8044 0.7850 2011769251
0.8043 0.7590 1860139263
0.8043 0.6932 1920597088
0.8043 0.7058 1993412958
0.8043 0.7112 511806823
0.8043 0.7447 979167897
0.8043 0.7753 1956806422
0.8042 0.6658 1256909708
0.8040 0.7445 581488682
0.8040 0.7243 334258581
0.8040 0.7292 68580478
0.8040 0.7149 534897944
0.8039 0.7250 251676340
0.8039 0.7313 1051072528
0.8038 0.7028 2101655234
0.8038 0.7851 1413698051
0.8038 0.6827 796322341
0.8037 0.7146 698108846
0.8037 0.7617 1544249456
0.8037 0.6714 857010188
0.8037 0.7182 1860488201
0.8037 0.7505 355389105
0.8036 0.7013 1774722449
0.8035 0.7624 1582405117
0.8035 0.7375 553469741
0.8035 0.6988 1411007767
0.8035 0.6079 1230102545
0.8035 0.7866 356267478
0.8033 0.7246 778084663
0.8031 0.6262 1905014417
0.8029 0.6410 1109871330
0.8029 0.7876 1704318220
0.8029 0.6603 270593738
0.8026 0.7135 483389111
0.8024 0.7514 323128013
0.8024 0.7398 361076890
0.8024 0.8040

0.8059 0.7546
0.8023 0.7564
0.8023 0.6581
0.8023 0.7944
0.8023 0.6029
0.8022 0.6706
0.8022 0.7639
0.8020 0.7589
0.8019 0.7295
0.8018 0.7391
0.8017 0.7245
0.8017 0.8094
0.8017 0.7911
0.8016 0.5756
0.8016 0.7204
0.8016 0.7329
0.8015 0.7255
0.8015 0.7456
0.8014 0.6802
0.8014 0.7729
0.8014 0.6861
0.8014 0.7026
0.8014 0.6100
0.8014 0.7860
0.8012 0.7521
0.8011 0.6410
0.8011 0.6965
0.8011 0.7065
0.8011 0.7568
0.8011 0.7808
0.8009 0.6418
0.8009 0.7125
018009 0.7710
0.8008 0.7819
0.8008 0.7611
0.8008 0.7543
0.8008 0.7187
0.8008 0.8001
0.8008 0.7639
0.8008 0.6647
0.8007 0.7413
0.8007 0.8176
0.8007 0,7233
0.8006 0.6678
0.8006 0.7507
0.8005 0.7199
0.8005 0.7903
0.8005 0.6782
0.8005 0.7312
0.8004 0.7326
0.8004 0.6510
0.8003 0.7821
0.8003 0.7395
0.8000 0.7293
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NUMERICAL SOLUTIONS FOR BAYES SEQUENTIAL DECISION
PROBLEMS*

HERMAN CHERNOFF" AND A. JOHN PETKAUt

Abstract. Certain sequential decision problems involving normal random variables reduce to optimal
stopping problems which can be related to the solution of corresponding free boundary problems for the
heat equation. The numerical solution of these free boundary problems can then be approximated by
calculating the solution of simpler optimal stopping problems by backward induction. This approach is not
well adapted for very precise results but is surprisingly effective for rough approximations. An estimate of
the difference between the solutions of the related problems permits one to make continuity corrections
which provide considerably improved accuracy. Further reductions in the necessary computational effort
are possible by considering truncated procedures for one-sided boundaries and by exploiting monotone and
symmetric boundaries.

Key words, backward induction, Bayes risk, decision theory, free boundary problem, optimal stopping,
random walk, sequential analysis, Wiener process
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1. Introduction. Certain Bayes sequential decision problems involving normal
random variables reduce to discrete time optimal stopping problems of the following
form. Let Y(s) be a Wiener process in the -s scale for So>= s >= s* with Y(so)= Yo and

E{dY(s)}=O, Var {dY(s)}=-ds.

Select a stopping time S {So, s, $2, sn, "} with So>= S1 2 : S >= S SO as to
minimize the risk or expected cost E{d(Y(S), S)}, where d (y, s) is the cost associated
with stopping at the point (y, s) and stopping is enforced at the end of the problem,
namely, when s s*. A continuous time version of this problem is the same except
that the stopping time S may take on any value in the interval [So, s*].

Two examples of importance in the statistical literature are the problems of
deciding the sign of the mean of a normal distribution [1], [3]-[6], [8], [15], [16], [17]
and the one-armed bandit problem [7], [8], [13]. Normalized forms of continuous
time versions of these problems have stopping cost functions

(1.1) d(y,s)=s-+sl/2q,(ys-1/2) for s>=0

and

(1.2) d2(y, s)= --y for s >= 1,
S

respectively, where b and are the density and cumulative distribution functions for
the standard normal distribution and

O(x)= {b(x)-x{1-(x)},(-x)
for x >= O,
for x<O.
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The possible stopping times for the discrete time versions are of the form s,
a(crff2+ ntr-2) -1 for n =0, 1,2,. ., where a is a constant arising from the normaliz-
ation.

The solutions ofthese continuous time optimal stopping problems can be expressed
in terms of a stopping set Sf and a continuation set c 6ec in the (y, s) plane; that is,
S consists of stopping when (Y(s), s) reaches 5e as s decreases from So. These are
related to those of corresponding free boundary problems involving the heat equation.
More precisely, that free boundary problem is to find (, b) so that

1/2byy(y, s) bs(y, s) for (y, s)

(1.3) b(y, s) d(y, s) for (y, s)

by(y,s)=dy(y,s) for (y, s) 06e,

where 0Sf is the boundary of S. The solution b ofthe free boundary problem corresponds
to the optimal risk d of the stopping problem, that is,

(1.4) b(yo, So)= d(yo, So) E{d( Y(S), S)}.

This relationship and several others stated in this paper are subject to regularity
conditions on which we shall not here elaborate.

Discrete time versions of these problems can be regarded as special cases of the
continuous time versions where stopping is restricted to a limited subset of the (y, s)
space, and hence the optimal risks and related stopping sets are larger. Moreover, the
discrete time solutions converge monotonically to the continuous time solutions if the
set of possible stopping times {So, Sl, S2, "} increases and supi [si- si+[ O.

The continuous time versions have statistical interpretations of their own, but they
may be considered as approximations to the discrete time versions, approximations
which are easier to analyze and for which asymptotic expansions and bounds can be
derived. While such results provide valuable insight, in most problems they fall short
of providing an adequate approximation to the solution. Consequently when closed
form solutions are unavailable, as is usually the case, it is important to have techniques
capable of providing numerical approximations. By what almost amounts to circular
reasoning, we can find such approximations by solving discrete time versions by
backward induction using a set of possible stopping times chosen for our convenience.
The equation governing the backward induction solution is

(1.5) t(y, s) min [d(y, s), E{(y + ZN/s Si+l, Si+l)}]

where Z is a standard normal random variable. This is not quite circular for three
reasons. First, the s in the numerical approximation may be selected to be equally
spaced although this was not the case for the possible stopping times in the original
discrete time problem. Second, a process of normalization using the fact that aY is a
Wiener process in the -a2s scale, makes one normalized continuous time problem
approximate a family of discrete time problems and hence makes one numerical
calculation applicable to the entire family. Third, there is a continuity correction of the
form

(1.6) y’ (s) )7(s) + 0.5826x/-
which applies when the spacing between many successive s is approximately 8, where
y’ and 37 represent the optimal boundaries for the discrete and continuous time versions
and the sign is determined so as to make the continuation region for the continuous
time version larger. This correction may be used to go from the backward induction
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to the continuous time version, and then again to go from the latter to the original
discrete time problem. This continuity correction yields a considerably more accurate
estimate of the optimal boundary.

Since the backward induction (1.5) involves a numerical integration to evaluate
the risk at each point (y, si), it could be quite time consuming. Let us replace the
Wiener process Y(s) by a related process Y* of independent Bernoulli increments
Z*/, where si- s+l , and Z* + 1 each with probability 1/2, that is,

Y*(s,+,) Y*(s,)+ Z* /.
Then, as for Y, the mean and variance of the independent increments are 0 and s- si+l,

respectively. The backward induction solution of the optimal stopping problem of
minimizing E{d(Y*(S), S)} for S {so, s, s2," "} involves the simple calculation

(1.7) *(y, s,)=min [d(y, s,), 0.5{d*(y +,/, s,+) + d*(y-,/, s,+,)}],

which can be confined to a grid of points

1.8) {y c +j/-d, si So i, }

for integer values of and j. Each point on the rid can be determined to be a stopping
or continuation point depending on whether d*(y, si)= d(y, s) or *(y, s)< d(y, s).
For most purposes, a grid with the s axis as one of its vertices (c 0) would suffice.

In 2 we describe the continuity correction for the optimal boundary using the
above discrete time discrete process approach. In 3 we see how the computing
requirements of this method can be reduced by a truncation procedure in problems
with one-sided optimal continuation regions. In 4 we discuss the additional reduction
allowed under symmetry and monotonicity. In 5, the problem of extending the
solution to large values of s is addressed by increasing, in stages, the distance between
successive values of s. Finally, in 6, results are presented for the two statistical
problems mentioned above.

2. Continuity corrections. The continuity corrections are related to the difference
between the discrete time versions and the continuous time version of the canonical
problem defined by

-s for s > 0 s*,
(2.1) d(y,s)= h(y)=O fors=0, y>0,

h(y)=-y2 fors=0, y<=0.

The discrete time versions have the nonnegative integers as the possible stopping times.
For the continuous time version, b(y, s) h(y) s, )7(s) 0 and the one-sided optimal
continuation region is {(y, s): y < 0, s > 0}. In [6], it was shown that for the discrete
time version with normal increments, 371(n)-0.5826 as n c. Note that the subscript
1 in 37(n) refers to the spacing = 1, and 0.5826 ’(-)//--, where " is the
Riemann zeta function. In [9], the solution of the discrete time version with Bernoulli
increments is described by )7*(n) and *(y, n) where, as n,

(2.2) a*(y, n)+ n hi(y),

(2.3) 37*(n) -0.5,

and

(2.4) h,(y) {0 fr Y => -0"5’
-y+ inf (y + i) for y < -0.5.
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Following the derivation in [6], it can be seen that for our general stopping
problem when is below at the boundary point (37(s), s),

(2.5)

where 37* represents the optimal boundary for the discrete time version with Bernoulli
increments. Further, for y and close to )7(s),

(2.6) D(y, s)=- *(y, s)-d(y, s). a6hl{(y-(s))/61/2},

where

(2.7) a dyy ()7(s), s)-ds(f(s), s)>=O

may be interpreted as the local rate of loss associated with continuing from ()7(s), s)
for a short fixed period of time and then stopping.

If we could calculate )7*(s), we could use (2.5) for the continuity correction.
Ordinarily jT* will fall somewhere between the vertices of the grid on which our
backward induction is computed and is not calculated directly. Although fi*(s) could
be approximated in various ways, the most expedient way to derive a correction is to
use the values Do and D1 of D at y*o(S) and y*(s), the continuation points on the grid
which are closest and second closest to the stopping region at the stopping time s, and
to apply (2.6). Assuming that the boundary is above y*o(S), if we represent

y*o (S)=.(s)+ v6/

and

y* (s) f(s)+(v- 1)t 1/2,

where -1.5 < v <_- -0.5 because Yo* -<- * -0.5/, we have

Do ath(v)= a[-v+(v+ 1):] atS(2v + 1),
(2.8)

D1 aahl(V- 1)= aa[-(v- 1)2+ (v + 1)2] a6(4v).

Hence,

(2.9) Ol
4Do-2D1

and the continuity correction becomes

{ D } /2(2.10)
37(s) =y*o(s)+

2(D-2Do)
8

Thus, by applying two corrections we can approximate the solution to the original
discrete time normal version of our optimal stopping problem. That is, we calculate
the backward induction solution with the discrete time Bernoulli process, use (2.10)
to approximate the solution to the continuous time problem and end by applying (1.6)
to estimate the solution to the original discrete time normal version.

Occasionally the statistical problem of interest involves Bernoulli rather than
normal random variables. However, these Bernoulli variables may correspond to p 1/2;
see, for example, the sequential decision models for clinical trials considered in [7],
10], 12] and 18]. In that case, the continuity correction for the return to this problem
from the solution of the continuous time problem is different than either of the two
corrections mentioned before, although the general approach is the same.
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The canonical problem changes to one involving independent increments which
take on the values a and b with probabilities p and 1-p, respectively, where a and
b are such that the increments have mean 0 and variance 1. The stopping cost function
remains the same. Here, as n-->

37*(n) -> g(p)

and

*(y, n) + n--> hl(y, p)

where g and hi are described in [9] in terms of the solution of a functional equation.
These results provide a continuity correction similar to (2.10) for this case.

3. Truncation for one-sided eontinuatiola sets. The solution of the one-armed bandit
problem is a one-sided continuation set {(y, s)" y> 37(s), s> 1} where 37(1)=0 and
37(s) decreases monotonically. The backward induction method we described is such
that the calculation of a* at a given point (y, si) requires that of * at a triangular
array of points (y +jS, Sk) with [j[ _-< k- i, k + 1, + 2, . If we consider t* as the
expected optimal stopping cost, we may bypass some of these calculations for y > c
if )7(s) < c for So >= s > s*. Consider a path of the discrete time process with Bernoulli
increments originating at the grid point (y, s) (c+ 1/2, s* + nS). Then

n+l

(3.1) *(c+l/,s*+nt) p,.*(c,s*+(n-m))+ ’. q..id(c/jl/,s
m=l j=l

where Pm is the probability that 1 Z* first hits -1 at r- m and q. is the probability
that Z* never hits -1 for r_< n and that 1 Z* -j- 1. From [14, p. 89] it follows that

(3.2) p, 2 for m odd
m (m+ 1)/2

and 0 for m even, and from [14, p. 73] we have

(3.3) q,.- J ( n+ l )2-"n+ l (n+j+ l)/2

except when n +j is even in which case qnd =0. The application of the backward
induction for (c+j8 1/2, s*+ n) with j <-0 no longer requires the computation of *at the grid points (c +j8 1/2, s* + mS) with j > 1, 1 < rn < n.

The computational effort is reduced still further if d (y, s*)= 0 for y > c since the
second sum in (3.1) then vanishes. If d(y, s*) 0 for y> c, it is possible to modify d
without affecting the optimal boundary. In detail, we observe first that

1
b

y-v
(3.4) u(y, s) x/J- S* c* /s_--S-- d(v, s*) dv

is a solution of the heat equation, corresponding to a source at G {(y, s): y-> c*,
s s*}, which coincides with d(y, s) on G. Second, if the stopping problem with
stopping cost d(y, s) is replaced by d’(y, s) d(y, s)- u(y, s) where u is a solution of
the heat equation for s > s*, then b’= b- u and both problems have the same optimal
stopping region.

The economic advantage of introducing d’ depends on the effort involved in
computing d’. In some cases this involves an integral which is easy to calculate. In
other cases the effort required to evaluate the integral numerically throughout the
course of the backward induction makes this "simplification" uneconomic.
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For the one-armed bandit problem, 97(s)<0 for s > 1 s* and the truncation
procedure can be implemented with c 0. The subtraction of u -y, which corresponds
to (3.4) with c*=-c, leaves

(3.5) d’(y, s) d2(y, s) u(y, s) y(1 s-1) for s => 1

and accomplishes our goal of having the second sum in (3.1) vanish.

4. Monotonicity and symmetry. For the sequential analysis problem the boundary
)7(s) of the optimal continuation set is monotonic and symmetric. For the one-armed
bandit problem it is monotonic. Symmetry of d(y, s) about y=0 implies that the
computations involved in the backward induction can be confined to y >=0. Mono-
tonicity can also be exploited.

For the one-armed bandit problem 97(s) decreases in s and it is easy to show that
37* inherits this property. Hence *(y, s,)= 0.5{d*(y+/-, s,- 3)+ *(y-/, s,- 3)}
for y>= y*o(Si/l) and in computing the backward induction, there is no need to make
the comparison between the above average and d(y, si) until y < y*o(S/). For small
3, yo* tends to remain constant and we ordinarily have to make this comparison only
at one or two values of y before reaching the stopping set, after which *= d. This
property of monotonicity can also be exploited for two-sided continuation sets.

5. Large values of s. When is small the computational effort in reaching large
values of s becomes prohibitive. For large values of s, we recommend changing the
interval i after a number of steps of the backward induction. By multiplying i by a
squared integer r2 after reaching s s1), the appropriate increment in Y* is changed
by a factor r and the backward induction can be extended to this coarser grid for
s->_ s1) without interpolating. The simple minded direct application of this method
introduces some "ripples" in c* and the approximation to )7(s) as one moves from
one stage to the next. These ripples smooth out rapidly. Theory suggests that the ripple
in the boundary cancels out quickly but that there may be a small average bias effect
on *. In our applications the risk ordinarily tends to increase with s and this bias
remains relatively negligible.

To compensate for the ripple effect, we usually overlap successive stages. Thus
for a problem with s* 1, we may carry out the backward induction for s 1 (10-6) 1.002
and then use the results for s 1.001 to do s 1.001(4 10-6)1.009, and so on. It is
relatively easy to move to very large values of s using a sequence of such overlapping
stages.

When s is large, the round-off error depends on the magnitude ofthe risks involved.
Greater numerical stability is anticipated if the risks are reduced by the addition of
an appropriate solution of the heat equation. This has been exploited in several
problems. For example, in 10] the continuous time version of Anscombe’s formulation
of the problem of comparing two treatments in a medical trial is reduced to a problem
of the form under consideration with stopping cost function

d(y,s)=-(1-s-)lyl for s => 1.

The optimal continuation region is qg {(y, s)" lyl < (s), s > 1} where for large s, )7(s)
{2s log s} 1/2. For the computations, d(y, s) was replaced by

d’(y, s) d(y, s) + {lYl / 2s/=’(YS-/=)}
lyls- + 2s/2p(ys-/2).

For large v, ,(v)-- v-2qb(v), and for large s, d’(y, s) is small near the boundary 97(s).
The cost involved is that of calculating ff which is not trivial but not enormous.
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6. Applications. The overall mechanics of the proposed techniques for reaching
large values of s are specified by the grid spacing 3, the number of iterations in each
stage of the backward induction and the extent of overlapping from each stage to the
next. We have not systematically explored the possible versions of the technique, but
rather have used the simple version in which the number of iterations is the same in
all stages, the grid spacing is increased by the same multiple from each stage to the
next, and the extent of overlapping is a fixed fraction of the interval of s values
corresponding to the iterations of the previous stage.

The results presented were obtained using the technique with 2080 iterations in
each stage, 8 being increased by a factor of 4 from each stage to the next, and the
extent of overlapping corresponding to one-half the interval of s values covered by
the previous stage; this corresponds to 1040 iterations of the previous stage or 260
iterations of the current stage. Only grids centered on the s axis were employed (use
of c 0 in (1.8)). For both examples, the grid spacing for the first stage was taken to
be/ 25 10-6 and estimates were obtained out to s 106.

Example 1. Deciding the sign ofa normal mean. Estimates ofthe stopping boundary
for this problem are tabulated in various scales of interest in Table 1. The asymptotic
expansions

(s)
7(s) 1 [ 1

+ 7-- ]s 1 S S
6

s 4 12 240
as s - 0,

(s)
(s) ls3/2 1

1 s3+s6
s1/ 4 1- 240

as s -> 0,

1 1 1
fl(s) 1-q(ff(s))

2 /_ 4
7 S3_[ "] as s-0s3/- 1
96

can be used to extend the table to even smaller values of s. On the other hand, the
asymptotic expansions

(s)
;(s) S-/2{1og s3--1og (8zr)-- 6(log $3) -1 -[-" as s -o,
S

(s) s----- {log s3-1og (8,r)- 6(log S3) -1 -’’" .}1/2 as s -> o,

(s)= 1-O((s))--’2(s31og s3)-l/U{l +[2+1/21og (8rr)](log s3)-l +. -} as s-->

perform only moderately well at s- 106.
The Bayes risk corresponding to starting at the point (Yo, So) in the normalized

form of the continuous time version is given by

BR-- E{dl(Y(S), S)}-s1,

and the contribution to the Bayes risk of the cost of sampling is given by

ECS-- E(S-1) S1,

where S is an optimal stopping rule and dl(y, s) is given in (1.1). BR and ECS depend
only upon the initial values So and Yo or to 1/So and Zo yo/$/2", some results are
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TABLE
Estimates of stopping boundary for sequential analysis problem.

/(s)=
:(s) (s)/s (s) (s)/s/: ((s)) t=

10.00 .02499 .0079 .4968 .16
9.50 .02630 .0085 .4966 .15
9.00 .02776 .0093 .4963 .14

8.50 .02939 .0101 .4960 .13

8.00 .03123 .0110 .4956 .12
7.50 .03331 .0122 .4951 .11

7.00 .03569 .0135 .4946 .10

6.50 .03843 .0151 .4940 .09

6.00 .04163 .0170 .4932 .08
5.50 .04541 .0194 .4923 .07

5.00 .04995 .0223 .4911 .06
4.50 .05550 .0262 .4896 .05

4.00 .06243 .0312 .4875 .04

3.50 .07130 .0381 .4848 .03

3.00 .08315 .0480 .4809 .02

2.50 .09961 .0630 .4749 .01

2.00 .1240 .0877 .4651 9 (-3)
1.50 .1636 .1336 .4469 8(-3)
1.40 .1744 .1474 .4414 7 (-3)
1.30 .1865 .1636 .4350 6(-3)
1.20 .2004 .1830 .4274 5 (-3)
1.15 .2080 .1940 .4231 4 (-3)
1.10 .2162 .2061 .4184 3 (-3)
1.05 .2250 .2196 .4131 2 (-3)
1.00 .2344 .2344 .4073 (-3)
.95 .2451 .2515 .4007 9 (-4)
.90 .2563 .2702 .3935 8(-4)
.85 .2679 .2906 .3857 7 (-4)
.80 .2805 .3136 .3769 6(-4)
.75 .2940 .3395 .3671 5(-4)
.70 .3085 .3688 .3561 4(-4)
.65 .3240 .4019 .3439 3(-4)
60 .3409 .4401 .3299 2(-4)
.55 .3590 .4840 .3142 1(-4)
.50 .3781 .5348 .2964 9(-5)
.48 .3862 .5574 .2886 8(-5)
.46 .3943 .5814 .2805 7 (-5)
.44 .4026 .6069 .2719 6(-5)
.42 .4111 .6343 .2629 5(-5)
.40 .4198 .6637 .2534 4 (-5)
.38 .4285 .6951 .2435 3(-5)
.36 .4373 .7288 .2331 2(-5)
.34 .4461 .7651 .2221 1(-5)
.32 .4550 .8042 .2106 9(-6)
.30 .4637 .8466 .1986 8(-6)
.28 .4724 .8928 .1860 7 (-6)
.26 .4809 .9432 .1728 6(-6)
.24 .4892 .9986 .1590 5 (-6)
.22 .4969 1.0595 .1447 4 (-6)
.20 .5038 1.1264 .1300 3 (-6)
.19 .5069 1.1629 .1224 2 (-6)
.18 .5097 1.2013 .1148 (-6)
.17 .5121 1.2421 .1071

/(s)
(s) .(s)/s (s) (s)/st/2 (I)((s))

.5144 1.2859 .09924

.5159 1.3319 .09144

.5170 1.3818 .08351

.5175 1.4352 .07562

.5170 1.4926 .06778

.5158 1.5552 .05995

.5134 1.6234 .05225

.5096 1.6985 .04471

.5039 1.7816 .03741

.4961 1.8751 .03039

.4855 1.9819 .02375

.4707 2.1052 .01764

.4507 2.2534 .01212

.4222 2.4376 .007392

.3797 2.6848 .003629

.3074 3.0738 .001057

.2969 3.1294 .8759 (--3)

.2853 3.1903 .7107 (--3)

.2726 3.2583 .5605 (--3)

.2583 3.3345 .4273 (--3)

.2420 3.4231 .3096(--3)

.2231 3.5276 .2097(--3)

.2004 3.6581 .1271(--3)

.1714 3.8329 .6334(--4)

.1300 4.1118 .1964 (--4)

.1246 4.1518 .1650 (--4)

.1187 4.1964 .1357 (--4)

.1123 4.2461 .1088(--4)

.1054 4.3028 .8440(--5)

.09767 4.3681 .6271 (--5)

.08895 4.4473 .4352 (--5)

.07874 4.5462 .2733 (--5)

.06620 4.6811 .1428 (--5)

.04902 4.9020 .4749 (--6)

.04681 4.9346 .4021 (--6)

.04446 4.9709 .3337 (--6)

.04193 5.0113 .2707 (--6)

.03918 5.0578 .2124(--6)

.03614 5.1113 .1602(--6)

.03274 5.1773 .1128(--6)

.02881 5.2603 .7204(--7)

.02403 5.3742 .3854(--7)

.01759 5.5638 .1323 (--7)

.01678 5.5917 .1127 (--7)

.01590 5.6227 .9428 (--8)

.01497 5.6581 .7675(--8)

.01396 5.6986 .6056 (--8)

.01285 5.7457 .4590 (--8)

.01161 5.8031 .3266(--8)

.01018 5.8759 .2110 (--8)

.008453 5.9770 .1140(--8)

.006146 6.1456 .3999 (--9)
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presented in Tables 2 and 3. These results reflect the form of the asymptotic expansions

BR--- Ksl/2qb(Zo) as So c,

ECS---K’s/2ck(Zo) as SoC,
provided in [5].

Example 2. One-armed bandit problem. Estimates of the stopping boundary are
provided in Table 4. The asymptotic expansions

(s)=(s--).-.-(s-1)l/2{Co+(C-Co)(S-1)+ .} as s 1,
s

s/2 Co+ c-Co (s-I)+’’" assl,

1 1 (s_1)1/2( [Co+ Co(3+6 c2)] (s-1)+’’ "} as s 1,

where Co 0.63883 and Cl---0.23625 are defined by

2CoCo (Co) +  (Co) 0,

fit very well for values of s close to 1. Here, as in the previous example, the asymptotic
expansions for large values of s

(s) =(s-).---s-1/2{log 82-2 log (log s2)-log (87r)+. .}1/2 as s,
s

TABLE 2.
Estimates of Bayes risk for sequential analysis problem.*

to 1/So

5.00
2.00
1.00
.50
.20
.10
.05
.02
.01

5(-3)
2(-3)
(-3)

5 (-4)
2 (-4)
(-4)

5(-5)
2(-5)
(-5)
5 (-6)
2 (-6)
(-6)

Zo Yo/ s/2

0 0.5 1.0 1.5 2.0 3.0 4.0 5.0

.1759

.2667

.3414

.3876

.3765

.3322

.2775

.2072

.1614

.1234

.3183

.2910

.2468

.1856

.1447

.1106

.1828

.1934 .9099 (-1)

.1734 .9498(-1) .3737(-1)

.1338 .7816(-1) .3705(-1)

.1048 .6201 (-1) .3052(-1) .3763 (-2)

.8001(-1) .4730(-1) .2343(-1) .3697 (-2)
.8468 (-1) .7576 (-1) .5447 (-1) .3187 (-1) .1559 (-1) .2642 (-2)
.6284 (-1) .5611 (-1) .4011 (-1) .2321 (-1) .1117 (-1) .1858 (-2) .2094 (-3)
.4619 (-1) .4118 (-1) .2926 (-1) .1674 (-1) .7902 (-2) .1253 (-2) .1833 (-3)
.3040 (-1) .2704 (-1) .1907 (-1) .1076 (-1) .4954 (-2) .7210 (-3) .1167 (-3)
.2199 (-1) .1953 (-1) .1371 (-1) .7660 (-2) .3466 (-2) .4698 (-3) .7563 (-4)
.1583 (-1) .1405 (-1) .9819 (-2) .5441 (-2) .2425 (-2) .3056 (-3) .4697 (-4) .6465 (-5)
.1020 (-1) .9032 (-2) .6286 (-2) .3451 (-2) .1512 (-2) .1743 (-3) .2409 (-4) .4874 (-5)
.7283 (-2) .6446 (-2) .4475 (-2) .2444 (-2) .1060 (-2) .1149 (-3) .1429 (-4) .3309 (-5)
.5191 (-2) .4591 (-2) .3180 (-2) .1729 (-2) .7432 (-3) .7639 (-4) .8430 (-5) .2092 (-5)
.3308 (-2) .2924 (-2) .2021 (-2) .1094 (-2) .4660 (-3) .4517 (-4) .4185 (-5) .1071 (-5)
.2349 (-2) .2075 (-2) .1432 (-2) .7733 (-3) .3278 (-3) .3066 (-4) .2480 (-5) .6247 (-6)

* The quantity tabulated is the normalized Bayes risk BR E{dl(Y(S), $))- sff1.
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TABLE 3
Estimates of Bayes expected cost of sampling for sequential analysis problem.*

to 1/s

5.00
2.00
1.00
.50
.20
.10
.05
.02
.01

5(-3)
2(-3)
(-3)

5 (-4)
2 (-4)
(-4)

5(-5)
2(-5)
1(-5)
5 (-6)
2 (-6)
(-6)

Zo Yo/ s/2

0 0.5 1.0 1.5 2.0 3.0 4.0 5.0

2501 (-2)
.1457(-1)
.4931 (- 1)
.1079
.1575
1606
.1459
.1166

.1166

.1345

.1275

.1040

.2389 (- 1)

.7380 (-1) 1243 (-1)

.8386 (-1) .3804 (-1) .4990 (-2)

.7382 (-1) .4141 (-1) .1738 (-1)
.9410 (-1) .8437 (-1) 6101 (-1) .3583 (-1) .1710 (-1) .5592 (-3)
.7391 (-1) .6636 (-1) .4824 (-1) .2873 (-1) .1429 (-1) .1805 (-2)
.5209 (-1) .4673 (-1) .3388 (-1) .2013 (-1) .1007 (-1) .1698 (-2)
.3927 (-1) .3517 (-1) .2537 (-1) .1494 (-1) .7384 (-2) .1293 (-2) .5924 (-4)
.2925 (-1) .2614 (-1) .1874 (-1) .1090 (-1) .5293 (-2) .9086 (-3) .1063 (-3)
.1951 (-1) .1739 (-1) .1236 (-1) .7081 (-2) .3347 (-2) .5358 (-3) .8427 (-4)
.1423 (-1) .1266 (-1) .8949 (-2) .5066 (-2) .2347 (-2) .3509 (-3) .5855 (-4)
.1031 (-1) .9163 (-2) .6442 (-2) .3610 (-2) .1642 (-2) .2278 (-3) .3787 (-4) .2344 (-5)
.6685 (-2) .5929 (-2) .4144 (-2) .2295 (-2) .1022 (-2) .1286 (-3) .2000 (-4) .3204 (-5)
.4793 (-2) .4246 (-2) .2958 (-2) .1627 (-2) .7151 (-3) .8390 (-4) .1200 (-4) .2469 (-5)
.3426 (-2) .3033 (-2) .2106 (-2) .1152 (-2) .5006 (-3) .5512 (-4) .7106 (-5) .1669 (-5)
.2190 (-2) .1937 (-2) .1341 (-2) .7291 (-3) .3132 (-3) .3208 (-4) .3518 (-5) .8997 (-6)
.1558 (-2) .1377 (-2) .9518 (-3) .5155 (-3) .2200 (-3) .2153 (-4) .2068 (-5) .5382 (-6)

* The quantity tabulated is the normalized Bayes expected cost of sampling= ECS E(S-1) sff.
)(s)

{log S
2 }1/23(S) 1/2 2 log (log s2) log (87r) + as sco,

s

/(s) ((s)) 2s-1 1 q
log S

2 8 log s2 --" as s --> co

are only moderately accurate at s 106.
The Bayes expected payoff corresponding to starting at the point (Yo, So) in the

normalized form of the continuous time version is given by

BEP-- -s/2[E{d2(Y(S), S)}- dE(yo, So)],

and the Bayes expected sample size is given by

ESS-= so[E(S-) s],

where S is an optimal stopping rule and d2(y, s) is given in (1.2). Since the use of
d_(y, s)= dE(y, s)+ y in place of dE(y, s) simplified implementation of the truncation
modification, the computations for Bayes risk were implemented using

BEP= -s/2[E{d’2(Y(S), S)}- d’2(yo, So)].

BEP and ESS depend only upon the initial values Yo and So or Zo Yo/S/2 and to 1/So
which has an interpretation as the fraction of the total potential information which is
in the prior; some results are presented in Tables 5 and 6. These results reflect the
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TABLE 4
Estimates of stopping boundary for one-armed bandit problem.

t=l/s

.9995

.999

.995

.99

.98

.97

.96

.95

.94

.93

.92

.91

.90

.88

.86

.84

.82

.80

.78

.76

.74

.72

.70

.68

.66

.64

.62

.60

.58

.56

.54

.52

.50

.48

.46

.44

.42

.40

.38

.36

.34

.32

.30

.28

.26

.24

.22

.20

.18

/(s)
:(s) (s)/s (s) (s)/s1/2 ((s)) t=l/s (s)=(s)/s (s)=(s)/s1/2

-.01430 -.0143 .4943 .16 -.4252 -1.0630

-.02026 -.0203 .4919 .14 -.4176 -1.1161

-.04524 -.0454 .4819 .12 -.4076 -1.1767

-.06391 -.0642 .4744 .10 -.3946 -1.2477

-.09022 -.0911 .4637 .09 -.3866 -1.2886

-.1103 -.1120 .4554 .08 -.3773 -1.3340

-.1272 -.1298 .4484 .07 -.3665 -1.3854

-.1420 -.1456 .4421 .06 -.3540 -1.4450

-.1554 -.1603 .4363 .05 -.3387 -1.5146

-.1675 -.1737 .4310 .04 -.3198 -1.5988

-.1789 -.1865 .4260 .03 -.2956 -1.7069

-.1894 -.1986 .4213 .02 -.2626 -1.8569

-.1993 -.2101 .4168 .01 -.2108 -2.1081

-.2177 -.2321 .4082 9 (-3) -.2035 -2.1454

-.2344 -.2528 .4002 8(-3) -.1956 -2.1868

-.2498 -.2725 .3926 7 (-3) -.1869 -2.2336

-.2640 -.2915 .3853 6(-3) -.1772 -2.2871

-.2775 -.3103 .3782 5 (-3) -.1662 -2.3500

-.2900 -.3284 .3713 4 (-3) -.1534 -2.4258

-.3017 -.3461 .3646 3 (-3) -.1381 -2.5222

-.3129 -.3637 .3580 2 (-3) -.1188 -2.6554

-.3234 -.3811 .3516 1(-3) -.09090 -2.8744

-.3333 -.3984 .3452 9 (-4) -.08720 -2.9067

-.3428 -.4157 .3388 8 (-4) -.08321 -2.9420

-.3517 -.4329 .3325 7 (-4) -.07892 -2.9829

-.3602 -.4503 .3262 6(-4) -.07420 -3.0293

-.3683 -.4678 .3200 5(-4) -.06895 -3.0836

-.3760 -.4854 .3137 4(-4) -.06297 -3.1487

-.3832 -.5032 .3074 3(-4) -.05597 -3.2316

-.3901 -.5212 .3011 2(-4) -.04730 -3.3445

-.3965 -.5396 .2947 1(-4) -.03533 -3.5327

-.4026 -.5583 .2883 9(-5) -.03378 -3.5605

-.4086 -.5778 .2817 8(-5) -.03213 -3.5917

-.4138 -.5973 .2752 7 (-5) -.03034 -3.6263

-.4187 -.6173 .2685 6(-5) -.02838 -3.6640

-.4231 -.6379 .2618 5(-5) -.02625 -3.7116

-.4272 -.6592 .2549 4 (-5) -.02383 -3.7680

-.4309 -.6813 .2479 3 (-5) -.02103 -3.8397

-.4340 -.7041 .2407 2 (-5) -.01762 -3.9388

-.4367 -.7278 .2334 1(-5) -.01297 -4.1013

-.4388 -.7525 .2259 9 (-6) -.01238 -4.1257

-.4405 -.7787 .2181 8 (-6) -.01175 -4.1532

-.4415 -.8061 .2101 7 (-6) -.01107 -4.1839

-.4419 -.8351 .2018 6 (-6) -.01033 -4.2190

-.4416 -.8660 .1932 5 (-6) -.009526 -4.2602

-.4404 -.8990 .1843 4(-6) -.008620 -4.3101

-.4383 -.9345 .1750 3 (-6) -.007570 -4.3706

-.4354 -.9736 .1651 2(-6) -.006307 -4.4597

-.4311 -1.0160 .1548 (-6) -.004608 -4.6077

.1439

.1322

.1197

.1061

.09877

.09110

.08296

.07423

.06494

.05493

.04392

.03166

.01751

.01596

.01438

.01275

.01109

.009388

.007638

.005832
.003961

.002024

.001826

.001630

.001428

.001226

.001023

.8201(-3)

.6155 (-3)

.4122(-3)

.2057 (-3)

.1851 (-3)

.1643 (-3)

.1438 (-3)

.1242(-3)

.1030(-3)

.8230 (-4)

.6162(-4)

.4095 (-4)

.2055(-4)

.1849 (-4)

.1640(-4)

.1434 (-4)

.1228(-4)

.1022 (-4)

.8163(-5)

.6200(-5)

.4107(-5)

.2038 (-5)
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TABLE 5
Estimates of Bayes expected payofffor one-armed bandit problem.*

1/s

.50

.20

.10

.05

.02

.01
5(-3)
2(-3)
(-3)

5 (-4)
2 (-4)
(-4)

5(-5)
2(-5)
1(-5)
5 (-6)
2 (-6)
(-6)

Zo Yo/ s/2

0 -0.5 -1.0 -1.5 -2.0 -3.0 -4.0

1774 .0035
1059 (1) .2390
2769 (1) .8971 .0839
6420 (1) .2479 (1) .5175
1784 (2) .7773 (1) .2375 (1) .3003
3728 (2) .1708 (2) .5961 (1) .1249 .0268
7658 (2) .3618 (2) .1362 (2) .3592 (1) .3915
1953 (3) .9447 (2) .3758 (2) .1150 (2) .2219 (1)
3940 (3) .1925 (3) .7838 (2) .2538 (2) .5867 (1)
7920 (3) .3892 (3) .1607 (3) .5387 (2) .1370 (2)
1987 (4) .9812 (3) .4093 (3) .1406 (3) .3824 (2)
3981 (4) .1969 (4) .8245 (3) .2861 (3) .7992 (2)
.7969 (4) .3946 (4) .1657 (4) .5783 (3) .1640 (3)
1994 (5) .9878 (4) .4154 (4) .1456 (4) .4176 (3)
3988 (5) .1977 (5) .8319 (4) .2920 (4) .8409 (3)
7977 (5) .3955 (5) .1665 (5) .5850 (4) .1689 (4)
1995 (6) .9890 (5) .4165 (5) .1464 (5) .4232 (4)
3989 (6) .1978 (6) .8330 (5) .2929 (5) .8477 (4)

.0233

.6137
2089 (1)
5440 (1)
.1628(2)
3482 (2)
7247 (2)
.1860(3)
3765 (3)

.0493

.4370

.2117 (1)

.5354(1)

*The quantity tabulated is the normalized Bayes expected payoff=BEP=-s/2[E{d(Y(S),S)}
-d(yo, So)].

TABLE 6
Estimates of Bayes expected sample size for one-armed bandit problem.*

to= 1Is

.5O

.20

.10

.05

.02

.01
5(-3)
2(-3)
(-3)

5 (-4)
2 (-4)
(-4)

5(-5)
2(-5)
1(-5)
5 (-6)
2 (-6)
(-6)

Zo Yo/ s/2

0 -0.5 -1.0 -1.5 -2.0 -3.0 -4.0

.5786 .0835

.2217 (1) .1047 (1)

.4851 (1) .2637 (1) .7097

.1001 (2) .5782 (1) .2256 (1)

.2528 (2) .1513 (2) .6942 (1) .1884 (1)

.5052 (2) .3064 (2) .1480 (2) .5065 (1) .5210

.1008 (3) .6157 (2) .3055 (2) .1154 (2) .2588 (1)

.2512 (3) .1542 (3) .7795 (2) .3125 (2) .9084 (1)

.5016 (3) .3086 (3) .1571 (3) .6434 (2) .2018 (2)

.1002 (4) .6172 (3) .3155 (3) .1308 (3) .4257 (2)

.2502 (4) .1543 (4) .7913 (3) .3308 (3) .1103 (3)

.5003 (4) .3086 (4) .1584 (4) .6643 (3) .2236 (3)

.1000 (5) .6172 (4) .3171 (4) .1332 (4) .4507 (3)

.2501 (5) .1543 (5) .7931 (4) .3336 (4) .1132 (4)

.5001 (5) .3086 (5) .1586 (5) .6677 (4) .2270 (4)

.1000 (6) .6171 (5) .3173 (5) .1336 (5) .4544 (4)

.2500 (6) .1543 (6) .7935 (5) .3340 (5) .1137 (5)

.5000 (6) .3086 (6) .1587 (6) .6681 (5) .2274 (5)

.5929

.4387 (1)

.1094(2)

.2417 (2)

.6433 (2)

.1314(3)

.2659 (3)

.6696 (3)

.1344(4)

.1032(1)

.4101 (1)

.1334(2)

.2907 (2)

* The quantity tabulated is the normalized Bayes expected sample size ESS so[E(S-1) -s].
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form of the asymptotic expansions

BEP--- So{b(Zo)+Zo(Zo)} as So-->,

ESS So(Zo) as So --> ,
provided in [ 13].

The computation for these two examples required 31.4 and 184.5 seconds of CPU
time, respectively, on the 12-megabyte Amdahl 470 V/8 at the University of British
Columbia. The large difference is due to the one-sided nature of the continuation set
for the one-armed bandit problem; such problems typically require substantially more
computation than symmetric problems even if the truncation procedure is implemented.

7. Conclusions. The main approach ofthis paper is to use the very simple backward
induction involving the discrete time process with Bernoulli increments. The accuracy
of this is enhanced by the continuity correction. Numerical experiments with a number
of examples indicate that coarse intervals often yield surprisingly good results, and
dividing by a factor of 4, which increases the calculation effort by a factor of 8,
tends to increase the accuracy of the resulting estimates of 37(s) by a factor closer to
4 than to 3. This implies that doubling the accuracy requires approximately three times
as much computation when the continuity correction is used.

Other enhancements can sometimes be obtained by making use of truncation when
one-sided boundaries are involved or monotonicity and symmetry when appropriate.
Changing the interval between successive values of si can be used to calculate results
for large s.

A general purpose program designed to perform these computations for a wide
variety of such stopping problems should be capable of taking advantage of the special
features of particular problems which might allow the computational effort to be
substantially reduced. One should anticipate that special versions may occasionally
require intelligent intervention to avoid numerical difficulties such as underflows,
overflows and round-off errors. For example, rather careful programming was required
to obtain a good approximation to the optimal stopping boundary for the problem
with stopping cost function

d(y,s)=min(y,O)exp(-) for s-> 0,

discussed in [2].
These techniques are investigated in greater detail in [11] where five additional

applications are considered. Two of these are problems with known solutions which
allow a careful evaluation of the accuracy of the computed approximations. There, as
in this paper, the focus is on obtaining numerical solutions for continuous time versions
of these optimal stopping problems. The question ofwhether these numerical solutions,
when adjusted by the appropriate continuity correction, yield accurate approximations
to the solutions of the original, discrete time version must be considered on a problem-
by-problem basis. Details are presented for a problem involving Bernoulli data in 18]
and for a problem involving normal data in [ 10]; in both cases, accurate approximations
to the solutions of the discrete time versions resulted.

Acknowledgment. The second author gratefully acknowledges the first author as
a constant source of stimulation and inspiration throughout the lengthy period of time
over which the techniques reported here have evolved, and would like to dedicate his
work on this project to Herman Chernoff on the recent occasion of his sixtieth birthday.
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COMPUTATIONS OF MIXTURES OF DIRICHLET PROCESSES*

LYNN KUO-

Abstract. The computation of Bayes estimators based on mixtures of Dirichlet processes is treated in
this article. These estimators may be written as ratios of two multidimensional integrals, each of which may
be decomposed into a weighted average of products of one-dimensional integrals. An importance sampling
Monte Carlo method is proposed to approximate each of the weighted averages. A prior error bound for
each of the Monte Carlo estimators and a posterior error bound for the ratio are developed to measure the
efficiency of the Monte Carlo method. Jackknife and random group error estimates are also considered.
Two examples are given which illustrate the computation of the Bayes estimators.

Key words. Monte Carlo method, multivariable functions, mixtures of Dirichlet processes, Dirichlet

process, empirical Bayes estimation

1. Introduction. In this article, we are concerned with the computational aspects
of a Bayes estimator which arises in many nonparametric Bayesian studies. Let us
consider the following two kinds of problems" empirical Bayes problems and density
estimation. In empirical Bayes problems, the unobservable parameters { 0i}, 1, , n,
are assumed to be independent from an unknown distribution G. Associated with each
0i, a random variable X is observed with known density f(xlO). The unknown
parameters {0} and the mixing distribution (3 can be estimated from the observed
data. In density estimation, the density functions are assumed expressible as a convol-
ution of a known kernel and an unknown distribution function G. Various approaches
to estimating this density function have been developed. See, for example, Tapia and
Thompson (1978) and Prakasa Rao (1983).

In a Bayesian approach to each of these problems, a Ferguson’s Dirichlet prior
(1973) can be put on G. It is shown in Antoniak (1974) that the posterior distribution
is a mixture of Dirichlet processes. The Bayes estimators of 01,’’’, 0, in the first
problem are derived by Kuo (1980). The Bayes estimators of the mixing distribution
G in the first problem and the density function in the second problem are derived by
Lo (1978), (1984). All of the estimators may be written as ratios of two n-dimensional
integrals. The biggest difficulty in applications so far is to evaluate these multi-
dimensional integrals. The difficulty arises from the high dimensionality and complexity
of the integrals, and the fact that the integrand is peaked in a small region of the
parameter space. The usual Monte Carlo method does not work well. The objective
of this article is to give a satisfactory method for evaluating the Bayes estimators.

In 2, we study the numerator and denominator of the Bayes rule separately. As
shown in Kuo (1980), each of them can be expressed as a weighted average of products
of one-dimensional integrals. Both weighted averages can be represented by a multivari-
able function given below in (1). This , which is more general than the multivariable
function considered by Hammersley and Handscomb (1960) or (1964, p. 143), is the
main object studied in 2. These results may have applications to other multivariable
problems. We generate a mean of N independent unbiased estimates of, where each
of the unbiased estimates is produced by importance sampling (each summand in the
weighted average is sampled according to its weight). As a result of the law of large
numbers, the mean converges to the value of the integral as N c. To measure the

* Received by the editors February 3, 1982, and in revised form October 15, 1984.

" Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New
York 11794.
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efficiency of this Monte Carlo method, a prior error bound and a posterior error bound,
which evaluate the standard deviation of the mean, are developed.

In 3, a modification ofthe importance sampling method is applied to approximate
each of the multidimensional integrals. The ratio of these two approximations is used
as an estimate of the Bayes estimator. The modification is tailored to account for the
"doubling up" of the 0’s in the mixing distribution. A posterior error bound, which
measures the standard deviation of the estimated Bayes rule, is developed from large
sample theory. The posterior error bound depends on the integrals (the values we
propose to evaluate). These integrals can be estimated by the Monte Carlo estimators.
It is difficult to assess the accuracy of this estimated error bound. Therefore, jackknife
and random group methods are also used to estimate the standard deviation of the
estimated Bayes rules. Finally, two numerical illustrations are given based on the
baseball data of Efron and Morris (1975) and the Portsmouth Naval Shipyard data
of Martz and Lian (1974).

2. Multivariable problems. Let us consider the following multivariable function
for given probability vectors Pl, P2,""", Pn with Pi- (Pil,""", P,) and =1PJ 1.

(1) (Pl,"" ", P.)= Ply," P2o_ P.. (1, 2," ", n)
8eZ*

where b(l, , ,) is a real-valued function defined on Z1 xZ2 x Z =- Z* with

Zk ={1,2,’’-, k}. Automatically, we have 1 1 and pl, 1. It is more and more
difficult to evaluate as n increases, since the number of summands is n !. For example
when n 20, there are 20! 2.43 10TM terms to be added. Therefore, it is desirable to
devise an algorithm which generates a tiny fraction of these summands and enables
us to approximate satisfactorily. An importance sampling Monte Carlo method is
proposed here to approximate (I). It can be seen in Theorem I and Corollary I that
this method is appropriate for evaluating . The Monte Carlo method and its statistical
analysis are given in the following.

(i) Monte Carlo method. (a) We first generate independent integer random vari-
ables ’, ’2,"" ", ’ taking values in Z1, Z2,---, Z respectively with probabilities
P(i =j)= Pj, and =1PO 1 for i= 1,. ., n. Therefore

P(’I-" tl, st2-- 2,’’’, ’n tn) --P181" P2" P33 P..
and

() E$(rl, ’,, (p,, p2, , P,, ).

(b) We repeat step (a) independently N times. Let (’, , ’,). We generate
N mutually independent copies of g to obtain g(1), g(2),...,g(N). We evaluate
(g(1)), 4(g(2)), ", 4(g(N)), and compute the mean of the resulting function values

(3) t=,b((l))/N
and use it to approximate (1).

(ii) Statistical analysis. Since b({(/)) are independent for 1,. ., N, it follows
from (2) and independence that lrh((1))/N is an unbiased estimator of
(p,..., p,) with variance

(4) tr2=1 Var 4().
N

Therefore, this procedure is appropriate for approximating q(Pl,""", P,) provided tr
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is small enough. Moreover, by the strong law of large numbers, (3) converges almost
surely to q)(Pl, , P,) as N--> oo. Finding a prior standard error bound is equivalent
to finding an upper bound on cr in (4) which definitely depends on how well-behaved
the function b is.

For each i, 1-<_i<_-n, let us define the regularity quantity Ai of & as follows:

(5) Ai max max [b(81," , 8-1, il, 8+1," , &,)- (/)(1, i--1, i2, i+1, 6-)]2.
all j
(jOi)

Then, based on Hammersley’s result (1960), we have the following theorem which
gives an upper bound for the variance of &(g). It is proved in Appendix I.

THEOREM 1. Let b(61,"" ", 6,) be a real-valued function defined on Z* and let
{’, ’2, ", ’n} be chosen independently with probabilities P( =j)= Po, Y=I PJ 1 for
all l n. Then the variance of c(, )< 1/4 [y Ai=2

Using the result of Theorem 1 and the fact that the variance of () is bounded
above by one quarter of the square of its range (this follows from Lemma 1 in
Appendix I), we can obtain an upper bound on the variance of the Monte Carlo
estimator even before doing the calculation. The following corollary follows straightfor-
wardly; therefore it is only stated.

COROLLARY 1. Let tr denote the prior standard error of the Monte Carlo estimator
(3). Then

(6) tr<-min A 4N)l/z, max(61,...,6,)-min(61,...,6,) (4N) 1/2

i=2 Z* Z*

Remark. Easy examples can be constructed to show neither of the two upper
bounds in square brackets is uniformly better than the other one.

As a consequence of Corollary 1 and the central limit theorem, we can approximate
the number of iterations N needed in this Monte Carlo method to achieve a certain
accuracy. For example, we could achieve an accuracy within e error with probability
at least .68 by setting N equal to min [Ei=I Ai, (range t(g))2]/4e2.

When the function (61,." ", 6,) is complicated, it might be difficult to obtain
the prior error bound. Even when it is available, the bound may be too conservative.
Instead, one may use the sample (posterior) standard error
[,1 (&((l)-6))/N]1/, where :Y, tN=l (b((l)))/N.

3. Bayes estimators. It is shown in Kuo (1980) that the proper Bayes estimators
with Dirichlet prior for the empirical Bayes problems are given as follows"

(7) Ok
IR I [ fi ] fi (’-[-EJ=1’"-160

i=1 i=l a(R)+ i- 1

i=1 i=1 a()+ i- 1

where f is a density, a is any finite measure and 6oj is the measure concentrated at 0
with mass 1.

The formula (7) looks deceptively simple. Since each of the integrals is n-
dimensional, a Monte Carlo method of approximation seems appropriate. However,
the complexity of the product measure

i=1 a()+i-1
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creates great problems. A straightforward Monte Carlo method suggests that we take

01 from ()’

02 from
(a + 8o,.)..(...:..),
()+

(+_-, )(.)
03 from ()+2

etc., and evaluate the integrand at these 0’s, then repeat this process independently N
times (N large), and use the mean of these N resulting values to approximate the
n-dimensional integral. This method does not work well, because the integrand, being
a product of n densities (or a function of a product of n densities) is peaked at a very
small region of the 0 depending on x. Since 0 is chosen independently of the x, only
rarely does 0 fall in this region. The resulting mean value has undesirably big variance,
since it is dominated by a few relatively large values. We propose another Monte Carlo
method which avoids these diculties.

If we replace a (0) by MFo(O) where Fo is a probability measure, and M a (),
then it can be shown as in Kuo (1980) that the numerator and denominator of (7) are
each of the form (I) with

(Pil’’’’’Pii-l’Pii)=
M+i-l’ M+i-1 M+i-1

and with many of the summands of (1) equal. For example,

(1, 1, 1, 4, 5,..., n)= (1, 1, 2, 4, 5,..., n), and

(1, 1, 1,..., 1)= (1, 1, 3, 4,""", ) for all 3 e 22, 4 e 23,’’’ n e Zn_l,

where (,..., ) is a product of single integrals. To account for this doubling
up," we apply a modification of the Monte Carlo method developed in 2 with
generated sequentially as a function of , ,- ,

_
and i.

(i) Monte Carlo metho& (A) For the/th iteration, 1, , N, we do the following
steps (a)-(c):

(a) We generate , ,. ., sequentially by the following steps 1 through n,
where the probabilities are independently generated for steps, 1 through n, and the
step i, for all 1 N iN n may be written as follows:

M
with probability

M + i- 1’
choose 8i i;

1
with probability

M + i- 1’
choose 8i 8,-1;

with probability
1

M + i- 1’
choose 8i 81.

(b) After the above vector 8=(81, 82, 83,’’" 8n) is selected, the index set
{ 1, , n} is partitioned into a disjoint union of subsets. Each subset consists of indices
such that 8 equals a particular integer value. Let 7r denotes this partition and K its
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nonvoid subsets. Then evaluate

(8) ,,:.II I f,(x, lO,) o(dO).

Let (8) be denoted by V. (Note that these are one-dimensional integrals which can be
evaluated by standard numerical integration methods. It is often desirable to have Fo
be the conjugate prior of HiKf(xi[0), since then the integral can be evaluated
immediately.)

(c) With the same partition r as in (b), pick the subset of r containing the index
k. Let it be denoted by Kk. Then we evaluate the product of two terms, where the first
term is j 0 I-IiKkfi(xilO)Fo(dO), and the second term is the product over the rest of the
subsets of r as in (b). Therefore, we have:

(9) o II f,(x,lO)Fo(aO). H I II f,(x, lO)Fo(dO .
iK KcTr iK

KK

Let (9) be denoted by U.
(B) Repeat (A) independently N times. Then compute"

N N

(10) U/V, whereU= Z Ut/N andV= E V/N,
i=1 1=1

and use U V to approximate (7).
(ii) Statistical analysis. The prior error bound for each of the Monte Carlo

estimators U and V can be obtained as in 2(ii). The prior error bound of the ratio
depends on the magnitude of the denominator. It can be seen from the following
theorem that a sharp prior error bound (an upper bound on (11)) is hard to obtain.
Nevertheless, a posterior error bound can be computed along with the Monte Carlo
simulation. We need the following theorem which gives the asymptotic distribution of
the estimator U V. The proof is omitted, since the result follows from a straightforward
application of large sample theory (see, for example, 6a. 2 in C. R. Rao (1973)).

THEOREM 2. Let (U1, V1),"" ", (UN, Vr) be independent, identically distributed
2-dimensional vectors with mean vector (uv, Uv), Uv 0, and covariance matrix

tr < o, tr2v < c.
tYuv

O’uv O’2v ]’
Let O= Z=, Ut/Nand V=Z, Vt/ N. Then /---( O/- uu/uv) converges in distribu-
tion to a normal random variable with zero mean and variance

2 2+ u v/

Note that ut:/Uv is the Bayes estimator (7) which we seek to evaluate. As an
application ofTheorem 2, we can derive the standard error ofthe Monte Carlo estimator
proposed in (10). It is

(11) (o’u/u2v-2uutrvv/U3v+utr2v/U4v)l/2/x/-,
which is a function of unknown quantities. Nevertheless (11) can be approximated by
the empirical values generated by the Monte Carlo method. Therefore, the estimated
posterior standard error, denoted by ’0/, is given by

(12) S2u/ V2_ 2 ]Suv/ gr3_. 02S2v/r4)l/E/d
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where S2u ’.=, U O)2/N Suv __l U O)( V )/ N, and Sv
E=, v, (Z)l N.

If uutruvl u, < 0, where uutruvl uav can be approximated by OSuvl 3, then (11)
suggests that we can improve the standard error by taking trvv 0. Therefore, in this
case, it is worthwhile modifying the Monte Carlo method in 3(i) as follows. Replace
the first phrase in step A(c) by (c’)"

(c’) Repeat step (a) independently to obtain another and r. Then evaluate Ut
according to this 8 and r.

In short, we can generate Ut and V independently at each iteration. The reduction
of variance is done at the expense of requiring more computing time to generate a
new set of and r.

If uuzruv/uav> 0, then we can see from (11) that the Monte Carlo method proposed
in 3 is superior to the above method, since the variance and computing time are
reduced simultaneously.

(iii) Numerical examples. The data for the first example given by Efron and Morris
(1975) consists of the batting averages of the first 45 at bats in the 1970 baseball season
for each of 18 major league players. These batting averages are denoted by {Yk},
k 1,’’’, 18, 0< Yk < 1. It is assumed that {45Yk} are distributed independently
according to a binomial distribution with sample sizes 45 and parameters Pk, where
Pk, the true season batting average for player k, is to be predicted. Since the variance
of Yk depends on the mean, an arc-sine transformation for stabilizing the variance of
a binomial random variable is used"

(13) Xk T45(Yk), where T45(Y) x/- arc sin (2 Y- 1).

Then we have that the data {Xk} are independently distributed, approximately normal
with mean Ok and variance 1, where Ok- T45(Pk). We intend to predict 0.

If we assume Ok are taken independently from an unknown distribution G which
is chosen by the Dirichlet process, then the Bayes estimator of Ok under squared error
loss is shown to be (7) in Kuo (1980) with

1 _(x_o)2/2f,(lo) =v, e

for all i- 1,. ., 18, and (0)= MFo(O). M and Fo(0) are selected by the statistician
to represent strength of prior belief and the prior guess of G respectively. To simplify
the evaluation of (8) and (9), we are choosing Fo(O) to be the normal distribution
J(a, bE) which is a conjugate prior for the normal densities. We follow the Monte
Carlo procedure proposed in 3(i) to approximate Ok. Let Ok denote the Monte Carlo
estimator (10). An inverse transformation of (13) is needed to predict Pk"

/= T-(k) [sin (/x/-) + 1]/2.

The posterior standard error for Pk, denoted by g(Pk), should be adjusted as follows:

g(P<) gk" T-l)’(lk) k" cos (3,<1,/-47)1(2d-47),
where k is the posterior standard error for computed from (12).

There are also sample reuse methods to estimate variances as pointed out by a
referee. The jackknife (see Miller 1974) and random group method (see Raj (1968,
pp. 194-195) are also used to estimate the standard deviation of the Monte Carlo
estimator (10). Let the standard deviations be denoted by SDJACK and SDRG
respectively, and the corresponding ones for P be denoted by SDJACKP and SDRGP.
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In Table 1, M, a, b2 are arbitrarily chosen to be 1, g, and (xi-g)2/18. The
number of iterations in the Monte Carlo method N is 2000. The jackknife variance
estimator for U/V is computed by deleting a group of 50 iterations each time. The
random group variance estimator is computed from 40 groups of 50 iterations in each
group. See Appendix II for a more detailed description of these variance estimators.
Observe that , SDJACK, and SDRG are quite comparable in all the cases.

In Table 2, M, a, b2 are chosen to be 500, -3.317 and (0.514)2 to simulate the
estimates that Efron and Morris obtained. The number of iterations is 200. SDJACK

TABLE
Monte Carlo estimators for batting averages.

(a =-3.317, b= 1, M= 1, N-2000, g=40)

k Xk k k SDJACKk SDRGk -g’k (Pk) SDJACKPk SDRGPk

-1.35 -2.936 .0200 .0202 .0186 .288 .00135 .00136 .00125
2 -1.66 -3.024 .0211 .0169 .0149 .282 .00142 .00114 .00100
3 -1.97 -3.093 .0166 .0163 .0152 .276 .00111 .00109 .00102
4 -2.28 -3.179 .0186 .0184 .0150 .272 .00123 .00122 .00099
5 -2.60 -3.174 .0231 .0235 .0194 .272 .00153 .00156 .00129
6 -2.60 -3.185 .0193 .0200 .0166 .271 .00128 .00133 .00111
7 -2.92 -3.300 .0143 .0097 .0090 .264 .00094 .00064 .00059
8 -3.26 -3.315 .0145 .0131 .0113 .263 .00095 .00086 .00074
9 -3.60 -3.396 .0168 .0199 .0164 .258 .00110 .00130 .00107
10 -3.60 -3.345 .0140 .0145 .0127 .261 .00092 .00095 .00083
11 -3.95 -3.446 .0151 .0159 .0129 .254 .00098 .00103 .00084
12 -3.95 -3.412 .0156 .0143 .0123 .256 .00101 .00093 .00080
13 -3.95 -3.428 .0119 .0100 .0102 .255 .00078 .00065 .00067
14 -3.95 -3.429 .0124 .0097 .0083 .255 .00081 .00063 .00054
15 -3.95 -3.433 .0143 .0119 .0106 .255 .00093 .00077 .00069
16 -4.32 -3.491 .0141 .0166 .0139 .251 .00091 .00107 .00089
17 -4.70 -3.564 .0152 .0160 .0142 .247 .00098 .00103 .00091
18 -5.10 -3.639 .0145 .0136 .0136 .242 .00092 .00087 .00087

TABLE 2
Monte Carlo estimators for batting averages.

(a =-3.317, b=0.514, M= 500, N=200, g=40) a
P

SDJACKk SDRGk , .(Pk) SDJACKPk SDRGPk (Efron and Morris)

-1.35 -2.908 .0009
2 -1.66 -2.969 .0015
3 -1.97 -3.037 .0022
4 -2.28 -3.104 .0020
5 -2.60 -3.169 .0022
6 -2.60 -3.166 .0024
7 -2.92 -3.235 .0024
8 -3.26 -3.305 .0019
9 -3.60 -3.378 .0020
10 -3.60 -3.380 .0023
11 -3.95 -3.448 .0021
12 -3.95 -3.488 .0030
13 -3.95 -3.449 .0020
14 -3.95 -3.447 .0026
15 -3.95 -3.454 .0025
16 -4.32 -3.527 .0006
17 -4.70 -3.607 .0010
18 -5.10 -3.686 .0017

.0009 .0010 .290 .00006 .00006 .00007 .290

.0015 .0015 .286 .00010 .00010 .00010 .286

.0022 .0022 .281 .00015 .00015 .00015 .281

.0019 .0020 .277 .00013 .00013 .00013 .277

.0025 .0026 .273 .00015 .00017 .00017 .273

.0022 .0023 .273 .00016 .00014 .00015 .273

.0025 .0026 .268 .00016 .00017 .00017 .268

.0019 .0019 .264 .00012 .00012 .00013 .264

.0020 .0019 .259 .00013 .00013 .00013 .259

.0024 .0024 .259 .00015 .00016 .00016 .259

.0021 .0022 .254 .00014 .00014 .00014 .254

.0030 .0030 .254 .00019 .00019 .00019 .254

.0017 .0017 .254 .00013 .00011 .00011 .254

.0027 .0028 .254 .00017 .00017 .00018 .254

.0024 .0024 .254 .00016 .00016 .00015 .254

.0004 .0005 .249 .00004 .00002 .00002 .249

.0010 .0010 .244 .00006 .00006 .00006 .244

.0016 .0017 .239 .00011 .00010 .00011 .239
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is computed by deleting a group of 5 iterations each time and SDRG is computed by
dividing the sample into 40 groups of 5 iterations each. The Monte Carlo estimators
agree with the Efron and Morris estimators.

It is revealed from simulations that the number of iterations N must decrease as
M increases to achieve the same accuracy. This is expected. As M increases, it can
be observed from Antoniak (1974) or Kuo (1980) that, there is less "doubling up" of
the 0’s and less variation in the partition r described in 3. Therefore, the variance
given by Theorem 1 decreases. This explains why fewer iterations are needed.

The second example uses the Portsmouth Naval Shipyard data of Martz and Lian
(1974) (see also Berry and Christensen (1979)). The Portsmouth Naval Shipyard
routinely must assess the quality of submitted lots of vendor-produced material. The
number of defects is observed in a sample of size 5 from each of the past lots of
welding material; they are denoted by Xk for the kth lot, where k goes from 1 to n 1,
the number of past lots. In the current lot, the number of defects of a sample of size
5 is also observed, denoted by x,. Assume xk, k 1,. ., n are binomially distributed
with parameters Ok (sample size is 5), where 0k denotes the true fraction of the defective
material in the kth lot. The objective is to estimate 0n, the lot fraction defective in the
current lot.

We can estimate 0n as well as all other O’s by (7) with f(xlO)=(Sx)OX(1-O)5-x
for all i= 1,. ., n and MFo(O) chosen by the statistician.

Based on 5, 1, 0, 0, 0, 0, for the observed values of Xk, k 1," , 6, and the beta
distribution e(a, b) chosen to be Fo(0), we have computed the Monte Carlo estimator
Ok from (10). Its posterior standard error has been computed by (12), the jackknife,
and the random group methods for two sets of iterations. It takes more iterations for
the random group method to obtain stabilized variances.

These estimates are listed in Table 3 and Table 4 for M, a, b, chosen to be 1, 1,
1 and 1, 0.5, 0.5 respectively. We have guessed that the prior is more concentrated at

TABLE 3
Monte Carlo estimators for naval shipyard data.

(M=l,a=l,b=l)
(I) N 2000, g 40

k X k ’k SDJACKk SDRGk

5 0.851 0.0008 0.0009 0.0013
2 0.138 0.0064 0.0073 0.0064
3 0 0.079 0.0015 0.0016 0.0017
4 0 0.079 0.0015 0.0021 0.0026
5 0 0.079 0.0015 0.0020 0.0018
6 0 0.081 0.0017 0.0018 0.0020

(II) N=500, g-25
k Xk k ’k SDJACKk SDRGk

5 0.853 0.0012 0.0012 0.0135
2 0.154 0.0134 0.0152 0.0163
3 0 0.077 0.0032 0.0037 0.0067
4 0 0.074 0.0029 0.0037 0.0055
5 0 0.075 0.0031 0.0039 0.0046
6 0 0.078 0.0035 0.0026 0.0036
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TABLE 4
Monte Carlo estimators for naval shipyard data.

(M 1, a =O.5, b =0.5)
(I) N 2000, g 40

k Xk k k SDJACKk SDRGk

5 0.912 0.0006 0.0007 0.0009
2 0.126 0.0060 0.0070 0.0059
3 0 0.056 0.0016 0.0017 0.0016
4 0 0.056 0.0016 0.0021 0.0022
5 0 0.056 0.0016 0.0020 0.0017
6 0 0.058 0.0017 0.0019 0.0019

(II) N=500, g=25
k Xk k ’k SDJACKk SDRGk

5 0.914 0.0009 0.0010 0.0147
2 0.140 0.0120 0.0137 0.0182
3 0 0.053 0.0034 0.0040 0.0051
4 0 0.050 0.0030 0.0037 0.0042
5 0 0.052 0.0034 0.0041 0.0037
6 0 0.054 0.0035 0.0026 0.0029

the end points of the interval [0, 1] in the latter case. Therefore, we expect that the
Bayes estimates are spread out more toward 0 or 1 in that case. This is confirmed by
the Monte Carlo estimates given in Tables 3 and 4.

4. Conclusion. Although only empirical Bayes problems are illustrated here, the
proposed Monte Carlo method could be applied to compute any estimators based on
a mixture of Dirichlet processes, such as densities, response curves in bio-assay, the
biometric functions in life tables, or regression functions which are treated in Lo (1978).
This method has the advantages that it can achieve satisfactory accuracy with a moderate
number of iterations and it takes only a few programming instructions to implement.
The number of iterations required to achieve a certain accuracy can be approximated
by the prior error bound. The accuracy can also be improved later by increasing the
number of iterations, using the posterior error bound.

Appendix I. In this appendix, the proof of Theorem 1 is given.
Proof of Theorem 1. We have

Variance b(’l,’’ ", ’,)= Pl,’"P,,. (61,"’, 6,)2
8eZ*

(All
2-(8z*P’" P"" 4(6,," ,,))

which we may write, for brevity as

(A2)

Fix 61," n-1. Let us define bj(31,- , n-1), for j 1,. , n, by

(A3)
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<__ p,A,_ by (5)
j=l

Therefore, we have inductively:

Vn_ <- Vn_2-Jr-1/4An_I,

V=0.
Therefore, together with (A5), we have:

--2

by the Cauchy-Schwarz inequality
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LEMMA 1. IfX is a random variable with values in [0, 1], then Var X =< .
Proof.

Var X EX EX)2 EX2 EX+ EX EX)2

EX 1 X) + EX 1 EX) <- EX 1 EX) <- -.
LEMMA 2. For any fixed i$1, ", i$,_, let bj, j 1,. ., n, and be defined as in

(A3), (A4). Then
Proof. Let Y be a discrete random variable which takes on the values b,. ., b,

with probabilities p.,..., p,, and X be the random variable such that:

Y- minl=<j__<n bj
max, ____j<__ bj- minl__<j_<.

Then X is a random variable with values in [0, 1]. Therefore, -’j=l p,jb-62= Var Y-<_

1/4Z,, by straightforward computation and Lemma 1.

Appendix II. Jackknife and random group methods to estimate variances are
discussed in this appendix.

Let the sample (U1, V1),’- ", (UN, V) be independent identically distributed
two-dimensional vectors from a distribution Fo. Estimator 0 /V is computed from
the full sample. We^partition the complete sample into g groups of m observations
each (N mg). Let O(j) be the estimator of the same functional form as but computed
from the sample after omitting the jth group. Define "pseudo values"

0 g-(g- 1)

and

g

0= E O?/g.
j=l

Then the jackknife estimator of variance is

1 g

Y 07VJACK g(g- 1) j=

Let 0* be the estimator of the same functional form as t but computed from the
subsample from the jth group. Let

g
g= 2 o?*/g.

j=l

Then the random group estimator of Vat is

1 g

VRa g( g 1) jl 07" )2.
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FINITE ALGORITHMS FOR HUBER’S M-ESTIMATOR*

D. I. CLARK" AND M. R. OSBORNE

Abstract. Two finite algorithms for Huber’s M-estimator are presented. Both proceed in a constructive
manner by moving from one partition to an adjacent one. One of the algorithms, which uses the tuning
constant as a continuation parameter, also has the facility to simultaneously estimate the tuning constant
and scaling factor. Stable and efficient implementation ofthe algorithms is presented, together with numerical
results.

Key words. Huber’s M-estimator, algorithms, finiteness

1. Introduction. Along with the rapid development of and great interest in the
theory of robust estimators over the last decade, there has naturally arisen a correspond-
ing interest in algorithms to calculate their estimates. In particular, Huber’s M-estimator
14] has been the subject ofa variety ofapproaches, some ofwhich have been extensively

tested, particularly in the location (single dimension) case. Of these, approaches which
attempt to find a specific number of outliers by considering in some manner all possible
subsets [1], [10], have not proved successful, both because of the amount of work
required and because of possible ambiguities in the result.

The most popular approaches, which are summarized below, are based on iterative
schemes. In some of these, a scaling factor is estimated by the algorithm at each
iteration [15], [17], whilst in others it is estimated once, before computation begins
[3], [13].

We are concerned with the problem

(1.1) rninf(x)= 0

where p is the function

1/2t2 for Itl < %(1.2) p(t) [ yltl-1/2y for Itl > %
ri is the ith residual or error,

(1.3) r= Ax-b,

" is a scaling parameter and y a tuning constant. The vectors r, b and x are of dimension
n, n and p respectively, whilst A is an n xp matrix (n ->_ p), which we assume is full rank.

Letting p’, (1.1) may be expressed as solving

(1.4) O(r,) 0.
i=1

Three iterative schemes have been suggested for solving (1.4),

(1.5) x’+ =x’ +[Ar(O’(r’))A]-ArO(r’),
(1.6) x’+ =x’ +[ArA]-Ar,(r’),
(1.7) x’+ =x’ +[A’(w(r’))A]-Ar(w(r’))ri,

* Received by the editors June 28, 1983, and in final revised form October 25, 1984.
f School of Information Sciences, Canberra College of Advanced Education, A.C.T., Australia 2616.
Department of Statistics, Institute of Advanced Studies, Australian National University, A.C.T.,

Australia 2600.
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where (a) denotes the diagonal matrix with )ii ai, and w is a weight function such
as w(t) O(t)/t.

Equation (1.5) is Newton’s method and has been applied by Huber and Dutter
[17]. According to Holland and Welsch [13], it is the fastest of the three methods, but
requiring O makes it difficult to implement and also AT(d/’)A need not be positive
definite. Equation (1.6) is Huber’s method [15]. As opposed to the other two methods
where the updating matrix must be inverted at each iteration, it has the advantage that
the generalized inverse need only be calculated once, but Holland and Welsch report
it as being the slowest method of the three. Equation (1.7) is the iteratively reweighted
least squares attributed to Beaton and Tukey [3], and widely discussed [4], [5], [6], [13].

The above methods are iterative and the stopping criteria most favoured appear
to be to take five iterations (in the location case) [4], [13], and to specify a tolerance
parameter and compare it to the relative change in the estimator at successive iterations
13 ], 17]. Huber 15] has also noted that if the correct final partitioning into { i[ ]r _-< y},

{illr > y}, {i] r <-y} were known, the M-estimate could be calculated in a single
step, and he and Dutter refine their algorithm by keeping track of partition changes
between iterations.

The first algorithm presented below is based on the result that z z(y), the solution
of (1.1), is a continuous piecewise linear of y. When y is arbitrarily large, the M-estimate
is simply the least squares (LS) estimate, and the algorithm proceeds from this point
by reducing the value of y in ranges until either a desired value of y is reached or a
specified number of outliers is identified. (An alternative approach is to start with the
11 estimate, y 0, and increase

A second algorithm, which was developed to solve a problem akin to degeneracy
in linear programming in the first algorithm is also presented. This algorithm finds the
correct partitioning of the residuals in a constructive manner. Both algorithms have
been tested, and results are given.

This paper relies heavily on results from a previous paper [8], which investigates
the mathematical structure of Huber’s M-estimator. Results from it will be quoted as
appropriate.

2. The continuation algorithm.
2.1. General description. As mentioned above, the first algorithm depends on the

behaviour of the M-estimate as 3/is varied. We show that it is a continuous piecewise
linear function of % and hence so is each residual. As for large enough % the
M-estimator is the LS estimator; this is taken as the starting point and the value of 3/
is reduced until the size of some residual is equal to 3/. At this point the partitioning
of residuals changes, and the rate of change of the M-estimate and hence each residual
with respect to , has to be recalculated. Piecewise linearity now gives the estimate on
the new partition until a new tie occurs.

This process is repeated until either a predetermined number of outliers is iden-
tified, or a desired value of ), is reached. The algorithm can thus be thought of as a
continuation algorithm with parameter 3’. The choice of the "stopping" value of 3/is
discussed in 2.5.

As 3’ is reduced, the normal pattern is that a residual changes status from being
-<-3’ to becoming > 3’ in size. Occasionally, however, the opposite may occur, so that
a residual which was an outlier at one range of values of 3’ is not one for smaller y.
Further, it is theoretically possible that more than one residual could be involved in
changing status at the same value of y. The resolution of this problem, analogous to
degeneracy in linear programming, has led to the algorithm described in 3.
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2.2. Piecewise linearity. We will consider the class of procedures for estimating x
defined by

2(2.1) min F(x, y) 1/2
io"

where tr and O are disjoint complementary subsets of N {ili 1,. , n}. The subsets
o-, # define a partition P.

When we wish to refer to the optimal value of (2.1) for a specific partition, say
Pa, and tuning constant y, we will use the notation z(y, Pa) or, more simply, za with
corresponding ri(y, P) or r(Za).

On occasion it may be necessary to distinguish between z(y, P) and the solution
to (1.1) which we shall denote by z(y) or, where there is no ambiguity, z, with
corresponding r.

A partition P will be called feasible if tr :> Ir,(y, P)[--< y and the r(y, P), O
are of the assumed sign.

In Clark [8, Thm. 2, Cor.] it was shown that function values at the minima of all
feasible partitions at the current value of 3/are equal, so that if P is feasible (2.1) is
equivalent to (1.1) and z(3/, P) is an M-estimate. (We will assume for the time being
that r, the scaling factor of (1.1) is unity).

In showing that z is a piecewise linear function of 3/we will make two assumptions"
uniqueness of the M-estimate, and nondegeneracy (i.e. the set {kllrl } has at most
one element /3/). Neither assumption is necessary, but the alternatives require careful
analysis and the added complexity would detract from the simplicity of the basic
procedure. The uniqueness assumption is commented upon below, and the question
of degeneracy is addressed in 3.4.

The proof of the piecewise linearity of z is a constructive one. We first show that
within a feasible partition z is linear in % is feasible for a range of values of 3/, and
at the end of this range also minimizes a new partition which in turn is feasible for a
range of values of % z again being linear in 3/.

We will need the following results from Clark [8] where they occur as Lemma 3,
Lemma 6 and Theorem 4.

LEMMA 2.1. IfP and Pb are adjacent partitions with tr trb U {k}, then ]rk(Za)]
3/z minimizes Pb, and Irk(Zb)l 3/Zb minimizes Pa.

LEMMA 2.2. A partition has a unique minimizer iff the vectors a, tr, span Rp.
LEMMA 2.3. Let P and Pb be adjacent partitions with unique minimizers Za and Zb

respectively, and tra trb U { k}. Then

(i)

(ii)

THEOREM 2.4. If a partition has a unique minimizer, then the minimizer is a linear

function of 3’.
Proof. Differentiating (2.1) with respect to x gives

0 airi + 3/ 0ia

(2.2) E ai(a/TZ- b,) + 7 Y, Oiai

AAz-E a,b, + 3/’. 0,ai,

where A, is the submatrix of A pointed to by the members of tr, a f is the ith row of
A and 0i=sgn (ri).
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The result now follows from the nonsingularity ofAA, a consequence of Lemma
2.2. [3

THEOREM 2.5. Let P, be a feasible partition at 3, > /, but infeasible at 3, < /, the
infeasibility being caused by the size of a single residual rk(Z,). Then the partition
trb tr\{ k} (k try) or trb tr U { k} (k ) is feasible for some y < /.

Proof. For 3, <=

Ir(zo)l> 3,(ke or.) or Ir (zo)l<_- 3,(ke c.),

so by Lemma 2.3 and observing that k e or. (.) k e c?. (orb),

(k () or [r(z)l_-< 3, (k (r).

Thus provided the reduction in 3’ is slight enough so that Ir(z)l % i k, P is
a feasible partition.

Remark 2.1. The point 3, /, where Irl 3’, will belong to the lower limit of the
upper range if k (r, and the upper limit of the lower range if k (.

THEOREM 2.6. In the absence of degeneracy, if the M-estimate is unique, then it is
a continuous piecewise linear function of 3,.

Proof. For any feasible partition, as z is a linear function of % ri(z)= afz-bi is
also a linear function of 3, for all i, so that P will remain feasible for a range of values
of 3,. Moreover, at the end of the feasible range of % % The result now follows
from Lemma 2.1 and Theorems 2.4 and 2.5.

Remark 2.2. In the presence of degeneracy, it is possible for the feasible range
of 3, for a partition to be a single point. An example of this is given in [8, Remark 5].

Remark 2.3. If the M-estimate is nonunique, there is still an M-estimate which
is a continuous piecewise linear function of 3, with rank A p. The proof depends
on the set of M-estimates being bounded and convex with rank A p on the boundaries.
It is rather intricate to prove in the presence of degeneracy, and in the light of the
comments below on nonuniqueness it has not been included in this paper.

Remark 2.4. We have assumed that the M-estimate is unique. In Clark [8] it is
shown that if P, and Pb are distinct feasible partitions then
e or, f’l Orb (Theorem lb), and that the ai, e or, fq Orb do not span Rp. It is also shown

that if a partition has a nonunique minimizer, the a, e or, do not span Rp. Consequently
if, as is normal, n >> p and Icrl =rankA (or or, fq rb if there are two partitions), then
nearly all the residuals are outliers (>3,) or near-outliers (= 3,). Recalling that the
terminal value of 3, is only an estimate, all this would seriously question the validity
of the model in the presence of nonuniqueness. (Recall also that by the time 3, has
been reduced sufficiently for this to happen, z(y) and r(y) are known for all greater
values of 3,.)

2.3. Updating at change of partition. We have shown that z is piecewise linear in
3,, and that when a new range of y is entered there will be a change of status of one
or more residuals. Here we show how to update the dr/dy and dz/d3, in the usual
case where only one residual, say r, is involved in changing status.

The method has several features of interest. It can make use of the work done in
obtaining the LS estimate making it unnecessary to restore the data matrix A (the
appropriate method for obtaining the LS estimate is the modified Gram-Schmidt
algorithm which gives directly the initial Wk used in the discussion below). It uses
orthogonal transformations, well-known for their numerically stable properties. The
updating is extremely efficient, for after an operation requiring the 2(n +p)p multiplica-
tions and additions characteristic of a rank one modification scheme using orthogonal
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transformations, each dri/dy requires only a single multiplication and addition to
update. (It is for this reason that we have preferred our approach to the more standard
methods of updating triangular factors after rank one updating of a positive definite
matrix--see, for example, 11 ].) And finally, a slight modification allows the ll estimate
to be used as the starting point with y increasing, rather than starting from the LS
estimate and reducing y.

Differentiating (2.2) with respect to y gives

7" dz
(2.3) AA-y=-, Oiai.

If we can find a nonsingular matrix M such that AA, MMr, then (2.3) becomes

(2.4) MTdz=- O,M-a, O,w,,
dy i

where wi M-a. Then

(.5)

At a change of partition, tr-> <r + {k}, so that

(2.6) MM7" --> MMr +/- aka[ M{I +wkw/}MT M’M’.

Now for any orthogonal transformation QQr= I,

(2.7) I +wkw[ QQT" + QQWkW[QQ Q{I QWkW[Q}Q

If we select Q such that

(2.8) Qw Ilwlle, 1 a p,

(2.7) becomes

(2.9) I ww[ Q{I Ilw [le=e}Q Q01/2(91/2)

as M’M’ is positive definite and so 1 w[w >0. Then from (2.6)

(.10) w (M’)-’a D-’/w.
The matrix Q can be calculated from the Householder transformation [17]

(2.11) {I-2)w 0llwlle,,

(2.12) (2w) w- 0Ilwlle,

(2.13) 2w {2(w[w 0Ilw (w),)}’/.

After the w have been updated in this manner, the drydy can be updated rather
eciently in the following way.

From (2.3) and (2.6),

(2.14) M{Iww[}Mrdz=- E 0a=- E 0a0kak.
dy i’ i
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Now multiplying (2.14) by M-1 and using wi M-lai and afdz/dy dr/d% we
have

rdz’ rdz rdz’+OkM-lak
(2.15) 7" dz dz’

M -T q: Wka -T d: OkWk

r dz dr’

Multiplying (2.15) by wf yields

dry_ drj dr’ww, ow]’w,,(2.16)
dy dy

and setting j to k in (2.16) gives

dr’ (drk 2/(2.17) : 0llwll (1 +/- wll=).
dy \dy ]/

Now from (2.10),

WfWk WTD1/2QTQD1/2Vtk D1/2w.) T(D1/2w) D1/2W)o D1/2wk)a
as w, is parallel to e. Hence from (2.9)

(2.18) WfWk (W)(W,) (1 IIwll=).
Applying (2.17) and (2.18) to (2.16), we have

(2.19)
: (wj) o

dr
(w) drk

If we append an initial identity matrix onto A as columns N+j, j 1,..., p,
there is a corresponding formula for dz/dy,

(dz’ (dz) (drk)(,’.+j)(w,)o(2.20) \-d-/j
Equations (2.10) to (2.13), (2.19) and (2.20) describe an updating formula at

change of partition. In practice, the initial step is to find the LS solution (tr N). This
can be done using a Choleski factorisation ArA LLr, or a modified Gram-Schmidt
A= Q1U so that ArA UrU and wi Ki(Q). Either way the initial M is triangular,
but this does not persist beyond the first step.

Examination of the updating equations shows that updating the wj requires
2(n+p)p multiplications and additions and then updating the dr/dy and dz/dy
requires n+p of each. The operation count per iteration is thus 2np(1 / O(P/n)) for
fixed p as n-> c. Our experience indicates that it is very rare for a residual to change
status more than once, so that if there are outliers there are likely to be iterations
when starting from LS (y large) and n-p-l when starting from 11 (y 0). The major
storage requirement is the p(n +p) array required to store the w which can over-write
the initial pn array A. Single arrays are needed for r, z, dr/dy, dz/dy and for pointers
to the index set
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If the algorithm is started with the LS estimate, so that y is reduced then at almost
all changes of partition tr’= cr\{k}, corresponding to a small residual being reclassified
as large, so that MMT must be "downdated" (i.e. M’M’T= MMT-aka). This is
unlikely to cause numerical difficulties in the usual situation where a relatively small
number of residuals are outliers. Indeed, in the numerical experiments reported in 4,
where for testing purposes y was reduced to zero, instability was never encountered.
However, as downdating is potentially a problem numerically, it may be advisable to
monitor the determinant of MMr. If consistent estimates are to be possible, the
determinant would be expected to decrease linearly in Itrl (for large enough I 1), so
that monitoring detMM (from the initial decomposition and the formula
det(M’M’r)=det(MMr)(1-[[Wkll2)) and reporting any sudden drop is recom-
mended.

If the l estimate is used as a starting point, the typical iteration corresponds to
a large residual being reclassified as small and would involve the more stable updating
M’M’r= MM+aka. However, in the usual situation where n>> l+p, this would
require many more iterations than starting from LS.

Remark 2.5. In (2.8), Q was selected so that Qrwk was parallel to e, without
specifying a. It can be shown [7] that as far as the size of the w is concerned, it does
not matter which a is chosen. However, choosing the same a for each iteration could
cause a build-up in the ath element of some of the w resulting in an accelerating
process of the w becoming parallel to e and hence to each other. It may thus be safer
to cycle a. Both ways (a 1 always, and cycling a) were tested in the implementation
of the algorithm without any apparent difference being observed.

2.4. Choice of sealing factor and tuning constant. Thus far, we have sidestepped
the question of the scaling factor by assuming that " in (1.1) is unity, but this choice
suffers from the disadvantage that it does not give an unbiased estimator. Huber 15]
suggests that in the location case, the best estimate of scale is given by

z med {la,- med { ag}[}.
j

However, in the regression case the analogue of the median, the l estimate,
requires a calculation of perhaps similar complexity to that of the M-estimate itself.
Holland and Welsch [13] suggest

(2.21) z= 1.48 (med {Ir,-med {r}l})= 1.48/z,

introducing the factor 1.48 to give an approximately unbiased estimate of scale when
the error model is Gaussian. This factor is also cited by Birch [5] as being a popular
choice.

The choice of , is taken as 1.345 by Holland and Welsch [13] as giving 95%
asymptotic efficiency at the Gaussian distribution.
Most algorithms estimate z only once, using (2.21) at the starting point which is

usually the LS estimator. However, as we shall see, estimating z iteratively can easily
be accommodated by the continuation algorithm with minimal extra effort.

If z is not assumed to be unity in (1.1), the definition of tr becomes tr: ]r/z <- y,
or tr :> [r]-< yz. This suggests using yz 8 as our continuation parameter. Moreover,
the inclusion of z does not affect equations (2.2) f.f. and thus dz/d 1/z dz/dy. The
rates of change of z and r are thus calculated as before, and then divided by z.

The stopping rule now becomes" If ’> 1.48 x 1.345/’= 1.99/z’ at the beginning
of a range and 15"<= 1.99/z" at the end of the range, choose as the final value of
8’ + (’- 8")( 1.99/x"- 8")/( 8’- 1.99/x ’).
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This approach has two important advantages. First, although the scale factor is
estimated at each iteration, its use in the algorithm only affects the stopping rule. This
means that questions of convergence of - are sidestepped. (This contrasts with the
difficulty of simultaneously estimating z and for fixed 3, in the iterative schemesmsee
for example the method of Huber and Dutter [15] when r is defined by Huber’s
Proposal 2 [14]. Indeed, when - is defined as in (2.21), a scheme such as Huber and
Dutter’s need not converge).

Second, although we have chosen (2.21) as defining -, other choices of scaling
factor can easily be incorporated. In particular, methods of determining scale by
satisfying an auxiliary equation of the form f(x, z, 3’)= 0, such as Huber’s Proposal 2,
may be used.

Remark 2.6. There is an assumption in the above stopping rule that /x varies
linearly over a range of 8. However, although the r, do change linearly, it may be that
arg med, {r,} changes, in which case/z would only be piecewise linear. This has not
given rise to any difficulties in practice, and it does make available an estimate of scale
which uses (2.21) at a point close to the final value of the M-estimator. It seems likely
that this would suffice for practical purposes.

2.5. Finiteness. In order to demonstrate that the algorithm is finite, we need to
show that

(i) cycling does not occur at change of partition and
(ii) the number of ranges of 3’ is finite.
That cycling does not occur when there is only one residual involved in changing

status is a consequence of Theorem 2.5. When more than one is involved, we use
the partitioning algorithm described in 3. The specific use of the algorithm to
avoid cycling is discussed in 3.3.

We now show that the number of ranges of 3" is finite.
THEOREM 2.7. The number of ranges of 3" is finite.
Proof. For any partition P for which A is of full rank, z(3’, P) and hence the

r,(3", P) are linear functions of 3’. Hence, as 3’ decreases, once a given residual has
changed status it cannot return to its original status. The result now follows from
the finiteness of the number of partitions.

2.6. The algorithm summarised.
Step 1. Setj- 1 (counter).

Find the LS estimate,
Set dz/ d3", dr, d3" O.
Determine k arg max,
Let P {N\{k}, {k}} and 3’1
Calculate/xl med, {Ir-rned
If 3"1 --< 1.99/xl, stop.

Step 2. Update dz/d3", dr,/d3" using equations (2.10) to (2.13), (2.20) and (2.21).
Let

/1 min ’’ri T O, r > T, > 1I dr

rain ,-,r,,- e #, r < -, < 1
-dr,
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r/3=min i tr, -S,>,

r4=min -r ie,I dril

Set y)+ y)- min {, 2, 3, 4}.

Calculate z(T)+)=z(y)) dz(

+ med, {Ir,(+)- med
Step 3. If T)+ 1.99)+, stop, with

= 1.48[a) + (1 a))+]

1.99)+ )+1where a
T) 1.99)

Step 4. If only rk is involved in changing status, define the new paition by

)+ ) U {k}(k #)

)+ ){k} (k e ).

If more than one residual is involved in changing status, define the new
paition as in 3.3.

jj+l.

Go to Step 2.

3. The partitioning algorithm.
3.1. General description. If the value of 3’ is known a priori, the algorithm presen-

ted below finds a feasible partition by a sequence of partition changes to an adjacent
partition tr--> tr+ {k}. Although it was developed in order to solve the problem of
degeneracy (two or more residuals being involved in changing status simultaneously)
in the continuation algorithm, it is an algorithm in its own right. It does have the
ability to take advantage of a good initial estimate to find a feasible partition quickly,
although if given a poor one it can perform badly. An interesting feature of the
algorithm is that it is finite, despite not being monotonic in either or F(x, tr).

Remark 3.1. The degeneracy problem here seems much rarer than in linear
programming, where it can arise naturally if the data matrix has special structure, as
in network problems. No naturally occurring examples have been found, although
several constructed ones are given in Clark [8].
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THE PARTITIONING ALGORITHM. TO find a feasible partition starting from an
arbitrary partition and proceeding only by adjacent partition changes.

DEFINITION. A partition Pa is O-feasible if e O=:>[ri(za)[ > 3" and ri(z) is of the
assumed sign.

Step 1. Starting from an initial partition do until P is O-feasible
where k e O and Irk (Zj)[ =< 3’.
Set j 1, tr’.

Step 2. While P is O-feasible do
If Pj is feasible then stop; else do

trj+l trj/{k where ktrj and [rk(Zj)[> 3/, j=j+ 1.
Step 3. yj_l =zj_l (zj-1 satisfies Irk(Zj_l)[> 3/, k

Until Pj is O-feasible do
find

yj azj + (1 a)yj_ 1, 0 _-< a < 1 to satisfy
[r,(y)[ => 3’, i and [rk(y)[ 3’ for at least
one k .
rj+, cej U {k}
j=j+i.

Go to Step 2.

3.2. Finiteness. We now show that the above algorithm terminates finitely with a
feasible partition. We need two further results from Clark [8], where they occur as
Lemmas 2 and 5, respectively.

LEMMA 3.1. IfP and Pb are adjacent partitions with o,, =orb U {k}, then for any x
satisfying Ir(x)l , F(x)= Fb(X).

LEMMA 3.2. If r =orb U S, then Fa(x)>-Fb(X), with equality holding only if
Iri(x)l % e S.

THEOREM 3.3. The partitioning algorithm terminatesfinitely with afeasible partition.
Proof. As the only stopping test in the algorithm is "if P is feasible, stop" at Step

2, we have only to show that the algorithm does terminate.
Now within Steps 1 and 3, Itrl is strictly increasing, and within Step 2, is strictly

decreasing, so that cycling cannot occur within any single step and the limiting partitions
r b and ty {1, , n}, if they occur, satisfy the conditions of the algorithm.

We will therefore concentrate on the sequence of #-feasible partitions which are
tested at Step 2. To show that the algorithm cannot cycle, we will show that the function
values (measured at the solution of (2.1)) of this sequence of partitions decreases
monotonically, so that no partition can be repeated. We will denote by P the most
recent #-feasible partition found in this sequence.

At Step 2, we have %+1 %\{k} with ]rk(Zj) y T, SO by Lemma 3.2

(3.1) Fj+I(Zj+I) < F(z) -= F(z),

so that the #-feasible solutions produced within Step 2 are strictly decreasing.
In Step 3, the first pass gives, from Lemma 3.1 and convexity,

(3.2) Fj+,(z.+,) < Fj+,(y.) Fj(y) aF.(z.)-t-(1 a)Fj(y._,) Fj(y_l).

But as, by Lemma 3.2, F(Zj_l)< F_l(Z_l),

(3.3) Fj+l(Zj+l) - Fj(Zj_l) < Fj_l(Zj_l) Fa(za).
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If s steps are required within Step 3 to produce a #-feasible partition, the argument
is repeated, so that

(3.4)

-< F(z_) < F_(z_)-- Fa(zo).

Thus when a #-feasible partition is reached, its function value is less than that of
the previous #-feasible partition.

The theorem now follows from the finiteness of the total number of possible
partitions.

3.3. Use of the partitioning algorithm to avoid cycling in the continuation
algorithm. At a change of partition in the continuation algorithm it is possible to have
more than one residual as candidates for changing status.

We assume we have a feasible partition P at 3/and we wish to know the feasible
partition P’ and 3/’, where 3/’< 3/ but close enough to 3/ so that [ri(3/’, P’)[ 3/’ for
[ri(3/, P)I 3/. If we knew the value of 3/’, we could use the partitioning algorithm,
starting from P, but making 3/’ "close" to 3/ is for practical purposes an ill-defined
concept. However, we have already seen in Theorem 2.3 that r is a linear function of
3/within a partition, so that performing partition changes based on residual values at
y’ is equivalent to performing the changes based on residual derivatives at % the
residuals being updated as described in 2.3. With this modification the partitioning
algorithm provides an elegant solution to the problem of degeneracy in the continuation
algorithm.

Remark 3.1. This feature was not actually built into the continuation algorithm
as tested, as it added significantly to the complexity of the coding. Multiple residual
changes appear to be far more uncommon than degeneracy in linear programming,
and in every case when it did occur (all artificially and deliberately constructed), it
was handled ad.equately by a natural treatment, i.e. by assuming that all such residuals
did indeed change status.

3.4. Implementation. The structure of the partitioning algorithm has been given
in 3.1. Most of it is straightforward to implement, but it appears that a subproblem
of the type (2.1)

2(3.5) min F(x, 3/) 1/2 E r, + E (ylr, 1-1/272)

has to be solved at each step. However, as each partition is replaced by an adjacent
one, or’= crtA {k} or cr\{k}, z(% P’) and r(3/, P’) may be obtained by updating z(% P)
and r(% P) rather than by solving (2.1) each time.

Following the analysis of 2.3, but starting from (2.2) rather than (2.3) the updating
formulae become

(3.6) rj rj

(3.7) (z’)j (z)j :r (W’,+)(W’)Ok(rk-- 3/).

The first solution of (2.1) will provide the initial factorisation AA MMr, and
updating at each iteration may be implemented by using equations (2.10) to (2.13),
(3.6) and (3.7).
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The theory given above does not guarantee finite termination when z, the scaling
factor, has to be estimated at each iteration (and this is a major advantage of the
continuation method). However, when there is confidence in the initial estimate of
a reasonable approach could be to assume its accuracy for all iterations and only
re-estimate it again when the optimum is found, restarting then if necessary.

4. Numerical results. Both algorithms were tested using randomly generated data.
For the continuation algorithm, examples with a known estimate were generated in
the following manner. An (n p 1) x (p + 1) matrix A was generated using uniformly
distributed random numbers. Then a p x (p + 1) matrix was prepended to it as rows 1
to m, this matrix being chosen so that z e solved the equations ri- 0, i-1,..., p.
Finally, a row was added so that hi- 1/2, 1, , p satisfied the ll optimality criterion

Aia + 0ai 0,
i=1 i=p+l

where 0 sgn (=1 Aj Ap+l.i). Thus at 3’ 0, tro= 1,. ", p and z e.
These examples were then solved using the continuation algorithm by allowing

to reduce to zero, and the results checked by comparing them with the known solution
of the 11 problem. In only one case was the number of iterations greater than n-
and then only by two. For this reason we give only times in Table 1. The times are
internal CPU times for a DEC 10 computer, and display the expected O(np) and
O(np2) relationships for time/iteration and total time, respectively.

For the partitioning algorithm, test data was generated in a similar manner, except
that a Pareto distribution (a 1.2) was used in order to generate a longer-tailed
distribution. Then values of 3’ were chosen for 10% and 20% outliers. In each case
two starting partitions were used, a "good" one based on the ll estimate, and a "bad"
one derived from the LS estimate. This terminology is based on the observed perform-
ance of the algorithm and corresponds to quite striking differences in behaviour. This
indicates that the 11 estimate ranks the residuals in a more satisfactory manner, possibly
reflecting its well-known robustness properties.

TABLE
Continuation algorithm.

Total test time for 5 test runs (seconds) and time per
iteration (m sec).

50 100 200

10

2.41 9.75 40.32
10.20 20.15 41.08

3.00 12.30 49.95
12.80 25.27 50.60

3.50 14.50 59.21
15.22 30.25 60.51

In Table 2 we report average number of iterations over 5 test runs (time per
iteration was identical to the continuation algorithm). The.results seem to indicate that
if a good initial partition is available, the partitioning algorithm is able to take advantage
of it, but if not then the continuation algorithm is superior.

Finally, the much-analyzed Daniel and Wood example [9, Chap. 5] was tried.

This is a 4-variable, 21-observation example, with observations 1, 3, 4 and 21 generally
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being regarded as outliers [2], 11 ]. Estimating scale at the same time, the continuation
algorithm took four iterations to identify the four outliers. The range of (= y’) for
which {1,3, 4,21} compromised the outliers was [2.35, 3.09]. This corresponded to
3,[1.08, 1.22], rather lower than the 1.345 suggested by Holland and Welsch [13].
One of the virtues of the continuation algorithm is its reporting of outliers at all higher
values of y, so that the stopping value can be deliberately made more conservative
and residuals examined at higher values of % A summary of the results for the Daniel
and Wood data is given in Table 3.

TABLE 2
Partitioning algorithm.

Average number of iterations over 5 test runs for good (l) and bad (LS) starting partition.

10

(a) 10% outliers

20 50 100

2.0 2.0
1.6 2.4

3.2 2.4
2.2 2.0

2.8 1.6
2.6 2.0

3.4
5.2

2.2
5.0

(b) 20% outliers

20 50 100

10

1.6 2.4
14.2 26.0

2.2 2.0
5.6 28.2

2.6 2.0
5.6 28.4

5.2
60.8

5.0
79.2

TABLE 3
Partitioning algorithm, Daniel and Wood data.

Lower end of r y Observation
range of (yr) (estimate of scale) (tuning constant) becoming outlier

7.24 2.76 2.62 21
5.82 2.68 2.19 4
4.09 2.74 1.49 3
3.09 2.53 1.22
2.35 2.17 1.08 13

The partitioning algorithm on the Daniel and Wood data took one iteration for
y-= 3.09 and two for /" 2.35 when the 11 partition was used, and two and eight
respectively, starting from the LS partition.

5. Conclusions. The continuation algorithm presented in 2 appears to be suitable
for most situations, particularly where there are relatively few outliers expected. It has
the ability to iteratively estimate scale, requires only 2p(n+p) multiplications and
additions per iteration, and the number of iterations is almost always equal to the
number of outliers. Further, it is a finite algorithm giving an exact solution. The
implementation given is stable for all realistic models. This appears to compare
favourably with the iterative schemes reviewed in 1, which do not estimate scale
iteratively and do not in general give exact solutions. Further, only Huber’s method
has a comparable number of operations per iteration, but it, like the IRLS method,
suffers from slow convergence.

The partitioning algorithm of 3 shares the efficiency and stability properties of
the continuation algorithm and is again finite. However, it does rely rather heavily on
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a good initial estimate. Its use would seem to be restricted to models where one is
available, and where there is confidence in the initial estimate of scale.
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authors (Clark) supported by an Australian National University Scholarship. The
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NUMERICAL METHODS FOR ROBUST REGRESSION:
LINEAR MODELS*

DAVID F. SHANNOn" AND DAVID M. ROCKEf

Abstract. This paper considers the robust regression problem, in which observations with large residuals
are given less weight in the analysis. An auxiliary scale estimate is needed in this problem to define which
residuals are large. We develop variants of Newton’s method which allow for simultaneous adjustment of
the scale factor and regression coefficients, and which converge superlinearily to both estimates for different

loss functions. Computational results are given for both the Huber and biweight loss functions with scales
obtained from the median absolute residual and the Winsorized residual variance.

Key words. Huber-Dutter algorithm, iteratively reweighted least squares, Newton’s method, quasi-
Newton methods, robust regression

1. Introduction. The standard linear regression model is

(1) y X[3 + e,

where X is m n, y and e are m 1, and fl is n 1. Denoting by ri the residual for
the ith row of (1), we have

(2) ri y, E xij/3j.
j=l

The standard least squares regression model minimizes

2(3) F(/3)= E r,
i=1

as a function of/3.
Since each residual in (3) enters quadratically, points with large residuals have

the major controlling effect on the results. M-estimate robust regression (Andrews
[1], Beaton and Tukey [3], Holland and Welsch [8], Huber [10] and [11]) provides a
means of estimating B that is less sensitive to large residuals that may be unrepresenta-
tive of the majority of the data. The weight that is accorded to each data point is a
function of the absolute magnitude Iril of the residual. In order to specify what a
"large" residual is, a scale factor tr must be determined as a comparison standard.
For example, given a scale constant k, for a given estimate/3* of/3 one may downweight
points for which Iril > kcr.

If the scale cr is known, robust regression can be viewed as minimizing

(4) 2 P
i=l

For ordinary least squares, p(t)= 2, and for robust regression some function rising
less than quadratically is chosen [8]. Two choices seem most commonly adopted, and
these are selected for further consideration in this paper. The first [9] is due to Huber
and is defined by

(5) p(t)
1/2, Itl > 1.

* Received by the editors November 8, 1983, and in revised form April 15, 1984.
t Graduate School of Administration, University of California Davis, Davis, California 95616.

86



NUMERICAL METHODS FOR ROBUST REGRESSION 87

This function, being linear in the tails, provides less vulnerability to outliers than least
squares. The second is due to Beaton and Tukey [3] and is defined by

(1 t2)3), Itl-< 1,
(6) p(t) t-, ]tl > 1

and is generally called the biweight in the literature.
When the scale tr is unknown, the problem becomes significantly more complex

since the estimate of/3 depends on tr and the estimate of tr depends on ft. There are
two methods for scale estimation commonly used in the robustness literature. The first
[2] is based on the median of the absolute values of the residuals, called the MAD
scale. The second is Huber’s Proposal 2 [9], which is used only with Huber’s p, and
is defined as the solution to the estimating equation

1 ( 2 ) btr2(7)
m- n [r,lkr ri +p/20"2

where p is the number of ri with [ri]> kcr and where b is the asymptotic expectation
of the left-hand side for standard normal residuals. A third possibility, which is
introduced here, is to use (7) with k .6745 for any choice of p, so that about half of
the points would be given full weight in the scale if the data were normally distributed.
This is a kind of Winsorized variance 16], so this will be called the Winsorized scale.
To simultaneously estimate the Proposal 2 scale tr, while minimizing /9(. given by
(5), Huber and Dutter [10] noted that this can be done by minimizing

(8) Q(fl, tr) p kcr+m
i=1 k’

with

(9) a
(m-n)b

where b E.X(t), the expected value of X(t) 2ktp’(t/k) 2kEp(t/k) for a standard
normal argument t. Note that, for p defined by (5), as it is here,

The first order conditions oQ/ofl =0 lead to the usual normal equations for the
loss function p, while the first order condition oQ/otr-O defines tr via the equation

(11) -k p’ r r r a
+k,p + =0.

To see how this defines or, if I= {ill <= i<_-rn and Ir/ktrl<-1}, then (11)is equivalent to

ri)2(12) k2 i - + k2p= 2a,

where p is the number ofresiduals which satisfy Ir/ktr] > 1, and this is in turn equivalent
to (7).

The Huber-Dutter algorithm is then to find initial estimates /3 (o) and tr
() to /

and tr. For these estimates the residuals are computed, and a new estimate to tr made
by

rid-(Y’j+
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The residuals are then Winsorized by

(14) r p’( r’ ) ktr+,
k+

and new estimates fl;+ computed by solving the normal equations

(15) XrX" Xr"r,

(16)

The process continues until successive iterates on both/3 and r have converged to
desired accuracy. Huber and Dutter have shown that this algorithm always converges
due to the special nature of the object function defined by (8). However, this conver-
gence only holds for p defined by (5) and the Proposal 2 scale tr defined by (13).

Now, if one wished to use the Huber loss function, but the MAD scale for tr, a
scheme similar to the Huber-Dutter algorithm can certainly be devised, with O’j+ a
multiple of median [ri(flj)l, but the convergence proof fails. The method encounters
even more difficulty if a loss function other than the Huber loss function is desired.
If the biweight p (6) is used in (8), inspection shows that for tr sufficiently small,
p(ri/ktr)= for all ri, hence tr=0 minimizes (8) for any finite/3.

Also, due to the nonconvexity of the biweight loss function, even for fixed tr (i.e.,
tr+l =tr for all j), the sequence (14)-(16) need not converge to estimates /3; and if
convergence occurs, it can be very slow.

If the scale were fixed, a method of accelerating convergence for a non-Huber
object function is to use Newton’s method to solve the first order conditions. Here the
sequence of iterates is defined by

(17) fl+) flo) + (XrSX)-XarR,
where R is the tn 1 vector (p’(r/ktr)) and S is the m m matrix diag (/9"(ri/ktr)/ktr).
A variant of this which avoids the calculation of p"(. is the iteratively reweighted
least squares (IRLS) method defined by

(18) j (j+l) fl() + (X’S*X)-IX rR,

where S* is the m x m matrix diag (p’(ri/ktr)/r). For a full discussion ofthese methods,
the reader is referred to Holland and Welsch [8] and Byrd and Pyne [4].

Two difficulties arise with both of these methods. First, convergence depends on
good initial estimates/3 (). More important, Holland and Welsch and Byrd and Pyne
both assume tr is fixed before the iterative schemes defined by (17) or (18) are begun,
and never changed. As both scale factors which have been discussed in this paper
depend upon/3, if the initial estimate fl(o) is poor, the scale factor may well be poor,
badly affecting the robustness of the estimates.

To attempt to answer this latter point, Huber 11] suggests iteratively recomputing
the scale by a scheme similar to (13), even though this may not converge. It is also
important to know that even with the Huber object function convergence has a linear
rate because the iteration (13) converges linearly. This relatively slow rate will also
apply to iterative schemes for recomputing tr by (13) for other object functions.

It is the purpose of this paper to demonstrate ways to regularly reestimate trj for
each new estimate/3 (;), and to show how to incorporate this estimate into algorithms
which exhibit a superlinear rate of convergence in both fl and tr. Further, we propose
a method which has achieved convergence, and eventual superlinear convergence, for
bad initial estimates 13 () and tro on a variety of problems.
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To this end, 2 will deal with the explicit algorithms for computing tr as a function
of/3. Section 3 will discuss methods for solution of the robust regression problem in
different cases. Section 4 contains computational results indicating the methods derived
in 3 are computationally robust and efficient.

2. Comlmtation of the scale factor. In this section, we consider the problem of
determining the scale factor explicitly as a function of /3. The solution to this is
immediate if the MAD scale is used. The algorithm used for this in the computational
results contained in 4 is, for any given/3, compute the absolute values of the residuals
by (2), and then to sort these absolute values using a heapsort algorithm [13], an
algorithm which sorts an array of length m in o(m log m) operations. From the sorted
array, the scale factor tr is calculated as

(19) tr ([ r,, + ]r,,21)/1.349
where ml [m/2 / 1] and mE [(m + 1)/2] and where the divisor is chosen to guarantee
asymptotic equivalence with the standard deviation for normally distributed data. (The
theoretical MAD for the standard normal distribution is 1.349.) For the algorithms of

3, it will be important to be able to calculate 0tr/0flj, which can be derived immediately
from (19) as

0o"
(20)

Oflj
(sgn (rm)Xml.j / sgn r,2)Xm,)/1.349.

This derivative exists unless half or more of the residuals are exactly zero, but it is
discontinuous at points at which a residual defining the median changes.

If we wish to use the Proposal 2 or Winsorized scale, however, the algorithm for
explicitly calculating it is more complex. Note that if the index set I is known, (13)
can be solved explicitly for the convergent value of tr as

2
ri(21) o"2

i 1 2a pk2"

However, I depends on tr. In order to calculate the correct index set I and
correspondingly, the following algorithm is used:

(i) Sort the residuals r, in ascending order of
(ii) Set tro2=7= r/Ea, p=O,j=m,l=O;
(iii) If ]r/ktr] _-< 1, then tr= try, else go to (iv);
(iv) Until Ir/ktrll<--l,j=j-l,p=p+l;
(v) l=l+l, tr- "-PY,= r2/(2a-kEp)== r/(2a-kEp),
(vi) Go to iii).

To show the above algorithm converges to a scale factor tr satisfying (21), we
demonstrate three propositions.

PROPOSITION 1. Let tr be defined by (v). If [r/ko’[> 1, then

2j-1 i,

(22) il 2a k2(p + 1)
> O.

(23)

Proof. Ir/ktrtl> 1, implies by the definition of

(+/-r] k2 ri

= (2a- k2p)
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or

j-1
2 2 2(24) (2a k2p)r]> k2

i=1

or

j-1

(25) (2a-k2(p+ 1))r}> k2 r,.
i=l

Since the right-hand side of (25) is clearly nonnegative, it follows that

(26) (2a- kE(p+ 1)) > 0,

which trivially proves (22).
PROPOSITION 2. It)/kcrtl > 1 implies

2 2j-1 ri ri
(27) ,=, 2a-kE(p+ 1)<,El-= 2a-kEp"

Proofi By Proposition 1, the denominators of both sides of (27) are positive, so
it is sufficient to show

j--1 j
2 2(28) (2a- k2p) r, < (2a- k2(p+ 1)) . r,.

i=1 i=1

Cancellation of terms from each side reduces (28) to

j--1

(29) (2a-k2(p+ 1))r}> k2 r,
i=1

or

(30) (2a- kEp)r> k2 r2,
i=1

or

2

r]> k2

i=l (2a k2p)

which is precisely the condition that Iri/ktrtl > 1.
PROI’OSITION 3. 2a (rn 1)k2 > 0 implies

(31) rE < k r2
2a-(m-1)k2"

Proof. Trivially, 2a-(m-1)k>O implies (31) is true if

(32) 2a-(m-1)kE<k2,
or

(33)

From (9), (34) is true if

(34)

which follows from (10).

mk2 > 2a.
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Proposition 2 shows that the iterates tr are monotonically decreasing, so >
1 implies Ir/ktr > 1, so no residual need be considered twice. Proposition 3 together
with Proposition 1 show that there must be a fixed point to the algorithm, so convergence
must occur.

In fact, this algorithm for computing the Huber-Dutter tr is also o(m log m), as
the major work is sorting the residuals. The partial sums can be stored in a vector, so
this segment of the algorithm is o(m).

Finally, we note that once (21) has been computed, we can again compute OtrlOfl
by

ao- 1
(35) 2"

Ofl 2a -pk------ ,. 2)x"
This derivative, as with median, is discontinuous at points where the index set I changes.

3. Methods of solution. The formulation of the robust regression problem that is
used here is to find a (local) minimum of

(36) ,E,.= t9

where tr is defined by (19) or (21), by solving the first order conditions

1 ’(k-’)p x0=0 j=l,2,...,n,(37)
kcr i=

together with a scale equation (19) or (21).
Solving the first order conditions (37) with a scale factor explicitly determined as

a function of/3, either by (19) or (21), is conceptually quite simple. The first order
conditions (37) can be viewed as n equations in n + 1 unknowns/3, i-1,..., n and
tr. The equation defining the scale factor can then be appended as the (n + 1)st defining
equation, yielding a full system of n / 1 equations in n / 1 unknowns.

While conceptually this is simple, computational experience has shown that it is
more efficient to use the explicit formulation for tr as a function of/3 to eliminate tr

from (37) then utilize either Newton’s method or IRLS to solve the resulting system.
This has proved quite efficient in practice, both for the Huber and biweight loss
functions and with both scale factors discussed in 2, provided that good initial
estimates/3 (0) are available.

This paper considers two different loss functions and two different scales (and a
third for the Huber loss function). Not surprisingly, ditterent algorithms prove most
efficient depending on the problem to be solved and the degree of contamination of
the data.

The simplest problem to solve is to estimate/3 and tr using the Huber loss function
and the Huber-Dutter scale tr. The Huber-Dutter algorithm has been described in
equations (13)-(16). Its major advantage is that the normal matrix XrX used only
need be formed and factored once, while its major disadvantage is the previously
mentioned linear rate of convergence to tr. Another approach is to optimize directly
Q(/3, tr) as defined by (8), with tr treated as an independent variable. Dutter [6]
compared such an approach with the Huber-Dutter method, with results uniformly
favoring Huber-Dutter. The algorithm he used in the comparison was a quasi-Newton
method, specifically the Davidon-Fletcher-Powell implementation described in Him-
melblau [7].
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As this particular quasi-Newton method is quite out of date, we tested a more
up-to-date code, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) code of Shanno and
Phua [15], with precisely the opposite results. In view of this, we include a brief
description of the algorithm. The reader interested in a fuller development, with
complete theoretical details, is referred to Dennis and Schnabel [5].

Briefly, the BFGS method minimizes any object function f(t) sequentially by
choosing ( and an initial estimate H( (usually the identity matrix multiplied by an
appropriate scalar) to the inverse Hessian matrix of f and proceeds by

(38) (j+l) t(-a(H(g(,
H(J)y(j (j)7-q_ (j)y(j)7-H(j) [ y(j)7H(J)y(j) 8(j)

(39) H(J+I)

where (J) -ce)H)g), g) Vf(tJ)), y) g+)-g), and a) is an appropriately
chosen scalar.

The salient point of this method within the context of this paper is that H) is
n x n, where n, the number of parameters, is usually quite small compared to m, the
number of data points. As both the Huber-Dutter and BFGS must compute the
equivalent of the gradient of the Huber loss function, an order m x n calculation, this
should dominate the overhead of the quasi-Newton method, which is admittedly higher
than the single factorization of XrX of the Huber-Dutter method. The advantage of
the BFGS method lies in a local superlinear rate of convergence to r as well as /3,
which explains the computational results of the next section.

The case of a general object function and arbitrary scale must be handled
differently. In order to solve the first order conditions with the augmented equation
describing the scale factor, we note again that the first order conditions are

(40) f(, r)= p’ r xo=O, j= l, m.
i=1

Newton’s method for solution of this system given the augmented equation

(41) or= h(fl)

can be determined by first computing

(42) of_ y. p,, r xu0/31 i= ko" ktr2

(43)
1 (r2) ( r, 0)p Xi Xilko" i=1 o"

In matrix terms, this yields the expression

(44) [ofl 1

La#,l --- XrD(X + Y)’

where D is the diagonal matrix

and Y is the m x n matrix
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The terms 0tr/0/3 are derived from (20) or (35) depending upon which scale is
used to define h(/3) in (41). The Newton sequence equivalent to (18) becomes

(47) fl(j+l) =/30)+ ko.(XrD(X+ y))-XrR,

where R is the m 1 vector (p’(ri/ko’)).
Note that the IRLS method is equally applicable here, as it entails solely replacing

D with the matrix

(48) O= p’

A comparison of (47) and (48) with (17) and (18) shows the effect of explicitly
incorporating the scale into the iteration. For the numerical tests of 4, we tested only
Newton’s method, as we used only the Huber and biweight loss functions, and for
these the true Newton D is as easily computed as (48). For more complex loss functions,
and particularly for nonlinear models, however, (48) may well be preferable to (47)
and remains for further testing.

As a final note on this section, in order to prevent divergence of Newton’s method,
the sequence (47) was modified to

(49) /3o+) =/3) +(1/2)k(r(XrD(X + Y))-IXR,

where 1_->0 was the smallest integer which guaranteed j=lf(fl, 0") was reduced at
each step. Simplistic line searches such as this are known not to converge for Newton’s
method with bad initial estimates, but are a useful safeguard. A more complex trust
region approach could be implemented (Mor6 and Sorensen [14], for example, or
Welsch and Becker [17]), but may not be necessary in view of the computational
results of the next section.

4. Computational results. To test the various methods discussed in this paper, a
set of 30 randomly generated test problems of varying dimensions were generated.
Data were generated from the model

(50) y X/3

where Xil 1, i--1,..., m, and Xij are uniformly randomly distributed, -1 Xij 1,
i= 1,..., m, j=2,..., n. Examination of the sequence of Newton iterates (47),
quasi-Newton iterates (38)-(39), and Huber-Dutter iterates (15)-(16) shows that the
sequence of iterates is independent of the optimal/3 if the initial estimates /3 (0) are
chosen so as to assure the initial residuals, which can be made solely a function of
the error term e, remain constant for translations of/3. Hence, the value/3 0, y 0,
was always used. The error vector e consisted of independent standard normal data
of which some fraction were multiplied by an expansion factor. Both the expansion
factor and the fraction of points affected were program input variables that will be
discussed in more detail for specific cases. The sequence of iterates was independent
of scale in the sense that multiplying all elements of the error vector by the same factor
did not change the iterates.

In order to ensure that the starting residuals remained independent of the fl chosen
in the model (50), the least squares estimate to/3,

(51) ()= (XrX)-lXTy

was used as a starting value.
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The thirty problems tested were divided into three sets of ten. The first had n 5,
m 30, the second had n 10, m 100, and the third had n 15, m 200. For each
set of ten, five problems were considered "good," which meant 10% of the data points
were outliers, and the standard deviation of the outliers was 5. The remaining five
problems in each set were "bad," meaning that 20% of the points were outliers and
the outliers had a standard deviation of 15. As the computational results will show,
this differential was sufficient to produce significantly ditterent computational behavior
on the two classes of problems.

All five problems within each size and division were identical except for the actual
random deviates e and random coefficient matrices X. The computational results we
report in this section consequently summarize the results into six groups of five runs
each, designated GOOD 5, BAD 5, GOOD 10, BAD 10, GOOD 15, and BAD 15 to
identify the number of parameters determined and the distortion of the data.

All tests were run on a VAX 11/750, using FORTRAN 77. The CPU times quoted
were obtained by running in batch mode, with all calculations in double precision.
The relatively high CPU times are accounted for by the fact that the particular machine
did not have a floating point accelerator.

For the Huber-Dutter algorithm and the BFGS algorithm applied to (8) conver-
gence was achieved when the norm of the gradient of the object function satisfied

]gl_-< e max (1, z).

where z= (Y.i=l/32+ tr2) /2 and e .00001. Hence, identical convergence criteria were
used for all comparable cases.

When the first order conditions were solved, convergence was achieved when

f < e, with again e .00001.
i=l

The first test was the BFGS code of Shanno and Phua 15] versus the Huber-Dutter
algorithm to minimize Q(fl, tr) of (8). Here k was always .6745, b- .2988. The least-
squares estimates were used as starting values. The results are summarized in Table
1, where ITER is the number of search directions computed, IFUN the number of
times Q(fl, tr) was evaluated, and CPU is the CPU time in seconds.

TABLE
Comparison ofHuber-Dutter andBFGSfor minimizing Q(fl, tr) of (8) with least squares start, k .6745.

Problem

GOOD 5
BAD 5
GOOD 10
BAD 10
GOOD 15
BAD 15

BFGS

ITER IFUN CPU

74 83 14.22
83 95 15.00
76 85 36.86
77 87 37.57
99 109 102.04
84 99 94.19

Huber-Dutter

ITER IFUN CPU

178 178 17.27
284 284 23.24
192 192 62.09
240 240 99.35
220 220 178.43
248 248 199.08

Examination of the results verifies that the BFGS requires substantially fewer
iterations and function evaluations, a point also noted by Dutter [6]. However, contrary
to Dutter’s results, the BFGS also requires less CPU time, with the difference in favor
of the BFGS growing with problem size. Further, the BFGS efficiency appears indepen-
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dent of the degree of contamination of the data, whereas the Huber-Dutter efficiency
clearly decreases with increased data contamination. Finally, as all CPU times include
problem generation times, constant in both cases, the relative efficiencies solely of the
algorithms would be even more favorable to the BFGS, a point attributable almost
entirely to the superlinear rate of convergence to tr as opposed to the Huber-Dutter
linear rate of convergence.

Table 2 examines the performance of Newton’s method to solve the first order
conditions with the Huber object function, with both the median and Winsorized
scales. Again the least squares start, k .6745, b .2988 were used in all cases. Here
ITER is the number of Newton directions computed, IFUN the number of function
evaluations needed to assure i=1 f,2. was reduced.

TABLE 2
Solution offirst order conditionsfor Huber objectfunctions by Newton’s method with least squares start,

k- .6745, and two different scales.

Problem

GOOD 5
BAD 5
GOOD 10
BAD 10
GOOD 15
BAD 15

Winsorized scale

ITER IFUN CPU

18 31 18.87
20 50 20.87
15 25 102.64
20 41 126.66
15 25 325.70
21 42 492.79

Median scale

ITER IFUN CPU

19 32 18.05
30 74 23.10
22 33 118.83
23 44 125.96
20 30 437.46
22 43 477.02

A striking initial conclusion can be drawn from the first half of this table. The/3
computed using the Winsorized scale is identical in this case to the/3 computed in
Table 1 since k .6745, yet the execution times are uniformly larger and rise much
more quickly with problem size. This result is attributable to the fact that while the
Newton matrix, like the quasi-Newton matrix, is n n, it is of necessity computed in
order rnn: operations, while the need only to compute gradients for quasi-Newton
methods make the method of order mn. Similar results are reported by Dutter [6].

Unfortunately, the inability to derive a function Q(fl, tr) similar to (8) for arbitrary
loss functions and scale factors leaves no alternative to Newton’s method for other
than the Huber loss function with the Proposal 2 scale.

The remaining results of interest in Table 2 are that despite the nondifferentiability
of both the median and Winsorized scales at select points, this caused no problems
computationally, and all cases with both scales converged. The computation times are
indistinguishable, and the relative efficiency of the scales remains for further testing.
Also, Newton’s method definitely shows that its efficiency is dependent on the initial
estimates, which will be worse in the BAD than in the GOOD cases; this has long
been known in optimization literature.

Finally, Newton’s method was tested on the biweight object function, with two
methods of obtaining the starting value: with least squares starting estimates directly
to Newton’s method, and with estimates obtained in Table 1 using the BFGS as starting
estimates. For the biweight object function, k 6 was used (this corresponds to c 9
in [3]).

The results are summarized in Tables 3 and 4.
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TABLE 3
Solution offirst order conditions for biweight object functions by Newton’s method with least squares

start, k 6.0, and two different scales.

Problem

GOOD 5
BAD 5
GOOD 10
BAD 10
GOOD 15
BAD 15

Winsorized scale

ITER IFUN CPU

43 43 21.90
174<t) 174() 37.51
24 24 124.96
90(2) 90(2) 279.98
24 24 512.71
54 54 784.45

MAD scale

ITER IFUN CPU

23 63 25.19
29(3) 153(3) 33.68
19 30 150.30
20(4) 76(4) 161.39
18 29 586.35
27 62 794.71

3 of 5 cases failed to converge.
22 of 5 cases failed to converge.
32 of 5 cases failed to converge.

42 of 5 cases failed to converge.
of 5 cases failed to converge.

TABLE 4
Solutions offirst order conditions for biweight object function by Newton’s method using k 6.0 and

two different scales. Starting values were Proposal 2 estimates as in Table using k .6745.

Problem

GOOD 5
BAD 5
GOOD 10
BAD 10
GOOD 15
BAD 15

Winsorized scale

ITER IFUN CPU

9 9 23.00
19 37 27.96
10 20 135.44
10 20 127.54
10 20 505.98
10 20 474.14

MAD scale

ITER IFUN CPU

13 23 29.17
13 22 29.83
14 25 172.47
11 21 147.42
12 23 602.58
17 27 677.08

* CPU times are total times, including the time to obtain the starting point, which is summarized
in Table 1.

As Table 3 shows, for least squares starting estimates, 8 out of 30 cases failed to
converge within the allotted time, and indeed would not have converged within any
determinable time unit. All were for badly contaminated data, where least squares
starting estimates are likely to be poor.

Table 4 shows that with better starting values, convergence was achieved in all
cases. Results here indicate the Proposal 2 start should always be used in preference
to the least squares start, both for safety and efficiency.

In conclusion, the algorithms proposed by this paper appear to show strong
promise for providing efficient, convergent methods of estimating coefficients in robust
regression for a variety of loss functions with a variety of dynamically chosen scales.
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A NEW METHOD IN ORDER TO DETERMINE THE MOST SIGNIFICANT
MEMBERS WITHIN A LARGE SAMPLE, IN PROBLEMS OF SURFACE

APPROXIMATION*
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Abstract. From an initial large sample a smaller, yet representative subsample is to be determined. As
an alternative to the principal component method, a new method is proposed: "domains of influence" of
each datum relative to nearby data and a hierarchy of significance are determined. The properties are
discussed and numerical examples are given.

Key words, subset, significance estimation, local analysis, surface approximation

1. Introduction. A problem of increasing interest that can be found in many areas
of scientific applications (as for example geographic, geological, meteorological and
engineering information) is this one: from an initial large sample to determine a
subsample not too large and suitable to represent the examined phenomenon properly.

In [1], [7], [8] this problem has usually been solved by the principal component
method. This method requires the covariance matrix, which is not always available or
easily computed.

We present a new method for solving the problem. The method has been tested
extensively, and 6 gives the results of two numerical examples. The former is of
academic character for illustrative purposes, the latter deals with a biomedical problem.

2. Definitions. Given f=f(P): D c Rq- R, D compact,/ a measure on D and
f L(/), let us consider a set {f(Pi)} corresponding to the set S of points {Pi}. Let
f(Pi)-f, i= 1,..., N.

Consider a generic point P, S.
DEFINITION. For K, R+, let the K-neighborhood

_
D be the largest local region

I(P,) centered at P, with an arbitrary prefixed shape, such that

0 < If-f,I dlp,(I(P)) < K,.

This choice is made in order to account for local homogeneous variability of the
function.

DEFINITION. Let

I(Pi)

8 being an average of If-fl in the K-neighborhood and b(P) a suitable smooth
weight function. b is a function with support /, 0_-< b(P)-<_ 1, decreasing with the
distance from Pi. This is for taking more in account the regions closest to P. 8 is an
average variability.

DEFINITION 3. Let us define the quantities

* Received by the editors July 29, 1983, and in revised form August 8, 1984.
t Istituto Matematico Universit di Milano, via Saldini 50, 21033 Milano, Italy.
Istituto Applicazioni Matematica ed Informatica del CNR, via Cicognara 7, 20129 Milano, Italy.
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as P varies in (S fq I(P)), j i. so gives a measure of the change toward P relative
to the average variability of f near P.

3. Method. Let there be given a sample S of points P D, 1, , N such that
the corresponding set of function values {f} well represents the behavior of the
function f: D

_
Rq R.

The K-neighborhood is built for each of the points P S in order to subdivide
the domain D into parts (which have nonnull intersection in general) that can be
thought of as being homogeneous with respect to the function behavior. An evaluation
of the level of homogeneity is obtained for each neighborhood, by the function
$ (K-neighborhood, 6). Thus a covering ofthe domain D is reached by associating
the value $ of its K-neighborhood to each point P S. It follows that each point
P S gets to represent its K-neighborhood and that the quantities s supply informa-
tion about how much the value of the function at a point can be "different" from those
falling in its neighborhood. By averaging the quantities s0 for the values of j with

K-neighborhood and then repeating for each P S, a hierarchy is given, by which
it is possible to characterize the most significant points.

4. Algorithm. Call n the dimension of the subsample we want to determine; the
proposed algorithm is summarized by the following steps.

1. Estimate the K-neighborhood by a (P) (with the same character as I(P),
a maximum neighborhood centered at P and with the same shape) such that

-/m,<K, Vi=I,.-., N,
h

where h h() points to Ph (S (P)), h i; m is the number of points Ph of (P),
h i; K is an empirical constant related to the specified application and, of course,
depending on the size order of the functional values.

2. Estimate

X IA-16,(pn)/ 6,(Ph), h # Vi= 1,’’ ", N,
h /h

6 with suppoff (P), h h().
3. For each i= 1,. ., N estimate the quantities

4. For each i= 1,..., N, calculate the mean value of the sg

J

5. Choose the point to be included into the subsample; this is the point P such
that"

s= max {).

6. Take away the point Ph from the sample: put N N- 1 and repeat steps 4, 5,
6 for n- 1 times. Of course, as the number of points in the sample changes, also the
number within I(Pi) changes.

In the Appendix one can find convergence theorems.



100 M. BOZZINI, F. DE TISI AND L. LENDARDUZZI

The reason why we take away the most significant datum and update the hierarchy
is that we remove the influence the most significant point has on the other ones.

Remarks. The above method has the following desirable properties.
a) At the beginning of the algorithm no sample point has a priority.
b) The different local density of the points does not affect the choice too much.
c) The method is such that the inclusion of a datum into the subsample does not

change the hierarchy of the importance levels for the remaining points in an essential
way, on condition that the subsample size is not too small a fraction of the original
set. So, in general, if it should be computationally costly to update the hierarchy after
the inclusion of a datum in the subsample, one might avoid it.

For the reader’s convenience, we give here a trivial example for the algorithm.
Let the following (Pi,f), i= 1,..., 14} be given (see Fig. 1).

{(0.1, 1), (0.2,-0.3), (0.3, 0), (0.4, 0.3), (0.5, 0.), (0.6,-3.),

(0.7, 0), (0.8, 2.), (0.9, 1.9), (1., 2.), (1.1, 2.5), (1.2, 2.), (1.3, 1.5), (1.4, 2.)}.

FG. I.

1. We set I(Pi) as a symmetric interval centered at P with fixed radius R- 0.25
as a rough choice. The first five data included in the subsample by the algorithm are
in the order

(P6,f6), (P7,f7), (Pl,fl), (Pll,fll), (P13,f13).

The same subsample with the same order of inclusion is reached also if the hierarchy
is not updated each time.

2. We set I(P) as a symmetric interval centered at P with variable radius R to
include more homogeneous functional behavior:

R R2 R3 0.25, R4 R5 R6 R7 0.15,

R8 R9 Rio R R2 R3 R4 0.25.

The first five data included in the subsample by the algorithm are in the order

(P,,f,), (Pi,,f,), (P6,f), (PT, fT), (P2,f).



CHOOSING A SUBSET OF DATA 101

If the hierarchy is not updated at each inclusion, we get order

(Pl,f,), (P,,,f,,), (P6,f6), (P13,f13), (P2,f2).

As previously stated, the purpose of the method is to choose data suitable for a
good surface reconstruction by a sample of size n.

For n- 1, the approximating function is a constant which is close to the mean
value of the functional values; for n greater than one, still, a reasonable subset is taken.

5. Observatioas. The Ki-neighborhood can be given according to the nature of
the problem and in different ways. It may be convenient to give the neighborhood
I(Pi); when the assignment is made carefully, it is formally equivalent to choosing a
suitable Ki. Different examples for the choice of I(Pi) can be found in the references,
see [2], [4], [5], [9].

The particular flexibility of the proposed method makes it desirable for solving
problems of a particular nature, with suitable modifications.

Finally we observe that the choice of the subsample can be made by working
separately (maybe with different modalities) on the different subdomains of a partition
of D.

6. Numerical examples.
Example I. Let be given f(x,y)=exp{-(x+y-ll)2-(x-y)2/lO} a long and

narrow hill rising from a plain (see [4]) and let be given the values f(P) at N points
homogeneously distributed in [0, 11 ] [0, 11 ] and including also a few important points
(see [4]). We found the n most important data obtained while using the function
dp(P)=l-3(d/R)-+2(d/R)3, d=dist(P,P) and as a rough choice fixed as K-
neighborhoods circular neighborhoods with fixed radius R. Two surfaces are built: the
surface ml(x, y) from the N data and the surface mE(X y) from the subsample of n
data, in both cases by the same interpolation method of a local type.

A comparison between the goodness of fit of ml and mE is given by the indices
(see [3])

(1)

where the following points (x, Y)h, h 1,. ., 1 have been used for the evaluations;
they are placed at the grid knots [1, 1.5, 2., , 10] 1, 1.5, 2.,. , 10] G.

An index of type Q measures a quantitative difference while an index of type q
measures a difference in the behavior of the surfaces.

Case l a). The interpolation method is the modified Shepard’s method [5]. The
N =45 points are shown in Fig. 2. The n 22 most important points are circled in
Fig. 2. R, parameter of b, is given the value R 3 and the same value is given to the
radius for the local interpolation. The results are

.348, ql .858,

Q2 .364, q2 .881.

As can be seen, the two surfaces ml and m2 are very similar; this can be shown
better by the values at the same grid points of

(2) Q12- . mh
q12-

{E m2h E mh}U2"
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O

FIG. 2.

These values are

Q12 .034, q12 .988.

Incidentally, we observe that because of the simple interpolation method, ml and m2
do not give a satisfactory quantitative fit.

Case lb). The interpolation method is local least squares interpolation (Method
I in [6]). For this method we chose a larger N, N 100 (so as not to have too large
a radius for the local neighborhood) and a subset of n 50. ml(x, y) is built with
Rq--3, the radius of the weight for the quadratic function, m2(x y) with Rq--3.5. Rw,
the radius to weight of the quadratic functions,is given the value Rw 1.5 for both
ml and mE; R, the radius of the neighborhoods I(Pi) for the subset selection is set to
R= 1.5.

Using again the indices (1) and (2) for the points of the grid G, we get these values:

Q1 .032, ql .984,

Q2 .152, q2 .936,

Q12 .122, q12 --.951.

The results obtained by the method are satisfying, and a better fit by the quadratic
method is reached, as expected.

Example II. Two surfaces are given for the behavior of the heart potential on the
body for one person at one instant; these surfaces are represented by contour lines
with a step- 500 microvolts; the surfaces are rebuilt from a set of function values,
making use of a local technique [2].

Because of the nature of the problem the neighborhoods I(Pi) were chosen with
a quadrangular section; the size of a section is determined from an increasing sequence
of sets on the basis of the function variation between the points of the border of a set
and those of the border of a contiguous larger set.
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For Fig. 3 we used a set of N 219 values, and for Fig. 4 we chose n 108 most
important data.

The phenomenon is still reproduced in a satisfactory way.

FIG. 3.

FIG. 4.

Appendix.
THEOREM 1. Let D be a compact set, D Rq and I a measure defined on D; let

Poe D and I(Po) be its Ko-neighborhood with tz(I(Po)) O. Let us take a random sample
ofpoints {Pi}, Pi D, according to the measure

As M-->o the sequence of estimators {(Po)} converges to the Ko-neighborhood
I Po) almost everywhere.

Proof Let m- m(M) be the number of points of the sample falling into the
corresponding (Po). As M->, m--> c also. Indeed, after fixing e > 0 it is possible
to determine a(e, M) such that, for n(M)>-

(1)
1 I If-fol d/x _1 If -fol < e a.e.

/x(I) n

as M -> c, withf f(Pi), P I, 1,. , n. This comes from the law of large numbers.
Hence, for n large enough,

I/,-Sol <
M

Let In (Po) be the minimum neighborhood containing the n points; then I, (Po) ---I(Po) and as M- oo, also n oo and hence m oo.
The above also proves that the set a of the {,,(M)(Po)} has a limit class which

does not coincide with the empty set.
Let us call I* the maximum limit of a and take a sequence al ={m,(P0)} of

members in a and which converges to I*. After fixing an arbitrary small y > 0 the
measures of the neighborhoods of al are definitely between #z(I*)- y, #z(I* + _y.

Let us take the subsequence of neighborhoods of al containing a nondecreasing
number of points h.
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As h +oo, from the law of large numbers one has

1 1 I ]f-fol dtz a.e(2) If-fol -+/z(i*) ,.
Since, by definition, I is the maximum neighborhood for which

I If-folcl,<tCo,
(1)

it follows from (1) and (2) that I*= ! except for a set of measure zero.
Remark. With the same hypothesis as Theorem 1, as M oo from the law of large

numbers, the sequence of estimators 8i a.e.
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Abstract. The censored linear It approximation problem is to minimize the nonconvex piecewise linear
function F(x)=Y.i= lyi-max (z,x’a)l. The problem arises in regression models where the range of the
dependent variable is restricted. Unlike the maximum likelihood and least squares estimators the censored

It estimator provides a consistent estimator without an assumption that the errors are normally distributed.
This paper presents a compact characterization of the generalized gradient of F, and necessary and

sufficient conditions for a (strict) local minimizer of F. A reduced gradient algorithm for linear programming
and l approximation is extended to provide a stable finite direct descent method for calculating a local
minimizer of F. This provides an efficient method of calculating the censored estimator.

Key words, censored It approximation, censored LAD estimation, generalized gradient, reduced gradient
algorithm
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1. Introduction. The censored discrete linear 11 approximation problem is to
minimize over x R the nonconvex piecewise linear function F" R"--> defined by

(1.1) F(x) E lY max (z, xa)l,
i=1

where y , z and a ." for 1, , m.
The interest in this problem arises from the censored and truncated least absolute

deviation (LAD) estimators proposed by Powell [8] and [10] for regression coefficients
in two models with limited dependent variablesthat is, regression models where the
range of the dependent variable is restricted to some subset of the real line. Consider
a linear process, where the dependent variable is restricted to be nonnegative, namely

1.2) y max (0, ra + e).

Here is the underlying vector of parameters to be estimated, e are unobservable
errors and y R and a s n are observable data. The consistency of the maximum
likelihood and least squares estimators depends critically upon the assumption that
the errors are normally distributed. However the censored LAD estimator, that is the
global minimizer of (1.1) with z=OVi= 1,..., m, provides a consistent estimator
of which does not depend upon the functional form of the distribution of the errors.

An important feature of (1.1) is the generality obtained by taking z arbitrary.
Thus the results of this paper apply to censored 11 estimation (z 0 V i), truncated l
estimation (zi yi/2 Vi), general lower and upper bounds on the observed dependent
variable, as well as to standard l estimation (z =-c Vi). The results could also be
extended to regression quantile estimation [9].

One aim of this paper is to provide an efficient algorithm for computing the
censored LAD estimator, and thus remove a major obstacle to its use. For instance
Paarsch [7] published a simulation study of the censored l estimator which uses a
grid-search method to minimize (1.1)! Although Powell’s proof 10] of the consistency
and asymptotic normality of the censored LAD estimator assumes the unique global

* Received by the editors February 27, 1984 and in revised form October 15, 1984.

" School of Mathematics, University of New South Wales, P.O. Box 1, Kensington NSW 2033, Australia.
This work was done while the author was at the Mathematical Sciences Research Centre, Australian National
University.
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minimizer of F is calculated, in practice only a local minimizer can be calculated as
F is not convex. However on some randomly generated test problems this seemed to
be a major difficulty only when m is of the same order of magnitude as n. When m >> n,
as in most practical applications, the algorithm usually found the global minimizer of
F (see 5 for further comments).

The following example [11] of temperature accelerated life tests on electrical
insulation in 40 motorettes illustrates the type of problem on which the algorithm can
be used. Ten motorettes were tested at each offour temperatures. Testing was terminated
at different times at each temperature giving the data in Table 1. The model fitted in
[11] is

logo H : + 1000:2/(T+ 273.2) + e,

where H is the failure time and T is the temperature. At each temperature there is an
upper bound Ht (the time at which testing was stopped) on the observed failure times,
so the logarithms of the observed failure times are given by

min (loglo Ht, xl + 1000Y2/( T+ 273.2) + e).

A problem with upper bounds on the observed variable can be converted into one
with lower bounds by changing the sign of the data Yi, zi and a, as

[y,-max (z,, xa,)[ l-y,-min (-z,, -xra,)].

TABLE
Data for motorette example.

Failure times H in hours

Termination time Ht

Test temperature TC
150 170 190 200

8064
10 units

1764
2722
3444
3542
3780
4860
5196

5448
3 units

408
408
1344
1344
1440

1680
5 units

408
408
504
504
504

528
5 units

The next section considers the differential properties of F and establishes a concise
characterization of the generalized gradient OF(x) of F(x). Section 3 strengthens the
usual necessary conditions 0 e OF(x) ofnonsmooth optimization (Clarke [5]) to provide
necessary and sufficient conditions for a (strict) local minimizer of F. The interpolation
result for l approximation (see for example Watson [12, p. 119]) extends to censored
l approximation. That is a global minimizer of F is characterized by n (when the
vectors a, 1,. , rn have rank n) linear equations r(x) max (yi, zi) ax O.
This reduces the search for a minimizer of F to a finite number of points.

A finite direct descent algorithm is developed in 4. This algorithm is a generaliz-
ation of a reduced gradient algorithm for l approximation, which in turn is simple
an extension of a reduced gradient algorithm for linear programming (see Osborne
[6]). The algorithm which is numerically stable, can be implemented in a convenient
tableau form for relatively small dense problems. An efficient algorithm, where for
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large m the number of operations per iteration is dominated by nm log m, can be
developed. For fixed n the number of iterations needed to find a solution appears to
grow slowly with m.

2. Differential properties. The function F defined by (1.1) can be written as the
sum of a nonconvex function and a convex function, namely

(2.1) F(x)= Y ly,-max(z,,xra,)l+ Y -y,+max(z,,xra,).
i:yi> zi i: yi zi

The character of the component functions is illustrated by the following one-
dimensional examples. The situation where Yi > zi is typified by the function fl(x)-
I1 -max (0, x) I, where Yl 1, z 0 and al 1, which is sketched in Fig. 1. The situation
where yi-<_ z is typified by the function f2(x) max (0, x) where y 0, z 0 and a 1,
which is sketched in Fig. 2.

FIG. 1. A function with Yi > zi.

x Ps I

FIG. 2. A function with y <-_ z

It should be noted that for censored estimation problems with a lower bound z
on the dependent variable

y max (z, rai + e) ->_ z.

Thus the inequalities Yi <- zi could be replaced by y- z in the definition of the sets

F(x) below. However this does not produce any further simplification, so is not used
in the rest of the paper. Define the functions r(x) by

(2.2) ri(x)- max (y, z)-x’a for i- 1,..., m,

and the index sets Fj(x), j= 1,-.., 5 by

Fl(X) {i 1,. ., m" y > z and xT"ai y},

FE(X) {i 1,. ., m" y <_- zi and xT"a z,},

(2.3) Fa(x) {i 1,. ., m" y > z and xT"a zi},

F4(x) {i 1,. ., m" xT"a> z and x’a y},

Fs(x) { 1," ", m" xT"a, < zi}.

As an example the nonempty sets F(x) are marked on Figs. 1 and 2. Also define the
index set (x) by

(2.4) (x) r,(x) U rE(X) {i 1, , m" r,(x) 0}.
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The sets F(x), j 1,. -, 5 form a disjoint partition of {1,..., m}, that is

U F(x)={1,...,m} Vxe",
j=l

F,(x)fqF(x)--b Vi#j, Vx.
A definition of the generalized gradient OF(x) (Clarke [5]) of a piecewise smooth

function F at the point x is

OF(x) =conv {u " :! a sequence {x(k)} such that x(k)" X, VF(x(k))
(2.5)

exists k, and VF(x(k)) u as koo},

where conv G denotes the convex hull of G. For functions F: "-, OF(x) is a
nonempty compact convex set in ".

For F4(x) the component functions lYi-max (zi, xrai)] are smooth (continuously
difterentiable) in a neighbourhood of x, with gradient -Oiai where 0i =sign (ri(x)).
For i Fs(x) the component functions ]yi-max (zi, xTai)l--[Yi-zi] are also smooth in
a neighbourhood of x, but with zero gradient. The gradient g-= g(x) of the smooth
component functions is thus

(2.6) g(x)=- E Oiai.
iF4(x)

For M(x) the component functions lye-max (zi, xTai)l are nonsmooth, but convex
is a neighbourhood of x, with generalized gradients (subdifferentials) given by, for
i F(x)

O[y,-max (zi, xTa,)[ =conv {--ai, ai} {u "" u --Ziai, --1 <= Zi <= 1},

and for F2(x)

O(-yi + max (zi, xrai)) =conv {0, ai} {u R"" u -hiai, -1 <- hi <-- 0}.
For EF3(x the component functions are nonsmooth and nonconvex at x with
generalized gradient

Olyi-max (z,,xrai)[=conv{-a,,O}={ug" u=-hiai, O--<_h,_--<l} for ir3(x).

As generalized gradients satisfy O(Fl(x) + F2(x))
_
OFl(X) + OF2(x), one has OF(x)

G(x) where G(x) is the nonempty compact convex polytope defined by

(2.7)
G(x) { v e "" v g(x)- Aiai where

i.sd(x)tAF3(x)

Ih,[ _--< 1, Fl(X), 1 =< h, -<_ O, 6 F2(x), 0_-< A, _<- 1, F3(x)}.
F may not be convex, so the inclusion OF(x)c_ G(x) can be strict as the following
example illustrates. Let n=2, m=3, zr (0, 0, 0), yr (1, 2, 2), a(=(1,-1), a=
(1, 1) and a3 (-1, 3). The contours of F are sketched in Fig. 3, whilst the sets OF(x)
and G(x) at the point r=(3/2, 1/2) are sketched in Fig. 4. At the point r=
(3/2, 1/2)F1 {1, 2}, F3 {3} and F2 F4 F5 b. Thus the possible extreme values of
h in (2.7) are

1 1 1 -1 -1 -1 -1
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FIG. 3. Contours of Example 1.

2

-2

FIG. 4. G() and OF().

giving

However from (2.5) and Fig. 3 one can see that

which is a strict subset of G()).
The following result gives conditions which ensure the equality of the sets OF(x)

and G(x).
LEMMA 1. Let i + 1 for e 1-’l(X), i -1 or 0 for e F2(x) and 0 or 1 for

i Fa(X). Define the set () by

()={"" z ra, y, for iFl(X) with ,=1
y, ra, for iF(x) with ,=-1

zi rai for FE(X) with -1 and Fa(X) with i 1

ra z for FE(X) F3(x) with i 0}.
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Then OF(x) G(x) ifand only if() has nonempty interiorfor every , which corresponds
to an extreme point of G(x).

Proofi (a) Assume () has nonempty interior for every corresponding to an
extreme point of G(x). As cgF(x)_ G(x) one only has to show G(x)_ OF(x). Note
that () is the subset of R in which the linear function specified by , is active, so
the gradient of this linear function is

Let int (), and set s=-x. Then F(x+as)=F(x)+aVa[O, 1]; moreover
VF(x+as) exists and VF(x+as)= for all a in (0,1]. Thus from (2.5) OF(x).
This holds for all extreme points 3 of G(x) giving G(x)_ OF(x).

(b) Assume OF(x)= G(x). Let , correspond to an extreme point t3 of G(x), and
hence OF(x). Then from (2.5) there exists a sequence {xk)} such that xk) --> x, V F(xk))
exists for all k and VF(x(k))- as k-o3. As F is piecewise linear, this implies

VF(x(k)) for all k sufficiently large (xk)# X). As VF(xk)) exists, one has xk)
int () for these k. tq

If rank {ai: M(x) t.J Fa(x)} n, then there are vectors for which () has an
empty interior. The sets OF(x) and G(x) are equal if and only if these correspond
to points 3 which are not extreme points of G(x). If 1-’3(X is empty, then F is convex
in a neighbourhood of x, so OF(x)= G(x). Thus difficulties only arise at points where
Fa(X) is nonempty.

A key tool in the development of optimality conditions in nonsmooth optimization
is the one-sided directional derivative F’(x; s) defined by

F’(x; s) lim
F(x+as)-F(x)

which exists for all x, s R" as F is a continuous piecewise linear function. For the
function (1.1) one has

(2.8) F’(x; s)=sTg+ IsTa, l+ max(0, srai) max(0, s’a,).
iFI(X) iF2(x) iF3(x)

As F may be nonconvex at points x where l3(x) is nonempty, one only has

(2.9) F’(x; s) <= max u’s.
u.OF(x)

If F3(x) is empty, then (2.9) holds with equality.

3. Characterization of minimizers. The inclusion c3F(x)_ G(x) means that the
well-known necessary conditions OeF(x*) [5] for x* to be a local minimizer of F
carry through to 0 G(x*). However sufficient conditions are only immediately avail-
able when I’3(x* is empty, as then F is convex in a neighbourhood of x*. In that
case eF(x*) G(x*) and0 G(x*) is both necessary and sufficient, whilst0 int G(x*)
ensures that x* is a strict local minimizer of F. Two one-dimensional examples; F
with y-(l, 1/2) , z--(0, 0) , al- 1, a). -1/2 and F: with y-(l, 1,2) , z--(0, 0, 0),
a 2, a2- 1, a3 1, are sketched in Figs. 5 and 6. F has strict local minima at x -1
with F1 1 and at x 1 with F 1/2, whilst any x 1/2, 1] is a local minimizer of
F: with F: 1.

When I’3(x) is nonempty, the situation is more complicated. However one can
obtain an interpolation result similar to the discrete 1 case where a solution is
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2 3

FIG. 5. Distinct local minimizers. FIG. 6. Multiple minimizers.

characterized in terms of the residual functions ri(x) which are zero. Define

A= [a," M(x)].

LEMMA 2. Let x be a point with O G(x) and rank(A)<n. Then F’(x; s)<-O for
all directions s satisfying s rA=O. Moreover if there exists an index kFa(X) with

ak : (A), the range of space of A, then there exists a descent direction s with srA- O.
Proof. As 0 G(x) there exists a vector A satisfying ]A]-< 1, i El(X), -1 _<-A <_-0,

FE(X), 0 _-< A _-< 1, Fa(X) and

g Aia.
is(x)UF3(x)

Let s satisfy sTA=O. If I’3(X is nonempty, then

sT"g E A,sai
iF3(x)

From (2.8)

F’(x; S)= sTg E max(0, sTai)
iF3(x)

E [Asra-max(0, sra)]
iF3(X)

E A,sra, + E (A,-1) sT"a,
_..1-’3(x) i__F3(x)
slaiO sTai>O

<=0,

as 0-< Ai_-< 1 for all F3(x). If F3(x) is empty, then srA=O implies srg=O and hence
F’(x;s)=O. Now let kF3(x) be such that akV:(A). If 0<Ak=<l and s is chosen
so that Srak < 0, then F’(x; s) < 0. Alternatively if 0 -< Ak < 1 and s is chosen so that
s ’ak > O, then F’(x s)<0.

Note that if kF3(x), 0<Ak < 1, and akr-(A) then any direction s such that
s 7"A 0 is a descent direction. It is only if Ak is at one of its bounds that an additional
restriction needs to be placed on s to obtain a descent direction.

The significance of the above result is that in searching for a minimizer one need
only consider points where ai (A) for all F3(x)o Typically methods also involve
a line search, and the following result shows that only points where a new residual
ri(x) becomes zero need be considered in minimizing F along a line. Define

(3.1) I(x; s) {i 1,’" ", m" ri(x)(sTai) > 0}.
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LEMMA 3. Let s be a direction such that F’(x; s)<-O. If I(x; s) is empty, then
F(x + as) F(x) Va >- O. Otherwise any local minimum of F(x / as) over a >- 0 is
attained at a point ai > 0 satisfying ri(x / as) 0 for some I(x; s).

Proof. Define

F’(x + a-s; s) =- lirn_ F’(x + s s) -F’(x + as; -s).

The only points a where F’(x + as; s) changes are those that satisfy either ri(x + as) 0
or (x / as)ra zi for some e {1, , m}. Let a be a point at which only the second
of these conditions is satisfied, then from (2.8)

F’(x + s; s) F’(x + a-s; s)- 2 sa, + Y sa,
ieF3(x+txs ieF3(x+ots)
sra>O sra<O

< F’(x + a-s; s).

Thus points a satisfying just (x+ as)rai z need not be considered in looking for
minimizers of F(x + as). It is easily verified that there exists an a > 0 with r(x + as) 0

if and only if e I(x; s). If I(x; s) b then F’(x + as s) is a nonincreasing function
of a >_-0. As F is continuous and bounded below by zero the only possibility is that
F’(x + as; s) 0 for all

Solving r(x / as) -0 gives

max (Yi, z, x ra,
r iI(x;s),

s a

as the points to be considered in a line search. These may include separate local minima
as well as points which do not correspond to minima of F(x/ as) (see Figs. 5 and
6). The global minimum may also be attained at other points.

Lemmas 2 and 3 enable one to obtain the following result, which states that when
the vectors a, i-1,..., m have rank n (which is usually true as m >> n in practice)
the global minimum of F is attained at a point characterized by n linear equations
r(x) =0. This reduces the search for a global minimizer of F to a finite number of
points, which may also include nonglobal local minimizers of F (for example x =-1
in Fig. 5.). However certain nonglobal local minima are excluded (for example any
x <0 in Fig. 6). This result corresponds to the interpolation result for discrete
approximation (see for example Watson [12, p. 119]), remembering that ri(x)-O if
and only if e M(x).

THEOREM 1. If the vectors a, 1,. ., m have rank m,, then there exists a global
minimizer x* ofF(x) with rank (A*) m,, and hence M(x*) =- Fl(X*) (.l FE(X*) contains
at least mr indices.

Proof. Suppose g is a global minimizer of F with rank (A)< mr Then 0e G(g).
Let s0 be a direction satisfying sr/=0. As rank ()< mr there exists an index k
with k M(g) and sTag 7 O. The sign of s can then be chosen so that r(,)(srak)> O,
and hence ke I(; s). Then F’(; s)-<0 by Lemma 2, and by Lemma 3 the minimum
of F(+ as) over a _->0 is attained at a point a>0 where r(+ as)=0 for some
e I(; s). This process can be repeated until rank (A)= mr

The following theorem strengthens the condition 0e G(x) to provide necessary
and sufficient conditions for local minimizers and strict local minimizers of F. The
proof also illustrates how descent directions may be calculated. Let g/* denote M(x*),
g*= g(x*) and so on.
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THEOREM 2. Thepoint x* is a local minimizer ofF ifand only ifthere exist multipliers
and I (J), j F*3 satisfying

(1)

(3.2)

(2)

(3.3)

-A, + Y, max (0,/x)) -<_ 1 Vi M*,
jr

hi+ max(0,-/z))_-<1 VieF,
jer

hi+ E max (0,-pJ))N0 ViF.
jr

Moreover the point x* is a strict local minimizer ofF ifand only if thefollowing condition
also holds.

(3) The set ofvectors ai, M* such that all the inequalities (3.3) are strict has rank n.

Proof (a) Suppose there exist multipliers h and/z(), j F3(x* satisfying condi-
tions (1) and (2). Now x* is a local minimizer of F if and only if F’(x*; s) >= OVs
Moreover x* is a strict local minimizer of F if and only if F’(x*, s) > 0 Vs
Now from (2.8).

(3.4)

F’(x*’, s)= E [X,s,+lsa,I]+ E [A,sTai +max (0, sT"ai)]
iF iF

-Y max (0, Y [.lJ)sTai)jaF i*

>- Y [Ai sign (sa,)+ r/i- Y max (0,/xj’ sign (sra,)]lsail
ig* jF

where r/i 1 for F* and r/i max (0, sign (sT"ai)) for F*. The last inequality follows
as ’i _>-0 Vi M* from condition (2). Moreover if condition (3) holds, then ’i > 0 for
a set of indices such that the corresponding vectors a, have rank n, and one obtains
F’(x*; s) > 0 Vs 0.

(b) Suppose x* is a local minimizer of F. Then 0 G*, so there exist multipliers
such that

g* E ia,.
ig*UF

As a descent direction cannot exist at x*, Lemma 2 implies there exist

a E I
)a, vj e r*3

.*

Hence there exist multipliers X and/z(J), j e F3* satisfying (3.2).
Now suppose there exists an index k e * such that

f
--trAk + Y max (0, o’tz()) > {

r tmax (0, tr),

(J) satisfying

where tr + 1 or -1. Let A be a subset of M* such that k A and the vectors ai, A
form a basis for (A). For i M* such that i A the multipliers Ai and /xg, j e F3*
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can be chosen arbitrarily whilst still satisfying (3.2). Let s be a direction satisfying
s Tak tr and s arai 0 for # k, A. Also for all j F3* and 4*/A let Ix J) 0 and
hi =-sign (sTai). Then from (3.4)

1, k
F’(x*" s) trhk + Y max (0, < 0.

max (0,

This contradicts the fact that x* is a local minimizer of F, so establishing the inequalities
(3.3).

Finally suppose x* is a strict local minimizer of F. Then exactly as above one
establishes conditions (1) and (2). Suppose that condition (3) does not hold. Then
there exists an index k * which satisfies (3.5) with equality, and a direction s such
that Srak tr and sT"ai =0 for all indices for which the inequalities in (3.3) are strict.
One can then choose a subset A of 4" such that k A, the vectors ai, i A form a

basis for (A), and srai 0 for A/{k} implies sT"ai 0 for all the indices for which
the inequalities (3.3) are strict. Then following the proof above one has a direction s

such that F’(x*; s) 0, contradicting the fact that x* is a strict local minimizer of F.
An immediate consequence of the inequalities (3.3) is that

-1-<_ hi--<_O, iF2*,

FI*,
jr t 1, F2*.

This theorem includes the degenerate situation when the vectors ai, s4* are linearly
dependent, in which case the multipliers X and tx

(j) are not uniquely determined.

4. A reduced gradient algorithm. As F is nonconvex, the censored ll approximation
problem cannot be posed as a linear programming problem, as the discrete linear ll
approximation problem can. Thus this section presents a direct descent method based
on the reduced gradient method for 11 approximation. A detailed discussion of the
reduced gradient method, and its equivalence to the modified simplex algorithm of
Barrodale and Roberts 1 ], can be found in Osborne [6]. An equally viable alternative,
which is not considered here, is to develop a projected gradient algorithm based on
the work of Bartels, Conn and Sinclair [2] for the 11 problem. Osborne [6] also gives
a comparison of the reduced and projected gradient methods for linear programming
and discrete linear 11 approximation. Note that the distinction between the reduced
and projected gradient algorithms is only of importance whilst a complete active set
(one with n elements) is being built up.

Let vectors ai, i= 1,. ., rn have rank rnr (in most practical situations mr n as
rn >> n). The basic idea is to generate a sequence of points satisfying sets of equations
r(x) 0 for At (an approximation to 4"). The number of elements in At increases
until m, and thereafter one element at a time is changed until At s4* and the
optimality conditions are satisfied. At each point x a step is made in a direction s

satisfying F’(x; s) <= 0 (usually F’(x; s) < 0) and ri(x + as) 0 for all or all but one .
Let At be an index set with elements such that At

_ , and let

A=[ai" a At] [au(1)a()
It will be shown later that, because of the way elements are added to t, A always has
full rank. Define the n x n matrix B by

B=[AIE],
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where E comprises the columns of the n x n identity matrix chosen to make B
nonsingular. Let

H span {ai" }.

The reduced gradient algorithm is based on the fact that the vectors B-rej for j
t+ 1,..., n, where ejR is the jth unit vector, form a basis for the orthogonal
complement of H, and so provide a suitable basis from which to choose a search
direction.

Using the above notation a typical iteration of the basic algorithm can now be
given. Each step will then be discussed along with possible improvements. The
implementation of the algorithm along with its numerical properties is considered in

5. The sets Fi, i= 1,. ., 5 are defined by (2.3).
Step 1. Calculate

(4.1) g Oiai,
iF

where 0 sign ri (x)) and ri (x) max (Yi, zi) x rai.
Step 2. Calculate multipliers" solve

(4.2)

and

(4.3)

(4.4)

Bu g for u,

Bo() a for v(j), j F3.
Step 3. Check optimality

a) Calculate

;i(cr) -crui + E max (0, trvj)) r/i(tr),
jF3

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

i=l,...,n,

where tr +1 and -1, and

1 if t(i)F1 and l<=i<=t,

r/i(cr)= max(0, tr) if(i) r2 and l <= <= t,
0 if t+l<-i<=n.

=max (6i(1), 6i(-1)), i= 1,..., n,

p =argmax {yi, i= 1,. ., t, zyi, i= t+ 1,. ., n},

1_ if )’i r/i(1),
trp

1 if Yi

If /p > 0 go to step 4.
If n STOP: Rank n termination.

b) If t<n and J={il,...,m’yi>zi>x’ai}#f setj=J(1) and
(i) Solve B7()= a.
(ii) Let

p argmax i: t+ 1, n},

O’p sign

(iii) If > 0 go to step 4
Otherwise select next j J and go to (i).

If ) 0 ’i + 1, , n and ’j J STOP: Rank deficient termination.
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Step 4. Compute search direction

(4.12) s trpB-7"e,.
Step 5. Line search

(4.13) I {i 1,..., m" dPl, r,(x)(as) > 0},

ri(x)
(4.14) c- for i L

afs
(4.15) q argmin {F(x + ts), I}.

Step 6. Update Xw x + qS.
If p -<_ then tw + {q} { p}

otherwise tnw t + {q}.
Update B and go to Step 1.

Given a starting point x the algorithm is initialized by setting , so 0 and
B I, (the n n identity matrix). Step 1 calculates the gradient of the component
functions lye-max (z,xa)l which are smooth at x, whilst step 2 calculates the
multipliers u and v for j I3 The usual situation is that I3 is empty, in which case
steps 2 and 3 simplify considerably. Step 3 then checks the optimality conditions (3.2)
and (3.3), and if they are not satisfied calculates the index p by an unnormalized
steepest edge test so that the direction s in step 4 is a descent direction. Step 5 then
calculates the next point by a line search along s, where from Lemma 3 the minimum
is known to lie at one of a finite number of points.

Step 3 needs further discussion. Consider the nondegenerate case where ,
that is (x) where x is the starting point and the index q calculated in step
5 is uniquely determined. For the search directions s defined by

(4.16) s)= trB-7"e, i= 1,..., n,

where tr= +1, (2.8), (4.2)-(4.5) yield

F’(x;s))=-6(tr) fori=l,...,n.

If the index p is chosen by

p=argmax{y, i= 1,..., n},

with tr defined by (4.11), then the search direction sp) minimizes F’(x; s)) over
1, , n and tr + 1. If yp > 0, then F’(x; sp)) < 0 so sp) corresponds to the steepest

descent edge direction.
The first part of the optimality conditions is that there exist multipliers satisfying

(3.2), that is g H and a H for all j F3. This is true if and only if

u=0 andv=0 ’qjF3, fori=t+l,...,n,

or equivalently if and only if

y=0, i=t+l,. .,n.

Note that y >-lu] for + 1, , n with equality if and only if F3 b. The factor "
in (4.7) is a positive weight (typically 100) to ensure that the columns of E are
favoured for deletion until y + 1, , n are all small or n (the usual situation).
This permits relaxing off active equations r(x) 0 when a very large negative directional
derivative would result, before (3.3) is satisfied.
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If n and yi < 0, 1,..., n then the sufficient conditions are satisfied and x
is a strict local minimizer of F. However if < n then x can be a local minimizer, but
there exists a nearby point with the same function value and at which there is a descent
direction. This is only likely to occur with relatively small values of m or poor choices
of starting point, a typical example being any point x < 0 in Fig. 4.

Step 3b) thus checks to see if there are any directions along which a line search
will result in an increase in without increasing F. This ensures that mr rank (a,,
1,. ., m), so excluding certain types of nonglobal local minima. Let

J (j 1,’’’, m" yi > zj > xraj},

and for every j J let

K()={i t+ 1," ", n" as(i) 0}.

For any K a line search in the direction si) defined in (4.16) with the sign tr

chosen so that as> 0 will increase without increasing F. For i K let

(4.17) /3(i’ min ZaXsC9i) ,JJ
where tr is always chosen so that asi> O. If

fl’ <min {al" I(x; si)},

where I is defined by (3.1), then as t+ 1 <-i<-n F’(x; si))= 0, moreover

F(x + as(i)) F(x) Va e [0,/3 (’)]
and

(4.18) F’(x +/3(i)s(’); s(i)) as( < O,

where k is the index which achieves the minimum in (4.17) (if k is not uniquely defined,
there will simply be more negative contributions to (4.18)). As the set J can be large,
step 3b) simply finds the first j e J for which K (j) is nonempty. The search direction
chosen is that which would give the most negative directional derivative (4.18).

Finally the updating of B must be considered. Let

B B + aq Bep]e

In order that the structure of B is preserved

Bnew BP,

where if + 1 =< p -< n then P is the permutation matrix which corresponds.to swapping
the pth column of B with the (t + 1)st. Otherwise P is the identity matrix.

LEMMA 4. If B is nonsingular, then Bne is nonsingular.
Proof. Bnew is nonsingular if and only if B is nonsingular. Now

B B(I + B-1 aq ep ]epT).
The result follows as

det (I+[B-aq-ep]e)= l-e(B-laq-ep)- eB-laq-sign (up)sTaq O.

As B is initially the identity matrix, all matrices B are nonsingular.
In the nondegenerate case the above algorithm is finite, as on every iteration either

F decreases or if F does not decrease (the number of elements in d/t) increases. Thus
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as never decreases, the sets At never repeat. As there are only a finite number of
possible sets At the algorithm must terminate in a finite number of iterations.

The degenerate case arises if At is a strict subset of , in which case the direction
s generated in steps 3a) and 4 may not be a descent direction. Some allowance for
this can be made by changing the definition of I in (4.13) to

(4.19) I={il,.. .,m" i_At, sra,#O and r,(x)(sra,)>-O}.
It is then possible for (4.14) and (4.15) to produce aq =0, so that an element in At is
exchanged without F decreasing. In this case it is theoretically possible for the sets
At to cycle. However the various techniques available for resolving degeneracy in linear
programming can be extended to remove this difficulty.

Some remarks should be made on the use of the unnormalized steepest edge tests
(4.4)-(4.7) used to calculate a descent direction. The use of (4.7) assumes that %,

i= 1,. ., n are of comparable magnitude, and calculates p by computing a minimum
over unnormalized directional derivatives F’(x; s). If these are normalized so that
Ils 1 one obtains

%
i=1 t,i=t+l n(4.20) p =argmax ijB_rel---] iin_e,[

This test can be computed economically by setting up a recursion for the quantities

(4.21 X, B- Te, =, 1, , n.

One obtains

(4.22) xP x,- 2,6, +,x
where

(4.23) b B-I(B-Tep), d/= B-’aq and

where 6ip is the Kronecker delta. A complete discussion of the relative merits of
unnormalized and normalized steepest edge tests in the context of linear programming
and 11 approximation can be found in Osborne [6].

Although conceptually one of the simplest, step 5 of the algorithm, the line search,
is one of the most time-consuming steps for large m, as the number of elements in I
in (4.13) is often a significant fraction of rn (see 5 for more comments). A more
efficient line search algorithm can be developed as one knows the points at which the
slope of F(x + as) changes and the amount by which it changes. These are the points
a, i I given by (4.14) and (4.19) where a minimum may occur, and at which the
slope changes by

21sa,I ifyi>z,,
(4.24) Ag(a)

[isra if y z.

The only other points where the slope changes are given by

(4.25) ]i
zi xTaisra-- forint,

where

(4.26) {i 1,. ., m" y > z and (zi x rai) s rai > 0}.
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At these points the change in slope is given by

(4.27) Ag(fl,)

A local minimizer along the line is characterized by the slope changing from nonpositive
to positive upon passing through that point. Let n denote the number of elements in
the set I. The partition sort techniques of Clark and Osborne [4] can be used to find
an ai corresponding to a local minimum of F(x / as) in O(nx) operations. This has
the disadvantage that the algorithm is then slightly more likely to converge to a local
minimum rather than a global minimum of F. Alternatively if one requires the global
minimum along the line, as in step 5 of the algorithm, the ai, I must be completely
sorted. This can be done by a QUICKSORT algorithm taking O(nx log nt) operations.
In either case one only needs a partition sort of the fl, I, as for any k I

(4.28) F’(X+akS;S)=--yp+ E Ag(a,)+ E Ag(fl,).
oti [3i Otk

5. Implementation and numerical experience. Osborne [6] gives a convenient
tableau representation for relatively small dense ll problems, which can be extended
to censored ll problems in the following way.

(5.1) w= [Z.IA,],
where

AF--[al, a2," ", a.],

and let

w( [x(lr(],
where x(k) is the point on the kth iteration and r(k) is the corresponding vector of
residuals rk)--max (y, z)- a[x(k). Also let

B(k) L(k) U(k),
where L(k) is unit lower triangular and U(k) is upper triangular. Define

W(k) L(k)

The key point is that at each stage one works with the tableau W(k). The multipliers
u (k) satisfying (4.2) are calculated by solving

u(k)u(k) g(k)
by backsubstitution, where

g(k) eF) iFl(k)L(k)- ai.

Note that the vectors L(k)-a are just certain columns of W(k). Also as U(k) L(k)-B(k),
the columns of U(k are simply those columns of W(k) which correspond to the columns
of W forming B(k. The vectors v(j’k satisfying (4.3) are similarly given by a backsubsti-
tution to solve

u(k)v(j’k) L(k)-
aj.

To calculate the search direction, one computes

(k) O.pg(k)-Tep L(k)Ts(k),
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which involves a forward substitution with special structure from the unit vector ep. Then

Aw(k) =_ (k)w(k= s(k)w= [s(k[s(k)AF].

The line search (4.13)-(4.15) requiring rk) - Wn+i(k) and aris(k) ,,h,,(k,+ provides the
steplength ak and the column aq to be pivoted into B(k. The vector w(k is updated
by

W(k+l) W(k) + ak)w(k).

The factors of B(k) are updated by the Baels-Golub scheme [3]. W(k must be updated
when the pth column of U(g is deleted and L(k)-aq is added. After the appropriate
column shifts one has

0()= U)’" U, +,rr() ,l()L()-’a].
The subdiagonal elements Fr() for p+ 1 n are zeroed by row operations toi+l,i

produce U(g+). If necessary rows are interchanged to ensure that the multipliers in
the elimination do not exceed one in magnitude. This ensures there is no unnecessary
growth ofrounding error. It also means that L()-’ can lose its lower triangular structure,
which causes no diculties as L() is never explicitly used.

The quantities (4.22) and (4.23) required to implement the normalized steepest
edge test (4.20) can also be eciently calculated. The details are omitted as the following
numerical results refer to the basic algorithm with the unnormalized steepest edge test
(4.4)-(4.8) and the basic line search on function values given by (4.13)-(4.15).

To test the numerical performance ofthe algorithm, some pseudo-random censored
estimation problems are generated by the following procedure. A vector is produced
by taking [a, b], i= 1,. ., n, where [a, b] generates a sequence of numbers
uniformly distributed on [a, b]. The input invectors a, i= 1,..., m are generated in
a similar manner. With error terms [a, b], the observed data values y are then
generated by (1.2). The algorithm described in 4 is then used to calculate a local
minimizer of (1.1) with z 0, l, , m.

For each value of n and m 10 different problems were generated, and for each
problem the algorithm was applied from l0 different staing points generated by
x)a [a, hi. The results with a=-10, b= 10, a=-5 and b=5 are collected in
Table 1. The reposed figures are the minimum number of iterations, the median number
of iterations and the maximum number of iterations taken to converge to a local
minimum. A figure in brackets indicates the number of nonglobal local minima found
and the number of times the algorithm converged to a nonglobal local minimum out
of the total of 100 runs for each value of n and m. Only problems with m > n were
solved, whilst time restrictions limited the results available for the larger values of n
and m.

If the problem has a nonglobal local minimum, then it was usual for several of
the staing points to produce convergence to it. Unfounately there seems to be no
way of verifying that a point is a global minimizer, even for the very special case where
a0andyiz for i=l,..-,m.

It was previously remarked that the line search (4.13)-(4.15) based on function
values is expensive as the number of points a to be checked is usually a significant
fraction of m. For the problems in Table 2 the average number of points in the line
search is around m/2. Thus the line search requires O(m2) operations. For large m
the rest of the algorithm requires O(nm) operations, which is dominated by the line
search. Hence a more ecient line search based on a soing algorithm and the changes
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TABLE 2
Results .for some random censored estimation problems.

2 5 10 15 20 25

10

20

40

60

80

100

200

400

600

800

1000

2 3 5

2 4 7

2 4 7

2 4 7

2 4 8
(1,2)

2 4 9
(1,1)

2 5 lO

7 12

611

2 6 12

3 7 10

5 6 9
(7,14)
5 8 13
(1,2)
6 11 21
(1,4)
6 13 21
(4,18)
8 13 20
(3, 12)
8 14 25
(3, 15)

II 18 27
(2,6)

II 20 36

9 22 30

14 23 32
(1,2)

13 23 33
(1,4)

10 13 18
(14,24)
13 20 28

18 24 34
(2,4)

18 27 37
(1,8)

20 29 41

22 36 51
(2,12)

31 43 59
(1,3)

32 45 63
(1,3)

33 49 70
(9,23)

15 15 20
(39,43)
19 25 29
(2,4)

21 33 44
(2,4)

27 38 49
(1,2)

29 41 58
(2,7)

37 52 66
(3,8)

48 65 89
(1,3)

55 70 93
(1,2)

20 28 46
(32,38)
25 39 54
(5,18)

32 46 63
(4,13)

38 52 71
(3,6)

51 69 90
(1,3)

68 87 113
(2,14)

74 95 116
(1,1)

25 27 39
(62,67)
31 43 71
(12, 21)
41 50 69
(3,10)

45 59 79
(1,1)

72 90 ll3
(2,8)

80 103 126
(4,14)

(4.24) to (4.28) in the directional derivative, which would require O(m) or O(m log m)
operations, should be used.

Finally to check consistency (X*m as m , where x* is the global minimizer
of (1.1)) and x/-consistency (4 II --X*mll is bounded in probability) the average
values of I1 -x* ll for n 5 (which is typical of the other values of n) for the 10
different problems of Table 2 are listed in Table 3.

TABLE 3
Average values of IIX*m- ;ll for n 5.

10 20 40 60 80 100
4.324 .679 .389 .277 .290 .255

13.7 3.04 2.46 2.15 2.59 2.55

200 400 600 800 1000
179 .147 .130 .099 .095

2.53 2.94 3.18 2.80 3.00

Finally Table 4 gives the results for the motorette example given in 1. For this
problem the function (1.1) has a nonunique global minimizer, so the points listed in
Table 4 are the global minimizers x* characterized by ri(x*)=0 for i M(x*). From
all starting points tried the algorithm converged to one of these points in 2 or 3
iterations. Note that observations with identical data values zi, y and a were grouped
together to minimize the effects of degeneracy. The iterated least squares solution
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reported in [11] is x*- (-5.818,4.204) r, whilst the maximum likelihood solution is
x*= (-6.027, 4.314). Both these points are very close to the convex hull of the points
in Table 4.

TABLE 4
Global minima for motorette example.

1,6
1,7
6, 13
6, 15
6, 16
7,15
7,16
13, 15
13, 16

-3.386
-.967

-4.578
-5.054
-4.855
-6.022
-5.822
-5.371
-5.039

3.086
2.062
3.615
2.826
3.737
4.303
4.214
3.982
3.828

Acknowledgment. The author wishes to thank M. R. Osborne for bringing this
problem to his attention, and for many useful discussions.
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COMPUTING THE MINIMUM EIGENVALUE OF A SYMMETRIC
POSITIVE DEFINITE TOEPLITZ MATRIX*

GEORGE CYBENKOf AND CHARLES VAN LOAN*

Abstract. A method for computing the smallest eigenvalue of a symmetric positive definite Toeplitz
matrix is given. It relies solely upon the Levinson-Durbin algorithm. The procedure involves a combination
of bisection and Newton’s method. Good starting values are also shown to be obtainable from the
Levinson-Durbin algorithm.

Key words. Toeplitz, eigenvalue, signal processing

1. Introduction. Recent progress in signal processing and estimation has generated
considerable interest in the problem of computing the minimal eigenvalue of a Toeplitz
matrix. The fundamental modeling and solution that led to this are due to Pisarenko
[P73], while more recently numerous authors have discussed the computational aspects
of the problem [F83], [H80], [H83a], [H83c].

In this paper we shall not discuss the underlying assumptions, merits, or potential
applications of the model--instead pointing the interested reader to the literature
concerned with these issues [H83a], [P73]. We hasten to add that the quantities of
ultimate interest in applications are the roots of the polynomial whose coefficients are
given by the eigenvector associated with the minimal eigenvalue of the Toeplitz matrix.
We shall only discuss the computation of the minimal eigenvalue noting that the
associated eigenvector can be obtained as a by-product. Furthermore, methods exist
for computing the roots that altogether avoid the explicit formation of the eigenvector
[C84b].

The essence of our minimum eigenvalue procedure involves solving systems of
shifted Yule-Walker (YW) systems. Initially, the solutions to these systems are used
in a bisection scheme that repeatedly halves a bracketing subinterval. Subsequently, a
Newton iteration takes over that quadratically converges to the desired eigenvalue.
We stress the fact that only YW systems are involvedan important point since
extremely efficient methods for YW systems exist. (They require half the computational
resources needed by general symmetric Toeplitz system solvers.)

In an absolute sense, only modest use is made of Toeplitz structure. Indeed, this
is true of all currently known Toeplitz eigenvalue solvers. The study ofthe eigenstructure
of finite Toeplitz matrices is proceeding rather slowly. Recent developments include
[C84a], [C84b], [D83]. An indication of the collective ignorance about Toeplitz
eigenstructure is that the inverse eigenvalue problem for real symmetric Toeplitz
matrices is currently unsolved. We suspect that the process of designing efficient
algorithms for this problem will go hand in hand with the uncovering of Toeplitz
eigenstructure properties.

Our paper is organized as follows. Section 2 describes a rational function intimately
related to the eigenvalue problem for Hermitian matrices. Section 3 specializes the
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discussion to real symmetric Toeplitz matrices and then develops our bisection/Newton
scheme. In the last section we discuss the numerical behavior of our procedure.

2. A rational eigenvalue equation. In this section we derive a rational function
from a given Hermitian matrix that has the property that its zeros are eigenvalues of
the original matrix. A feature of this rational function is that both it and its derivatives
are easily evaluated thereby making Newton-type schemes feasible. Strictly speaking,
parts of our derivation are not new and can be found in [W65], but we present the
details for the sake of completeness.

Let T be an n n Hermitian matrix partitioned as follows:

T=
G n-1

n-1

Here, r* denotes the conjugate transpose of r. It is well known [G83] that the eigenvalues
of T and G are real and satisfy an interlacing property. In particular, if Ai(T) and
Ai(G) are the ith largest eigenvalues of T and G respectively then

A.( T) <- A,,_( G) <- ._( T) <- <- A2( T) <-_ A(G) <- A( T).

Note that if T has a repeated eigenvalue, then the repeated value is also an eigenvalue
of O. Adopting the notation

,-= ,(T),

we shall assume throughout this paper that

The strict separation of ._(O) and m. guarantees that the eigenvector associated
with Ami. is unique up to scalar premultiplication. It is a realistic assumption in many
impoant problems such as the estimation of Pisarenko frequendes. Se [C84b].

Suppose

where it is assumed that a and y are not both zero. From this equation we obtain

(2.3)
ar + Gy AinY.

We must have a # 0 for otherwise Oy Ymi.Y contradicting (2.1). Noting that G AminI
is positive definite we obtain the following rational equation for Amin:

(2.4) v r*(O in)-’r in 0.

Thus, the smallest eigenvalue of T is the smallest root of the rational function

(2.) f() v- r*(O-)-r.

In addition, f(A) has the following impoant propeies if 0A < A._(G):

(2.6) y(A) -1 -II(o- AI)-rll -1,

(2.7) y’() -2r*(O- I)-r o.
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Now consider the following Newton iteration:

ALGORITHM 2.1. Let h [hmin, hn_l(G)) be given along with a tolerance 8 > 0.
Do Until (lAx)l< /(1 + Ilwll) ’/=)

Solve (G hi)w r for w.

y+r*w-h f(h)
h := h- =h-

l+w*w f’(h)"

Properties (2.6) and (2.7) ensure that the iteration converges to hmi To see this assume
that h (hmin, hn-1(G)) and set

f(X)
h+= h

f’(h)

Since f is monotone decreasing in this interval, it follows that both f(h) and f’(h) are
negative. Thus, h+ < h. On the other hand, from truncated Taylor series we have

O=f(hmin)=f(h)+f’(h)(hmin-h)+
f’()

(hmin-- h)2

2

with sr [hmin, h ]. It follows that

(2.8) A+ hmi
t()

(hmin-- h )2 > 0.
2f’(h)

Thus, the iterates in the algorithm converge monotonically to hrn, from the right
and at a rate that is ultimately quadratic. Note from (2.8) that in the limit we have

where

(error in new h) C. (error in old h)2

f"(hmin) W*(G- hminI)-I w
2f (hmin) 1 + w*w

and w -(G- hminI)-lr. Since II(G- hminI)-1112 1/d it is easy to show that C <- 1/d.
It follows that Algorithm 2.1 may converge slowly in problems where the separation
d is small. We return to this point later.

The termination criteria in Algorithm 2.1 gives good absolute error in the final h

provided the tolerance 8 is small enough. This follows from

Applying standard Hermitian matrix perturbation theory (see [G83]), we may conclude
that there exists an exact eigenvalue h of T that satisfies

[h he] < [f(A)[(1 + wllg) 1/2 < &

If 8 is sufficiently small compared to the separation d, then one can ensure that h hmi
Despite the nice mathematical properties of Algorithm 2.1, its practical value

hinges on two critical factors" how is the starting value determined and how is the
linear system (G-hi)w=-r to be solved? We address these questions in the next
section for the case when T is symmetric, positive definite, and Toeplitz.

3. The symmetric positive definite Toeplitz case. Let (to, tl,. ., tn-1) be the first
row of a symmetric positive definite Toeplitz matrix T (t0) i.e., 0 tl_Jl. Assume
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that T is normalized so that to 1 and partition it as follows:

T= rr h, t,,_).
r a

Recall that in order to apply Algorithm 2.1 we must find a starting value h that belongs
to the interval JAn(T), hn_l(G)). This requirement can be couched in the language of
signatures. The signature sig (A) of a symmetric matrix A is a triplet of integers
(neg, z, pos) where neg, z, and pos are the number of negative, zero and positive
eigenvalues of A. Our starting value problem is to find h such that sig (G-hi)=
(0, 0, n 1) while sig T- hi) (1, 0, n 1) or (0, 1, n 1).

This problem can be solved by exploiting the well-known Levinson-Durbin
algorithm"

ALGORITHM 3.1
Eo 1
For i=l to n-1

ki ti + ai_l,jtj El-1
j=l

Forj=l to i-1

aij ai_l,j d- kiai_l,i_
ai ki
E, E,_,(1 k2)

The ao satisfy the Yule-Walker (YW) systems

1 tl ti-1 I ail tlitl 1

ti L aii

for 1, , n 1. The quantities k and E are referred to as the ith partial correlation
coefficient and the ith prediction error respectively. (ki is also known as the ith reflection
coefficient.) See [G83] for a discussion of Algorithm 3.1.

In [C80] it is shown that if

I 1

al 1 0

L=[a.2 a2 1 ..
/
Lan-,n-

then

(3.1) LTLT" diag (1, El, En- )"

Since signature is preserved under congruence transformations by the Sylvester Law
of Inertia, all of the Ei are positive since T is positive definite.

However, if we apply Algorithm 3.1 to the normalized Toeplitz matrix (T-
hI)/(1-h) and if the algorithm runs to completion, then the number of negative E
that are generated equals the number of eigenvalues of T-hi that are negative, i.e.,
the number of T’s eigenvalues that are strictly less than h. The caveat "runs to
completion" must be added because it is possible for one of the Ei to be zero if
Algorithm 3.1 is applied to an indefinite T. Adapting the algorithm so that computes
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(3.1) for T := T- AI)/(1 A) gives

ALGORITHM 3.2.
i=0

Eo 1
Do While (Ei > 0 & < n 1)

i:= i+1

k,=- t,+ Y ajtj [(1-A)E,_I]
j=l

:= + ki

kai J
E, E,_,(1 k)

We have dropped the double subscripting of the a’s since we need only be in possession
of the most recent YW solution at any one time.

Note that if the loop terminates because n- 1, then we have

Iallltll"(G- A/)
an-1 tn-1

Recall that being able to solve this shifted YW system is critical to Algorithm 2.1, the
Newton iteration for f(A).

Equally important, the final value of in Algorithm 3.2 enables us to determine
the position of h with respect to ’min and A,_I(G):

(a) If i= n- 1 and E,_I > 0, then h < hmin.
(b) If n 1 and E,_ _-< 0, then hmi < h < An-l(G).
(c) If < n 1 then A,_(G) <_- h.

Hence, Algorithm 3.2 can be used in a bisection scheme to position h eventually in
the interval [Amin, An-(G)). Thereafter, it can be used to carry out the Newton iteration.
All we need is an initial interval [a,/3] with the property that

(3.2)

ALGORITHM 3.3.
Compute a and/3 satisfying (3.2) and let 8 > 0 be a given tolerance.
k=0

Do Until (Ih (k)__ h (k-l)[ 31, (k-1)[)
Apply Algorithm 3.2 with h h (k) to generate and al,"" ", ai.
k:=k+l
If (/<n-l)

then
/=x; x() (, +)/2

else
If (E,_ > 0)

then
a=a; X( (a +/3)/2

else
1 h + tla +. + t._la._

1+ a2+ + a2._,
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The last expression for h (k) above is the same as the h update expression in Algorithm
2.1 with y= 1, rT=(tl, t,_l) r and wr-(al, a,_l) r

There are several possible ways to choose the initial bracketing interval [a, fl].
For example, we could set [ a, fl [0, 1]. The choice for/3 follows from the inequality
,min eTel 1 where e (1, 0,..., 0) . There are, however, more refined ways to
get the initial interval:

Method 1. See [a, fl]=[0, 1--[tl[]. Since the smallest eigenvalue of

Tl=
tx 1

is given by 1-ltl [, we have from separation theory that
Method 2. Set [a, fl] [0, mini {1- [til}]. The reasoning is the same as for Method

1 with tl replaced by ti. Note that [1 ,] is a principal submatrix of T.ti

Method 3. Set [a, fl] [0, E._2(1-1k,_[)] where E,_2 and k,-1 are generated by
Algorithm 3.3 with Ao. To understand the choice for , consider the effect of replacing
t,-1 with ’,-1 t,-1 + e in Algorithm 3.3 and that we set h 0. Nothing changes except
during the last pass through the loop when we compute

j=l En-2

Note that if we choose e so that 1 -/2,_ 0, then the resulting/,_1 will be zero Thus,
a perturbation of size e transforms T into a singular matrix. It follows that A,(T)-<_ e.

The choice for fl is the smaller of the two e values that render/2,_1 1.
Method 4. Set

The value for a follows from the inequality

1 T-’ I1 -<,/ll T-1IIh.(T)

Hr, ll" IIoo dnots mximum ov sum. Th wl for follows from

1 1

h. T-----j > G-’ II => ,/, ll G-’II;.-1()

Th quantities T-’II nd o-llloo n b utd in O(.) operations nd
storage using the Trench algorithm [T64].. Alysis, disessio meriel exerimms. Another method for finding
Amen via the Levinson-Durbin algorithm is presented in [H80]. They propose solving
f(h) 0 (E,()= 0 in their notation) using a linear interpolation scheme. A key aspect
of our work and what distinguishes it from [H80] is the recognition that one can apply
Newton’s method using by-products from the Levinson-Durbin algorithm. In addition,
we have attempted to handle the problem of staing values more rigorously than [H80].

The impoance of only having to solve Yule-Walker systems should be stressed.
Methods based on inverse iteration, for example, require the solution ofgeneral Toeplitz
systems. This doubles the amount of work per step. Moreover, there currently exist
highly concurrent algorithms and VLSI architectures for solving Yule-Walker systems
in O(n) time. See [K83].
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The total amount of work required by Algorithm 3.3 is determined by the number
of YW systems that must be solved. The number Na of bisection steps is bounded
above by

N -< -log [a/(g )]+ 1.

Note that during this phase of the algorithm, calls to Algorithm 3.2 do not require a
full n- 1 steps so it is a little hard to quantify the overall work. As a function of n,
Nn appears to grow as log (n). A simple explanation of this is possible if we assume
that the eigenvalues of T are uniformly distributed. In this case, the distance A,_I(G)
/min is roughly 1/n2. Hence the worst case limit on Ns is proportional to log (n).

The number of Newton steps Nv tends to be around 5 or 6 based on our experience
with numerous examples a subset ofwhich we now describe. For each n 11, 21, , 91
we generated 25 random positive definite symmetric Toeplitz matrices. These matrices
had the form

T m WkT2.trOk
k=l

where n is the dimension, m is chosen so that T is normalized,

To tij) (cos (0(i-j))),

and the Wk and Ok are uniformly distributed random numbers taken from [0, 1]. It can
be shown that To is rank two, symmetric, semidefinite, and Toeplitz.

Table 1 summarizes the results of these experiments. Only initial interval Methods
1 and 3 were tabulated. Methods 2 and 4 were too similar in performance to Methods
1 and 3 for us to report. (Note" in recording the work associated with Method 3 the
single call to Algorithm 3.2 required to compute/3 is accounted for in the table.)

TABLE
Behavior ofAlgorithm 3.3 (3 10-6) based on 25 random examples per dimension.

Starting values Starting values
via Method via Method 3

Bisection Newton Bisection Newton
Order steps steps steps steps

11 4.8 5.0 5.7 4.8
21 8.5 5.7 4.8 5.4
31 9.7 5.3 6.6 5.0
41 10.0 4.6 6.7 5.2
51 11.7 5.8 8.1 5.5
61 12.1 5.0 9.2 5.3
71 12.0 5.3 9.2 5.2
81 13.6 5.4 9.8 5.0
91 11.6 5.0 8.4 5.7

The matrices were generated by a Fortran program and the eigenvalues Ami and
A,-I(G) were computed by the EISPACK routine RS [$76]. Although our generation
technique was guaranteed to generate at least a semi-definite matrix (definite with
probability one) rounding errors led to a generation of some isolated slightly indefinite
cases. Although indefinite matrices (due to finite arithmetic) ought to be expected in
practice, they provide no realistic test for our procedure. In fact, if we know that our
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data has significant bits (floating point), then more than calls to the bisection step
is useless. Given the quality of our data, after steps of bisection we must conclude
that the matrix is either not definite or that the condition IA,-(G)- Aminl < 2-t holds
and so to the precision of our data, A,(G) Ami This follows from standard eigenvalue
perturbation arguments [PS0].

While on the subject of small separations, it is interesting to point out that 1/d
measures the sensitivity or "condition" of Amin’S eigenvector Xmin. If this quantity is
large then small perturbations in T can induce large changes in Xmi (See [G83,
p. 271].) As we mentioned in the introduction, the computation of /min is frequently
just the first step in computing Xmin, the "real" quantity of interest. Thus, slow
convergence in Algorithm 3.3 goes hand in hand with ill-conditioning in the underlying
Xmi problem.

The actual procedure was implemented in C on a DEC-10. Computations were
done in the "double" data type. The tolerance 8 in Algorithm 3.3 was set to 10-6. The
Newton iteration terminated successfully on all strictly separated trials and gave six
significant digit agreement with EISPACK generated solutions.

Finally, we recommend Method 3 among the various procedures that we described
for obtaining an initial interval. However, it is conceivable that the simplicity of Method
1 might make it more appealing than Method 3 in real time processing situations with
elementary processors.
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SOLUTION OF SYSTEMS OF COMPLEX LINEAR EQUATIONS IN THE
NORM WITH CONSTRAINTS ON THE UNKNOWNS*

ROY L. STREIT%

Abstract. An algorithm for the numerical solution of general systems of complex linear equations in
the l, or Chebyshev, norm is presented. The objective is to find complex values for the unknowns so that
the maximum magnitude residual of the system is a minimum. The unknowns are required to satisfy certain
convex constraints; in particular, bounds on the magnitudes of the unknowns are imposed. In the algorithm
presented here, this problem is replaced by a linear program generated in such a way that the relative error
between its solution and a solution of the original problem can be estimated. The maximum relative error
can easily be made as small as desired by selecting an appropriate linear program. Order of magnitude
improvements in both computation time and computer storage requirements in an implementation of the
simplex algorithm to this linear program are presented. Three numerical examples are included, one of
which is a complex function approximation problem.

Key words, complex linear equations, Chebyshev solution, convex constraints, complex approximation,
semi-infinite programming, Ioo norm

1. Introduction. The numerical solution of general systems of complex linear
equations in the l, or Chebyshev, norm is a mathematical problem that arises in
several applications. The objective is to find complex values for the unknowns so that
the maximum magnitude residual of the system of equations is minimized. The
unknowns are not allowed to assume any complex value whatever; instead, they are
required to satisfy convex constraints of the form that can occur in the applications.

Let n, m, and r be positive integers. Let the matrices A .(-.nm, B Cnr, and the
row vectorsf Cm, g C r, a C", d R", and c R be given. The vector of unknowns,
z C ", is also taken to be a row vector. (Row instead of column vectors are used for
notational convenience in 2.) The problem is stated as follows.

Problem.

(1) min zA -fllzeC

subject to:

(2) Iz-al<-_d,

(3) Izn-gl<=c,

where the Chebyshev norm I1" I1 of a vector is the maximum modulus of its components,
and where the modulus I. of a vector is defined to be the vector consisting of the
modulii of its components. The simple constraints (2) are essential to the solution
algorithm presented in this paper, but the more general constraints (3) are optional.

It is assumed that c > 0 and d > 0. Zero components of c and d are equivalent to
equality constraints of the form zH e. If H has rank q-<_ n, then q of the unknowns
can be solved for explicitly in terms of the remaining unknowns and substituted out
of the problem. The reduced problem has n-q unknowns and the same mathematical
form as (1)-(3).

In this paper the problem (1)-(3) is replaced by a discretized problem. The
discretized problem is a linear program which is generated in such a way that the

* Received by the editors July 5, 1983, and in revised form October 1, 1984. This work was supported
by the Office of Naval Research Project RR014-07-01 and by the Independent Research Program of the
Naval Underwater Systems Center. This paper was written during the author’s stay as a visiting scholar in
the Department of Operations Research, Stanford University, Stanford, CA 94305.

% Naval Underwater Systems Center, New London, Connecticut 06320.
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relative error between its solution and a solution ofthe problem (1)-(3) can be estimated
without knowing the solution of either. Furthermore, the maximum relative error can
easily be made as small as desired by selecting an appropriate discretized problem.
See Theorem 1 below.

The starting point for the discretized problem is the following simple observation.
Let u be a complex number whose real and imaginary parts are u R and u, respectively.
It is easy to show that

(4) lul max (u cos 0+ u’ sin 0).
0_<--0<27r

Let p be a positive integer, and let D {01, , Op} be a subset of the interval [0, 27r).
The discretized absolute value is defined by

(5) lulo max (u R cos O+u sin 0).
OD

Although the set D can be arbitrary, it is convenient to assume that D consists of the
pth roots of unity, that is,

(6) Ok (k- 1)27r/p, k 1, 2,..., p,

and to assume that p 2K, K-> 2. It follows that

(7) lulo lul lulo sec (r/p).

No other choice of D can give a tighter upper bound in (7). The requirement that p
be a power of2 facilitates computational efficiencies in solving the optimization problem
(5) and is discussed in 2. With these two assumptions, a relative accuracy of 5
significant digits in (7) requires that p-> 1024. Other properties of the discretized
absolute value are given in [13].

The discretized version of (1)-(3) is developed by first transforming it into an
optimization problem and then replacing all absolute values with discretized absolute
values. The discretized problem can be written in the following manner.

Discretized problem.

(8)
subject to:

(9)

(10) IzBj gjlo <- c, j 1,..., r,

where A and B denote the jth columns of the matrices A and B, respectively. It is
shown in 2 that the discretized problem is a linear program in 2n + 1 unknowns with
(rn + n + r)p inequalities. This linear program cannot be assumed to be sparse since
the matrices A and B are completely dense in many applications.

The discretized problem is most easily solved by solving its dual. The revised
simplex method applied in a straightforward manner to the dual problem requires
O((rn + n + r) np) storage locations and O((rn + r) np) multiplications per simplex iter-
ation. It is shown in this paper that the factor of p can be eliminated from these
estimates by successfully exploiting the special structure of the dual. These economies
leave unaltered the sequence of basic feasible solutions (vertices) which the simplex
method generates enroute to the solution of the dual. Thus the impact of the parameter
p is limited to its effect on the total number of simplex iterations required to reach
the solution. As will be seen, p affects the number of columns in the dual constraints



134 ROY L. STREIT

and not the number of rows, so the growth of total computational effort as a function
of p is not great.

A Fortran program for solving the discretized problem has been written and
documented 11]. This program does not implement all of the economies which are
possible because of practical considerations discussed in 2. The program as written
requires O( m + r) n + O(p storage locations and O( m + r) n + O( rn + n + r) log2 p)
multiplications per simplex iteration. Also, for reasons stated in 3, the solution of
the discretized problem for large values of p is approached via smaller values of p.
The discretized problem for p 4 is first solved and its solution used as an advanced
start for the p -8 discretized problem. The program continues doubling p at each stage
until a specified value is attained. This program is practical for modest values of m, n,
and r for large values of p.

The following theorem proves that a solution of the discretized problem is an
approximate solution of the original problem. It also proves that the maximum relative
error in this approximate solution can be made as small as desired by appropriate
choice of p. Similar results for the unconstrained problem are given in [12], [13], and
[9].

THEOREM 1. Let z* C" solve problem (1)-(3), and let e** R and z** C solve
the discretized problem (8)-(11). Then

e** <-IIz*A-fl[ <-_ IIz**A -fllo--< e** sec r/p)(12)

(13)

(14)

Iz**B-gl<-c sec (Tr/p),

Iz**- a =< d sec (’rr/p).

Proof. Since [z*-ajlo <--dj for each j, it follows from (7) that

Iz *- a lo sec (Trip)<= d. sec (’n’/p).

This proves (14), and (13) is proved the same way. The following sequence of
inequalities establishes (12)"

E

<= max lz*A f[o
=< max Iz*Aj -fj[ IIz*A-flloo

**< max Iz A-fl Ilz**A-fll
<_-max Iz**mj-f lo see

e** sec (zr/p)

where the max in all cases is over j 1,..., m. This concludes the proof.
There is one hazard in replacing the original problem with the discretized problem.

The constraints ofthe discretized problem have a larger feasible region than the original
constraints, so it is possible that the discretized problem has solutions when the original
problem is infeasible. The feasible region of the original problem is approximated
more and more closely as p is increased, so the discretized problem ultimately fails to
have a solution for sufficiently large p when the original problem is infeasible. If the
Original problem is in some sense "nearly" feasible, but in reality is infeasible, the
discretized problem may possess solutions for very large values of p. Thus one may
be deceived in certain problems. An alternative viewpoint is that any false solution
obtained in this manner to infeasible problems actually represents a "reasonable"
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solution to a poorly defined problem. Whether or not this view is sensible depends on
the application. An example is given in 5.

The problem (1)-(3) has a mathematically straightforward solution when all the
quantities are real valued instead of complex. The real valued problem is exactly
equivalent to a linear program in n + 1 variables with 2(m + n + r) inequality constraints
and can therefore be solved in a finite number of steps. The complex valued problem
is less simple. Eliminating complex arithmetic by substituting in the real and imaginary
parts of all complex quantities yields, after squaring the constraints, a mathematical
programming problem in 2n+ 1 variables having a linear objective function and
m + n + r quadratic constraints. No method is available for solving problems of this
kind in a finite number of steps. Since it is a convex programming problem and the
functions involved have easily obtained derivatives of all orders, many different
algorithms are potentially applicable for its approximate solution. The only reference
[14] known to the author which explicitly studies the constrained complex problem
(1)-(3) uses a feasible directions method. At each step, a linear program is solved to
determine the steepest feasible descent direction, a line search determines the step
length, and special precautions are taken to prevent zigzagging, or jamming. A conver-
gence proof is supplied.

The problem (1)-(3) can be viewed as a semiinfinite program (SIP). The SIP
formulation of the unconstrained problem, that is, the problem consisting of only the
objective function (1), has been studied elsewhere [12], [13], [4] in the context of
complex function approximation and it is not difficult to extend that formulation to
the constrained problem (1)-(3). None of these references, however, show that the
special structure of the discretized problem can be used to significantly reduce the
computational effort in its solution. Theorems 3, 4 and 5 of the next section are also
new and are unique to the complex valued problem. The relationship between SIP
and real valued approximation is presented in [3].

2. Solution of the diseretized lroblem. An algorithm for solving the discretized
problem for fixed p is discussed in this section. Attention is directed to special structures

of the discretized problem which permit order of magnitude reductions in both storage
requirements and multiplications per simplex iteration. Several useful theoretical results
are interspersed.

It is first established that the discretized problem (8)-(11) is a linear program.
Denote the real and imaginary parts of any quantity u by uR and u, respectively,
whether u be a number, a row or column vector, or a matrix. By definition (5),

(15) IzA-fjlo-max [(zAj-f)R cos O+(zAj-f)’ sin 0]
8eD

so tile rn inequalities (9) are equivalent to the system of mp inequalities

(16) (zA-f) cos O+(zA-f)’ sin O<=e, 0D, j= 1,..., m.

Since

(zaj-fj)R= za z +
it is convenient to write (16) in the form

AIARCsO+A’sinO01(17) [zze] R sin O-At cos =<[f cos O+ft sin 0], 0 D,
--lm

where 1,, R is a row vector whose components all equal one. The inequalities (10)
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and (11) are treated similarly, so the discretized problem is a linear program in 2n / 1
variables and (m / n / r)p inequalities. The linear program can be written explicitly
as follows.

Primal problem.

(18) min [zR
[zRzIe]ER

subject to" e ->_ 0 and, for each 0 D,

(19)

[ZR Z

z e][0, 0, 1] r

AR cos 0 + A sin 0 BR cos 0 + B sin 0 I cos 01
e] AR sin 0-A cos 0 BR sin 0-B cos 0 I sin 0

-1,, 0r 0,

<_ [fR COS 0 +ft sin 0 c / gR COS 0 / g sin 0 d + aR cos 0 / a sin 0],

where I denotes the n n identity matrix and Ok denotes a zero row (or column,
depending on context) of length k-> 1.

The primal problem is solved by solving its dual using the revised simplex method.
The simplex (Lagrange) multipliers for an optimal basic solution of the dual solve the
primal, assuming the primal to be feasible. The dual can be written in one of the
standard linear programming formats by explicitly adding a slack variable, denoted
Q, which arises naturally in this problem.

Dual problem.

P f(fR COS 0k /f’ sin Ok)Sk 1
(20) min + (c + gR COS Ok + g sin Ok)

WkITkSER",TR rpwR.p,(2R k=l + (d + a
g
cos 0k + a sin Ok)

subject to" S ->_ 0, T >_- 0, W >_- 0, Q >_- 0, and

(21)

AR sin Ok --A cos Ok BR sin 0k --B cos 0k I sin Tk + Q O,
k= Im Or O. Wk 1

An alternative statement of the dual is given at the end of this section.
The slack variable Q plays a special role, as seen in the next result.
THEOREM 2. Let the matrices S** >- 0, W** _>- 0, T** >_- 0, and the real number

Q**>=O denote an optimal basic feasible solution of the dual problem (20)-(21). If
Q**> 0, then the optimal value of the objective function in the primal problem (18)-(19)
is zero.

Proof. Let [z**R z**e**] R2"+ denote the simplex multipliers of the optimal
basic solution S**, W**, T**, Q**. Applying the complementary slackness theorem
[8, p. 77], Q** > 0 implies e** 0 as claimed.

Except for the slack variable Q, every basic variable of the dual is uniquely
identified by specifying the matrix to which it belongs together with its location (row
and column number) in this matrix. The matrix names S, T, and W correspond to the
inequality systems (9), (10), and (11), respectively. The row number of a basic variable
identifies the particular constraint which gives rise to it. For example, all the dual
variables in row q of matrix T are eliminated from the dual problem if the qth inequality
in (10) is deleted from the discretized problem. Similarly, the column number of a
basic variable identifies the angle in the set D to which it corresponds.
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The revised simplex algorithm, as applied to the dual, is defined in general terms
as follows:

Step 1. Determine an initial basic feasible solution of the dual problem.
Step 2. Compute the simplex multipliers corresponding to the current basic feas-

ible solution.
Step 3. Determine the incoming variable by selecting the variable having the most

negative reduced cost coefficient; terminate if all reduced cost coefficients
are nonnegative--the primal problem is solved by the current simplex
multipliers.

Step 4. Compute the column of the incoming variable in terms of the current basis.
Step 5. Determine the outgoing basic variable by a ratio test; terminate if the dual

objective function is unbounded below--the primal problem is infeasible.
Step 6. Update the basis inverse and current basic feasible solution by pivoting,

and return to Step 2.

The special structure of the dual problem has its strongest influence on Steps 1, 3, and
4. These effects are outlined next. More detailed aspects of the algorithm are postponed
to 4.

The dual problem is already in canonical form for initiating the second phase of
the simplex algorithm. In other words, Step 1 is trivial because an identity matrix of
order 2n / 1 can be assembled from the columns of the coefficient matrix of (21). One
readily available column is the column corresponding to the slack variable Q. The
remaining 2n columns correspond to dual variables which are the components of two
particular W columns. From (6), 01 0 so that cos 01 1 and sin 01 0. Hence one of
the W columns can be taken to be W1. Similarly, the other is Wl+p/4 since O+p/, 7r/2.
The initial basic feasible solution is therefore

(22) W Wl+p/4 On, Q 1.

The simplex multipliers corresponding to (22) are derived in a special way later in
this section.

The initial basic feasible solution (22) is highly degenerate. As discussed in [2],
it is in problems of this general kind that cycling in the simplex algorithm is occasionally
observed in practice. Such cycling was observed in an example given in this paper.
However, a modification of the tie-breaking rule in the ratio test for the outgoing basic
variable, together with "preferential treatment" of certain incoming variables, seems
to avoid the difficulty. Further discussion of cycling in the dual problem is postponed
to 4.

The cost coefficients and the columns of any dual variable can be found by
inspecting (20)-(21). They are given in a complex arithmetic format in Table 1.
Explicitly computing and storing all (m + n + r)p columns of the dual problem is
unnecessary (and impractical) since the column of any dual variable can be constructed
directly from the matrices A and B. Not counting the necessary sine and cosine, this
requires only n complex multiplications and reduces the storage from (2n+ 1)
(m + n + r)p words to only 2n(m + n+ r) words. The columns of the dual variables

Wk are merely columns of the identity matrix/, which need not be explicitly stored.
Therefore the total storage necessary for constructing the column of any dual variable
is only 2n(m + r) words. In practice, it is convenient to compute the cosines and sines
once and for all to reduce the computational overhead. If this is done, as it is in [ 11 ],
the storage requirements are 2n(m + r) + 2p.
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TABLE
Dual variable cost coefficients and columns in complex format.

dual variable cost coefficient column, in R

Sjk (fje-ik)R

Tk cj + gj e-’)
Wjk dj + aj e-’

[(Aje-’) -(Aje-iO’ 1]T

[(Bje-’) --(Bje-ik) 0]T

[(Ije-i)a -(/e-’) 0]T

An efficient method of computing the smallest reduced cost coefficient in Step 3
ofthe revised simplex algorithm is now discussed. This method is particularly interesting
because the columns of the dual variables are not explicitly needed. The only data
required are the original complex matrices A and B and the sines and cosines of the
angles in D. Let A be any real row vector of simplex multipliers for the dual problem;
thus, A is of length 2n + 1. The vector A defines a complex row vector z C and a
real number e by the identification

(23) A [zR zx -e] R2"+.

The reduced cost of the dual variable Sjk is the cost coefficient of Sjk minus the product
of A with the column of Sk. Using (23) and Table 1 gives

(24)
C (f e-’)-[z z’ -e][(A e-’)a

e- [(zA -f) e-ik],a,
-(A e-’k) 1] 7‘

so the minimum reduced cost coefficient of the p variables in row j of S is

(25) Cs min C e-IzA-flo, j 1, 2,..’, m.
lk<=p

The smallest reduced cost coefficient of all the dual variables of S is then

(26) Cs min C= e-max
l<jm

Similarly, the minimum reduced cost coefficients over all the dual variables of T and
W are

(27)

and

(28)

CT min (c zBj g:lo)
<-j<=

Cw min (4 -Iz alo),

respectively. The smallest reduced cost of all the variables of the dual problem is
min { Cs, Cw,

The smallest of the three quantities Cs, Cw, and Cv and the index j for which
the minimum value is attained determine the row number and the correct matrix name
of the incoming dual variable. The column number is determined by the angle Ok D
giving the largest projection (i.e., the discretized absolute value) at the minimal index
j. The angle Ok may not be unique because of possible ties in (5), so a tie-breaking
rule called the minimal clockwise index (MCI) rule is used to determine unambiguously
the incoming dual variable.

The MCI rule is defined for all u C. Let uo be the set of those angles 0 D for
which the maximum in (5) is attained. There are three cases. First, if uo has precisely
one element, the MCI of u is defined to be the index of that element. Second, if uo
has precisely two elements, say Ok and 0, and neither k or j equals p, then the MCI
of u is defined to be min {k,j}; on the other hand, if either k =p or j p, then the
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MCI of u is taken to be p. Third, if uo has more than two elements, then it must be
that u 0 and uo D, so the MCI of u is defined to be 1.

The computation of the discretized absolute value and corresponding MCI must
be undertaken for m+n+ r complex numbers to compute (26)-(28) during each
iteration of the simplex algorithm in Step 3. A brute force approach using the definition
(5) requires 2p real multiplications for each complex number. Such an approach is
inefficient and does not exploit the special form of the set D. For p 4, it is clear that
comparison tests alone suffice to solve this subproblem. For p _-> 8, comparison tests
and at most 2 log2 p- 5 real multiplications are sufficient. To see this, first determine
the quadrant of the complex plane in which the given number lies, and determine
whether it lies above or below the 45 line bisecting the quadrant. This can be done
using comparison tests only. Now that the "half-quadrant" in which the number lies
is known, its projections onto the bounding rays of this half-quadrant can be computed
in this special case using only one multiplication. If p 8, a final comparison test ends
the problem. If p >_-16, then the larger of the two projections reveals the "quarter-
quadrant" in which the number must lie. The projection onto one of the bounding
rays of this quarter-quadrant is already known; so it is only necessary to compute the
projection onto the other bounding ray. This requires 2 real multiplications. If p- 16,
a final comparison test ends the problem. If p >-32, we continue as before. Counting
the total possible number of steps proves the claim. This bisection method works
because of the special form of the set D.

In principle the discretized absolute value and corresponding MCI can be found
with computational effort independent ofp. The argument (phase) ofthe given complex
number can be computed, essentially as an inverse tangent, and from it the MCI can
be found using comparison tests. Whenever the inverse tangent computation requires
fewer than 2 log2 p- 5 multiplications, it is more efficient than the bisection method
described above. For p _-< 1024 the bisection method is more efficient, and it is used in
[11].

The number ofreal multiplications required to complete Step 3 using these methods
is significantly less than that required in the usual approach. The straightforward
method requires the computation of (m + n / r)p -(2n + 1) real inner products oflength
2n. Taking account of the simple form of the W columns gives a total of approximately

(29) (2p 4)[n(m + r)+ 1] +4n(m + r- n 1/2)

real multiplications. The special methods discussed above require m / n / r complex
inner products of length n followed by the computation of the discretized absolute
value and corresponding MCI for each inner product. Counting one complex multipli-
cation as four real multiplications and considering the special form of the W columns
gives a total of

(30) 4n(m+r)+(m+ n+ r)No

real multiplications, where No is the number of multiplications needed to compute
one discretized absolute value and corresponding MCI. If the inverse tangent method
is used, No is a constant independent of p. If the bisection method is used No
2 log2 p- 5 for p >-8, No 0 for p 4. The special methods are clearly better when
p-> 4 and m > n. In the derivation of both (29) and (30) it was assumed that the last
row of (21) in the dual problem was specially treated to avoid multiplications by 1
and 0.

The simplex multipliers A()e R2n+1 corresponding to the initial basic feasible
solution (22) are now derived. Multiplying the initial basis inverse on the left by the
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row vector containing the cost coefficients of the initial basic variables gives the row
vector A (o). The initial basis inverse is the identity matrix, the cost coefficients of the
basic W variables (22) are given in Table 1, and the cost coefficient of the slack variable
0 is 0. Consequently,

A()=[d+(a)R d+(-ia)R O]=[d+aR d+a 0]R2"+1.

The definition (23) thus gives

(31) z)= a + d eir/4/-, e (o) O.

From the proof of Theorem 2 it can be seen that e 0 for as long as the slack variable
remains in the basis and is positive.

The matrices $, W, and T are sparse because basic feasible solutions of the dual
consist of only 2n + 1 nonnegative variables. Furthermore, no row of S, W, and T can
contain more than two basic variables as the next theorem shows.

THEOREM 3. No basic feasible solution of the dual problem (20)-(21) can have
more than two basic variables in any one row of W or T. If a basic feasible solution of
the dual problem has corresponding simplex multipliers with e > O, then S cannot have
more than two basic variables in any one row.

Proof. The first statement is proved for the matrix T; the proof for W is a special
case. Consider the jth row of T. Suppose a basic feasible solution has three basic
variables T,, T, and Tv with a,/3, and y being distinct. Then the reduced costs for
all three variables must be zero. A result analogous to (24) was used to prove (27);
using it here gives

(32) C=0= cj-[(zBj-gj) e-’q]R, q= a,/3, 7.

Thus the single complex number zBj-g has the same projection, namely c, in three
distinct directions. This is impossible unless zB-g =cj 0, in contradiction to the
assumption that c > 0. This establishes the first statement. The second statement is
proved in the same way, by using (24) itself.

The following theorem relates knowledge of an optimal basis of the dual to
"observable" quantities in the primal problem. The results of the theorem depend on
the names, but not the actual numerical values, of the optimal dual basis. In addition
it seems to indicate that the upper bound (12) in Theorem 1 will often be attained in
practice.

THEOREM 4. Let e** R and z** C" denote the simplex multipliers in the form
(23) ofan optimal basis for the dual problem (20)-(21), and suppose that e**> 0. If the
jth row of one of the matrices S, W, or T contains two optimal basic variables in columns
a and fl with p >- > fl >= l, then either a l or a fl p -1. If a fl l, then

(33)

or

(34)

or

(35)

z**A-f e** sec (,trip) exp [i(2fl 1)Tr/p],

z**Bj-g c. sec (,n’/p) exp i(2/3 1)r/p],

z*-a= 4 sec (r/p) exp [i(2/3-1)r/p],

according to whether the jth row is a row of S, T, or W, respectively. Replacing with p
in (33)-(35) gives the equations corresponding to the alternative case a- =p-1.

Proof. Only the S matrix case is treated since the other two cases are similar. The
two basic variables involved are S,, and Sjt. Assume that p -> a >/3 >-_ 1. The reduced
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costs Cs and Cff must be 0, so (24) gives the two equations

(36) e** [(z**Aj -f) e-i]R, e** [(z**Aj -f) e-%]R.
Any complex number having identical projections in two directions is uniquely defined
in both magnitude and phase. If 0 differs from 08 by 7r radians, the system (36)
implies that e**=0, contrary to assumption. Thus (36) implies that z**A-f=
e**sec(b/2)>0, where b=min{0-0,27r-0+0}. By Theorem 1, cb=Tr/p, so
that either 0,, 08 r/p or 0,, 08 7r(2p 1)/p. From (6), either a fl 1 or a fl
p 1. For a -/3 1, solving the system (36) for the phase of z**A -f gives (33). The
case a-/3 =p- 1 is handled in the same way. This completes the proof.

Theorem 4 is useful in practice. Computed optimal dual solutions can be inspected
to verify that optimal basic variables occurring in the same row are in fact "paired"
in the manner described. If they are not, then numerical round-off errors have adversely
affected the computed solution.

THEOREM 5. Let e** and z** be as in Theorem 4. If the jth row of one of the
matrices S, W, or T contains an optimal basic variable in column or, 1 <-a <= p, then

e**<=lz**A-fl<-_e** sec r/p, O,-Tr/p<-_arg (z**A-f)<-O+Tr/p,
or

or

c <= Iz**Bj gl <- c sec r/p, O 7rip <- arg (z**Bj gj) <- O + Trip,

dj -<_ Izf* al _-< d sec Trip, O r/p <-_ arg (z* aj) <= O + Trip,

according to whether the jth row is a row of S, T, or W, respectively.
Proof. The proof is closely related to the method of proof of Theorem 4 and is

not presented.
This section is concluded with a concise statement of the dual problem using

complex arithmetic notation.
Dual problem: complex format.

p

min[(fS+gT+aW) e-’]R+ , (CT+DW)
S,T j=l
W,Q

subject to" S ->_ O, T_-> O, W_-> O, Q >_- O, and

p

AS+ BT+ W) e-’ O Cn, Q + Y. Sk l.
j=l k=l

We have used e- to denote a complex column vector oflength n whose kth component
is exp (--iOk); other notation is unchanged from (20)-(21).

3. Solution of the discretized problem for large p. One reason to solve large p
discretized problems is that applications requiring 5 or more significant digits of relative
accuracy in the optimal value of the objective function and/or in constraint satisfaction
need to take p >= 1024; see Theorem 1. Another reason to solve large p problems is
that their solutions furnish starting points for other methods which potentially provide
greater accuracy. For instance, the problem (1)-(3) can be rewritten as a semiinfinite
program, or SIP, and an interesting algorithm [5], [6] for solving a class of SIP’s can
be utilized. This method sets up an appropriate nonlinear system of algebraic equations
which are solved using the Newton-Raphson method (or other iterative method); a
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feasible solution of the nonlinear system is a solution of the SIP. The starting point
of the Newton-Raphson iteration is taken to be the solution of a discretized problem.
Large p discretized problems will have to be solved whenever very good starting points
are needed to ensure convergence of the Newton-Raphson iteration.

There is, however, a practical limit to how large p may be taken in many problems.
A discretized problem is numerically unstable for sufficiently large p if its optimal
solution has, for every p, two basic dual variables in at least one row or S, W, or T.
The columns of two such basic dual variables are less distinguishable numerically as
p increases (see Table 1). Consequently, the basis matrix is more ill-conditioned for
large p. Only those problems which never, for any p, have more than one optimal basic
variable per row of S, W, or T can escape numerical ill-conditioning from this cause.
Such problems seem to be uncommon.

The algorithm we suggest for solving the discretized problem for large p begins
by solving the smallest dual problem, that is, the dual problem with p- 4. Next, the
p 8 dual problem is solved using the optimal basis for the p- 4 dual to start the
simplex algorithm. The p 16 dual is then solved starting at the optimal basis for the
p- 8 dual, and so forth. The algorithm is always well-defined because basic feasible
dual solutions for a given p are also basic feasible dual solutions for all larger values
of p because the sets D are nested for p -4, 8, 16, 32, . By doubling p at each stage
beginning with p- 4, this algorithm avoids bases associated with numerical instability
from the discretization process until p becomes very large. Difficulties caused by
ill-conditioning in the complex equations themselves cannot, of course, be avoided.

One advantage of this algorithm is that the optimal basis for each intermediate
value of p can be easily inspected using Theorems 4 and 5 to determine if numerical
round-off errors are significant. If sufficient error is present, the algorithm can be
terminated early, or alternatively, the basis can be reinverted before continuing to the
next value of p.

The primary drawback of the algorithm is that more simplex iterations are usually
required to reach the final optimal dual basis by proceeding via smaller values of p
than by solving the full dual problem all at once. This difficulty does not seem to be
significant in practice and, in any event, can be partially overcome by skipping more
rapidly through the available values of p. It is also possible to begin the algorithm
with a larger initial value of p; that is, p > 4.

Optimal solutions of the primal discretized problem converge only linearly with
increasing p, while the optimal values e** converge quadratically. It would be useful
to be able to extrapolate the primal solutions to obtain a better solution of the original
problem (1)-(3). Richardson extrapolation (see, e.g., [7], [10]) worked very well for
Examples 1-3 in 5 for sufficiently large p, but failed in other problems. It is apparently
successful only when (a) the row numbers of the optimal dual basic variables of the
discretized problems identify the optimal active constraints of the original problem,
and (b) the optimal values of the discretized problems equal the optimum value of
the original problem. The first requirement can be met by taking p sufficiently large.
The second requirement imposes more severe limitations on the practical utility of
Richardson extrapolation.

4. Details of the revised simplex algorithm. Computer codes which treat complex
matrices and vectors by separating them into their real and imaginary parts cause
thrashing on virtual memory systems. Therefore the solution vector z of the primal
problem is best stored as a complex vector and the simplex multipliers reordered to
reflect the storage of z. The rows of the dual problem should also be reordered. The
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computer code therefore visualizes the dual problem rows in the following order: {1,
n + 1, 2, n + 2, , n 1, 2n 1, n, 2n, 2n + 1}. These numbers denote the row numbers
in the original system (21). The reordered system is much easier to work with in
FORTRAN than the original system. With the rows of the dual problem in this order
the reduced cost calculations can be coded in FORTRAN just as they are written in
(26)-(28), provided the initial data of the problem are typed COMPLEX.

The name of a dual variable is a triplet i/j/k of positive integers, where:

i= 1, 2, or 3 according to whether it is an S, W, or T variable,
j constraint number, from (9)-(11),
k- projection number of the angle in the set D, 1 <_-k _-< p.

The middle name j has different ranges depending on the value of the first name i.
These triplets are ordered lexicographically.

The most negative reduced cost determines the entering basic variable in the
simplex algorithm. Ties for the most negative reduced cost are broken by choosing the
variable with the least lexicographically ordered name. Because the highly degenerate
initial starting point (22) can cause cycling in the simplex algorithm, there is one
exception to the least name rule in case of ties for’the entering variable. As long as
the slack variable Q remains in the basis, the only entering variables permitted are S
variables with negative reduced costs. If S variables with negative reduced costs do
not exist, then the entering variable is permitted to be a W or a T variable and ties
are resolved by the least name rule. Thus, S variables are given priority for entering
the basis only for as long as the slack Q is in the basis. Once Q is removed from the
basis it never enters again, and exceptions to the tie breaking rule cease.

The outgoing basic variable is determined by the usual ratio test. If the least ratio
is attained by more than one variable, the variable having the largest magnitude pivot
leaves the basis. If more than one variable has the same magnitude pivot, then the
variable with least index is selected. Because of degeneracy and cycling, there is one
exception to this tie-breaking rule for the exiting variable. So long as the slack Q
remains in the basis, only W variables are permitted to exit. This rule makes sense
only when a W variable is involved in the tie; if no such W variable exists, the
exception is not invoked. If more than one W variable is involved in the tie, then the
one having the largest magnitude pivot with the least index is selected to exit. Just as
for the entering variable, this exception ceases once the slack Q leaves the basis.

Cycling in the simplex algorithm has not been observed with these modifications
to the usual tie breaking rules for entering and exiting variables. However, if these
modifications are not used, cycling may well occur. Example 3 of 5 below cycled
(with a cycle of length 19) without these modifications. It is possible that cycling in
this particular example is an artifact of finite precision arithmetic.

A nonzero tolerance is necessary when testing for the most negative reduced cost
and for possible divisors in the ratio test. This number must not be too small and it
must somehow be dependent on the scale of the problem data. The number used in
[11] is the product of the unit round-off error of the host computer with the sum of
the absolute values of the incoming column (i.e., its ll norm). This number is used for
both reduced cost and pivot tolerance tests.

Besides the usual termination criteria in the simplex algorithm, the pricing method
implicit in (26)-(28) yields a novel way to terminate the algorithm. The pricing method
computes the most negative reduced cost by indirectly examining all reduced costs,
not just the reduced costs of the nonbasic variables. Hence it can happen that the
entering and the exiting variables are identical because of numerical round-off errors.
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This event seems to signal that no further improvement in the solution is numerically
possible. Solutions returned by terminating the algorithm whenever this "self-cycling"
occurs appear to be satisfactory.

The Fortran code [11] was developed to test the methods described for solving
the dual problem. It holds an explicit basis inverse and performs pivoting to update
the inverse in each simplex iteration. Pivoting is known to be numerically unstable,
but easily programmed. To forestall numerical difficulties the inverse is held in double
precision, although a double precision inverse is not a satisfactory substitute for a

numerically stable technique. Updating the QR factorization of the basis is preferable.
Nonetheless the explicit inverse code gives good performance in many problems.

5. Examples. Example 1 is taken directly from [ 14, p. 249]. Let n 2, m 5, r 2,
and define the matrices

1 1 1
(37) A=-2 0 3

o=g=[0,0], c [x/, x/], d [10, 10],

f= [-1+ i, -l+i, .5i, 0, -l+i].

Only the vectorf is complex. The exact solution is zl (- 1 + i)/2, z2 0, and e x//2.
The constraints of type (2) are not part of the original problem given in [14]. They
have been added because their discretizations provide the initial dual basis.

Table 2 gives the solutions of the discretized primal problem for selected values
of p. The optimal value of e for p 8 is the optimal value of e for all p _>-8. For p _-> 8,
the accuracy of the primal solutions depends solely upon the discretization errors since
the optimal e does not change. Table 3 gives the optimal basic solutions of the dual
problems for the same values of p. The active constraints do not change for p _-> 8,
except for their 0 names. Hence the active constraints at the optimum of the original
nonlinear problem (1)-(3) have been identified. The fourth and fifth basic variables
are "paired" in an obvious way; this behavior is explained by Theorem 4.

All optimal dual solutions are degenerate, or very nearly so. It turns out that the
"degenerate parts" ofthe optimal dual solutions approximately doubled as p is doubled,
especially when p _-> 64. Assuming the trend continues indefinitely, the optimal dual
solution will eventually look nondegenerate. This trend is probably an artifact of the
numerical ill-conditioning inherent in the discretization process.

The conditions mentioned at the end of 3 for success using Richardson extrapola-
tion seem to be met for p >-8. Since convergence of the z vectors is linear, multiply
the p- 32 vector by two and subtract the p 16 vector to get

[ZlR, z z2R, z] [- 500964, .499036, .40 x 10-’, .36 x 10-1]1,

One step of this extrapolation gives values nearly as accurate as the values correspond-
ing to p 2048.

Numerical computations for this and the next two examples were performed on
a DEC 10. It has a double precision unit round-off error of approximately 2 10-19.

Example 1 can be made infeasible by adjoining one constraint of type (3). Replace
B, g, and c in (37) with

B=
2 -4 1

g=[0,0,7-4i], t=[/,x/,29/4].

The discretized primal problem is feasible for p--4 and 8; for p >-16, it is infeasible.
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TABLE 2
Solutions of the primal problem, Example 1.

4 8 16 32 2048

zz
z2
zz

-.588760 -.292893 -.400544 -.450754 -.499233
.588760 .707107 .599456 .549246 .500767
.59 10-1 -.82 10-9 -.28 10-9 -.12 10-9 -.15

-.59 x 10-1 -.82 10-9 -.12 10-9 -.78 10-10 -.15 10-ll

e .4112399 .7071068 .7071068 .7071068 .7071068
total iterations 10 14 17 20 38

TABLE 3
Solutions of the dual problem, Example 1.

4 8 16 32 2048

basis names

1/2/1 1/1/8 1/1/15 1/1/29 1/1/1793
1/2/4 1/2/1 1/2/16 1/2/30 1/2/1794
1/3/3 3/1/4 3/1/6 3/1/12 3/1/768
3/2/2 3/2/3 3/2/6 3/2/12 3/2/768
3/2/3 3/2/4 3/2/7 3/2/13 3/2/769

basis values

.714286 1.000000 1.000000 1.000000 1.000000

.000000 .50 10-*9 .66 10-*9 .11 10-*8 .58 10-*7

.285714 -.50 10-37 .91 10-*9 .24 10-*9 .19 x 10-iT

.000000 .11 10-*8 .22 10-18 .43 10-*8 .27 10-16

.214286 .500000 .500000 .500000 .500000

This illustrates the remark made in 1 that some discretized problems have feasible
solutions when the original problem is actually infeasible.

Example 2 is the same as Example 1, except that constraints of type (2) are
tightened so that they are active at the solution. Replace the vector d in (37) with

[.4, .4]. The exact solution of this problem is e x/-.4, zl (-1 + i)x/-/5, and

z 317(x/- 1) (431902 190320x/) 1/2

=-- --.208846903,
300 1200X/

z2R=____X/+ Z2--- --.093336568.
10

Tables 4 and 5 give, respectively, the solutions of the primal and dual discretized
problem for selected values of p. The obvious "pair" of basic variables in Table 5 is
explained by Theorem 4. The conditions for success using Richardson extrapolation
seem to be met for p >_-32. Extrapolation of the p 32 and p 64 vectors in Table 4
performed as in Example 1 gives

[ZlR, z, z2R, z2] [-.282776, .282911, -.092665, -.209334],

which is comparable to the values corresponding to p 2048.
Example 3 is taken from 12] and is an unconstrained complex function approxima-

tion problem; that is, constraints of type (2)-(3) are absent. The 101 columns of the
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TABLE 4
Solutions of the primal problem, Example 2.

4 8 16 32 64 2048

zR -.400000 -.345442 -.293794 -.310700 -.296738 -.283277
z .400000 .220244 .271891 .254985 .268948 .282409
z .153553 -.026274 -.076571 -.061857 -.077261 -.092805
z -.153553 -.243431 -.217608 -.214390 -.211862 -.208960

e .600000 1.014214 1.014214 1.014214 1.014214 1.014214
total iterations 7 11 13 16 18 33

TABLE 5
Solutions of the dual problem, Example 2.

4 8 16 32 64 2048

basis names

1/2/1 1/2/8 1/2/15 1/2/29 1/2/57 1/2/1793
1/2/4 1/3/6 1/3/12 1/3/22 1/3/43 1/3/1346
2/1/3 2/1/4 2/1/7 2/1/13 2/1/25 2/1/769
3/2/2 3/2/3 3/2/5 2/1/14 2/1/26 2/1/770
3/2/3 3/2/4 3/2/6 3/2/10 3/2/19 3/2/558

basis values

1. 1. 1. 1. 1. 1.
0. 0. 0. 0. 0. 0.
1. 1. 1. 1. 1. 1.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.

matrix A C3101 are

Aj=[1 exp(i(j-1)Tr/400) exp(iE(j-1)Tr/400)] T, j=1,2,...,101,

while the components of fs C11 are f-exp (i3(j-1)7r/400), j- 1,2,..., 101. In
other words, the complex valued function e lax is approximated by complex linear
combinations of the three functions 1, e ix, and ei2x over 101 equispaced points on the
x-interval [0, 7r/4]. Bounds of type (2) must be specified, so we take a--[0, 0, 0],
d -[ 10, 10, 10]. These constraints are not active at the optimal solution.

It can be verified that the exact solution of Example 3 is zl-c1 exp (i3r/8),
z2 a2 exp (i5r/4), z3 a3 exp (ir/8), where

a a .96157056080646,

a2 b-2(b- a2)/(1 a2) 2.8122548927058,

a3 a( 1 2b + a2)/ 1 a2) 2.8477590650226,

a A cos (rr/16)+ (l-A) cos (7r/8),

b= A cos (7r/8)+ (1-A) cos (7r/4),

c= X cos (37r/16)+ (1- A) cos (3r/8),

A =sin (r/8)/(sin (r/16) + sin (r/8)),

e (1 ca + ba2 a03) 1/2 .014706309694449.
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Tables 6 and 7 give, respectively, the solutions of the primal and dual discretized
problems for selected values of p. The obvious "pairing" of the basic variables in Table
7 is explained by Theorem 4. Note also that the row numbers of the optimal dual basic
variables are different for p 1024 and p 64 (probably because the dual does not
have a unique solution). Nonetheless, Richardson extrapolation works when applied
to the cases p 32 and p =64. As in the previous two examples, one extrapolation
step gives

[zR, Zl, Z, Z2, Z3R, Z] [.367954, .888319, --1.988481, --1.988481, 2.630930, 1.089767]

which, in turn, gives the values 31 .96151, O2 2.81214, O 2.84770. The case p 1024
used directly gives the values al .96236, a2 --2.81376, O ---2.84855, which are clearly
inferior to the extrapolated values.

TABLE 6
Solutions of the primal problem, Example 3.

p 8 16 32 64 1024

z .378265 .377950 .377718 .372836 .368281

z .913212 .912452 .911891 .900105 .889108

z -2.026895 -2.024346 -2.022845 -2.005663 -1.989632

z -2.026895 -2.024346 -2.022845 -2.005663 -1.989632

z 2.654494 2.654624 2.654502 2.642716 2.631719

z 1.099528 1.099581 1.099531 1.094649 1.090094

e .0141560 .0145244 .0147063 .0147063 .0147063
totaliterations 20 25 33 36 48

TABLE 7
Solutions of the dual problem, Example 3.

p 8 16 32 64 1024

basis names

1/1/8 1/1/14 1/1/28 1/1/56 1/1/896
1/25/4 1/1/15 1/1/29 1/1/57 1/1/897
1/28/5 1/26/7 1/26/13 1/26/26 1/26/417
1/74/8 1/27/8 1/26/14 1/26/27 1/76/993
1/77/1 1/75/16 1/76/32 1/76/63 1/76/994
1/101/5 1/76/1 1/101/17 1/101/33 1/101/513
1/101/6 1/101/9 1/101/18 1/101/34 1/101/514

basis values

.163234 .004365 .000000 .000000 .000000

.244029 .160548 .168829 .168829 .168829

.091325 .170912 .000000 .000000 .331171

.070677 .164573 .331171 .331171 .331170

.263126 .173184 .331171 .331171 .000000

.157491 .162060 .168829 .168829 .168829

.010118 .164358 .000000 .000000 .000000

Another unconstrained complex function approximation problem in [ 12] is moder-
ately large and completely dense. The motivating background and engineering applica-
tion of this problem are fully discussed in [12]. The 501 columns of the matrix
A C44501 are

Aj=[exp (iklXj) exp (ikEX) exp (ik44x)] "
-exp(ik45x)[1 1 1] , j=1,2,...,501



148 ROY L. STREIT

where 1 kl < ka <" < k44 < k45-- 49 are the distinct integers between 1 and 49,
excluding the integers 7,17,21, and 29, and where xj=uo+(j-1)(1-Uo)/250, j=
1,2,...,501 with Uo=.0538117. The components of fC5 are f=exp(ik45xj),
j 1,. ., 501. This example lacks constraints of type (2)-(3). The discretized problem
for p 16 was solved on a DEC VAX 11/780 in 1350 simplex iterations. Total CPU
time was 25 minutes and .7 million page faults were incurred. Only 80,000 words of
storage were needed. In contrast, the algorithm proposed in [12] (which utilizes the
algorithm 1] as a subroutine) solved this problem on the same YAX in 1270 simplex
iterations, requiring 179 minutes of CPU time and incurring 11 million page faults.
Over 360,000 words of storage were needed. The difference in the number of simplex
iterations is explained as follows. The algorithm 12] solves the full problem for p 16,
while the algorithm developed in this paper solves the p- 4 problem and the p 8
problem before solving the p- 16 problem. This indirect route to the full problem
solution is less efficient in this example than solving the p 16 problem immediately.

6. Concluding remarks. A solution of the discretized problem for sufficiently large
p identifies the constraints active at a solution of the original problem (1)-(3). Deleting
inactive constraints from the original problem yields an equality constrained nonlinear
optimization problem. Lagrange’s method gives rise to a nonlinear system of algebraic
equations in the optimum value e, the solution vector z, and the multipliers h. Iterative
methods for the solution of this system can be started from an initial point (e, z, A)
provided by a discretized problem solution. Safeguarded Newton-Raphson iteration
may be highly effective for solving this system, especially if advantage is taken of the
system’s special form (i.e., for h given, the vector z can be found by solving a system
of linear equations). A possible limitation of this approach is that very large values of
p might be necessary in order to identify the right active set. The examples of the
previous section, however, indicate that the optimal active set is found for relatively
small values ofp. Specifically, in Examples 1, 2, and 3, the correct active sets (determined
from the optimal dual basis names in Tables 3, 5, and 7) first appear when p is 8, 8,
and 32, respectively.

Certain kinds of domain and range constraints can be adjoined to the discretized
problem (8)-(11) with only minor extension of the algorithm proposed here. Let the
matrix H Cnq, and the row vectors e e C, k Rq, and h Rq be given. Then the
constraints

(38) ((z/-/ ej) exp (-idp))) g _-< hi, j 1,.. -, q

are linear in zR and zI, and so can be added to the discretized problem. The constraints
(10) and (11) are instances of (38); however, (38) can impose constraints not possible
with (10) and (11). For instance, if q= 1, the constraint that the complex number
zHl-el must lie in the right half complex plane is equivalent to ((zH-et)
exp (--i’lr)) g O. Furthermore, if q >_- 1 and the columns H and e are identical to their
first columns, then the number zH e can be confined to any closed convex polygonal
region (bounded or unbounded) in the complex plane by appropriate choices of , h,
and q.

When complex function approximation on an arc or domain boundary in the
complex plane gives rise to the problem (1)-(3), then an implicit natural ordering of
the columns of the matrix A exists. The ordering is inherited from the ordering of the
discrete points along the arc, and it makes possible clever strategies of both multiple
and partial pricing which may significantly reduce overall computation time when m
and n are large. Effective partial pricing schemes require far fewer evaluations of the
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vector-matrix products zAj in (26) without significantly increasing the total number of
iterations. Effective multiple pricing schemes decrease the number of iterations by
increasing the change in e in each iteration. Both multiple and partial pricing can be
implemented simultaneously.

One particularly interesting problem is complex function approximation on the
mth roots of unity. When m -> n and when m is a power of 2, the fast Fourier transform
(FFT) algorithm can be used to compute the m products zAj in 2m log2 m operations.
The straightforward products zA require mn operations. Therefore, the FFT method
is more efficient whenever 2 log2 m _<- n _-< m.

It has been assumed throughout this paper that the unknown vector z must lie in
C n. In some applications it is necessary to restrict z to R", while still retaining complex
matrices A and B in original problem (1)-(3). Setting zX= 0 in the discretized problem
is equivalent to eliminating n of the 2n + 1 rows of the dual problem constraints (21).
The techniques developed for the dual problem simplify when applied to this modified
problem. Consequently the modified dual problem is smaller and easier to solve.
Examples and a Fortran program for this problem are given in 11].
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EFFICIENT ALGORITHMS FOR COMPUTING THE
CONDITION NUMBER OF A TRIDIAGONAL MATRIX*

NICHOLAS J. HIGHAM"

Abstract. Let A be a tridiagonal matrix of order n. We show that it is possible to compute
and hence condo (A), in O(n) operations. Several algorithms which perform this task are given and their
numerical properties are investigated.

If A is also positive definite then I[A-[[o can be computed as the norm of the solution to a positive
definite tridiagonal linear system whose coeffcient matrix is closely related to A. We show how this
computation can be carried out in parallel with the solution of a linear system Ax b. In particular we
describe some simple modifications to the LINPACK routine SPTSL which enable this routine to compute

condt (A), efficiently, in addition to solving Ax b.

Key words, matrix condition number, tridiagonal matrix, positive definite matrix, LINPACK

1. Introduction. Tridiagonal matrices

al cl 0

2 a2 C2

(1.1) A= b a3. ".. E

Cn-1
b,, a,,

arise in many areas of numerical analysis, such as spline analysis [5, p. 133], difference
methods for boundary value problems [9] and the numerical solution of linear second
order recurrence relations [2, pp. 14 ft.]. Since the nonzero elements of A occur only
within a band of width three, the cost of solving a tridiagonal system Ax- b using
Gaussian elimination with partial pivoting is O(n) flops, as opposed to the O(n3) flops
required when A is a full matrix [5, p. 166]. (See [15] for the definition of "flop".)

Let A be a square nonsingular matrix and I1" a matrix norm. When computing
solutions of linear systems Ax b one would usually like to know the condition number
of A,

cond (A) A m-’ II,
or at least an estimate, since this quantity measures the sensitivity of the true solution
to perturbations in the data A and b, and features in various bounds for the norm of
the error in the computed solution 17, pp. 192 ff.]. For the loo matrix norm, given for
A= (a) by

(1.2) Ilalloo-max Y, la,l,

or the l matrix norm, a 11 a Iloo, a is readily obtained whereas computation of
Ila-l} is more difficult.

Let A be a tridiagonal matrix of order n. One way of computing IIA-II(R) is first
to compute A-using, say, Gaussian elimination with partial pivotingand then to
calculate the norm. However, this computation requires O(n2) flops, which, for large
n, dominates the cost of solving Ax b. We show that IIm-ll may be computed in
O(n) flops; the methods used necessarily avoid explicit computation of the inverse.

* Received by the editors March 6, 1984. This work was carried out with the support of a SERC Research
Studentship.
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The following definition is required.
DEFINITION. The tridiagonal matrix A in (1.1) is irreducible if b2, b3," bn and

Cl, c2," ", cn-1 are all nonzero; otherwise it is reducible.
We remark that this definition is consistent with the more usual definition of

irreducibility which applies to a general square matrix 16, pp. 102, 104].
The algorithms to be derived in 4 apply to irreducible tridiagonal matrices. In

7 we suggest a simple way of dealing with a tridiagonal matrix which is reducible.
Sections 5 and 6 are concerned with the numerical properties of our algorithms

when implemented in floating-point arithmetic. The numerical stability of one of the
algorithms is demonstrated with the aid of a backward error analysis.

For the case where A is positive definite we derive, in 8, an alternative and more
efficient way of computing IIA-1l[o. This method only requires the solution of one
positive definite tridiagonal linear system. We show how the LINPACK routine SPTSL,
which solves Ax b for positive definite tridiagonal matrices A, can be modified so
that it also computes condl (A), the latter computation proceeding in parallel with the
solution of Ax b.

The methods to be derived apply exclusively to the ll and loo norms; we comment
briefly on the 12 norm condition number. The quantity

b (condo (A) condl (A)) 1/2

provides an order of magnitude estimate of cond2 (A) since [19, p. 82]

cond2 (A)<- b <- n cond2 (A),

and b may be computed in O(n) flops when A is tridiagonal. A variety of alternative
techniques are available for the estimation of cond2 (A) when A is symmetric
tridiagonal; among these are the well-known methods of inverse iteration, Sturm
sequences, and bisection [20].

2. The inverse of a bidiagonal matrix. We begin by developing some properties
of the inverse of a bidiagonal matrix B. These lead to an efficient algorithm for the
computation of B- Iloo, and are also of use in 8 since the LU factors of a tridiagonal
matrix are bidiagonal, when they exist.

Consider the nonsingular upper bidiagonal matrix

U Cl 0

u2 c2
(2.1) U= u3 ".. --n", ui#0, 1 <=i=<n.

0 u, d

We find an explicit formula for the elements flo of U-1. The jth column, x.=
(/31j, :j,. .,/3,), of U- satisfies Ux e, where e is the jth unit vector. It follows
that

flj =0, i>j,

1

[30
Ci[ + ,j

i<j.
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Hence

(2.2) t’ +/-
u

i>j,

where the empty product is defined to be 1. We observe from (2.2) that for all and
j [/3,..j[ depends only on the moduli of the elements of U. In other words, the modulus
of each element of U- is independent of the signs of the elements of U. It follows,
using (1.2), that

(2.3) ITI=IuI implies [IT-I[[ U-1[[,

where, for A= (a0) IAI denotes the matrix
There is one particular distribution of the signs of the elements which yields a

matrix for which the l norm of the inverse is easily calculated. To show this, we
define for A (a0) A’s comparison matrix M(A) (rn) by

lia,l, i--j,
(2.4) mi t-I a,l, j.

From (2.2) it is clear that M(U)->- 0, that is M(U)-1 has nonnegative elements (cf.
[12]). We now make use of the observation that if A-l->0 then IIa-ll IIa-ell,
where e (1, 1,..., 1) . Together with (2.3) and the fact that [M(A)I Ial this yields

(2.5) u-1[Io: IIM(U)- Iloo IIM( U)-ello.

These relations are also valid if U is lower bidiagonal.
Hence, in order to calculate B-’ IIo for a bidiagonal matrix B it is only necessary

to solve one bidiagonal linear system and then to evaluate the lo norm of the solution
vector. We have the following algorithm, an analogue of which holds for a lower
bidiagonal matrix.

ALGORITHM 2.1. Given the nonsingular upper bidiagonal matrix U in (2.1) this
algorithm computes 3’= 11U-11[

For i:=n-lto 1step-1

z,:-(l/lc, l,Z,/l)/lu,
3’ := max (3, zi).

Cost. 3n flops. (We count max (.) as a flop.)

Thus Algorithm 2.1 requires O(n) flops, a significant reduction on the O(n2) flops
which would be required to compute U- and then calculate the norm.

3. The inverse of a tridiagonal matrix. Let A be a nonsingular tridiagonal matrix
of order n. A can be represented in terms of O(n) quantities: its nonzero elements.
The next theorem shows that, as might be expected, A-1 is also representable in terms
of O(n) quantities--even though A-1 has in general O(/12) nonzero elements.
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THEOREM 1. Let the tridiagonal matrix A in (1.1) be nonsingular.
(1) IrA is irreducible and A-I= (aij) then there are vectors x, y, p and q such that

(3.1) aq={xiy’ i<-J’
Piqj, >-j.

(2) IfA is reducible then
(a) if ci =0, so that

(3.2) A=[A10]B1 A2
where A1E R

ixi and A2

_
R(n-i)x(n-i) are tridiagonal, then

(3.3) A-I= IA-;1 0 1X A
where X ("-) is a rank-one matrix if b+ O, or a zero matrix if b+ =0, and the
theorem applies recursively to A and

(b) /fb+l =0, part (a) applies to A.
Proof (1). See 14, Thm. 2].
(2). If ci 0 then A is clearly of the form (3.2) and 0 det (A) det (A1) det (A2),

so A1 and A2 are nonsingular. It is easily verified that X =-A1BA-1. B1 has at most
one nonzero element, b/, in its (1, i) position, so if b/ =0, X =0; otherwise B is
of rank one and hence X is of rank one.

We remark that for the case A AT part (1) of Theorem 1 is proved by Bukhberger
and Emel’yanenko [1] and stated without proof by Graybill [10].

The vectors x and y (and similarly p and q) in (3.1) are easily seen to be unique
up to a nonzero scale factor; any nonzero element of x or y can be assigned an arbitrary
nonzero value (clearly xl 0 and y, 0).

There is, in fact, some redundancy in the representation (3.1) of A-1. For the four
vectors x, y, p and q contain 4n-2 "free" values, while A depends on only 3n-2
numbers. This redundancy arises from the way in which part (1) of Theorem 1 is
proved, namely by considering the upper triangular and lower triangular parts of A-separately. The following theorem provides a more concise representation of A-1, in
terms of 3n- 2 numbers.

THEOREM 2. Let the tridiagonal matrix A in (1.1) be nonsingular and irreducible.
Then there exist vectors x and y such that A-1= (ctij) is given by

(3.4) ao { x’yi4’ <=J’
yi xj dj, >- j,

where

(4 l<=j<=n.

Proof Let D diag (d). D exists and is nonsingular since A is irreducible. It is
easily verified that T-DA is tridiagonal, symmetric and irreducible. By applying
Theorem 1 to T, and using the symmetry of T, we find that there are vectors x and y
such that T-1-- (flij) is given by

xiy, -j,
flo j.tyx,

From the relation A-1-- T-1D the result follows.
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Remark. Theorem 2, when combined with the method for computing x and y
described in the next section, is essentially the same as [21, Thm. 2].

4. Algorithms for the irreducible ease. Let the tridiagonal matrix A in (1.1) be
nonsingular and irreducible. We now show, using the results of the previous section,
that IIA-llo can be computed in O(n) flops.

Theorem 1 asserts the existence of vectors x, y, p and q such that the elements
a0 of A- are given by (3.1). Formation of each element aij of A-1 explicitly, using
(3.1), requires O(n2) multiplications. However, in order to evaluate IIA-lloo we need
only the row sums of A-. The ith row sum of A- is, from (3.1),

Piql[ + p,q[ +"" + [piqi-ll + Ix,y,[ / Ix,y,+,[ /’" /

which may be expediently rewritten as

Ip, l(lql/ Iq=l/"" / Iq,-[) / [xil(lyil+ ly,+l +"" + ly,[).

Clearly, by accumulating the sums t, Iql+""" +lq, and s, [y,l+’’’ +ly, the row
sums of A-1 can be evaluated in O(n) flops, given the vectors x, y, p and q. We now
show how these vectors can be computed.

Following Ikebe [14] we equate the last columns in AA-= I and the first rows
in A-1A =/, to obtain, using (3.1), A(ynX)= e and (XlyT)A el, that is,

(4.1) Ax y-en,

(4.2) ary x-( e.

The one degree of freedom in the vectors x and y may be expended by setting x 1;
then equations (4.1) and (4.2) may be solved for x2, , xn, Yn, , Y using the method
of 14].

The vectors p and q are obtained in a similar way, using Ar in place of A. Thus
we obtain the following algorithm.

ALGORITHM 4.1. Given the nonsingular n n irreducible tridiagonal matrix A in
(1.1) this algorithm computes y=

(1) x:= 1; x2:=-a/c

For i:=3to n

x := -(a_l * x_ + b_ x_)/c_

yn:=l/(bn.xn_+an.xn)

Yn- := -an * Yn/ cn-
For i:=n-2to 1 step-1

y, := -(a,+, y,+, + b,+2* Y,+2)/c,.

(2) Repeat step (1) with x, y, bi and c replaced by q, p, c-1 and bi+l respectively.

(3)

For i:=n-1 to 1 step-1

s, := s,+ + ly,

t:= 1
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For := 2 to n

3’ := max (sl, Ip.l*
For i:=2to n-1

3,: max (3, Ip, l* +Ix, l* s,).

Cost. 17 n flops.
An algorithm for the computation of IIA-lloo which is in general more efficient

than Algorithm 4.1 can be derived from Theorem 2. Equating the last columns, and
the first columns, in AA- I we find, using (3.4), that A(y,d,)x e, and A(xdl)y e.
These equations may be rewritten, using d 1, as

(4.3) Ax= (y,d,)-e,,

(4.4) Ay x-(l e.
Choosing Xl 1, we can solve for x as in the previous algorithm and then determine
y from (4.4), making use of the knowledge that Yn # 0.

Because the factor dj is common to each element in the jth column of A- (see
(3.4)) it is more convenient to evaluate the 11 norm of A-1 than to evaluate the l norm.

ALGORITHM 4.2. Given the nonsingular n x n irreducible tridiagonal matrix A in
(1.1) this algorithm computes y= IlA-1ll.

(1) Xl := 1; X2:----al/Cl

For i:=3to n

xi := -(ai_l * x_ + b,_ * x,-2)/ ci_.

(2) z,, := 1 zn-1 := -an/bn

For i:=n-2to 1 step-1

zi := -(a,+l * Zi+l "t- Ci+ * Zi+2)/ bi+l

0 :-- a z -I- 121 z2.

(3) sn :=

For i:=n-1 to 1 step-1

s, := s,/, + z,

tl := 1

For i:=2to n-1

ti :- ti_, + Ix,
dl:-" 1; 7: Sl

Forj:=2to n

, := max

:=  11ol.
Cost. 14n flops.
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We now derive an algorithm for computing [[A-l[[oo which makes use of the LU
factorisation of A, assuming this exists. The algorithm is based on the representation
(3.1) and is obtained by choosing xl 1 and rewriting (4.2) and (4.1) as

(4.5) Ay=el,

(4.6) Az e, (z y,x).

ALGO:Ia’HM 4.3. Given a nonsingular n x n irreducible tridiagonal matrix A
possessing a LU factorisation A LU, this algorithm computes IIA-II.

(1) Compute the LU factorisation of A.
(2) Use the LU factorisation to solve for the vectors y and z in (4.5) and (4.6).

Similarly, solve for p and r, where Ap el, Ar e, (r p,q).
(3) Execute step (3) of Algorithm 4.1 with p, q and x replaced by p-p, r and

ylz respectively.
Cost. 18n flops.

We note that if Algorithms 4.1, 4.2 and 4.3 are adapted to take advantage of
symmetry, then in each case the operation count is reduced to about 11 n flops.

5. Computational considerations. Let the tridiagonal matrix A in (1.1) be nonsing-
ular and irreducible, and consider the representation (3.1) of A-= (a) (the following
applies to p and q in place of y and x if A is replaced by A

Let x 1. Using the standard determinantal formula for the elements of the
inverse [17, p. 402] one finds that

ClC2 Cn_
yn=Oln=

det(A)

From (3.1) the transpose of y is the first row of A- and x is the last column of A-scaled by y. Clearly, the vectors x, y, p and q in (3.1) can be very badly scaled, in
the sense that the nonzero elements of any particular vector can vary widely in order
ofmagnitude. This is true whatever the choice of xl, and is not related to the conditioning
of A.

Examples. (1) For the n x n tridiagonal matrix A defined by a 4, b c_ 1,
we have (x =l)lx l o lylo- and ly.[o-, where 0=2+x/; cond (a)-<3.

(9.)

a=[1 ] 0<e<<11 Ila-lll 2

Here (Xl 1) xa=-l/e, yl 1/(l-e) and y_=-e/(1-e).
We make two observations. First, there is a strong possibility of overflow and

harmful underflow when Algorithm 4.1 is implemented on a computer. Second, it is
not clear that in the presence of rounding errors the norm computed by Algorithm 4.1
will be of the correct order of magnitude (one does not usually want the condition
number to many significant digits). For as Examples (1) and (2) illustrate we may have

a xiy O(1) with Ix, >> 1 and lyl << 1 this is an ill-conditioned representation of
in the sense that the product is very sensitive to absolute perturbations in y.

Similar comments apply to Algorithm 4.2 and the representation (3.4).
Note that the elements of the vectors y, z, p and r in Algorithm 4.3 are elements

of A-, so they will not overflow on a computer as long as IIA-II is not too large.
Step (3) of Algorithm 4.3 results in the divisions by the potentially very small quantities
p, and y, being carried out at the last possible stage.
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6. Error analysis. The observations of the last section lead us to investigate the
accuracy of the norms computed by Algorithms 4.1, 4.2 and 4.3 in floating-point
arithmetic and to consider how overflows and underflows can be avoided when the
algorithms are implemented.

Consider Algorithm 4.3 implemented on a computer with t-digit base/3 floating-
point arithmetic, and assume that the algorithm runs to completion. Make the usual
assumption [20, p. 113] that

fl(x op y)=(x op y)(1+6), op= ., /, +, -,

for some 161 <_-e, where e 1/2/3 -t is the relative machine precision.
A backward error analysis in the style of de Boor and Pinkus [6] reveals that the

computed LU factors from step (1) of Algorithm 4.3 satisfy (using a bar denote a
computed quantity)

(6.1) LU=A/E,

where E satisfies

/xi, i= 1, 2,- ., denotes a constant of order one. (The absence of a term involving n
in this and subsequent bounds is due to the fact that A is tridiagonal.)

The standard backward error analysis for solution of a triangular system [17, p.
408] can be used to show that the computed vector 37 from step (2) of Algorithm 4.3
satisfies

0 + 60)7" (/_S,+
where

(6.3) 16 0[ -<- /2e101 and I El tz3elEI-
It follows that 37 is the true solution of

(6.4) WT".= el,

where

W= A+ F= (L+ 6L)( U+ 6U).

Combining (6.1), (6.2) and (6.3) we have, writing/x =max (/x,/x2,/x3),

IFI--< (3,u,e +/x=e=)lz:l 101,
from which, using (6.1) and (6.2), it can be deduced that W is tridiagonal and
irreducible.

Let satisfy

(6.5) W e,.

By comparing the back substitutions which determine and the computed vector
from step (2) of Algorithm 4.3, one finds that

(6.6) = (l+p), [pl<=tx4ne.
Thus we have shown that the vectors 37 and $ computed by Algorithm 4.3 in

floating-point arithmetic are, respectively, y, and an approximation to with small
componentwise relative error, where )3 and are the true vectors in (4.5) and (4.6)
corresponding to using the matrix W A+ F in place of A.
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Now assume that

(6.7)

and

(6.8)

Then, using the result 17, p. 189]

]]A-I-(A+E)-I]]<
iiA- ll

we have, approximately,

condo (A)e << 1.

A, IIEIIb cond )[-< 1,

(6.9) IIA-’- w-’ll cond (A)e IIA-1II.
From (6.4), (6.5) and (6.6) it follows that the "upper triangular parts" Ri of the row
sums computed in step (3) of Algorithm 4.3 (that is,/, approximates /

where A-l= (a0)) satisfy

i ( E ]ij[) (l / O(ne)),
ji

where W-1 (/3). Hence

j>=i

E l%-/3jlcondoo (A)ellA-111oo,

using (6.9). A similar result holds for the remaining parts of the computed row sums.
Thus we conclude that if (6.7) and (6.8) are satisfied, then the number /computed

by Algorithm 4.3 in floating-point arithmetic satisfies, approximately,

(6.10) I/- IIa-’lll__< 2 cond (a)e.IIa-ll
This is just about the best that can be expected, since it can be shown that the condition
number for the problem of computing IIA-II is condoo (A).

Algorithm 4.3 breaks down in step (3) if the computed quantity 37, is zero. It is
easily checked that this can happen only if 37,, or some intermediate quantity, underflows
to zero (cancellation cannot take place). Unfortunately, underflow can occur even for
quite well-behaved matrices, as indicated by the first example in 5. The possibility
of underflow (and overflow) may be avoided by representing all the numbers which
arise in Algorithm 4.3 by a pair (d, e)= d x b e, where 1 =< d < b (say), e is an integer,
and b is some base, preferably a power of the machine base/3. (This idea can also be
applied to Algorithms 4.1 and 4.2.) Then, for example, the computation z= x.y
becomes

z=(dx,dy) bex+ey= dz bez

where dz is kept in the desired range through a suitable scaling by a power of b together
with an adjustment ofthe exponent ez. This technique, with b 10, is used in LINPACK
in all the code which evaluates determinants.

We have been unable to prove a result such as (6.10) for Algorithms 4.1 and 4.2.
When Algorithm 4.2 for example is executed in floating-point arithmetic, steps (1) and
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(2) can be interpreted as being exact for perturbed matrices A + E1 and A + E2 with
IE, <- tx,elAI, i- 1, 2, but it is difficult to assess the effect of E1 E2, which will be true
in general, on the accuracy of the row sums computed in step (3). Note that a forward
error analysis is not helpful because the coefficient matrices of the triangular systems
which are solved in Algorithms 4.1 and 4.2 can be arbitrarily ill-conditioned--their
diagonal elements are bi’s or ci’s.

However, our experience in using Algorithms 4.1 and 4.2 is that they both produce
extremely accurate results, whatever the condition number of A. In fact, we have not
come across an instance in which the norms computed by Algorithms 4.1, 4.2 and 4.3
differed from each other in more than the last two significant digitsmeven when the
computed vectors had elements covering the whole spectrum of machine numbers:
from underflow level to overflow level. The machine used here was a Commodore
4032 microcomputer with/3 2, 32 and exponent range -128 _-< e _-< 127.

We feel that this unexpectedly high accuracy of the computed norms is due to
the phenomenon observed by Wilkinson [19, pp. 103 ft.], [20, pp. 249 ff.] (see also
[17, p. 150]), whereby the accuracy of the computed solution to a triangular system
is commonly independent of the condition number of the coefficient matrix.

Condition (6.7) relates to the stability of Gaussian elimination without pivoting
and will certainly be satisfied if A is diagonally dominant; this is often the case in
recurrence relation applications [3]. To avoid both large element growth and the
possibility of Gaussian elimination breaking down one could use partial pivoting in
Algorithm 4.3, obtaining PA LU, with a guaranteed bound of 2 for the "growth
factor" [17, p. 158]. Note, however, that pivoting changes the form of the triangular
factors (L is now lower triangular with at most two nonzero elements per column and
U is upper triangular with uj 0 for j > + 2), resulting in a possible extra n flops for
both the factorisation stage and each substitution; and our proof of the result (6.10)
does not apply in this case.

Note that everything we have said concerning the properties and computation of
the vectors in (3.1) and (3.4) applies perforce to the methods for inverting irreducible
tridiagonal matrices which have been proposed in [1], [14], [21].

7. Dealing with reducibility. For particular classes of matrix it is possible to verify
irreducibility in advance. Difference methods for boundary value problems can lead
to tridiagonal matrices with off-diagonal elements of the form a + O(h), where a > 0
and h is the mesh length 16, pp. 96 ft.]; here, irreducibility is assured for sufficiently
small h. The tridiagonal matrices which arise in the numerical solution of linear second
order recurrence relations can be assumed, without loss of generality, to be irreducible
[3]. In some situations, however, one will be unable to guarantee irreducibility. In this
section we describe how to deal with the case where A is reducible.

Let A be an n x n nonsingular reducible tridiagonal matrix. If A is symmetric
then A has the block form diag (At, A2," , Ak), where each matrix A is nonsingular
and either diagonal, or irreducible and tridiagonal. Hence IIA-ll=max, IIA?IlI,
which can be computed in O(n) flops by applying Algorithm 4.3 (say) to each of the
matrices A, as appropriate.

If A is nonsymmetric then we suggest the following approach. Let E be the
tridiagonal matrix whose diagonal elements are zero, and whose off-diagonal elements
are zero or 3/2 according as the corresponding elements of A are nonzero or zero;
here, is a small nonzero number. The matrix G A+ E is irreducible and tridiagonal.
If

(7.1)
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then 18, p. 293]

lla-ll_< O-111_-< lla-’ I1.
Thus, by choosing 6 small enough a satisfactory approximation to IIA-llo can be
computed in O(n) flops, by applying one of the algorithms for the irreducible case to
G. A suitable choice for 8 is a small multiple of the relative machine precision e. For
such a 6, (7.1) will be satisfied unless A is very nearly singular to working precision
(assuming [Imll 1). We note that the poor scaling discussed in 5 is quite likely to
be associated with G ifA has many zero elements on its subdiagonal and superdiagonal.

An alternative method for dealing with the case where A is nonsymmetric and
reducible, leading to computation of A- rather than an approximation, is described
in [13]. The method is motivated by part (2) of Theorem 1 and regards A as a block
tridiagonal matrix, where the diagonal blocks are tridiagonal and irreducible. The
computational cost is again O(n) flops but the method is rather more difficult to
implement than the above technique.

8. Positive definiteness.
8.1. Let

al b2 0

2 a2 b3
(8.1) A= b3 a3 ".. eN""

".. bit
bn an

be a positive definite tridiagonal matrix with, necessarily,

(8.2) ai > 0, 1 =< =< n.

In this section we derive a method for computing IIA-111 which is more efficient than
the "symmetric" versions of Algorithms 4.1, 4.2 and 4.3 and which does not require
A to be irreducible.

We begin by showing that there is a matrix D diag (di), d + 1, such that

(8.3) M(A) DAD,

where M(A) is the comparison matrix defined in (2.4). Writing W= DAD, we have

and

w ai, 1 <- <= n

Wi,i+ dibi+ di+ 1, l<=i<_n-1.

Let dl 1 and d+l -sgn (alibi+l), 1 <= <= n- 1, where

1_, x->0,
sgn (x)

1, x < 0.

W is evidently tridiagonal and symmetric, w,, a, la, (using (8.2)),
and w,/l<-0. Hence W= M(A), which establishes (8.3).

A is positive definite and hence has a Choleski factorisation

(8.4) A= LL,
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where

l 0

2 12
/’?13 13

mn I.

with li > 0 for all i. We claim that

(8.5) M(A)=M(L)M(L) r.
2 2 limi+l. Then,This is proved by noting, first, that (8.4) implies ai mi + I and b+

writing H-- M(L)M(L) r,
h. (-Im,I)(-Im, I)+ l,2. a, la,

and

hi,i+l =/,(-Im,+,l) =-Ib,+l.
Hence H M(A) as required.

Note that M(A) is positive definite, by (8.5). In fact, the positive definiteness of
A is independent of the signs of the off-diagonal elements {b}.

From 2, M(L)- >=0, therefore

(8.6) M(A)- M(L)-rM(L)-’ >- O.

The final result we require is

(8.7) M(A)-I=IA-I,

which is a consequence of (8.3).
It follows from (8.6) and (8.7) that if A is a positive definite tridiagonal matrix,

IIm-’lloo Im-’l I1--IIM(A)-’II IIM(A)-’elI.
As in the bidiagonal matrix case, computation of the 1o norm of the inverse reduces
to solution of a linear system involving the comparison matrix. Thus we have

ALGORITHM 8.1. Given an n xn positive definite tridiagonal matrix A this
algorithm computes y 113-111oo.

Solve M(A)z e, evaluating y := max__<,=<n z, IIzll(R),
Cost. 6n flops.

The operation count given for Algorithm 8.1 assumes the use of the LDLr

factorisation of M(A). The closely related Choleski factorisation is unattractive in this
context because it requires n square roots, and an extra n divisions in the substitution
stage. The LDL factors of the matrix A in (8.1),

1

1
L 13 1 D diag (di),

I.
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are generated by

dl al,

bi
li di ai libi, 2 <-_ <-_ n.

di-1

8.2. The nesting technique. LINPACK [7] has a routine SPTSL which solves Ax b
for positive definite tridiagonal matrices A. We shall show that it is possible to "nest"
Algorithm 8.1 inside the routine SPTSL in such a way that the composite routine
computes condoo (A) in addition to solving Ax b, and is computationally more efficient
than separate applications of SPTSL and Algorithm 8.1. Because SPTSL uses a
nonstandard factorisation method which is more complicated than the LDLr factorisa-
tion, we first derive the nesting technique for the LDLr method.

An important feature which Algorithm 8.1 does not exploit is that the LDLr

factorisations of A and M(A) are related: by comparison with (8.4) and (8.5), if
A= LDL then M(A)=M(L)DM(L)r. Therefore, solution of M(A)z=e can be
accomplished using the LDL factorisation of A, which has to be computed anyway
in the course of solving Ax b; there is no need to explicitly factorise M(A). The
next algorithm makes use of this observation, thereby saving 2n flops.

ALGORI:HM 8.2. Given the n x n positive definite tridiagonal matrix A in (8.1)
and the vector f, this algorithm computes both the solution to the linear system Ax =f
and y= IIa-lloo. The solution overwrites f.

The statements marked with an asterisk are those which have been added to the
basic routine for Ax =f in order to compute IIA-II.

(1) dl:= al
(.) zl:= 1

For i:=2 to n

li :’- bi/ di_l

di := ai- li * bi

f/:= f/-/i *f-
(,) z, :- l / l, , z,_

(2) f, := f,/cl,

(,) z.:=z./d; r:=z,

For i:=n-1 to 1 step-1

fii := fi/ di li+l *fi+l
(.) z, :- z,/ d, + l,+ . z,+

(*) 3, := max y, zi ).

Cost. 9n flops.

In Algorithm 8.2 computation of IlA-lloo adds only 4n flops to the cost of solving
Ax =f. Furthermore, computation of IIA-llo does not introduce any loops over and
above those required for solution of the linear system. This is an important feature,
since typically the loop overheads may account for a significant portion of the machine
execution time of Algorithm 8.2 [8]. We conclude that on most computers the execution



CONDITION NUMBER OF A TRIDIAGONAL MATRIX 163

time for a routine based on Algorithm 8.2 should be less than 80% greater than that
of an equivalent routine which only solves Ax =f.

We now show how Algorithm 8.1 can be nested within the LINPACK routine
SPTSL. First, we describe briefly the nonstandard reduction technique which this
routine uses; for full details see [7]. The reduction consists of a form of Gaussian
elimination without pivoting in which subdiagonal elements are eliminated using row
operations working from the top, and, simultaneously, superdiagonal elements are
eliminated using row operations working from the bottom. Thus zeros are introduced
to the elements in positions (2, 1), (n-l, n), (3, 2), (n-2, n-l),..., in this order,
until the two eliminations meet in the middle. The reduced system is such that the
unknowns can be determined by a simple substitution process, which works from the
middle to the top and bottom of the matrix simultaneously.

The algorithm used in SPTSL is known as the "burn at both ends" (BABE)
algorithm. The motivation for the BABE algorithm is that each of its two loops (one
for the reduction phase and one for the substitution phase) is executed only half as
many times as the corresponding loop in a standard algorithm (since two eliminations
or two substitutions are performed on each run through a loop), so that the loop
overhead is reduced by a factor of two (cf. [8]). The LINPACK manual claims that
the BABE algorithm can solve positive definite tridiagonal linear systems up to 25%
faster than conventional algorithms.

It can be shown (see [13] for example) that the BABE algorithm corresponds to
the factorisation

(8.8) A LUB,

where L is unit lower bidiagonal, U is unit upper bidiagonal, and the nonzero elements
of B lie on the diagonal and in positions (1, 2), (2, 3),..., (k, k + 1), (k + 2, k + 1),
(k+3, k+2),..., (n, n-l), where k=[n/2] (Ix] denotes the integer part of x).

The following lemma is the basis for the application of the nesting technique to
the BABE algorithm.

LEMMA. If the positive definite tridiagonal matrix A is factored according to (8.8),
then

M(A) M(L)M( U)M(B).

Proof. The proof proceeds by comparing, elementwise, the reduction phases of
the BABE algorithm applied to A and to M(A). For further details see [13].

The lemma shows that the equation

(8.9) M(A)z=e

can be solved using information gleaned during the solution of Ax b by the BABE
algorithm, namely, the elements of L, U and B.

The modifications to the LINPACK routine SPTSL which are required in order
for this routine to compute condl (A) (the same as condoo (A) since A is symmetric)
in addition to solving Ax b consist simply of extra statements, some for the evaluation
of IIAII and some analogous to those marked with an asterisk in Algorithm 8.2. Two
extra parameters are required by the modified routine" a work vector Z of length n
and a REAL variable CONINV in which to return the reciprocal of the condition
number. A vector w satisfying

is easily obtained from z in (8.9) by using (8.3).
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All the LINPACKcode which performs condition estimation incorporates a scaling
technique, designed to prevent overflow during computation of the condition estimates
[4], [7]. Similar precautions are clearly desirable in the computation of the solution
of (8.9). However, the LINPACK scaling technique requires O(n2) flops, which is
prohibitively expensive in the context of SPTSL; for this special case we suggest a
simple modification which brings the cost down to O(n) flops. The modified scaling
technique takes advantage of the bidiagonal nature of the matrix factors in (8.8).

ALGORITHM SCALE. Let L (I) be a nonsingular lower bidiagonal matrix. This
algorithm computes a vector z, with [[z[[oo_-< 1, and a number 0, such that Lz Ob.

(1)

(2)

(11,o := 0; Zo := 0)

0:=1

For i:= 1 to n

Ol "."- 0 * b li, i_ * zi_

> II,,I then
/3:= l,,/ oz

0:=0*/3

Wi .’--

zi := 1

else

wi := 1

Zi := /lii.

IX:=I
Fori:=n-lto 1 step-1

If wi+l 1 then Ix := Ix * wi+

Zi := Zi * Ix.

Cost. 2n flops, plus at most 4n flops for the scalings, in the statements marked
with an asterisk.

The LINPACK scaling technique would, on introducing a scaling at the ith stage,
immediately rescale all the previously computed values Zl, , zi_. Instead Algorithm
Scale stores the scale factors in the vector w (thus an extra n storage locations are
required), and is thereby able to rescale at the final stage in O(n) flops.

A modification to the LINPACK scaling technique which attempts to reduce the
frequency of the scalings is described in [11]; this modification could profitably be
adopted in Algorithm Scale. In a small number of tests that we performed using a
version of Algorithm Scale which incorporates the technique in 11], the cost of the
scaling in Algorithm Scale was never greater than 2n flops.

Finally, we note that the basic modifications to SPTSL suggested above increase
the computational cost of the routine from 5n flops to lln flops (2n of which arise
from the evaluation of IIAII). Incorporation of the scaling method used in Algorithm
Scale could at worst add another 8n flops to the operation count.
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9. Concluding remarks. We conclude by briefly discussing the choice of algorithm
for computing IIA-111 from among those presented. If the tridiagonal matrix A is
positive definite or bidiagonal, then Algorithms 8.1 and 2.1 respectively are recommen-
ded. Both these algorithms are very satisfactory from the point of view of numerical
stability. We note that the triangular systems which are solved are of the form discussed
by Wilkinson [20, p. 250].

For general irreducible tridiagonal matrices A the choice is between Algorithms
4.1, 4.2 and 4.3, for which the differences in computational cost are relatively small.
In the context of solving a linear system Ax b, a factorisation PA LU is likely to
be already available, in which case Algorithm 4.3 (minus the first step and using
PA LU in the second step) is attractive. In general, Algorithm 4.2 is both more
efficient and easier to "code-up" than Algorithms 4.1 and 4.3. As regards the very real
dangers of overflow and underflow when these algorithms are implemented, and their
numerical stability, see 5 and 6.
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A NOTE ON MONITORING THE STABILITY OF
TRIANGULAR DECOMPOSITION OF SPARSE MATRICES*

J. L. BARLOWt

Abstract. A method is proposed for bounding the numerical instability in Gaussian elimination. The
computational cost of obtaining the bound contributes little to the cost of the elimination. The bound is a
slight improvement on that given by Erisman and Reid.

Key words. Gaussian elimination, linear equations, backward error matrix, measure of stability

We consider the numerical solution by Gaussian elimination, using floating point
arithmetic, of a system of linear equations

(1) Ax b

where A is a sparse nonsingular n x n matrix, b is an n 1 vector, and x is the n 1
solution vector. This process decomposes A into a lower triangular matrix L-(lo) and
an upper triangular matrix U- (uij) which satisfy

(2) A+E=LU

where E =(eij) is the backward error matrix. Reid [3] extended the error analysis of
Wilkinson [4] to show that the entries of E satisfy

(3) eol <-_ 3.011pm

where /z is the machine unit, p max(i,,k)[a)[ is the largest element in any of the
intermediate matrices A(k), k-0, 1, 2,... n- 1 encountered in the elimination, and

rn is the number of multiplications required in the computation of 1 if i> j or uj if
_-<j. If we neglect rounding errors, then the elements of A(k) satisfy

k

(4) a ai. E limttmj, 0 < k < i, j <- n
m=l

and A() A, A(n-l) U. Note that no assumption is made about the size of the elements
of the lower triangular matrix L.

The size of the parameter p in equation (3) is an excellent measure of the stability
of the LU decomposition. The applications of estimating p to sparse matrix factoriz-
ation is discussed in [2]. The calculation of p takes as many comparisons as the number
of times

(k) (k-l) (k- 1)a o a o lik kj

is done in the elimination process plus the number of nonzero elements in the matrix
A. Thus it can contribute significantly to the cost of factoring A. The following
proposition contains a method for reducing that cost.

PROPOSITION. The parameter p in (3) satisfies the bound

(5) p -<max II1<,>11, max Ilu<)ll
(i) (j)

q

* Received by the editors February 2, 1984, and in revised form July 16, 1984. This work was supported
by the National Science Foundation under contract MCS-8201065 and by the Office of Naval Research
under contract N0014-80-0517.

f Department ofComputer Science, Pennsylvania State University, University Park, Pennsylvania 16802.
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where l(i) is the ith row of the matrix L in (2), u (j) is the jth column of the matrix U in
(2), I1" , I1" are H61der norms, ana 1/p + 1/ q 1.

Proof. From the definition of Gaussian elimination, if we neglect rounding errors

min(i-l,j)

(6) uV aij limUmj, 0 < i, j <= n
m=l

where u =0 if i>=j. After subtracting (4) and (6), we get

min(i-l,j)

a) blij liml,lmj 0 k 1, j /’/.
m=k+l

Thus

min(i,j)
(k)

aij limUmj.
re=k+1

By the H/51der inequality

where I/p+ 1/q 1. The above is clearly bounded by (5).
Erisman and Reid [2] give the bound

(7)

O<=k<i<-j<=n,
0 <- k <j < <-- n,

Q.E.D.

p-<_max la,l+max I1(/,," /,,-,)TII, max II(u,,’’ ",
(i,j) (i) (j)

where 1/p + 1/q 1. This is generalization of a bound discovered by Businger [1].
The three most important special cases of (5) and (7) are when p 1, 2, oo. Other

values of p are unlikely to be used in practice.
The computation of the bounds (5) and (7) contribute little to the cost of factoriz-

ation. Examples of matrices where (5) is sharper than (7) and vice versa are easy to
construct. If

L=(12 01)and U=(10 51),
and we take p oo and q 1, then the bound in (5) states that p -<_ 1 1 (which is exact)
whereas the bound in (7) states that p <-21. However, if

L=
2

and U=
0

then the bound in (5) states that 0-<-12, whereas the bound in (7) states that 0--<5
(which is exact). Thus one cannot say that either of the bounds (5) or (7) is sharper
than the other.

The most convenient cases of the bounds (5) and (7) are when p oo and q 1
or when p 1 and q oo. If A, L, and U each have ka, k, and ku nonzero elements,
then the bound in (5) requires k+ 2n comparisons and ku additions, whereas the
bound in (7) requires ka + k+ n comparisons and ku n additions. Since ka > 2n for
many realistic sparse problems, the bound in (5) requires a little less computation.

kledges. The author would like to thank Richard J. Zaccone and the
referees for their suggestions. He would also like to acknowledge Ramsey S. Barlow
for proofreading a much longer earlier version of this paper.
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AN ALGORITHM FOR SIMULTANEOUS ORTHOGONAL
TRANSFORMATION OF SEVERAL POSITIVE DEFINITE SYMMETRIC

MATRICES TO NEARLY DIAGONAL FORM*

BERNHARD N. FLURYt AND WALTER GAUTSCHI

Abstract. For k_-> positive definite symmetric matrices At, , A of dimension p x p we define the
function (AI, ., Ak" nt,’" ", nk) [I/k=1 [det (diag Ai)]n,/[det (Ai)] n,, where ni are positive constants,
as a measure of simultaneous deviation of AI,..., A from diagonality. We give an iterative algorithm,
called the FG-algodthm, to find an orthogonal p xp-matrix B such that (B’AB, , BTAkB; n, , nk)
is minimum. The matrix B is said to transform At, , Ak simultaneously to nearly diagonal form. Conditions
for the uniqueness of the solution are given.

The FG-algorithm can be used to find the maximum likelihood estimates of common principal com-
ponents in k groups (Flury (1984)). For k 1, the FG-algorithm computes the characteristic vectors of the
single positive definite symmetric matrix At.

Key words, diagonalization, principal components, eigenvectors

1. The problem. It is well known (see, e.g., Basilevsky (1983, 5.3) that if A is a
positive definite symmetric (p.d.s.) matrix of dimension p p, then there exists a real
orthogonal matrix B such that

(1.1) BTAB A diag (A1,""", Ap),
where the Ai are all positive. For k> 1 p.d.s, matrices A1,"’, Ak the associated
orthogonal matrices are in general different. We call A1,... ,Ak simultaneously
diagonalizable if there exists an orthogonal matrix B such that

(1.2) BrAiB A (diagonal) for i- 1,. ., k.

Conditions equivalent to (1.2) have been given by Flury (1983).
Now suppose that A, , Ak are not simultaneously diagonalizable, but we wish

to find an orthogonal matrix B which makes them simultaneously "as diagonal as
possible" in a sense to be defined. As a simple measure of "deviation from diagonality"
of a p.d.s, matrix F we can take

(1.3) 0(F) [diag FI/IFI,
where [. is the determinant and diag F is the diagonal matrix having the same diagonal
elements as F. The fact that 0 is a reasonable measure of deviation from diagonality
can be seen from Hadamard’s inequality (Noble and Daniel (1977, exercise 11.51)):

(1.4) IFI-<_ ]diag F
with equality exactly if F is diagonal. Therefore, o(F)->_ 1 holds, with equality exactly
when F is diagonal. Actually, o(G) increases monotonically as G is continuously
"inflated" from diag F to F. This can be seen from the following lemma.

LEMMA 1. If F=(fij) is a p.d.s, matrix of dimension p p, then

* Received by the editors March 15, 1984. The work of the first author was supported by the Swiss
National Science Foundation under contract #82.008.0.82 ih the Department of Statistics at Purdue
University.

t Department of Statistics, University of Berne, CH-3012 Berne, Switzerland.
$ Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907. The work of

this author was supported in part by the National Science Foundation under grant DCR 8320561.
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is a decreasingfunction ofafor ct [0, 1 ]. IfF is not diagonal, d (a) is strictly decreasing.
Proof. The case F =diag (fl,""" ,fpp) is trivial; assume therefore that F is not

diagonal. Write

d(t)=laF+(1-a)diag FI(1.6)
Idiag FI" la (diag F)-l/2F(diag F)-1/2 + (1 a )Ipl

and note that d(a)>0 for all c [0, 1], since both F and diag F are p.d.s. Let
R (diag F)-I/EF(diag F)-/2. R is p.d.s, with l’s on the main diagonal. Let dl(a)=
ItR +(1-a)Ipl. Then d(0) 1 and dl(1)< 1 by Hadamard’s inequality. It remains to
show that dl(O is strictly decreasing in (0, 1). Let p>=D2’’’>=pp>O denote the
eigenvalues of R. The eigenvalues of aR + (1-t)Ip are

(1.7) 39 apj + l a (j 1, p),

and therefore

p p

(1.8) dl(t) H y H (1 + a(p- 1)).
j=l j-----1

Taking the first derivative gives

P P P -1
(1.9) od--21= (0h--i) H [l + a(p- l)]= dl(a) pj

Oa h=l j=l j=l 1 + a(p- 1)’
jh

where all denominators are positive because of pj > 0 and -< 1. Letting

P pj-1
(1.10) d2(ct) =, 1 + a(p- 1)’

we note that d2(O) (p 1) tr R -p 0 and

(p- 1)2
(1.11) Oa- =
Therefore, dE(a) <0 on (0, 1], implying that Odl/Oa <0 for 0< a _-< 1. This proves the
lemma.

The reader may notice a similarity to ridge regression" Hoed and Kennard (1970,
Thms. 4.1 and 4.2) have given monotonicity properties of some functions related to
the trace of the matrix (F+alp)- for c>0.

Let us now consider k p.d.s, matrices F1," ", Fk and positive weights nl," ", nk.
Then we define the simultaneous deviation from diagonality of the matrices F, , Fk
with given weights nl,.-. nk as

k

(1.12) b(F, Fk; nl, nk)-- [I [o(Fi)] n’.
i=1

Let now G BTAiB (i 1,. ., k) for a given orthogonal matrix B. Then we can take

(1.13) o(A,’’’,Ak;nl,’’’,nk) min dp(BTA1B, .,BTAkB; n,. .,nk),
Bo(p)

where O(p) is the group of orthogonal p p-matrices, as a measure of simultaneous
diagonalizability of A, , Ak. Clearly, o>_- 1 holds, with equality if and only if (1.2)
is satisfied.
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It can be shown (Flury (1984)) that if the minimum o is attained for a matrix

Bo= (bl, bp) O(p), then the following system of equations holds:

(1.14) b n, A, bj=0 (l,j=l,...,p;l#j)
i= higho

where

(1.15) hih b[Aibh (i= 1,..., k; h=l,...,p).

In this paper we give an algorithm for finding Bo.
It may be noted that our measure of "deviation from diagonality" (formula (1.3))

is not the only natural one; one could, for instance, also consider the sum of squared
off-diagonal elements. Our reason for considering (1.3) was that this criterion arises
naturally from a statistical problem of maximizing a likelihood function in principal
component analysis of several groups; see Flury (1984) for details.

2. The FG-algorithm. The FG-algorithm consists of two algorithms, called F and
G respectively, which minimize by iteration on two levels:

On the outer level (F-level), every pair (b, bj) of column vectors of the current

approximation B to the solution Bo is rotated such that the corresponding equation
in (1.14) is satisfied. One iteration step of the F-algorithm consists of rotations of all
p(p- 1)/2 pairs of vectors of B. The F-algorithm is similar to algorithms used in factor
analysis to perform varimax and other rotations (see, e.g., Weber (1974)).

On the inner level (G-level), an orthogonal 2 2-matrix Q which solves a two
dimensional analog of (1.14) is found by iteration. This matrix defines the rotation of
a pair of vectors currently being used on the F-level.

THE F-ALGORITHM. Let

(2.1) (B) =(BTA,B, BTAB; n,, nk)

denote the simultaneous deviation of BTA1B,. ., BTAkB from diagonality as a func-
tion of B, the Ai and ni being considered as fixed. The F-algorithm yields a converging
sequence of orthogonal matrices B, B, such that (B(f+l)) <_-dP(B(f)).

The algorithm proceeds as follows"
step Fo: Define B=(b,...,bp)O(p) as an initial approximation to the

orthogonal matrix minimizing , e.g. B Ip. Put f-O.
step FI: Put B(Y B and f-f+ 1
step F2: Repeat steps F21 to F24 for all pairs (l, j), 1 <=l<j <-p:

step F2: Put H(p x2)-(bt, b)) and

bA,b, bA,bT(2 2)- bA,b bA,b] (i= 1,..., k).

The T are p.d.s.
step FEE: Perform the G-algorithm on (T,. , Tk) to get an orthogonal

2 x 2 matrix 0 sin a cos

stpf23: Put H*(p x2)=(b*, b)-HI). (This corresponds to an orthogonal
rotation of the two columns of H by an angle a).

step F: In the matrix B, replace columns b and b by b* and hi, respectively,
and call the new matrix again B.

step F: If, for some small e > 0, (B(-) -(B) < e holds, stop. Otherwise,
start the next iteration step at F.
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THE G-ALGORITHM. This algorithm solves the equation

811 12 tk tk2 )(2.2) q nl 1112 TI +" "+ nk
klk2

Tk q2--0,

where T1," , Tk are fixed p.d.s. 2 x2-matrices, ni > 0 are fixed constants,

(2.3) 8,j=qYTqj (i=1 k’j=l,2)

and Q (ql, q2) is an orthogonal 2 2-matrix. The iteration of the algorithm yields a
sequence of orthogonal matrices Q(O), QI,..., converging to a solution of (2.2).

The algorithm proceeds as follows"
step Go: Define Q(2 2) as an initial approximation to the solution of (2.2), e.g.

Q-12. Put g-0.
step G: Put Qg) - Q and g - g / 1.
step G_: Compute the 6ij (2.3), using the current Q. Put

11-- 12 kl--k2T(2 x2)*- nl ,12 TI+’’" + Ilk -kTt-2 Tk.

step G3: Compute the (normalized) eigenvectors of T. In Q (ql, q2), put q - first
eigenvector of T, q2 second eigenvector of T.

step G4: If IIQ(g-l)- QII < eG (where II" denotes a matrix norm and eG > 0 is a
small positive constant), stop. Otherwise, start the next iteration step at

G1. Note that, since the order of eigenvectors is arbitrary, as well as their
signs, it may be necessary to exchange ql and q2 and/or to multiply one
or both columns of Q by -1 before comparing Q with Q(g-).

The motivation for the two algorithms and their connection with the basic system
of equations (1.14) is as follows. Suppose that the (/,j)th equation of (1.14) is to be
solved. With H (b: b) denoting the current Ith and jth columns of B, and Ah being
defined as in (1.15), b and b are the desired solution if and only if the 2 2-matrix

k Ail-(2.4) E n, Ti
i=1 AilA ij

is diagonal, where

(2.5) T HTA,H (i 1,..., k).

Assume now that bt and b do not solve the (l, j)th equation, but b* Hql and bf Hq2
do, where Q (ql" q2) is an orthogonal 2 2 matrix. Then

where

(2.7) A b*hTA,B*h (i=1,...,k,h=l,j).

Putting H*= (b*" bf)= HQ, (2.6) holds precisely if

(2.8)

is diagonal. Now we note that

(2.9) H’rAsH* HQ A(HQ QTQ,
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(2.10) A (Hql)TAi(Hql) qTql (i 1, , k),

and

(2.11) A= qTq2 (i= 1,..., k).

Thus the problem of rotating the/th and jth columns of B so as to satisfy (1.14) can
be reduced completely to the problem of finding an orthogonal 2 2-matrix Q (q" q2)
such that

(2.12) q ni T/ q2-- 0,
il i2

where 1 and have been written in place of A and A, respectively.
Since (2.12) is a 2-dimensional analogue of (1.14), and since the group of

orthogonal 2 2-matrices is compact, it follows that a solution of (2.12) always exists.
The problem of solving (2.12) is itself nontrivial. Although (2.12) can be written

in terms of a rotation angle a, solving for a would involve solving a polynomial
equation of degree 4k in cos a and sin a, which seems rather tedious. A more elegant
solution is provided by the G-algorithm, which is based on the observation that the
vectors q, q2 satisfying (2.12) are eigenvectors of the matrix in brackets. Since the
latter, however, depends also on ql, q2, an iterative procedure is required.

3. Convergence of the FG-algorithm.
3.1. Convergence of the F-algorithm. We show that the F-algorithm, in theory (i.e.

if eF--eG--- 0), does not stop unless the equations (1.14) are satisfied for the current
B, and that, if B does not satisfy (1.14), an iteration step of the F-algorithm will
decrease .

Suppose that the current orthogonal matrix B (bl,. , bp) does not satisfy the
(/,j)th equation of (1.14). For notational simplicity, we can take l-- 1 and j 2 without
loss of generality. Let us write B =(B" B), where B(1) =(b, bE). In step F2 the
matrices T BrABI are passed to the G-algorithm. The G-algorithm gives back
an orthogonal 2 2 matrix Q (step F_). (Note that Q is not necessarily unique,
depending upon the conventions used in the G-algorithm. We will consider every
matrix Q obtained from Q by interchainging the columns of Q and/or multiplying
one or both columns by -1 as equivalent to Q). Steps F23 and F4 correspond to the
transformation

(3.1) B.=B(Q O) BIQ
0 Ip__

"B(=)"

B* is orthogonal, since it is the product of two orthogonal matrices. Now we have

k

(I)(U*) l-I [[diag B*TA,B*I/IB*TAiB*[] ",

i=1

(3.2)
k

I-I [Idiag QTB(1)TAiB()Q[" [diag B(2)A,B(2)I/IA, I]",.
i=1

It will be shown in 3.2 that if, as assumed, (1.14) is not satisfied for 1 and j 2,
then

k k

(3.3) I-I [diag QTB()A,B(1)QI"’ < I-I [diag B(’)raiB(1)l",.
i=1 i=1

If (1.14) is satisfied, Q will be equivalent to I2, and hence (3.3) holds with equality.
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Therefore, each iteration step of the F-algorithm decreases , and the algorithm will
stop only if (1.14) is satisfied.

3.2. Convergence of the G-algorithm. In analogy to (1.13), (1.14), the equation
(2.2) is satisfied for the matrix Q (ql, q2) which minimizes

ITI ’’ q(O)= 1-[ Idiag
i=1 =1

Let Q(g) denote the orthogonal 2 x 2 matrix after the gth iteration. We will show that

k k

(3.4) 1-I Idiag Q(g+l)T TQ(g+’)ln’-<- I-I Idiag Q(g)TTQ(g)I"’,
i=1 i=1

and that the sequence Q(g) converges to an orthogonal matrix which solves (2.2).
Suppose now that the (g + 1)st iteration of the G-algorithm is being performed.

It is somewhat simpler to prove the convergence if we introduce the following notation"
Let Q (ql, qa) contain the current approximation to the solution of (2.2) and iij be
defined as in (2.3). Then we put

i ti2(3.5) a,= (i=1,...,k),
ili2
k

(3.6) T= Y, n,a,T,
i=1

and

(3.7) U QT"TQ u)

The U are p.d.s., and clearly

k

(3.8) T Y n,a,QUQ7-

i=1

and

(3.9) i U/1), i2 (i)
22"

In step G3 the characteristic vectors of T are computed. Denote the solution by Q*,
so that

(3.10) Q*rTQ*= A
is diagonal. From (3.8) it follows that

k

(3.11) n,aQ*rQUQrQ*= A.
i=1

The characteristic vectors of the symmetric matrix

k

(3.12) U= E n,a,U,
i=1

are therefore given by the orthogonal matrix

(3.13) p= QrQ.,
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and Q* can therefore be obtained by

(3.14) Q*=QP.

Note that U QTTQ is diagonal if and only if Q (ql, q2) is a solution of (2.2). From
(3.9) and (3.12) it follows that

(3.15) U=
i=1

r/i ll’(i) t22’(i) k //(2/1 U(2]"
Let

(3.16)

1 iful)>U(2,
(i)Oi 1 if UI < .22,

0 iful)=" (’)
22

(3.17) a’i Oiai,

and

(3.18) S,=\s(2 22(’)/,=a’U’ (i=l,...,k).

Si is p.d.s., unless O 0. With this notation, we have

k

(3.19) U-" lil,qiSi
i=l

Now let k’ k denote the number of O’s which are not zero. Without loss of generality
assume that the k-k’ matrices S which are zero have the indices k’+ 1,..., k.
Therefore the sum (3.19) extends only up to k’, and we are going to show that

(3.20) H [diag PSP[", < (()())"’,
i=1 i=1

with equality if and only if U is diagonal. Assuming for the moment that (3.20) holds
true, the proof of (3.4) can be completed by noting that (3.20) implies

k’ k’

(a ",O,Idiag P UiPI) H "’
i=1 i=l

and therefore

k’ k

(3.22) I-[ [diag Q*TTQ*I
i=1 i=1

For the remaining k k’ matrices U(i=k’+l, k) we have Ul)=-22(), and therefore,
as is easily verified,

(3.23) Idiag BUB[ =< Idiag

for any B 0(2), with equality exactly if B is equivalent to I2 or u 0. This holds,
in particular, for B P. Putting (3.22) and (3.23) together gives now the desired result
(3.4). It remains to show (3.20).

k’Let P (Pl, P2) denote the eigenvectors of U --1.0inS, with Pl being associated
with the algebraically larger root. Since U is symmetric, P is orthogonal (or can be
so chosen if the two roots are identical), and both characteristic roots are real. Assume
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that U is not diagonal, and let ei(i= 1,.’., k’) be defined by

(3.24) PSiP (s+ O’ ")
From (3.5), (3.9) and (3.16) to (3.18) we have

(3.25) si(00i(si)l__S(i), (1 ) (i=1 k’)= , or 1=0, s s

(o is smaller than 1 It then follows thatwhich implies that either s or
(i= 1,..., k’). Indeed, if
implies e < 1. If O -1, then s < 1, and s- e > 0 implies again e < 1.

The product of the diagonal elements of PrSP is

Idiag pTsiP

(3.26)
--(1-- Ei)S?S E i2
< (1 (i 1," , k’).

Thus,

(3.27) 1-I [diag PrS,P[", <- (1 i) ni H Idiag S,I"’
i=1 i=1

and (3.20) holds if we can prove that

k’

(3.28) I-1 (1 e,)"’ < 1.
i=1

To demonstrate this, we note that, since U is assumed not diagonal,

p Upl > Ull,(3.29)

or equivalently,

(3.30)

k’ k

i=1 i=1

k’

X O,n,(pTS,pl- s’) > 0.
i=1

Since pSp-s O,e,(i= 1,.", k’), this implies

k’

(3.31) E n,e, > O,
i=l

so that not all e can be zero. On the other hand, if U is diagonal, then P is equivalent
to I2, and all e are zero. Therefore the e vanish simultaneously if and only if U is
diagonal. Now we need the following lemma.

k’ k’ k’ "< 1LEMMA 2. Ifx > O, n > O( 1," , k’) and = n x =1 n, then = x

Proof Maximize the function = xi’ under the restriction k’i=1 niXi g (>0),
using a Lagrange multiplier. The maximum has the value (g/n)" and is attained for

k’x x, g/n, where n =1 n. Noting that g N n completes the proof.
k’

Since e< 1(i= 1,..., k’) and =1 ne>O, we can use Lemma 2 with x= 1-e
and get (3.28). Note that equality in (3.28) holds exactly if all e are zero. This completes
the proof of convergence of the G-algorithm.
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4. Conditions for uniqueness of the solution. In 3 we have shown that the FG-
algorithm converges to a minimum of (2.1), unless the initial approximation of the
orthogonal matrix B is (badly) chosen as a stationary point of . However, we do not
know whether has a unique minimum. We are now going to show that in some
"extreme" cases there exist more than one local minimum, and we give approximate
conditions when this will happen. Throughout this section (unless otherwise stated)
we will only consider the case k 2 and p 2.

Let the p.d.s, matrix $1 have the characteristic roots ll :> 12 (the case 11 12 being
trivial), and assume, for simplicity, that

(4.1) $1=(11 O)0 12
From (3.5) it can be seen that the solutions of (2.2) are unaffected by proportionality,
i.e., we can assume (see also (3.25))

(4.2) 11 12 l112
without loss of generality. Consider now an orthogonal matrix

(cos -sinq)(4.3) B- B(q)=
\sin cos q

The product of the diagonal elements of BTS1B is

Idiag(B TS1B)I 12 + ll 12) cos2 q ][ 11 I1 12) cos2 q

1112 + (11 --/2)2 COS2
(0 sin

(4.4)
11/2[ 1 + 1112 COS2 (0 sinE q9

rl[ 1 + rl cos
2 sinE q],

where

(4.5) rl ll 1
denotes the product of the characteristic roots of S1. Let the eccentricity dl of $1 be
defined as the ratio of the larger to the smaller root of

(4.6) dl 11/12,

which is also the Euclidean condition number of S1. From (4.2) it follows that
12 ll/(11 + 1), and therefore dl 11 / 1. Similarly, dl 1/(1 -/), and therefore

(4.7) 11 dl 1, I (dl 1)/dl.

Multiplying these two equations gives

(4.8) rl=(dl-1)2/dl.
Note that dl does not depend on the absolute size of $1 (every matrix proportional to
$1 has the same eccentricity), and so the same is true for rl.

For a second p.d.s, matrix $2, let d2 denote its eccentricity, and

(4.9) r (dg_- 1 )2/d.
Let

Bo=
cos oo -sin

\ sin oo cos
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denote the orthogonal matrix which diagonalizes $2. Then, in analogy to (4.4), we get

(4.10) ]diag (BTS2B)I r2[1 / r2 cos
2 (- o) sin (P o)]-

The function @ to be minimized is

(4.11) (p) [1 + rl cos2 tp sin2 p]"’[1 + r2 cos
2 (p Oo) sin2 (p qo)] "2.

Let us now assume that nl n2, so that it remains to minimize

(4.12) G(o) [1 +1/4rl sin2 (2o)][1 +1/4r2 sin2 (2(o- o))].

G(o) is ,r/2-periodic, and from (4.12) it becomes clear that for qo0, G(p) may
have more than one local minimum in one period, depending on r, rz and qo (and,
in the general situation, on n and m_). Note that qo is the minimum angle between
two characteristic vectors of S and $2.

Let us first look at the extreme situation po zr/4. From a Taylor expansion it
can be seen that in a neighborhood of 0,

(4.13) G(q) l/1/4r2/(r--r2/rlr2)p2/O(q94).

The function G(q) has therefore a stationary point at p 0, which is a

(4.14)
minimum, if rl rE+rlr > 0,

maximum, if rl- rE/rr<O.
Note that for rl _>-4 or r =re this is always a minimum.

Similarly, at p 7r/4, we get a

minimum, if r-- r /1/4rr2> O,
(4.15)

maximum, if r2- rl + 1/4r r < 0.

For r2-> 4 or r =r this is always a minimum.
Since rl and r: are both positive, there cannot be a maximum at 0 and r/4

simultaneously. Local minima at both points, however, are obtained e.g. if both rl and
rE are larger than 4, or if r =r (even if r r is very close to zero!). Thus the case
of equal eccentricity of both matrices seems most "dangerous" in terms of multiple
local minima.

Using the relation ri=(di-1)/di(4.8, 4.9), the conditions (4.14) and (4.15) can
be transformed to conditions on the eccentricities di (i 1, 2). Figure I shows a partition
of [1, o)[1, o) into three areas in which a minimum is attained at 0 only, at 7r/4
only, or at both points, depending on the values of d and dz. Note that for d > 5.828427
(d > 5.828427) there is always a minimum at o 0 (p r/4), and if d d., there are
always two minima.

The case qo 7r/4 treated so far is of course the "worst possible" case, since the
minimum angle between two characteristic vectors of S and $2 cannot exceed r/4.
For the application in common principal component analysis (Flury (1984)), however,
we expect qo rather close to zero, ifthe null hypothesis ofidentical principal components
in the populations holds. Therefore we look now at the situation where Po is close to
zero. Without loss of generality we can assume Oo> 0. Again, for simplicity, we take
nl= n2--- 1.

Approximating the trigonometric functions in the two factors of G by Taylor
series at q 0 (first factor) and at o qo (second factor), and taking the first derivative
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FIG. 1. Conditions for minima and maxima if n n2, tpo- 7r/4.

of G with respect to o yields

G’(q) 2r,[q + 0(o3)][1 + r=((q qo) + O(q qo)4)]
(4.16)

+ 2r_[(q qo) + O(q qo)3] 1 + r, (q2 + O(q4))].

If qo is close to zero, sufficient accuracy can be had for 0_<-q-< qo if we ignore all
terms of order higher than 2. An approximation to the solution(s) of G’(o) 0 within
[0, Oo] is therefore given by the solution(s) of

(4.17) rlq[1 + rE(tp Oo)2] + r2(o Oo)[1 + rlp2] 0.

This equation has either one or three real roots, depending on rl, r and Po. For

rl =r_-r, (4.17) can be written as

(4.18) tp( l + r( tp tpo)2) + tp po)( l + rq2) 2( q -) rq2 rtpoo + l ) O.

Thus o Oo/2 is a solution of (4.18) (and also of (4.16) if rl rE). If, approximately,

4
(4.19) -> q,

G(o) takes a minimum at Oo/2. Under the same condition (4.19), the polynomial

(4.20) rq2 rpop + 1

has no real root, and the minimum at Oo/2 is unique.
If, always approximately for small Oo, 4/r < o, we get a maximum at Oo/2, and

two minima at

(4.21) 1/2(#o +/q-4/r).

In terms of the eccentricity parameters dl d2 d, condition (4.19) becomes

4d
(4.22)

(d I)---->



180 BERNHARD N. FLURY AND WALTER GAUTSCHI

which shows that two minima are to be expected only if the eccentricity is high. For
large d, (4.22) is approximately the same as

(4.23) d <

For example, if qo .2(11.5 degrees), a single minimum can be expected approxi-
mately if d < 100.

Figure 2 shows the typical behavior of the function G(q) for qo .2 and r 160
(d 161.99). The two minima are approximately at .039 and .161. If different values
are chosen for r, and r2, the two minima are in general not identical, but the shape
of the graph is similar, with one "valley" being less deep than the other.

Although these results are only approximate, they give a general idea about the
conditions for uniqueness of the minimum. For k > 2 matrices, the relations are of
course more complicated, but still we can expect a unique minimum unless some of
the matrices are highly eccentric.

For dimension p > 2, the minimum is certainly unique if all the p(p 1)/2 equations
(1.14) have a unique minimizing solution. (By a minimizing solution we mean a solution
which corresponds to a local minimum of G, or, in the p-dimensional case, of the
function .) On the other hand, if some of the equations have more than one minimizing
solution, this does not necessarily imply that the whole system (1.14) has more than
one minimizing solution.

ii .00

1
.O0 1

/

7.00

5.00 ] o.olo .iio .2o .30
FI

FIG. 2. Graph of G() for o .2, n, n2 and d d2 162.

A solution given by the FG-algorithm does of course not prove its uniqueness.
However, Fig. 2 suggests the following: If we start the FG-algorithm with

as an initial approximation, it will converge to the left minimum, while

B(0o)= cos. qo -sin

sin 0o cos

as an initial approximation leads to convergence to the right minimum. (This is indicated
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by the arrows in Fig. 2.) Since the function is a product of k functions (see 1.12),
minimizing solutions can always be expected to be somehow "close" to the characteris-
tic vectors of one of the matrices. Therefore, if there is doubt about the uniqueness of
the solution, it is recommended that one run the FG-algorithm k times, using the k
sets of characteristic vectors of A1, Ak as initial approximations. If all k solutions
found are equal, it is reasonable to assume that there is a unique global minimum.

As a numerical example, let

0
and $2--

19.4603 4.9857]’

so that dl d2 100 and qo 202( 11.57 degrees), which is a borderline case according
to approximation (4.22). G() assumes two minima at .08 and .12, approximately. If
we reduce the eccentricity to 90 (leaving qo unchanged), we get the matrices

$1=(90 )and $2=(86"4168 17.4946
0 \ 17.4946 4.5831/"

For these two matrices, there is a unique minimum at Oo/2. The bound (4.22) for d is
in general too high, but the approximation becomes better when Oo gets smaller.

5. Remarks.
1. The proofof convergence ofthe G-algorithm makes strong use ofthe assumption

that the matrices T are positive definite. If one or several of the matrices Ai are close
to singularity, this could cause numerical problems, because the ai (3.5) might become
very large.

2. Since the stopping rule given in step F3 depends on the absolute size of the
matrices A, it may be better to replace it by a criterion similar to the one used in the
G-algorithm"

F3: If IIBCr-’)-BII < ev for some small eF>0, stop. Otherwise, start the next
iteration step at F1.

3. If the current version of B in the F-algorithm is a stationary point of , and
I2 is taken as an initial approximation of Q in the G-algorithm, FG will not change
B, since (1.14) is satisfied. This occurs, e.g., if the diagonal elements of the A-matrices
are identical for each Ai, that is, diag A diag(ci, , c) for some c > 0(i 1, , k),
and Ip is taken as an initial approximation of B. An important special case of this are
correlation matrices, where the diagonal elements are all 1. If the first iteration of the
F-algorithm does not change B, it might therefore be helpful to try FG with another
initial approximation.

4. On the F-level, a better initial approximation than Ip might be to take the
eigenvectors of one of the Ai (e.g. the one with the largest n), or the eigenvectors of
k’=l nA. On the G-level, I2 is a good initial approximation for Q, when the current
B on the F-level is already close to the correct solution.

5. In step F24, the/th and jth column of B are adjusted using the matrix Q given
by the G-algorithm. Since these two columns will undergo changes in subsequent
executions of steps FI to F24 it is not necessary to iterate on the G-level until full
convergence is reached. In most cases the first iteration steps of the G-algorithm will
decrease @(B) much more than the later iterations. If k 1, only one iteration step is
required in each execution of the G-algorithm.
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6. In order to avoid permutations of the columns of B and multiplications by -1,
it is convenient to order the columns of Q such that

(5.1) Q=(COSasln.a -sin

cos a)a
where -7r/2 < a < r/2.

7. If k 1, the FG-algorithm reduces to a Jacobi-method (Parlett (1980, Chap.
9)) for diagonalizing the single p.d.s, matrix A A1.

8. The listing of a FORTRAN program performing the FG-algorithm (Flury
(1985)) can be obtained from the first author upon request.

6. Examlfle. In this section we illustrate the performance of the FG-algorithm by
a numerical example of dimension p 6 with k 2 matrices and weights nl n2 1.
The matrices are

45 10 0 5 0 0

10 45 5 0 0 0

5 45 10 0

0 10 45 0

0 0 0 16.4 -4.8
/0 0 0 -4.8 13.6

0

5

0

0

27.5 -12.5 -.5 -4.5 -2.04 3.72

-12.5 27.5 -4.5 -.5 2.04 -3.72

-.5 -4.5 24.5 -9.5 -3.72 -2.04

-4.5 -.5 -9.5 24.5 3.72 2.04

-2.04 2.04 -3.72 3.72 54.76 -4.68

3.72 -3.72 -2.04 2.04 -4.68 51.24

The characteristic vectors of A are the columns of the matrix

.5 .5 .5 .5 0 0

.5 .5 -.5 -.5 0 0

.5 -.5 -.5 .5 0 0

5 -.5 .5 -.5 0 0

0 0 0 0 .8 .6

0 0 0 0 -.6 .8

The associated roots are 60, 50, 40, 30, 20 and 1
vectors are

0. For matrix A2, the characteristic

.5 .5 3 .6 1

.5 .5 -.3 .6 -.1 .2

11.5 -.5 -.6 -.3 -.2 -.
5 -.5 .6 .3 .2

0 0 -.18 -.26 .54 .78
/0 0 -.26 .18 .78 -.54

with roots 10, 20, 30, 40, 50 and 60. We used the FG-algorithm as programmed by
Flury (1985) with eF e=.0001. The stopping rule for the F-algorithm was as
described in Remark 2 above. As an initial approximation we used B I6, the identity
matrix of dimension 6. The rotation pairs in the F-algorithm were chosen cyclically
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(see Golub and Van Loan (1983, p. 299)). A sweep (or iteration step) of the F-algorithm
consists therefore of ()- 15 pairwise rotations. For each sweep of the F-algorithm,
we give the current orthogonal matrix B, the value of the criterion (B)=
1-I=l Idiag(BTAiB)l/IA, and the average number of iterations of the G-algorithm per
call. At the beginning, the value of the criterion is (I6)= 2.24718.

after sweep 1

.8138 -.0721 .4584 .3474 -.0398 .0124

.0000 .7646 .4627 -.4451 .0553 -.0114

B(1) -.1321 -.6346 .5378 -.5358 -.0456 -.0370

-.5642 0384 .5353 .6256 .0321 .0358

.0390 -.0699 .0002 -.0357 .7998 .5938

-.0224 .0326 .0003 -.0379 -.5937 .8028

(B) 1.25461

average number of iterations of G-algorithm" 2.73

after sweep2

.4983 -.5648 .4993 .4174 -.0955 .0072

.5025 .5613 .4998 -.4164 .0955 -.0072

l-.5oo3 -.4124 .5003 5711 -.0537 -.0180
-.4988 .4150 .5006 .5703 .0538 .0180
.0003 -.1276 -.0001 -.0010 .7921 .5968

\ .0003 .0864 .0000 -.0323 5903 .8019

(B(2)) 1.03574

average number ofiterations of G-algorithm: 2.4

after sweep 3

.5000 -.5548 .5000 .4278

.5000 .5548 .5000 -.4278

B(3= --.5000 --.4247 .5000 --.5625

--.5000 .4247 .5000 .5625

.0000 --.1265 .0000 .0013

.0000 .0878 .0000 --.0336

(B(3)) 1.03568

average number ofiterations of G-algorithm" 1.8

after sweep 4

.5000 -.5545 .5000 .4281

.5000 .5545 .5000 -.4281
-.5000 -.4250 .5000 -.5623B(4)=
-.5000 .4250 .5000 .5623
0000 -.1265 .0000 .0014
0000 .0878 .0000 -.0337

(B4) 1.03568

average number ofiterations of G-algorithm: 1.07.

-.0956 .0083
.0956 -.0083

-.0541 -.0170

.0541 .0170

.7919 .5974

5905 .8015

-.0956 .0083
.0956 -.0083

-.0541 -.0169

.0541 .0169

.7919 .5974

-.5906 .8015
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Sweep 5 did not produce any changes in the first four digits of the elements of B
and the algorithm stopped. The "nearly diagonal" matrices BTA1B and BTA2B were
given by the program as

BTAB

BTA2B

50.0000
.0000

.0000

.0000

.0000

.0000

.0000 .0000 .0000 .0000

29.9305 .0000 -1.2531 1.5738

.0000 60.0000 .0000 .0000

-1.2531 .0000 39.7904 -.6200

1.5738 .0000 -.6200 20.2584

.0753 .0000 .7728 -.0351

.0000

.0753

.0000

.7728

-.0351
10.0207

.0000

.0000 40.2336

.0000 .0000

.0000 -1.6232

.0000 3.1472

.0000 1.1790

.0000 .0000 .0000

.0000 -1.6232 3.1472
10.0000 .0000 .0000

.0000 32.0055 -1.0458

.0000 -1.0458 59.2485

.0000 5.4272 .4738

.0000\
1.1790
.0000/.

5.4272]
4738/

48.5123!

The FG-algorithm has clearly recovered the two common eigenvectors of A and A2.
The four other columns of B B(4) can be considered as "compromises" between
eigenvectors of A1 and A2. Of course the order of the columns of B is not relevant;
it is simply determined by the initial approximation used in the F-algorithm.

It is worth noting that the convergence is rather fast: after only two sweeps, the
coefficients of B are already correct to two digits. This was typically also the case in
statistical examples (see Flury (1984)), where the weights ni are not necessarily equal.
In none of these examples, more than five sweeps were needed to reach convergence.

The computation of the above example required .07 seconds of CPU time (not
including input/output operations) on the CDC 170/855 computer of Indiana Uni-
versity.
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RGSVD--AN ALGORITHM FOR COMPUTING
THE KRONECKER STRUCTURE AND REDUCING
SUBSPACES OF SINGULAR A-AB PENCILS*

BO KGSTROM"

Abstract. An algorithm (RGSVD) for computing the structure elements associated with the Kronecker
canonicalform (KCF) of a matrix pencil A- AB, where A and B are complex m by n matrices, is presented.
RGSVD is based on repeated generalized singular value decompositions (or more precisely cosine-sine
decompositions of partitioned orthonormal matrices). It extracts the structures of the zero and/or the infinite
eigenvalues together with the left (row) or fight (column) minimal indices of A-AB. By accumulating
equivalence transformations, RGSVD also produces pairs of reducing subspaces associated with e.g. the
zero structure and the right Kronecker indices.

Key words, matrix pencils (regular, singular), Kronecker structure, minimal indices, eigenvalues (finite,
infinite), deflating subspace, reducing subspace, canonical form, linear system theory

1. Introduction. During the last few years there has been an increasing interest in
the numerical treatment of general matrix pencils A-AB and the computation of the
Kronecker Canonical Form (KCF). See [16] for a state of the art survey. The main
reason for this interest is that in many applications, e.g. linear system theory [32],
descriptor systems [23] and singular systems of differential equations [38], problems
are modelled in terms of linear matrix pencils. Solvability issues around these problems
like the existence and the unicity of a solution, the state of a system or an explicit
solution of a problem can then easily be answered or obtained, respectively, by knowing
the KCF of the underlying pencil.

In this paper we consider the problem of computing the structure elements
associated with the KCF of a pencil A-AB, where A and B are complex m by n
matrices. These are the Jordan structures of finite and infinite eigenvalues and possibly
minimal indices if A-AB is singular. For a complete definition of the Kronecker
structure of A-AB see 3. By definition (see e.g. [4]) a pencil A-AB is called regular
if and only if A and B are square, det (A-AB) 0. In all other cases i.e., m n, or
m n but det (A- AB)-= 0, A- AB is called singular. Since the problem of computing
Jordan structures is a subset of our problem, it inherits all the numerical difficulties
of that problem (see [2]-[3], [6], [7], [12]-[14]). Moreover, the existence of minimal
indices can make the problem even more ill-conditioned. Anyhow it is always possible
to give a meaning to computed results in the following restricted way. Given A-AB,
we compute a KCF with Kronecker structure a, that exactly corresponds to a pencil
C- AD. We cannot guarantee that a is the true Kronecker structure of A-AB, but
we can give estimates of the distance from A AB to C AD. The size of these estimates
then validate the computed canonical reduction and a.

In this paper we present the reiterating generalized singular value deflation
(RGSVD) algorithm for computing the Kronecker structure a of a singular pencil.
The RGSVD algorithm is based on a reduction theorem that computes the Jordan
structure ao of the zero eigenvalue and the right (column) minimal indices a,. At the
same time we obtain pairs of reducing subspaces [34], which is a generalization of
deflating subspaces [24] to the singular case. The reduction is based on a finite sequence
of column range-nullspace separations, in terms ofgeneralized singular value decompo-
sitions [21], [26]-[27], [29]-[30], [36] of matrix pairs. We prove a relationship between

* Received by the editors January 10, 1984, and in revised form November 12, 1984.

f Institute of Information Processing, University of Ume, S-901 87 Ume, Sweden.
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the problem of computing ao and a, and the generalized singular value decomposition
(GSVD). This relationship is similar to the one that exists between the Jordan structure
problem of A-AI and the standard singular value decomposition (SVD) (see [6],
[12]). As a consequence it is possible to express exactly the distance from A-AB to
C AD, with the computed a0 and as, in terms of deleted generalized singular values.

Before we go into details further, we outline the content of the rest of this paper.
In 2 we review the problem of finding the Jordan structure of an eigenvalue A. In
3 we collect the basic algebraic theory of singular pencils, for example the KCF, and

we introduce notation. Section 4 illustrates the geometric properties of a singular pencil
in canonical form, that form the basis of RGSVD.

In [18] we show how to extract geometric information concerning the row and
column nullspaces of A- AB from the GSVD of the matrix pair (A, B), and in 5 we
summarize some facts and results from 18] that are useful in coming sections.

Section 6 is devoted to algorithms for computing the Kronecker structure. The
reduction theorem is stated and proved in 6.1. The RGSVD algorithm is pre-
sented in 6.2 and the RGQZD algorithm in 6.3 which is based on a generalized
QZ decomposition [18]. Finally in 6.4 we discuss other approaches taken by
Kublanovskaya [9]-[11] and Van Dooren [31]. In 7 we discuss the concept of pairs
of reducing subspaces and relate it to the reduction theorems in 6.1 and 6.3. In 8
we report results from a Matlab 19] program. We study one regular and one singular
pencil. Finally in 9 we make some conclusions and outline directions for future work.

2. The zero structure of A-,I. Before discussing the general matrix pencil prob-
lem A-AB we review the problem of finding the Jordan structure of an eigenvalue A
corresponding to the pencil A- hi. It is well known that the Jordan normalform (JNF)
of A is not a continuous function of the matrix elements and therefore it can be very
hard to deal with numerically (see [6], [7], [12]-[14], [3]). When we apply our JNF-
algorithm [12]-[13] to A, we always compute a JNF such that

(2.1) (A+ E)S SJ

where J is a direct sum of unnormalized Jordan blocks J(A) e.g.

(2.2) J3()= 0

0 0

If EII in (2.1) is of order AI1" machep, where machep is the relative machine precision,
then we say that we have computed a satisfactory JNF. In theory there might exist a
matrix B closer to A that has a different JNF. However we cannot expect anything
better when working in finite precision arithmetic.

If we only are interested in the Jordan structure of one eigenvalue , we can rely
on unitary similarity transformations. The following theorem is originally due to
Kublanovskaya [8].

THEOREM 2.1. Let A C"" and , =0 be an eigenvalue of multiplicity ofA with
Jordan structure

(2.3) ao=(6, ,. 6h)

where n- n+ is the number of elementary divisors of grade k (= the number of
J(O)-blocks), h is the maximal height of the Jordan chains and

(2.4) n dim a(A) -dim (A-).
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Then there exists an unitary matrix P C"" such that

[_A_o_I_A_, 0
IIn_t(2.5) PnAP L o Ar J PnIP

0
n-t

where

(2.6) Ao

r,
o

n >= n >= n3.

Mh-i

= n

h

Z nk
k=l

and dot Ar 0 i.e. an empty intersection of the spectrums of Ao and A.

P=[Po Pr],
n-t

(2.7b) Po=[Pol POE Poh]
FI n2 nh

then span {Po} f Ah is the maximal invariant subspace corresponding to the eigenvalue
X =0. Further, the nk columns of Pok span the restricted nullspace (Ak)\(Ak-), i.e.
the space spanned by the principal vectors of grade k.

Proof. For a complete proof we refer the reader to [6] or 12]. A finite sequence
of range-nullspace separations deflates the singularity of A and is done by utilizing
the singular value decomposition (SVD). Here we give the first step of the deflation
process since the technique will later be generalized to the matrix pencil A-AB.

Let

(2.8) A-AI=UEV E=diag{,}, 0...,

be the SVD of A-hi (h =0 in this case). Note that we order the singular values in
increasing sequence.

Since n dim if(A), the first n singular values are zero which implies that

(2.9) (A- hi) V= UZ =[0 ]

i.e. the first nl columns of V are eigenvectors and

Apply the same operations on A(it. The process continues until step h where A(h(=A)
is nonsingular. The product of all transformation matrices gives the final P.

If we partition P as

(2.7a)
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In practice the Jordan structure ao (2.3) is not known in advance. At each step
the numerical nullity of A(k) is determined from its singular values and a deflation
tolerance. The perturbation matrix E in (2.1) accumulate deleted singular values from
the deflation process. See Kgstr6m 14] for an explicit expression of E and Kgstr6m-
Ruhe [12]-[ 13] for further interpretation and assessment of a computed JNF.

3. The Kronecker structure of A- AB. If A, B C"" and det (A- AB) -= 0 for all
A C, i.e. every possible linear combination of A and B is singular, then A-AB is
called a singular pencil. The simplest examples occur when A and B have a common
row or column nullspace, but there are also more complicated singular pencils whose
structure, described by minimal indices, is given by the Kronecker canonicalform (KCF)
of A-AB. Rectangular pencils A-AB, A, B Cm are always singular. By a strictly
equivalent transformation of A-AB we mean

(3.1) P-(A-AB)Q=,-h

where P6 C" and Q C"" are constant and nonsingular. In the KCF (see e.g.
Gantmacher [4]) P and Q are chosen so A-hB has the form

T T T(3.2) P-’(A-AB)Q diag {J-hi, I-AN, L,, L,..-, L,, L.I L,,-.., L,}
where

J corresponds to the finite eigenvalues (including zero-eigenvalues) of A-AB.
N is nilpotent and corresponds to the infinite eigenvalue of A-AB.
Both N and J are direct sums of k by k Jordan blocks Ng and Jg(h) respectively.

TL and L, are e.x(e+ 1) and (/+ 1)x r/ respectively, and bidiagonal. For
example

L 0 -A
0 0 -A

The e and / are called the minimal right (column) and left (row) indices of
A-AB respectively. Here we assume that 0-< e <_- e2<_- -< e, and 0_-< ?l -< 2<--" "--<

Notice that the blocks L and/or L will only appear if A-AB is singular and
they expose the singularity of A-AB in the following way. For L there exists a
polynomial column vector such that

L[1A. AJr =[0, ,oJr
e+l e

while for L there exists a polynomial row vector such that

[1 h... A’]L,r [0,..., 0].
/+1

For a regular pencil A- AB det (A- AB) is not identically zero and the KCF simplifies
to the Weierstrass-Kronecker canonical form (W-KCF)"

(3.3) diag {J- A/, I- AN}.

This canonical form consists of finite and infinite eigenvalues but no minimal
indices. If A-AB is of the form A-A/, i.e., a standard eigenvalue problem the KCF
reduces to the JNF, diag {J-AI}.
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Assume that the singular pencil A-AB has eigenvalues O Ao,
and Aoo- oo where A1," , Ap are nonzero and distinct. Let tk >-- 1 denote the algebraic
multiplicity, and let tS k) denote the number of elementary divisors of grade at
the maximal height of a Jordan chain at Ak. Then

(3.4) (k)Ok-’-(k), (2k),..., thk
and denotes the Jordan structure ofthe eigenvalue Ak for k 0, 1, , p and oo. Further,
let i and i denote the number ofleft (row) and right (column) minimal indices ofgrade

Tand let v and u be the maximal order of the blocks L and L, respectively. Collecting
the left and right minimal indices in

(3.5a)

(3.5b) a,= (0, 1,""",

and the structure indices Cek we form the multiindex

(3.6) O (SO, al, CZp, Czoo, 0,,

We refer to this as the Kronecker structure of A-AB. We denote the set of pencils
A-AB with structure ce (3.6) by ,,. From (3.Sa-b) the total number of L-blocks
and Lk-blocks, respectively, can be expressed by

(3.7a) = ei
i=0

and

(3.7b) = ,.
i=0

4. A singular pencil in canonical form. Consider an 8 (= m) by 12 (= n) singular
pencil A-AB with Kronecker structure a =(Co, a,) where no=(1, 0, 1) and
(2, 1, 0, 1),

--;t o o o o o o o o o

(4.1) A-AB=

I-h 00

0 0 -h

0 0 -h0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0-
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

-A 0 0

0 -A 0

0 0 -A 1_

-A0 0

0 0 0

0 0 0

0 0 0

0

0

i.e. its KCF consists of two Jordan blocks Jl(0), J3(0) and four Kronecker blocks Lo,
Lo, LI and L Notice that the 0 by blocks Lo only contribute to the column dimension

of A-AB. In the same way LoT"-blocks only contribute to the row dimension.
A finite structure-block Jk(A) AI can be recognized from either a deficient column

or row rank in the A-part of the KCF. The Lk-blocks have a deficient column rank

both in the A- and B-parts of the KCF. Correspondingly, an infinite structure-block
is recognized from either a deficient column or row rank in the B-part and a Lkr-block
has a deficient row rank both in the A- and B-parts.
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The deficiencies in the column ranks are further exposed by pivoting A and B so
that all zero-columns of A are the leading ones:

(4.2a) A’

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-0
0

0

0
(4.2b) B’=

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0-

0 0 0

0 0 0

0 0 0

0 1 _o_
0

0

n=6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

=4

0 0-
0 0

0 O
0 0

0

o,,o

r =4

The transpositions made can be summarized in the following. We retrieve the
L3-block from columns 4, 8, 10, 12 and rows 2, 5, 7 of A’-AB’ (4.2a-b) and the
J3(0)-block from columns 5, 9, 11 and rows 3, 6, 8. LI forms columns 3, 7 and row 1.
Jl(0) forms column 6 and row 4. Finally the two Lo-blocks form columns 1, 2.

From (4.2a-b) we deduce that the column nullity n of A is 6 (= dim Nc(A)) and
that A and B have a common nullspace of dimension 2. Here rl denotes the dimension
of We(A) which is not in common to Wc(B) (= dim Wc(A)\Wc(A)fq c(B)). Generally

(4.3) nl>=rl>O

and the number of Lo-blocks, *o nl- rl. Further A- AB has rl structure-blocks Jk(0)
or Lk of order >_-1. In our example *o 2 and r 4.

As in the case A-hi (see 2) we can retrieve further information about the
structure-blocks by repeatedly deflating the pencil. In our example we deflate the strict
equivalent pencil A’-AB’ (4.2a-b) at the rlth row and the nlth column:

(4.4a)

(4.4b) B(1) := B’(5" 8, 7" 12)
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Let A(k-I)-AB(k-l) denote the deflated pencil from step k-1 which will be studied
next, and let nk dim c(A(k-)) and nk rk dim c(A(k-)) fq Cc(B(k-)). By repeat-
ing the discussion above we see that n2- 3 and r2 2. In general these column nullities
expose the Kronecker structure a (ao, a,) in the following way. For a proof see 17],
[31] or [38].

THEOREM 4.1.

(4.5a) nk rk the number ofLk--blocks oforder k k,

(4.5b) rk- nk+l the number ofJ(O)-blocks oforder k k.

Note that in the regular case nk rk for all k.
After the next deflation at the rth row and the nth column of A(1)- AB we are

left with"

(4.6a)

(4.6b)

A):=AI(3.4,4.6)=[._0 10]}

0

We have that n --2 and c(A2)) (B(:z)) =0 so r --n After deflating at the r3th
row and n3th column of A(2)- AB(2) we are left with a 0 by pencil A3)- ,B(3), i.e.
a pencil that has no row but one column The deflations so far give that m r + r2 + r 8
and nl + n2+ n3-- 11. Since n 12 we define n4 and r4 0 so

n,(=6) -> r,(=4) >- n2(=3) >= r(=2) ->_ n3(=2) >- r3(=2)
(4.7)

n4(- 1) >- r4(-0 >= 0,

which also holds generally (see 6).
In the coming sections we will show how to compute the nk’S and rk’S and the

strictly equivalent pencils Ak- ABk) giving a general algorithm for computing the
Kronecker structure a of A-AB (see (3.4)-(3.6)) and reducing subspaces (see 7).

5. The generalized singular value decomposition (GSVD). From the introductory
example in 4 we observed that the column and row nullities of A and B, and the
possible common nullspaces give information about the Kronecker structure of A- AB.
In 18] we show how to extract the significant information concerning these nullspaces
from the GSVD of the matrix pair (A, B). Here we summarize some facts and results
from [18] that are useful in coming sections.

5.1. Algebraic formulation. In the following theorem we formulate the GSVD of
the m by n matrices A and B when m >- n. The proof (see [ 18]) is very similar to the
one in Paige and Saunders [21]. We use a SVD and a QR-decomposition instead of a

QR-decomposition and a LQ-decomposition respectively. This alternative derivation
of the GSYD gives us an algorithm for computing the transformation matrices V, X),
used in an equivalence transformation Vn(A- AB)X. The case m < n is discussed in
[18].

THEOREM 5.1. Let A, B C"" where m >= n and

(5.1) r rank [-BA-] -<_ n.
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Then there exist unitary matrices U, V C and a nonsingular matrix X C"" such
that

(52) fgl-1 0 t[-] [-]fl }rn
0 IIVH X=

}m

where

and

(5.4a)

(5.4b)

satisfying

C =diag{c, c2,’", Cr},

S diag {s, s2," , St},

O C C2 Cr 1,

>-- S >-- $2" "" ’ Sr>O

n-r,... ...
(5.7b) B-- V. 0

ii0J }m-r
X

From our assumptions Cl c: c,, 0 and therefore the corresponding si will be
ones. By multiplying A and B in (5.7a-b) with X from the right we see that the columns
xi of X span the different column nullspaces:

(5.8a) aVc(A) span {X ," "’, Xnt},
(5.8b) (A)O(B)=span{xl,. ,x,_,},

and

(5.5) C2+ $2=/.

Since we only need (V, X) or (U, X) in an equivalence transformation of A- AB, we
do not come into the numerical difficulties one encounters, when trying to compute
the complete GSVD ([21], [26]-[27], [37]). Sun [29]-[30] has made a perturbation
analysis of the GSVD-problem, and Paige [22] derives an improved version of one of
his results using straightforward matrix ideas.

5.2. A geometric interpretation of the GSVD. In 4 we introduced the notations

(5.6a) n=dimc(A),

(5.6b) nl-rl=dimc(A)f’)f(B)

where r is the dimension of (A) that is not in common to C(B) i.e.

(5.6c)
rl dim f(A)\C(A) f’) fc(B)

dim (A) -dim r(A) f-) (B).

By knowing the GSVD of A and B [see (5.2)-(5.5)] we can write

(5.7a) A=U. 0 m--r
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(5.8c) Arc(A)\Arc(A)f’lArc(B)=span {x,,_t,+l, ,x,,}.
Analogously the part of Arc(B) that is not in common to Arc(A) corresponds to the
number of si equal to zero (say p) and

(5.8d) Arc( B) Arc(A) f’l Arc( B) + span {x,_p,+ x,}.

If we sort C and $ in the opposite order, we instead get a basis of Arc(B) from the
(n-r)+pl first consecutive columns of X. Row nullities and bases for the row
nullspaces of A and B, Art(A) and Art(B) respectively, can also be obtained from the
GSVD. Since A and B C"" we have that

(5.9a) dim Art(A)= (m- r)+ r,

(5.9b) dim Art(B) m r) +p,
(5.9c) dim Art(A) f-) Art(B) rn r

where as before r is the number of ci equal to zero and p is the number of s equal
to zero. By premultiplying A (5.7a) with Uu and B (5.7b) with V" we get orthonormal
bases for Art(A) and Art(B) from the columns of U and V:

(5.10a) Arr(A) span {ut,""", ut,, u,,-t+, u,,},

(5.10b) Arr(B) span {1)m_(r,+p,)+ ,’’’,

Evidently we cannot get a basis for ACr(A) f’I ACt(B) from the GSVD of (A, B). Since
Art(A)= Arc(An) and Art(B)= Arc(B) we can compute the GSVD of (An, B) and
obtain bases for the row nullspaces from (5.Sa-d). The values of r and p will still be
the same but n =(m-r)+ r. In the following sections rt and n denote column
nullities and are defined by (5.6a-c).

By considering A C as a mapping from C" to C" we can express C" and C
as direct sums of the range and nullspaces of A and AH"

C" (A)O)Ar(AH); C"

In our notation Arc(A)= Ar(A) and Art(A)= Ar(AH). We find the notation of column
and row nullspaces natural for our problem, since these nullities of A and B give us
information about the column and row minimal indices of A-AB.

6. Algorithms for computing the Kronecker structure. The RGSVD algorithm is
based on a reduction theorem of a singular pencil, that is stated and proved in 6.1.
The theorem is a natural generalization of Theorem 2.1 to singular pencils. Apart from
the Jordan structure ao (2.3), the reduced pencil displays a, (3.5), the right (column)
minimal indices of the Kronecker structure. For the A-AI probem a finite sequence
of range-nullspace separations, in terms of SVD’s, deflates the singularity. Here a finite
sequence of column range-nullspace separations of matrix pairs, in terms of GSVD’s,
reduces the singularity. Several arguments used in the coming proof are in the style
of Wilkinson [39]-[40], where he elegantly derives the KCF starting from a singular
system of ditierential equations

(6.1) B:( t) Ax( t) +f( t).

In 6.2 we present the RGSVD-algorithm. We also make use of the reduction theorem
to compute ao, the Jordan structure of the infinite eigenvalue, and ere (3.5a), the left
(row) minimal indices. The rest of the pencil is the regular part corresponding to the
nonzero and finite eigenvalues of A- AB. In fact this regular part is almost in standard
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form and once we know the eigenvalues we can make use of Theorem 2.1 to compute
its Jordan structure.

In 6.3 we outline the RGQZD algorithm which, instead of GSVD, make use of
a generalized QZ decomposition I18], giving a unitary equivalence transformation of
A-AB. In 6.4 we make some comparisons with other approaches and algorithms,
presented by Kublanovskaya and Van Dooren.

6.1. The reduction theorem.
THEOREM 6.1. Let A, B Cm", m and n arbitrary, and A- AB be a singular pencil.

Let A 0 be an eigenvalue of multiplicity of A-AB with Jordan structure ao and let
the pencil have the right minimal indices a, (see (2.3)-(2.4) and (3.5b)).

Then there exist a unitary matrix V C and a nonsingular matrix X C" such
that

(6.2a)

and

VHAx [Ao, A,
A_?

0

(6.2b) V"BX=
0 B

where

(6.3) Ao,

(6.4) Bo,

denotes the unit matrix of order rk. The block indices nk and rk of (6.3)-(6.4) satisfy
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the inequalities

(6.5) nl => rl n2 -> r2 -> n3 -->" => ns -> rs ns+ 0

and display the structure indices ao and a, as

(6.6) do =(6,62,...,6h) withSk=rk--nk+l

and

(6.7) d,=(,o,,,...,,v) with *k- nk-- rk

where k is the number of Jk(O)-blocks and k-I is the number of Lk_-blocks.
Ar and A2 are full matrix blocks and Ar is offull column rank; Br has only one

diagonal with positive elements starting at the top left corner.
The pencil Ar- AB might be singular and, using the notation in 3, contains the

finite eigenvalues h,..., Ap and h together with de, the left (row) minimal indices
of A- AB.

On purpose the lower rightmost blocks of Ao, and Bo, are omitted. There are two
cases that will be illustrated in the proof.

Proof. The proof is constructive and based on repeated use of the GSVD on matrix
pairs (A(k), B(k)), each pair originating from a deflation of the previous pencil A(k-)-

AB(k-). The first GSVD is made on (A(), B()) (A, B). In step k "(_-> l) the indices nk
and rk are determined from the GSVD of (A(k-), B(k-)), where

(6.8) n dim Xc(A);

and

n- r dim c(A) f’l c(B)

(6.9a) nk dim c(A(k-l)), k 2, 3," ,
(6.9b) nk rk dim (A(k-)) f’l (B(k-’)).

Assume that m >_- n. The reduction works as well for m < n, but the GSVD looks different
(see 18]). The geometric interpretation of GSVD was introduced in 5.2. See also 4,
where the case m < n and the geometric indices nk and rk are discussed and illustrated.

We use the "’k and ’k from the GSVD of (A(k-), B(k-)) as transformation
matrices and get (see (5.7a-b))

O0 ])h rk)

Note that A(k-) is left multiplied by I’ which makes l(k) diagonal,

k)

(6.11) B(k)--

0
S(k) diag s(k) s(k)}I.’ark+l

Hwhere 1 > t’(k) >" > k)
or+ --s 0; not by Uk which would have diagonalized A(k-l) and

that is why Mk and At are full matrices.
The reduction continues until a step s where either ns =0 or n 0 but r 0.

Without loss of generality we treat the case s 4 and work on both cases. Introduce

k k

(6.12) = r, = n,
i=l i=1
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and the augmented matrices Vk C"", Xk C"" where

(613) Vk= [-’-- 7 Xk= ’
After 3 steps we have

(6.14) A- AB V Vz V3

-h

0 A23 A24
I-

0 A34

A(3)

We notice that 12 must have full column rank, or else nl should have been greater.
Similarly A23 is of full column rank, otherwise n2 should have been greater, and
generally the rk by nk/ block ,kk/t is of full column rank. This implies that rk >= nk/l.

From (6.9b) we trivially have nk-> rk. So at this time we know that

(6.15) /I -> r n2_>- r2=> g/3 r3>0.
Compute the GSYD of (A(3), 8(3)). We have two cases. First, if n4 0 then consequently
r-0 and the reduction (6.14) is already complete i.e.

(6.16) Ao,

"13

0 23 |OIr 0

0

From (6.14) we get M,--[/12,/t3], M2--’[123] and A,2 in (6.1) is [A,4 A4 A34]T,
Ar A(3), Br B(3) and since n4 0, A is of full column rank.

Secondly, if n4 # 0 but r4 0 we still have new blocks associated with Ao, and Bo,.
Make use of V4 and X4 from the GSVD in an equivalence transformation of the right-
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hand side of (6.14). Since r4=0 we only add new columns to Ao, and Bo,"

2

(6.17) A24 no,= 0It2
J ’1-

4 n4

where also A34 is of full column rank.
Also in this case we get Ar (6.2a) of full column rank, and therefore A-ABr

cannot have any zero eigenvalues or right minimal indices i.e. Aos-ABos and Ar-
have nonintersecting spectrums.

Introduce the unitary V Cm" and nonsingular X C"" where

(6.18a) V=V V2 V,

(6.18b) X X X2 X

If ns 0 (rs =0) then V and X are identity matrices. This completes the reduction.
It remains to show that the block indices nk and rk display the structure indices

ao and as accordingly. This can be done by reducing Aos (see (6.16-17)) to a form
similar to A’ in (4.2a), without changing Bos. Then we obtain the structure blocks Jk(O)
and Lk from a reordering of the rows and columns. For details the reader is referred
to the technical report 17]. We could also directly apply Theorem 4.1. l-]

6.2. The RGSVD algorithm. The reduction Theorem 6.1 is the basis for an
algorithm to compute the complete Kronecker structure a (3.6). It is possible to prove
a dual reduction of A-AB from a finite sequence of row range-nullspace separations
of matrix pairs. At each step we then compute the GSVD of a matrix pair (A(k)", B(k)")
and make a strictly equivalent transformation ofA(k)- AB<k) that compress rows instead
of columns (see (6.10) and 5.2). Then, apart from ao, we obtain the left row minimal
indices ae (3.5a) of A-AB. Since the row minimal indices of A-AB are the column
minimal indices of the conjugate transposed pencil An- ABn, and vice versa, we also
obtain ae by directly applying Theorem 6.1 to An-ABn. It is well known (see
Gantmacher [4]) that A-AB and B-IXA have the same minimal indices and their
eigenvalues are Ak and A l, respectively, with the same Jordan structures ak. Therefore
when we apply Theorem 6.1 to B-IXA we obtain a, apart from as. A sensitivity
analysis ot Ax ABx (see Stewart [24]-[25] and Sun [29]-[30] and numerical experiment
with the QZ-algorithm [39], [5], [20]), show that infinite or almost infinite eigenvalues
and almost intersecting nullspaces of ,4 and B are problems that give rise to ill-
conditioned eigenvalues that can affect otherwise well-conditioned eigenvalues. There-
fore we start by deflating these singularities.

RGSVD-ALGORITHM (in exact arithmetic)
Compute the infinity structure aoo and the left (row) minimal indices ae by applying
the reduction theorem to BH- IXAn, giving

(6.19) V(Bn IxAn)Xo B Aog 0

B(r). tx0 0 A!
Booe and respectively and nowwhere Ao, and Bos in (6.2a-b) are replaced by H H

A(" is diagonal.
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2 Compute the zero structure So and the right minimal indices a by applying the
reduction theorem to A()- AB(} ), giving

(6.20) u.--(,) AB(,))o Ao.,
VO(Ar

0 A(2)J-A
where A(r2) and B(2)r are square and nonsingular. Further B(2)r is diagonal with
positive elements.

3 Compute the finite and nonzero eigenvalues Ak of A(r2)- AB(r2) and their Jordan
structures ak, k l, 2, , p.

Apart from a row or column scaling of A( -htr is on standard form
A-hi. Apply the JNF-algorithm (Kfigstr/Am-Ruhe [12]-[13]) to C A(2(B(2)- i.e.

(6.21) CS=SJ

where Jr is a direct sum of Jordan blocks and the columns of Sr are the corresponding
eigenvectors and principal vectors (see also 2).

As usual (see 12]-[ 13]) we may obtain the Jordan structures ak (k # 0, o) in Step
3 by computing an appropriately chosen Schur decomposition and make use ofTheorem
2.1 for clusters of eigenvalues. When we know a good approximation/3 to a multiple
eigenvalue Ak of A-AB, we can also compute its Jordan structure ak by applying
Theorem 6.1 to the shifted pencil (A2)- flB(r2)) -AB(2). This is of course a much more
costly operation.

The behaviour of RGSVD in finite precision arithmetic is illustrated in 8.

6.3. The RGQZD algorithm. In 18] we formulate a generalized QZ-decomposition
(GQZD) of a matrix pair (A, B), which displays Wc(A) and We(A) Wc(B) similar to

GSVD. So it is possible to let GQZD take the place of GSVD in the proof of Theorem
6.1. From the GQ,Z-decomposition of (A(k-), B(k-)) we get unitary transformation
matrices lk and Qk, and (6.10) will be replaced by

Mk }rk ORkk Nk u(6.22) A(k-’)-hB(g-’)= V X(r) 0 B() Ok.

k

Here Rk is rk by rg and upper triangular and B(k has only nonzero elements on and
above the diagonal staing at the top left corner. Mk, A( and Nk are full matrices.

In the next step A(k- AB( is treated similarly, and by following the proof of
Theorem 6.1 we can formulate a reduction theorem in terms of unitary transformations.

THEOREM 6.2. Assumptions from eorem 6.1. en there exist unitary matrices
V C xm and Q C"" such that

(6.23a)

and

(6.23b)

VnAQ=[Ao, A,2]0 Ar
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where Ao, is on the form of (6.3) and

0 R N

(6.24) Bo,

0 R33 N

6.4. Other approaches. Recently V. N. Kublanovskaya [9]-[11] presented the
AB-algorithm for handling spectral problems of linear matrix pencils. The AB-
algorithm computes two sequences of matrices {Ak} and {Bk} satisfying

(6.25) AkBk+ BkAk/l, k =0, 1, , Ao A, Bo B

where Ak/l and Bk/l are blocks (one of them upper triangular) of the nullspace of
the augmented matrix Ck =[Ak Bk] in the following way:

(6.26) ,N’(Ck)
L Ak+,.I"

By applying the AB-algorithm to a regular pencil A-AB we get the Jordan structure
ao (2.3) of the zero-eigenvalue. Different ways to compute X(Ck) (6.26) give rise to
different algorithms. Kublanovskaya presents the AB-algorithm in terms of the QR
and LR decompositions. Our experience computing Jordan structures (see 12]-[ 14])
demonstrates the necessity of using SVD in order to obtain a numerically stable
range-nullspace separation. This motivated a formulation of a modified AB-algorithm

The block indices nk and rk display the structure indices ao and a, according to (6.6)-(6.7).
At, AlE and ll2 are full matrix blocks and Ar is offull column rank; Br has only

nonzero elements on and above the diagonal starting at the top left corner and might be
singular. The rk by rk blocks Rkk are nonsingular and upper triangular.

It is now possible to replace the reduction Theorem 6.1 in RGSVD by Theorem
6.2 and we get the reiterating GQZ deflation (RGQZD) algorithm.

Going back to (6.22) we see that we obtain the same information about the
Kronecker structure by using GQZD, but the B-part no longer has the nice and simple
structure of QnB(k-I)X -l in (6.10). Of course there is a trade-off between the simplicity
of the structure of the transformed pencil and the conditioning of k. However, this
choice can be controlled in terms of a tolerance parameter, say tol. Since K(Xk)=
IIxll=llx I1=-"/max/’Fmin, where "/’max and 7"mi are the largest and smallest nonzero

A(k-i)
W OWsingular values of [n(-)], e kn the conditioning of Xk as we proceed in the

algorithm (see [18]), and if K(Xk)> tol we switch to GQZD. On the other hand if,
except for the sizes of the blocks (nk and rk), we want the diagonal structure of the
B-part, then RGSVD will give a better conditioned X (6.2a-b) than performing
Gaussian eliminations without pivoting on Vn(A-AB)Q in (6.23a-b).
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in terms of SVD (see Kgstr/Sm [15]). When we apply this AB-SVD algorithm to a
regular pencil, we get ao via a reduction of A AB that is similar to (6.2a-b) in Theorem
6.1. Now the right-hand transformation is unitary and the left-hand is nonsingular.
However, in the general case, where B may be singular, the right-hand transformation
Q will have dim N(B) zero columns. This deficiency is cured in RGSVD (see Theorem
6.1). Although the underlying ideas behind the RGSVD and AB-SVD algorithms are
different there are some similarities. In step k we perform a CS decomposition [27]
of blocks of a partitioned matrix having orthonormal columns. In RGSVD these blocks
originate from the range of [A], while in AB-SVD they originate from the nullspace of
[A]. While RGSVD solves the spectral problem for a singular pencil almost as easily
as the regular case (see Theorem 6.1), that is not obvious for the AB-algorithm.

In [31], Van Dooren presents an algorithm for computing the Kronecker structure
of a singular pencil, which is a straightforward generalization of Kublanovskaya’s
algorithm for determining the Jordan structure of A-A/, as used in [12]-[13] (see
Theorem 2.1). His reduction is obtained under unitary transformations and is similar
in form to the one obtained from RGQZD. If we compare Theorem 6.2 to Van Dooren’s
corresponding reduction, we see that in his algorithm all diagonal blocks Rkk of Bo,
(6.24) are full instead of upper triangular, as well as Br. Any further reduction of the
B-part will then in his case include Gaussian-type eliminations without pivoting.

7. Reducing sUbSlmCes. In [34] Van Dooren introduces the concept of reducing
subspaces, which is a straightforward generalization of deflating subspaces for regular
pencils, as introduced by Stewart [24], to the singular case. For clarity we start to
recapitulate the regular case.

Let A-AB be a regular pencil of order n, be a subspace of C of dimension
and

(7.1) Ag+ Bg.

Then (, ) is a pair of deflating subspaces (DS) for A-AB if

(7.2)

Construct unitary matrices

(7.3a)

dim dim =/.

Z [Z,, Z2], Q QI, Q2]

such that

(7.3b) = span {Z,}, span { Q,}.

From (7.1) we see that QHAZ1 QH BZI =0, thus

[_A 111 AI2] BI, BI2](7.4) Qn(A-AB)Z=
azzj

-h L-6-2J

where Ao QAZ and B Q/ BZ.
A necessary and sufficient condition that (, ) form a pair ofDS is that

(7.5) A21 B21 0.

Since

(7.6) ZZ (A’-ABt4)[Q’ Q2]= AtA2 Aq22 -A B /20
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we see that (//, oV) where

(7.7) 0-//= span { Q}, o//. span {Z2}

form a pair of DS for AH- ABH.
As in the case with invariant subspaces (IS) for A-hi it is natural to define pairs

of right and left DS. The subspaces (, ) satisfying (7.1)-(7.2) form a pair of
right-deflating subspaces (RDS), and (a//, oV) in (7.7) form a pair of left-deflating
subspaces (LDS) for the part of the spectrum A-AB that corresponds .to A22-AB2.
In [33] Fortran subroutines for computing pairs of DS with specified spectrums are
presented.

Now let A-AB be a singular pencil where A and BC"n. Let and be
subspaces of C" and C" respectively, and k their respective dimensions and -A+B i.e. (7.1) holds. As in the regular case it is possible to construct unitary
matrices Q and Z according to (7.3)-(7.7), but we have a different partitioning, namely

(7.8) Z =[Z, Z2]}", Q =[O,, 02]}"
n-l k rn-k

dim l, dim k,

(7.9b) dim V n l, dim o//= m k.

For any such pair (, ) the following inequality holds (see [34]):

(7.10) dim _->dim-
and consequently

(7.9a)

where g is the number Of Lk-blocks in the KCF (see (3.7b)). When equality is satisfied
in (7.10), (, ) is called a pair of reducing subspaces (RS) for A-,B. Notice that
when A-hB is regular then g= 0 and the concept of RS reduces to that of DS.

Some facts about a pair (, d) of RS (see [34] for proofs):
(i) The singularities of A- hB due to the minimal indices a, (3.5b) and ae (3.5a)

are separated to the diagonal pencils A-hB and A22-,B22, respectively,
i.e. All-hBl has no left (row) minimal indices and A22-hB22 has no row
(column) minimal indices, or vice versa.

(ii) To every pair of RS there corresponds a pair of DS of the regular part of
A-AB.

(iii) To every disjoint subset/3 of the W-KCF-structure (ao, a,. ., ap, a) (see
(3.4) and (3.6)), for example/3 (ao, al), there exists an unique pair of RS
that deflates A-,B such that All- hBl has the Kronecker structure (/3, a,)
and A2-AB22 the remaining structure a\(/3, a,), or vice versa.

(iv) The minimal pair (min, min) and the maximal pair (rnax, rn,x) of RS are
those separating a, (3.5b) and ae (3.5a) from the rest of the pencil, or vice
versa.

(v) Any pair (, ) of RS satisfies:

{0} C min C C max C C
{0} C 0/Jmi c ma C".

In [34] the definition of RS is stated in terms of the dimension of N,(A- AB), the right
nullspace of A-AB, and it is shown that

(7.11) dim N,(A-XB)=g.
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The left nullspace of A-AB, Ne(A-AB) is also introduced, where

(7.12) Ne(A- AB) N,(AI-I ABH).
Since the left minimal indices of A-AB are the same as the right minimal indices of
An- ABn, it follows that (see (3.7a))

(7.13) dim Ne(A- AB) .
From the construction of Z and Q it follows that (q/, OF)= (span {Q2}, span {Z2}) is a
pair of reducing subspaces of An- ABn and accordingly

(7.14) dim F= dim 0?/_ .
Following the regular case we denote (, ) a pair of right-reducing subspace (RRS)
and (0//, OF) a pair of left reducing subspaces (LRS).

The definitions above are stated in terms of unitary deflations, but they can as
well be expressed in terms of nonsingular strictly equivalent transformations. Let
P C"" and X Cn" be nonsingular

(7.15) X IX, X2]" p-l= FyIH1} k

,-,,.-,’ LyJ}m-k
n-l

where

(7.16)

and

(7.17)

span {Xl} span { YI}

where Aij YAX and Bij YBX. When equality in (7.10) is satisfied, then (, )
defined by (7.16) is a pair of RRS.

From Theorems 6.1 and 6.2 we get the following corollary.
THEOREM 7.1. Assumptions from Theorem 6.1.
Partition V and X in (6.2a-b) accordingly, i.e.

(7.18) X [Xl Xz], V" =/--’--I
L vJ}m-

where s and s are defined in (6.12), and let

(7.19) F= span {X}, span { V}

and

(7.20) OF= span {X2}, o span { V2}.

Then (, ) and (11, F) form pairs of RRS and LRS of A-AB, respectively. If we
substitute V and Q from (6.23a-b) for V and X above we get pairs of RRS and LRS
with orthonormal bases.

8. Two numerical examples. The reduction Theorem 6.1 has been implemented in
Matlab 19]. The program, THM6.1, is of an experimental nature and its main building
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blocks are displayed in the following figure:

THM6.1

Repeat
1. GSVD

SVD, CSD

[ SVD, QR

NULLITY, RANK

SVD

2..Update A and B
3. Keep track of matrix blocks
4. Update left and right

transformations V and X
(see proof of Thm. 6.1)

For each step k, the algorithm works on a matrix pair (A(k), l(k)) (see (6.10)). The
most crucial step is in the GSVD algorithm [18] when we make a decision of nk--
dim J’(A(k)) and nk-rk =dim (A(k)fq(B(k). These nullities are determined from
computed singular values interpreted as zeros. Singular values less than a deflation
tolerance (e.g. machep times the norm of the current matrix) are deleted. These effects
are explained by [18, Thm. 4.1], where we derive perturbation bounds to a nearby
pencil with prescribed column nullities.

In the following two sections we report results from the Matlab program, imple-
mented in double precision arithmetic (machep-1.4o-17) on a VAX computer at
Stanford Computer Science department. We study one regular pencil and one singular.
Each pencil A- AB is constructed in the following way. Starting from a predetermined
Kronecker structure a (3.6), the corresponding block structure of the KCF, KA-- AKB
is generated (see (3.2)). Then we compute nonsingular random matrices P C"’ and
Q- Cn", corresponding to left and right transformations, respectively. Finally we
form

(8.1a) A= PKAQ-,
(8.1b) B PKBQ-,
i.e., A and B Cmn.

8.1. A regular pencil; det A = det B 0. Prescribed Kronecker structure ct

(aoo, ao, al), where aoo (0, l, 1), ao= (1, 0, 1), a =(0,2) and h =3.0. In other words,
the KCF of A-AB consists of the following Jordan blocks, Jk(h) "J2(c), J3(o), J(0),
J3(0) and two JE(3.0)-blocks. Other characteristics of A-AB:

K(P) IIPI[2. IIP-[l 329.6; K(Q) 100.6,

IIAIIF-- 629.9; IIBI[ -  52.5; rn n 13.

Results from RGSVD:
Step 1. Compute ao. We apply THM6.1 to B-txA giving
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where K(V)=I.0 and K(Xo)=4.94o+3.Theblock structure of Bo displays the
structure indices and we obtained n r 2, n2 r2 1,/13 r and/I4 --0 showing
that we computed ao= (0, 1, 1). A in (8.2) is now in diagonal form and the first five
elements are ones to the rounding level. See 17] for a complete display of the computed
A and B.

Step 2. Compute ao. We apply THM6.1 to A(r)-AB(l), from (8.2), giving

(8.3) -o

where K(Qo) 1.0 and K(o) 3.3. Here we display the computed ,t and/1, where

r 0.0000 -0.0000 -0.7981 -0.2135

-0.0000 0.0000 1.5048 -0.8027

AI= +

I-0.0000 -0.8645-0.0000 0.0000

0.0000 0.0000 -0.0000 -0.0000

0.0000 0.0000 -0.0000 -0.0000

-0.0000 0.0000 0.0000 0.0000

-0.0000 0.0000 0.0000 0.0000

0.0000 -0.0000 0.0000 0.0000

n 2 n n

-1.1359 -0.1861 1.2255 -0.8995

1.5851 -0.4766 0.4333 1.4728

-0.9025 -0.0673 0.3577 -0.3840

0.0767 0.1204 0.0400 0.8470

0.9063 0.0348 0.1241 -0.1311

-0.0330 0.9245 -0.1017 -0.1077

-0.1222 0.0898 0.9474 -0.0143

0.1001 0.0072 -0.0309 0.4842

nn=0

and

1.0000

0.

0. 0. 0.

1.0000 0. 0.

0. !.0000 0.

0. 0. 0. 1.0000

O. O. O. O.

O. O. O. O.

O. O. O. O.

O. O. O. O.
0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0.3830 0. 0. 0.

0. 0.3485 0. 0.

0. 0. 0.2723 0.

0. 0. 0. 0.1383

with rk nk, showing that we computed ao (1, 0, 1). The zeros and ones displayed
above are all accurate to the rounding level.

Step 3. Compute ak(k # O, oo). First we compute the remaining structure indices

ak by applying THM6.1 to A(/)- AB(2) from (8.3). The eigenvalues of A(2)(B2))- are

2.999999999999977 + 0.000000257850190/

3.000000000000050 + 0.000000044863244i

3.000000000000050- 0.000000044863244i
2.999999999999977 0.000000257860190i.

Apply THM6.! to (A(r2)- flB(r2)) -hB(r2), where/3 is the mean value of the eigenvalues
above. Then

(8.4) V, (A(2) (A +/3). ,..,

where K(’’)= 1.0 and K()= 2.8. We display ,2 and /2 in long precision (15
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decimals), where

and

-0.000000000000000 0.000000000000000
rt -0.000000000000000 0.000000000000000

0.000000000000063 -0.000000000000083
r2 -0.000000000000012 0.000000000000014

n 2

1.000000000000000

0.398531413635066 1.364920415623216

0.820752952632748 -0.662761749431175

0.000000000000032 0.000000000000088

0.000000000000030 0.000000000000022

t12=2

0. 0. 0.

1.000000000000000 O. O.

0. 1.000000000000000 0.

O. O. 1.000000000000000

showing that we computed the Jordan structure tel----(0, 2) of/3.
After regenerating A and B from the composite transformation matrices V and

X, (K(V)= 1.0 and K(X) =4.731o+4),andthe transformed A and B from steps 1-3,
we obtained absolute errors in A and B of the sizeS.31o-14and2.31o-13,respectively,
and the relative error is3.51o-16 for both A and B.

We also computed the JNF of C2)--" AE)(B?))- (see (6.21)) in order to compare
the numerical behaviour of the two algorithms. Results:

3.0 1.5173 0. 0.

jr
3.0 ’,0. O.

K(S,.) 1.0,
0. 3.0 0.912

10. 3.00.

CTSr SrZIIF 1.41o-13, IlC(2)- S,.J,.STl[l 1.41o- 13

Here we obtain the complete Jordan decomposition of C2. In this example the JNF
consists of two Jordan blocks of order two, associated with the true multiple eigenvalue
A1 =3.000000000000014. Accidentally but gratifyingly we computed unitary Jordan
bases, Sr! The size of the absolute errors reported above, is the distance from C2 to
a 4 by 4 matrix C with the computed JNF as the exact one.

8.2. A singular leneil. Prescribed Kronecker structure a (aoo, ae, ao, a,), where
aoo 1, ), tee (2, 1), teo 1, 0, 1) and te, (2, 1, 0, i.e. the KCF of A- AB consists
of the following structure blocks" J(oo), J2(oo), 2Lor, 1LT, J(0), J3(0), 2Lo, 1L and
1L Other characteristics of A-AB"

K(P) 100.7, K(Q) 254.3,

108.9, IIBIIF=93.4, m 15, n 16.

Results from RGSVD"

Step 1. Compute teoo and ae. We start to apply THM6.1 to Bn -tzAn giving

[Be, _o_ _l(8.5) vg(n’ A")X= ()o o J
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where
COLUMNS 1THRU 8

0.0000 0.0000 -0.0000

0.0000 0.0000 -0.0000

-0.0000 -0.0000 0.0000

-0.0000 -0.0000 0.0000

-0.0000 -0.0000 0.0000

-0.6342 0.6511
n2 2_-1.7630 1.1495 -0.0092

0.0000

-0.0000

-0.0000

0.0000

-0.0000

0.0000

-0.0000

tl =0

0.1096 -0.1286 -0.0551 -0.0569

-0.7155 -0.0437 -0.5008 -0.0945

0.1740 0.0315 0.1421 0.0673

1.0360 -0.5845 0.0940 -0.3729

0.6333 -0.9578 -0.5274 -0.0558

0.0080 0.1511 0.1523 0.2440

0.2091 -0.2185 -0.0789 -0.1403
-0.1851 -0.1994 -0.3128 -0.1923

r 3

COLUMNS 9 THRU 16

0.0000

0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

0.0000

-0.0000

0.0000

-0.0000

-0.0000

0.0000

-0.0000

0.0000

-0.0000

-0.0000

-0.0000

0.0000

0.0000

-0.0250

0.0794

-0.0186

-0.0711

-0.1823

0.4016

-0.1882

0.5217

0.0194

0.0125

-0.1453

0.1488

0.2658

0.7235

0.3262

-0.2360

-0.0277

-0.1723

-0.3284

0.2336

-0.0010

-0.0898

-0.4790

-0.1220

0.0000

-0.0000

0.0000

-0.0000

-0.0000

0.0000

0.0000

-0.0349

0.0785

0.2130

0.0941

0.2186

-0.0524

-0.1226

-0.6223

0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000

-0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000

0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000

0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000

0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000

0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000

-0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

and

-0.0283 0.0476 0.0577 o.o214 -0.0583 -o.1711 0.0604 o.1661

o.o13o 0.0338 -0.2263 -0.0572 o.2713 -o.o831 o.219o -0.0257

0.0476 -0.2470 -0.0620 o.1674 -0.0744 -o.o4ol -o.1864 O.lO61

-o.1623 -O.lO71 -0.2322 0.2429 -o.oo12 -0.0299 -o.156o -o.o193

-0.2626 -o.5491 o.3o13 -0.3422 o.o147 o.o419 0.2646 -0.0279

0.0945 -0.0342 -0.0469 o.o415 0.0607 0.0280 -o.2128 o.1981

-0.0357 o.1981 0.0559 0.2223 -0.4068 -o.o115 o.1784 -0.5509

-o.2671 -0.3933 0.0083 0.0330 -0.0604 -o.oo17 0.0265 -o.o818

COLUMNS THRU 8

O. O. O.

O. O. O.

1.0000 O. O.

O. 1.0000 O.

O. O. 1.0000

O. O. O.

0. 0. 0.

0o

0.

0.

0.

0.

0.

1.0000

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

O. O. O. O.

O. O. O. O.

O. O. O. O.

O. O. O. O.

O. O. O. O.

O. O. O. O.

O. O. O. O.

0.9607

0.

0.

0.

0.

0.

0.

0.

0.

0.8740

0.

0.

0.

0.

0.

0.

0.

0.

0.8201

0.

0.

0.

0.

0.

0.

0.

0.

0.7707

0.

0.

0.

0.
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COLUMNS 9 THRU 16

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O.

0.4405 0. 0. 0. 0. 0. 0. 0.

0. 0.3766 0. 0. 0. 0. 0. 0.

0. 0. 0.0000 0. 0. 0. 0. 0.

0. 0. 0. 0.0000 0. 0. 0. 0.

showing that we computed a= (1, 1) and ae (2, 1).
Notice that the six zero columns of A correspond to the original column nullity,

of A (= dim c(A)). Especially the zero si’s in positions (14, 11) and (15, 12) of A
correspond to the number of Lo-blocks in the KCF. In addition the last four zero
columns of A correspond to the four Jk(0)-blocks and/or Lk-blocks of order ->_ 1. We
cannot trace any further information concerning ao or a, from this reduction. Other
characteristics"

K(Voo) 1.0, [[a--xvllF/llall=2.91o-’6,

K(X) 260.6, IIB-X  Vgll /llnll 2.81o-’6.

Step 2. Compute ao and a,. We apply THM6.1 to A(l)- ,B(l) from (8.5) giving

(8.6)

where
COLUMNS THRU 8

r =4

2

=2

--0.0000 --0.0000 0.0000 --0.0000 --0.0000 --0.0000 0.3348 --0.2610

0.0000 --0.0000 0.0000 --0.0000 --0.0000 --0.0000 --0.3576 0.1021

--0.0000 --0.0000 0.0000 --0.0000 --0.0000 --0.0000 0.8689 0.2242

--0.0000 --0.0000 0.0000 0.0000 --0.0000 0.0000 --0.0711 0.9972

0.0000 0.0000 --0.0000 0.0000 0.0000 0.0000 --0.0000 0.0000

--0.0000 --0.0000 0.0000 0.0000 --0.0000 0.0000 --0.0000 --0.0000

0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 I-0.0000 -0.0000

0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000

n =6 n2=3
COLUMNS 9 THRU 12

-0.9700 -0.3030 -0.5545 0.4118

0.5164 -0.0415 0.1195 -0.1978
0.5608 0.0954 0.2522 -0.2429

-0.3114 -0.0521 -0.1297 -0.0349
0.0000 -0.5534 -0.4796 -0.1271

-0.0000 -0.9445 0.2555 -0.4601

-0.0000 0.0000 -0.0000 0.8115

0.0000 -0.0000 0.0000 0.5843

n 2 n
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and

COLUMNS THRU 8

0. 0. 1.0000 0. 0. 0.

0. 0. 0. 1.0000 0. 0.

0. 0. 0. 0. 1.0000 0.

0. 0. 0. 0. 0. 1.0000

0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 1.0000

0.

0.

0.

COLUMNS 9 THRU 12

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

1.0000 0. 0. 0.

0. 1.0000 0. O.

0. 1.0000 0.0.

showing that we computed ao (1,0, 1) and a,= (2, 1, 0, 1). Notice that/1-h/l in
(8.6) has the same Kronecker structure as the introductory example studied in 4 and
is similar to the pivoted A’-AB’ (see (4.2a-b)).

After regenerating A and B from the composite transformation matrices V and
X (K(V) 260.6(=K(X,)) and K(X)= 5.0(=K(Xo)), and the transformed matrices
from step 1-2 we obtained absolute errors in A and B of size 3.81o-,4 and 3.1o-,4,
respectively. The relative errors are 3.5o-,6 and 3.31o-6, respectively. Since
max {K(P), K(Q)} machep 3.51o and max {K(V), K(X)} machep 3.61o where
P and Q are the transformation matrices that generated A and B (see (8.1a-b)), we
interpret our computed results as being very satisfactory.

9. Conclusions and further research. For each Kronecker structure a (3.6), the set
of pencils g constitutes a manifold in the space of singular pencils A-AB where A
and B e Cm". When working in finite precision arithmetic it is impossible to decide
whether a given pencil A- AB belongs to a certain . It is more appropriate to require

A- ,B ,(e)

where

(9.1)
{pencils X h Y, X and Y C xn

IIX-CII/IIXII+ Y- Dll/II Yi[ <-- e and C-ADz }.
From the results computed by RGSVD and reported in 8 we conclude"

Regular pencil A- AB (7.010-’6),
Singular pencil A- AB g’ (6.810-16).

In other words, the relative distance from the given A- AB to a pencil C- AD
is of order 71o-16 for both examples. Since these distances are at the rounding level,
RGSVD has computed well-determined Kronecker structures and associated canonical
reductions, giving well-defined pairs of reducing subspaces (see 7). For RGSVD the
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dominating contributions to the relative perturbations in (9.1) originate from deleted
singular values when computing column and row nullities of certain matrix pairs. The
deleted generalized singular values accumulate from each deflation step k. The sensitiv-
ity of the computed structures e.g. ao and ce, are extremely dependent on the gap
(/3 /) between the singular values we interpret as zero (5) and nonzero (/3) respectively.
We get well-determined structures ao and c, if the quotient/3/5 is large enough and
the ideal case is when 5 is close to machep and/3 is of order 1. If there is no appreciable
gap 5 =/3, the problem of determining the Kronecker structure of A-AB is ill-
conditioned in the sense that A-AB also belongs to ,(e’) for another a’ and e’ of
the same size as e. The choice of structure is then to some extent arbitrary and the
pathological behaviour is inherent to the pencil A-AB itself. In RGSVD we at each
step k seek tlk dim df(A(k)) and rk rk dim df(A(k)) Il ,Ar(B(k)) such that fl/15 >- 1000.

In the reduction Theorem 6.1 we prove that the problem of computing the
Kronecker structures ao and a, of a singular pencil A-AB associate with repeated
deflations in terms of generalized singular value decompositions of matrix pairs
(A(k), B(k)). In fact we have proved an one-to-one correspondence between A-AB
and GSVD which is similar to the one-to-one correspondence that exists between
A-hi and SVD for the Jordan structure problem, (see Theorem 2.1). Furthermore
the proof of Theorem 6.1 gives us an algorithm to compute ao and a, based on singular
value decompositions, that also makes it attractive from a numerical point of view.
Theorem 4.1 in [18] gives a picture of the sensitivity of one step of RGSVD. It is
possible to make use of that analysis and derive a priori bounds of the distance from
a given A- AB to C AD ’. It is also interesting to make the corresponding analysis
for RGQZD (see 6.3). This will be the topic of a forthcoming paper. We also plan
to produce software in Fortran for stably computing the Kronecker structure and
reducing subspaces for uncertain data, where RGSVD will be the basic algorithm.
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A HAMILTONIAN QR ALGORITHM*

RALPH BYERS’f

Abstract. This paper presents a variant QR algorithm for calculating a Hamiltonian-Schur decomposi-

tion [10]. It is defined for Hamiltonian matrices that arise from single input control systems. Numerical

stability and Hamiltonian structure are preserved by using unitary symplectic similarity transformations.

Following a finite step reduction to a Hessenberg-like condensed form, a sequence of similarity transforma-

tions yields a permuted triangular matrix. As the iteration converges, it deflates into problems of lower

dimension. Convergence is accelerated by varying a scalar shift. When the Hamiltonian matrix is real,

complex arithmetic can be avoided by using an implicit double shift technique. The Hamiltonian-Schur

decomposition yields the same invariant subspace information as a Schur decomposition but requires

significantly less work and storage for problems of size greater than about 20.

Key words. QR algorithm, Hamiltonian matrices, symplectic matrices, algebraic Riccati equation,

optimal control

Introduction. A matrix H (2n2n is Hamiltonian [1], [7], [10] if JH H*J 0
where

(1) J=-In
The superscript asterisk denotes the conjugate transpose of a matrix, In denotes the
n-by-n identity matrix and 0n denotes the n-by-n matrix of zeros. Throughout this
paper, H will denote a Hamiltonian matrix. A bold face H will denote the set of
Hamiltonian matrices. Partitioned into n-by-n blocks H is of the form

where G G* and F F*. We will write H HAM (A, G, F) for the matrix of (2).
Hamiltonian matrices arise in mechanics and control theory. For example, consider

the optimal control problem

(3)

subject to the control system

(4)

minimize y*y + u*u dt

dx/dt Ax+ Bu,

y=Cx

where ACnn BCnp CCqn and x(0)=xoC are given. Set G=C*C and
F BB*. It is well known [5] that under mild conditions (3) is minimized by

u -B*Xx

where X Cnn satisfies the algebraic Riccati equation

(5) G+ A*X + XA XFX On.

With this choice of u, x obeys
dx
d--7 a FX)x.

* Received by the editors October 11, 1983, and in revised form October 19, 1984. This work was part
of the author’s doctoral dissertation while a graduate student supported by Cornell University. It merited

co-award of the Householder Prize V (1983) for the best thesis in Numerical Algebra.
f Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115.

212



A HAMILTONIAN QR ALGORITHM 213

Denote the eigenvalues of a matrix M Cnn by h (M) and the open left half complex
plane by C-. In general there are many solutions X of (5). The desired one is stabilizing
in the sense that h (A-FX)c C-.

Solutions of (5) are related to invariant subspaces of HAM (A, G, F) [11]. If Y, Z
and W C n satisfy

then X YZ-1 is a solution. The space spanned by the columns of Y*, Z*]* is an
invariant subspace of H HAM (A, G, F). Any basis of the same invariant subspace
yields the same value of X. We require h(-W)= A(A-FX) to be contained in C-.
If the eigenvalues of HAM (A, G, F) have nonzero real part, then the desired invariant
subspace exists and is unique. Under mild conditions Z is nonsingular and X YZ-1

is unique [4].
Laub [6] shows how to obtain an orthogonal basis by using the Francis QR

algorithm [3 ]. Although effective, Laub’s method does not take advantage of the special
structure of Hamiltonian matrices. H H is treated as a general 2n-by-2n matrix.
Ignoring the Hamiltonian structure of H is inefficient in both work and storage.
Rounding errors can produce some surprising results. Eigenvalues of real Hamiltonian
matrices appear in plus/minus pairs, but eigenvalues calculated by the QR algorithm
in the presence of rounding error may not [15]. This paper shows how to use unitary
symplectic matrices to preserve structure, cutting work and storage requirements in
half. A matrix SC22 is symplectic [1], [7], [10] if S*JS=J. (J is defined in (1).)
In the presence ofrounding errors our algorithm produces the eigenvalues of a "nearby"
Hamiltonian matrix.

Unfortunately, our algorithm is limited to Hamiltonian matrices in which
rank (F)= 1. Such matrices arise when (4) is a single input control system, i.e., when
B consists of a single column.

Section 1 reviews the Schur decomposition, the Hamiltonian-Schur decomposi-
tion, and the symplectic Schur decomposition. The economical use of Householder
symplectic and Jacobi symplectic matrices is discussed. Section 2 uses the Francis QR
iteration to motivate the Hamiltonian QR iteration. Each Hamiltonian QR step is
equivalent to a Francis QR step applied to an associated symplectic matrix. Section
3 describes a finite step reduction of a Hamiltonian matrix to a Hessenberg-like
condensed form. The condensed form is preserved by the rest of the algorithm. A
heuristic argument suggests that one step ofthe Hamiltonian QR algorithm is equivalent
to two steps of the Francis QR algorithm. Section 4 develops the Hamiltonian QR
step. Hamiltonian structure is preserved throughout, so no 2n-by-2n array is required.
A numerically stable algorithm is presented. Section 5 discusses the details of deflation,
choice of shift, and ordering of eigenvalues. Section 6 sketches how to modify the
Hamiltonian QR algorithm to avoid the use of complex arithmetic. Like the double
Francis QR step, the trick is to combine two successive Hamiltonian QR steps into
one. Section 7 presents the results of some numerical experiments solving the algebraic
Riccati equation. Especially for problems of high dimension, the Hamiltonian QR
iteration represents a significant savings over the Francis QR iteration.

Capital letters denote matrices, boldface lower case denote vectors, nonboldface
lower case letters denote scalars. The ith row and jth column of the matrix A are
represented by A,. and A.j respectively. The norm IIAII may denote any reasonably
well balanced consistent matrix norm such as the Frobenius norm,

IIA[[ (trace (A’A))(/2).
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1. Numerical tools. A matrix S E C2nx2n is symplectic [1], [7], [10] if S*JS J. (J
is defined in (1).) A bold face S will denote the set of symplectic matrices. Products
of symplectic matrices are symplectic. Symplectic matrices are nonsingular.

If H E H and S S, then SHS-le H. Following the suggestion of [10], we use
symplectic similarity transformations to preserve Hamiltonian structure.

If Q is both symplectic and unitary, then it is of the form

Q=
-Q2

where Q1, Q2 cnn [10]. The set of unitary symplectic matrices will be denoted S-U.
Note that computer programs need store only the first n rows of Q.

If V Cnn is unitary, then diag V, V) E S U. A Householder symplectic matrix
10] is the matrix P P(k, m, x) S- U defined by

P(k,m,x)=
0,

where

fi =/5(k, m, x) In 2uu*

and u C is obtained from x C" by setting u v/llv[[2 where

0 ifl<_-j<min(k,m) or max (k, m) <j <-- n,

(6) vj xj if min (k, m) <j < max (k, m) or j= m,
+ (x llx l)(Ix l + + IXml2) (1/2) if j k.

If Xk 0, then the quotient Xk/[Xk[ may be set equal to 1. By convention, if v-0, then
/3 In. We admit the possibility k > m. The Householder reflection P is a Hermitian
unitary matrix such that if y- Px, then

x if l<-j<min(k,m) ormax(k,m)<j<=n,

y 0 if min (k, m) <j < max (k, m) or j m,
--(Xk/[Xkl)([Xk[2-- Ar IXm]2)(1/2) if j k.

Algorithms using Householder reflections depend upon their ability to zero some

components of a vector while leaving others unchanged. Specifically, suppose v C n,
w- P(k, m,x)v and y= I3(k, m,x)x. If l <=j<min (k, m) or max (k, m)<j<=n, then

w v and yj x. Furthermore, if j m or min (k, m) <j < max (k, m), then yj O.
Define a flop as the computational effort to execute the FORTRAN statement

A(I, J)= A(I, J)- S*A(K, J).

We will speak of a real flop when A and S are of REAL type and a complex flop
when A and S are of COMPLEX type.

Our algorithms derive much of their efficiency from the following well-known
economies of work and storage. Let u be as in (6). Set

/U--H

and

s 2U2k/(u’u).

Note tk- 1. fi(k, m, x) can be stored on a computer as s and the m- k nontrivial
components of . When/3 is stored in this way, a vector v E C can be replaced by/3v
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without explicitly forming [13, p. 234], [17, pp. 157-159] by setting

(7) v:= v- (s(fi*v)).

It is not necessary to perform multiplications by /’k 1 nor by those components of fi
that are known to be zero. So (7) requires only 2lm kl+l flops.

The Hermitian matrix M may be overwritten by PMP without the use of an n-by-n
array [17, p. 292] by

v:= s(Mfi),

(8) w:= v- (s/2)(*v),

M := M-fiw*-wfi*.

Notice that only the upper triangle ofM need be stored. If we do not bother to multiply
by those components of fi that are known to be zero or one, then (8) requires
approximately 2( n + 1)lm kl + n + 2 flops.

We will use a superscript "7" to designate Householder reflections that are stored
and used as described above.

A Jacobi symplectic matrix 10] J(k, c, s) is a unitary symplectic matrix of the form

(9) J(k, c, s)=
-S C

where Icl= / Isl=- 1, s R and

C =diag (1, 1, 1,. ., 1, c, 1,. ., 1),
(10) k-I

S=diag (0, 0, 0,. ., 0, s, 0,. ., 0).
k-1

Given v, we C such that kWk, there is a Jacobi symplectic matrix Q-J(k, c, s)
such that if

then y 0 and for j k, x =v and y w.
Let H’= HAM (A’, G’, F’) J(k, c, s) HAM (A, G, F)J*(k, c, s). The matrices A’,

G’ and F’ can be obtained directly from A, G and F without using an extra square
array simply by forming the obvious linear combinations of the kth rows and columns
of A, G and F. No more than a few n flops are required.

Care must be taken to avoid overflows, underflows and excessive rounding errors
when constructing Householder and Jacobi symplectics. See [13] or [17] for details.

The following theorem describes a decomposition which displays the invariant
subspace structure of a Hamiltonian matrix. Our algorithm calculates this decompo-
sition.

THEOREM 1 (Hamiltonian-Schur decomposition (HSD) [10]). If the eigenvalues
ofH HAM A, G, F) have nonzero real part, then there exists Q S-U such that

(11) Q*HQ=[ T*I TEl0, -T
where T1 is lower triangular and T2 T*2. Q can be chosen so that A (-T1)c C-.
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We will refer to a matrix T H with the zero structure of the right-hand side of
(11) as Hamiltonian triangular.

A useful corollary is
COROLLARY 2 (Symplectic-Schur decomposition (SSD)). IfS C2n2n is symplec-

tic and has no eigenvalue of magnitude 1, then there is a matrix Q S-U such that

(12) O’so R [R* R2 ]LO. R-
where R is lower triangular and R2R is Hermitian.

Proof. Let H- (S + I2n)(S-I2)-. It is easy to verify from the definition that H
is Hamiltonian. The eigenvalues of H are of the form (A + 1)/(A 1) where A A(S).
By hypothesis IAI # 1, so each eigenvalue of H has nonzero real part. Also note that
1 A (H). Apply Theorem 1 to H to get Q S-U and Hamiltonian triangular T
Q*HQ. Equation (12) holds with this value of Q and R-(T+In)(T-I2)-.
It follows directly from the symplectic structure of R [8, Eq. 14], that R2R is
Hermitian.

A matrix R S with the zero structure of (12) will be called symplectic triangular.
The hypotheses of Theorem 1 and Corollary 2 are not the weakest possible [2],

[10], but are sufficient for the purposes of this paper. Not all Hamiltonian matrices
have an HSD, nor do all symplectic matrices have an SSD. The matrix J of (1) is both
Hamiltonian and symplectic, but obviously cannot be factored as (11) or (12).

As the proof of the corollary suggests, there is a duality between the HSD and
the SSD. If k is not an eigenvalue of H- HAM (A, G, F) and Re (k)# 0, then

S(k) (H + k-I,)(H- kI2,)-’

is symplectic and

H (kS(k) + k-I2,,)(S(k) I2,)-’.

By analogy with the QR algorithm [3], we refer to the scalar k as a shift of origin.
Observe that Q*HQ-T is an HSD if and only if Q*S(k)Q-R is an SSD. The
problem of calculating the HSD of H is equivalent to calculating the SSD of S(k).

The HSD and SSD are special cases of the well-known (complex) Schur decompo-
sition (CSD).

THEOREM 3 (Schur decomposition (CSD)). If MCn, there exists a unitary
matrix Q C" such that Q*MQ T is upper triangular.

Reversing the last n rows and columns of the matrices in Theorem 1 and Corollary
2 gives Schur decompositions. The force of the theorem and corollary is that Q can
be chosen to be symplectic as well as unitary.

2. Outline of the Hamiltonian QR iteration. The QR algorithm [3] is a reliable
method of calculating the CSD of a general square matrix M. It is based upon the QR
iteration"

(13)

M() := M,

FOR j := 1,2,3,.

Factor QJRu := Mu

Mo+I := RUQo.
unitary,
triangular
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At the end of each iteration M(j)- u(J)*MU(j) where U(j) is the unitary matrix
u(j)= Q(O)Q(1)... Q(j-I). Under mild conditions [16] the iterates M(k) converge to
triangular form in the sense that if <j, then

lim rn 0.
koo

As stated, (13) is not a practical algorithm. The QR factorizations are too expensive.
Convergence is slow. Practical algorithms are modifications of (13).

In order to calculate a HSD, one is led to specialize the QR iteration to symplectic
matrices. Every symplectic matrix can be factored into the product of a unitary
symplectic matrix and a symplectic triangular matrix [2]. The algorithms in 4 construct
the unitary symplectic factor. Hamiltonian matrices do not admit such a factorization.
In principle, but not in practice, the HSD of a matrix H H can be obtained through
the SSD of S (H + k-I2,,)(H-kI2,,) -1 by the symplectic QR iteration"

S() := S(k):= (H + ,I2n)(H- kI2,,)-’,
FOR j := 1,2,3,.

(14)
Factor QJR= S Q symplectic unitary,

s(J+l);_ R(j)Q(j)" R symplectic triangular

At the end of each iteration S(j)= u(J)*S(k)U(j) where U is the unitary symplectic
matrix U()= Q(O)Q()... Q(j-). Since (14) is a special case of (13), usually S(j) will
converge to symplectic triangular form. In that case H()= U()*HU() converges to
Hamiltonian triangular form. Note that the S()’s are symplectic and the H(J)’s are
Hamiltonian.

Iteration (14) does not provide a practical algorithm for calculating a HSD.
Rounding errors involved in forming S(k) can be disastrous. In 5 we explain that it
is desirable to choose k to be close to an eigenvalue of H. Since H-kI2,, is almost
singular, it is difficult to form S(k) accurately. Even when H-kI2, is not almost
singular, there is a possibility of cancellation error. Furthermore, the symplectic QR
factorization, costing O(n3) flops [2], is prohibitively expensive. The iteration converges
too slowly.

The Hamiltonian QR algorithm is a modification of (14) that avoids the above
problems. One Hamiltonian QR step corresponds to the similarity transformation

H(+ := Q(*H(Q(

where Q(J is as in (14) and H(= H is the original Hamiltonian matrix. The Hamil-
tonian QR algorithm performs symplectic similarity transformations directly to H
without forming S(k). The cost of each similarity transformation is reduced to O(n2)
flops by reducing H to a Hessenberg-like condensed form. As the iteration converges,
the problem deflates to sub-HSD’s and sub-CSD’s of smaller dimension. Convergence
is accelerated by varying k from one iteration to the next.

In broad outline the Hamiltonian QR algorithm is

H :- V*HV where V S-U is chosen to give H a Hessenberg-like zero structure
Do While H is not nearly Hamiltonian triangular

Choose k C to be an approximate eigenvalue of H
H:=Q*HQ where QS-U is chosen to make Q*S(k) symplectic
triangular.
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3. Hamiltonian-Hessenberg form. A matrix M is said to be upper (lower) Hessen-
berg if m0 0 for i>j- 1 (i <j + 1). The use of Hessenberg in place of full matrices
saves much work in the QR algorithm [3].

The Hamiltonian QR iteration requires a condensed form similar to Hessenberg
form. This section describes such a condensed form: Hamiltonian-Hessenberg form.
An algorithm is presented that transforms a Hamiltonian matrix to Hamiltonian-
Hessenberg form. It is restricted to Hamiltonian matrices H HAM (A, G, F) with
rank (F)= 1. Such Hamiltonian matrices arise naturally from single input control
systems. It is shown that the Hamiltonian-Hessenberg form is invariant through a
Hamiltonian QR step. The proof suggests that a Hamiltonian QR step is equivalent
to two Francis QR steps.

A Hamiltonian matrix H has Hamiltonian-Hessenberg form, if it has the zero
structure of a 2n-by-2n upper Hessenberg matrix with the order of the last n rows and
columns reversed. In other words, H HAM (A, G, F) is Hamiltonian-Hessenberg
when A is lower Hessenberg and F is zero except possibly for

Let H HAM (A, G, F) be a Hamiltonian matrix with rank (F)= 1. We now
describe an algorithm for reducing H to Hamiltonian-Hessenberg form with a unitary
symplectic similarity transformation. An n 5 example is used for illustration. Since
F is rank 1 and Hermitian, there is a vector f C such that

F= +ff*.

If/3() =/3(5 1, f), then

H := t3(1)H/t3(1)

"X X X X X X X X X X-

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

0 0 0 0 0 x x x x x

0 0 0 0 0 x x x x x
0 0 0 0 0 x x x x x
0 0 0 0 0 x x x x x

_0 0 0 0 x x x x x x

Set/3(2)=/3(4 1, A,s). Replace H with ]t3(2)H/3(2). H now has the zero structure

H :=/()H/%()=

-X X X X X X X x X x-
x X X X X X X x X X

x X X X X X X x X X

X X x X X X X X X X

0 0 0 x x x x x x x

0 0 0 0 0 x x x x 0

0 0 0 0 0 x x x x 0

0 0 0 0 0 x x x x 0

0 0 0 0 0 x x x x x
.0 0 0 0 x x x x x x.
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Set/3(3)=/3(3 1, A,4). Update H to give

H :=

X X X X X X X X X x-
X X X X X X X X X X

x X X X X X X X x X

0 0 x x x x x x x x
0 0 0 x x x x x x x

0 0 0 0 0 x x x 0 0

0 0 0 0 0 x x x 0 0

0 0 0 0 0 x x x x 0

0 0 0 0 0 x x x x x
_0 0 0 0 x x x x x x.

Finally, set (4).._/3(2 1, A,2). Replacing H by (4)H/(4) puts H into Hamiltonian-
Hessenberg form.

The unitary symplectic similarity transformation relating the original Hamiltonian
matrix to the final Hamiltonian-Hessenberg matrix is

Q (1)i(2)(3)(4),

Notice that Q is of the form diag (V, V).
The following algorithm summarizes the reduction to Hamiltonian-Hessenberg

form.

ALGORITHM 1. Reduction to Hamiltonian-Hessenberg form.
INPUT: A, G e C""’, f C"
OUTPUT: V C"", V-1 V* chosen so that HAM (A’, G’, f’f’*)

diag V*, V*) HAM (A, G, ff*) diag V, V) is Hamiltonian-Hessen-
berg. A is overwritten by A’; G is overwritten by G’; f is overwritten
by f’.

/3(1) :=/3(n, 1, f)
A:=/(1)A/(1); G:=/(1)G/(’) f:=
FOR j=2,3,4, , n-1

flu):= (n-j+ 1, 1, A,j+)
A := fi(J)A(j)" G :=/3U)GI3U)

V:=I,
FORj n-1, n-2, n-3,. , 1
V := pU V.

The elementary reflectors /3u can be stored in the unused, i.e., the zeroed, locations
of A andf and one auxiliary n-vector. Because of the zero structure of V, multiplication
by 15u affects only the leading (n-j + 1)-by-(n-j + 1) principal submatrix so only
that submatrix need be calculated. Similarly, the similarity transformation /3UA/3U
affects only the first j + 1 columns of A, so only those columns need to be calculated.
With this economy Algorithm 1 requires approximately 10n3/3 flops.

To serve as an effective condensed form, the Hamiltonian-Hessenberg form must
be invariant through a Hamiltonian QR iteration as described in 2. The correspon-
dence between the Francis QR iteration and the symplectic QR iteration is enough to
prove this, but the following proof, similar to 17, p. 529], is more illuminating.
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THEOREM 4 (Invariance of Hamiltonian-Hessenberg form). Suppose HH is
Hamiltonian-Hessenberg, k V: h (H) and S(k) := (H + k-I2,)(H- kI2,)-1. If Q S-U
and R Q*S(k) is symplectic triangular, then H’- Q*HQ is Hamiltonian-Hessenberg.

Proof. Let K be 12, with the order of the last n rows reversed. We will show that
KH’K is Hessenberg.

Define S(= KSK, Q(O= KQK, R(= KRK, and H(= KHK. H( is upper
Hessenberg. R( is upper triangular. Define upper Hessenberg matrices H(, H(2;
unitary matrices Q(I, Q(2; and triangular matrices R(, R(2 by

(15)

Q(1)R(1) H() +
H( R(1Q(- k-/2,,
R(2Q(2 H(1- kI2,,

H(2)= Q(2)R(2)+ kI2,.

The first two equations form a single shifted Francis QR step [17, Chap. 8], [13,
Chap. 7]. The third equation calls for an RQ (triangular-unitary) factorization instead
of the usual QR factorization. The second two equations form what might be called
an RQ step. Q(1) is Hessenberg because it is the product of the Hessenberg matrix,
H()+ kI2. and the triangular matrix, R(1)-’. Similarly H(1), Q(2) and H(2) are also
Hessenberg. Some manipulation of (15) gives

Q()Q(2),][ R(2)-, R()] (H(O) +/I)(H()- kI) -1

So [Q()Q(2),] forms the unitary part and [R(2)-’R(1)] forms the triangular part of the
QR factorization of (H()+ I2,)(H()-kI2,)-1. It follows that apart from a unitary
diagonal factor

Q- KQ(1)Q(2)*K,
H’ KH(2)K.

Thus, KH’K is Hessenberg. E]

Equation (15) shows that one step of the Hamiltonian QR iteration is equivalent
to a QR step followed by an RQ step. This suggests that one Hamiltonian QR step
is equivalent to two Francis QR steps.

4. Hamiltoaiaa QR step. Given a Hamiltonian-Hessenberg matrix H, a unitary
symplectic matrix U and a scalar k C, one step of the Hamiltonian QR iteration
consists of replacing H by Q*HQ and U by UQ where Q S-U is chosen so that

(16) R Q*S(k) Q*(H + k-/2,)(H- kI2,)-’

is symplectic triangular. This section presents a practical procedure for performing a
Hamiltonian QR step. Neither S(k) nor R is explicitly constructed. The procedure is
numerically stable, requires no work arrays and uses O(n2) flops.

As the next lemma shows, Q can be factored into the product of three simpler
symplectic-unitary factors. The Hamiltonian QR step consists of three substeps, one
for each factor of Q. The first step resembles a single shifted Francis QR step applied
to A. It uses symplectic reflections. The second step uses a symplectic rotation to
extend the QR step to include all of H HAM (A, G, F). The final step resembles
another single shifted Francis QR step. It uses symplectic reflections to return H to
Hamiltonian-Hessenberg form.
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The formula for Q is given in the following notation. H HAM (A, G, F) is
Hamiltonian-Hessenberg and k A(H). For simplicity we will assume rank (F)= 1,
i.e., F # 0,. V C"" is a unitary matrix such that

(17) T= v*(a* +
is upper triangular with real diagonal components. Observe that V is upper Hessenberg.
Define , g R by

(18)

where

(19)

Note that t2 + 2 1 and

[f.. t..] _g

Similarly define c, s so that c2+ s= 1 and

-c L.(k+k)

Define diagonal matrices C, S, , R"" as in (10) by

J(c,s,n)=
C S

J(, , n)
C

-S C -Let W C"" be a unitary matrix chosen so that

T
(21) U= W*[-S C] V*F

is upper triangular.
LEMMA 5. The matrix

satisfies (16).
The proof appears in the appendix.

(k+ .)I- V’T* -
C S][A* *

(24) [A; _]:=[_S C F _][ C S ]-S C

The definition of V (17) shows this to be little more than a (single) shifted QR step.
We use [13, p. 378] modified to calculate a single QR step instead of a double one. V

^(1) ^(2) ^(3)
is expressed as the product V V V I""-1). Note, T is not explicitly constructed.
The lower Hessenberg structure of A is preserved. The matrix F on the left-hand side
of (23) is zero except for the trailing 2-by-2 principal submatrix.

The second part of the Hamiltonian QR step consists of the similarity transfor-
mation

(23) A := V*AV, G := V* GV, F := V*FV.

The Hamiltonian QR step has three parts. The first part performs the similarity
transformations
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The value of F on the left-hand side of (24) must have rank 1 so that HAM (A, G, F)
can be returned to Hamiltonian-Hessenberg form in the third part of the algorithm.
There are two solutions for the scalars c and s that leave rank (F) 1. The extraneous
one is c + 1, s 0. The other is given by

2c[Re (fn-l,nln-l,n) + Re (f,-1,,-la,,)] s(fn-l,n-lgnn + la,-,,I) 0.

The notation Re (z) indicates the real part of z e C. Note that (24) affects only the last
rows and columns of A, G and F.

The third part ofthe Hamiltonian QR step returns HAM (A, G, F) to Hamiltonian-
Hessenberg form with the similarity transformations

A:= W*AW, G:= W*GW, F:= W*FW.

We use Algorithm 1 modified to take advantage of the zero structure of A and F. A
is already lower Hessenberg and F is zero except for the trailing 2-by-2 principal
submatrix. Reflections of the form/3(j, j + 1, As_l,.) can be used in place of P(n-j +
1, 1, A.d+l).

In the next algorithm the matrix U=[U1 U2]C"2" represents the unitary
symplectic matrix

U-- U1
-U2 U

ALGORITHM 2. Hamiltonian QR step
INPUT: A, G, FC"" such that HAM (A, G, F) is Hamiltonian-Hessenberg;

U C"2" a scalar shift k C
OUTPUT: A, G, F, U are overwritten by A’, G’, F’, U’ where HAM (A’, G’, F’)

Q* HAM (A, G, F)Q and U’= UQ for Q defined by (22)
Part 1

9:=/3(1, 2, (A+ --/n)lg)
A:= ’A’; G:= VGV;
For j=2, 3, 4, 5, , n- 1

:=/3(j, j + 1, AS_l,,)
A := ’A’; G:= G’;

F:= VFV

U := U diag V, V)

U := U diag V, V)

x := 2IRe (fn_l,nn_l,n) -- Re (fn--l,n--1,
y:=f,,_l,,,_lg,,,,+la,,-1,,,I2
Choose c, s It so that

Part 2

For j= 1,2,3,..., n-1

[a.j] [ c s][a.s]Lg,od -s c kgnjl
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--ann $ C

IF If.-,,.-,I > If..I THEN/r :=/3(n, n- 1, F,.,_I)
ELSE r :=/3(n, n 1, F,,)

A:=/C/A//; G:=]C/G/; F:=F; U:= Udiag(,)
FOR j= n-l, n-2, n-3,... ,2

:= (j,j-- 1, A,,j+I)
A:=A; G:=G; U:=gdiag(,)

Part 3

and

HQ QTII <- c, b ’-’ H

O’Q- .II- Q*Q- I.II <- c2bl-t.

The constants Cl and c2 may depend upon n and the choice of norm but not upon H
or Q. Thus the eigenvalues of T are those of a Hamiltonian matrix that differs from
H by a "small" relative error. The first n columns of Q span an invariant subspace
of a matrix that differs from H by a "small" relative error.

5. Computational details. Three details remain to be discussed: deflation, choice
of shift and ordering of eigenvalues.

As the Hamiltonian QR iteration converges, the codiagonal components of A
tend to zero. Once a codiagonal element becomes negligible compared to IlH[I, it may
be set to zero. So H assumes the form

(25) H

A*I A2"1 G,,

0 --All
F22 -A21 -A::J

Let A* UT* U* be a CSD of A*, and let

[A2"2 G221( V ] E_V1FEE -AEEJ V2 V2

The reflections should be used economically as described in 1. Also note that A is
lower Hessenberg throughout the algorithm, so no component above the codiagonal
needs to be explicitly calculated. Only the trailing 2-by-2 principal submatrix of F
must be calculated and stored. The other components of F are zero. With these
economies Algorithm 2 requires approximately 12n2 complex flops.

From 1.5 n to 2n iterations of Algorithm 2 usually transform H to within rounding
error ofbeing Hamiltonian triangular. See the discussion of deflation in the next section.

Algorithms 1 and 2 are stable in the presence of rounding errors. Standard error
analysis of unitary similarity transformations [2], [17, Chap. 3] can be used to show
that using digit base b arithmetic, rounding errors cause the original Hamiltonian
matrix H HAM (A, G, if*), the calculated similarity transformation Q, and the final
Hamiltonian triangular matrix T HAM (T1, T2, 0n) to satisfy
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be a HSD of HAM (A2z G22, F22). Define Q e S-U by

0 V1 0

0 0 U
0 -v 0 vd

A calculation shows that Q*HQ is in Hamiltonian triangular form. Thus (25) deflates
into two smaller problems: a CSD of AI*I and a HSD of HAM (A22, G22, F29).

When there are two consecutive small codiagonal elements, a partial deflation can
occur. The situation is illustrated by the following diagram.

X X X X X X X X X X"

X X X X X X X X X X

0 d x x x x x x x x
0 0 @ x x x x x x x
0 0 0 x x x x x x x

0 0 0 0 0 x x 0 0 0
0 0 0 0 0 x x-d 0 0

0 0 0 0 0 x x x -e 0

0 0 0 0 0 x x x x x
0 0 0 0 x x x x x x

The consecutive small components are d and e. Let W be the leading 3-by-3 submatrix
of A. Let P be a 3-by-3 unitary matrix such that P*( W- kI) is lower triangular. Define
QmS-U by

P 0 0 0

0 I2 0 0

0 0 P 0

0 0 0 I2

Replacing H by Q*HQ performs a Francis QR step on W, but a42 becomes nonzero.
The magnitude of the fill-in is Idei/([d[=+ [a33- k[Z) (/2). When this quantity is negligible
compared to [[H[[, it may be ignored.

It is important for computer programs to deflate when possible. If shifts are chosen
from the leading 2-by-2 principal submatrix of All as suggested below, they will not
in general be good choices for HAM (A22 G22, F). Convergence will be slow.

Consider the choice of the shift k C. So far it has been convenient to assume
that kh(H). Now suppose kh(H). The fact that (H-kI2,) is singular does not
cause Algorithms 1 and 2 to fail. There is no attempt to divide by zero or to invert a
singular matrix. Returning to the notation of Theorem 4, the QR-RQ sequence of (15)
remains defined when k e h (H). Both (H() + ,Izn) and (H(1) kI2,,) are singular [ 1 ],
[7], 10]. Hence some diagonal element of R(1) and of R(2) must be zero. If the problem
has been deflated as described above, then H() is unreduced, i.e., all codiagonal
elements are nonzero. It follows that r(1).. 0 and r11"(2) 0. This gives H’ the zero structure
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"x X

0 x
0 x
0 0

0 0

0 0

0 0

0 0

x x x x x x
X X X X X X

X X X X X X

X X X X X X

0 0 x 0 0 0

0 0 x x x 0

0 0 x x x x
0 x x x x x

Furthermore, k=h=-h’.+l,.+l. No difficulty arises when kh(H). In fact it is
desirable to have k h (H), because the problem deflates immediately.

This suggests that the shift k C be chosen to be hl, since as the iteration converges,
hl converges to an eigenvalue. A better strategy is to choose k to be an eigenvalue of
the leading 2-by-2 principal submatrix of H.

Now consider the problem of ordering eigenvalues. Let H HAM (A, G, F) have
Hamiltonian-Schur form

If Q2 is nonsingular, then X =-QQ satisfies the algebraic Riccati equation (5). The
eigenvalues of (A-FX) are the eigenvalues of-TI*. For most purposes, X must be
chosen so that (A-FX) is stable, i.e., A(A-FX)c C-. When shifts are chosen as
described above, the eigenvalues may appear in any order along the diagonal of T. It
is necessary to use a unitary symplectic similarity transformation to order the eigen-
values so that h (- T) C-

Suppose h A(-T) has positive real part. We must interchange it with the
eigenvalue - of T*. The method of [14] can be used to find a unitary matrix V e C""
such that - is the (n, n) entry of V*T*IV. Replace T by diag (V*, V*)T diag (V, V).
Now we must interchange the (n, n) entry of -T1 with that of T*. Choose c, s e so
that

Let K J(n, c, s) (equation (9)). The interchange is effected by replacing T by KTK*.

6. Double Hamiltonian QR step with implicit shifts. Complex arithmetic requires
twice the storage and at least four times the work of real arithmetic. Furthermore,
rounding errors will cause quantities which should appear in complex conjugate pairs
to fail to do so. It is preferable to use real arithmetic when possible. When the original
data A, G and F are real, complex arithmetic can be avoided by combining two
successive Hamiltonian QR steps into one. The Francis implicit QR algorithm employs
a similar trick [3].

The reasoning and numerical techniques used for the double implicit step are
similar to those used for the simpler algorithm of 4 and 5. This section outlines the
differences. A full account appears in [2].

Observe first that when Algorithm 1 is applied to a real Hamiltonian matrix, all
intermediate quantities and the final Hamiltonian-Hessenberg matrix are real.
Algorithm 1 does not need to be modified to avoid complex arithmetic.
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Apply Algorithm 2 with shift k to the real Hamiltonian-Hessenberg matrix H-
HAM (A, G, F) to get a not necessarily real Hamiltonian-Hessenberg matrix H’-
Q’*HQ’. Apply Algorith.m 2 with shift/ to H’ to get a Hamiltonian-Hessenberg matrix
H"= Q"*H’Q". Define S(k) by

g(k) [(H + kI2,)(H + k-/2,)][(H- kI2,)(H-/I2,)]-’.
Set Q Q’Q". It is easy to show that

(26) R Q*S(k)

is symplectic triangular. Note that S(k) is real, so by analogy with the general QR
(orthogonal-triangular) factorization Q and R may be chosen to be real [17]. Hence
H" is real.

To obtain H" directly from H we need to calculate the similarity transformation
Q*HQ where Q 2n2n is orthogonal and satisfies (26). Using the method of Lemma
5, it can be shown that

Q diag V, V)K diag W, W).

The matrices V and WR"" are orthogonal. K is the product of a Householder
symplectic and three Jacobi symplectic matrices.

The matrix V is chosen so that

L= vT[(A+ I,,)(A+ kI.)]

is upper triangular. The first part of the double implicit step is essentially a double
implicit Francis QR step applied to A.

The matrix K plays the role of the rotation in Lemma 5, but its construction is
more complicated. Define

H/ diag V*, V*)(H + kI2n)(H- kI2.) diag (I., V),

H_ (H kI2. (H kI2. diag (I., V),

and

N KH+H-_1.

The relationship between H/, H_, N, (k) and Q is

Q*(k) =diag W*, W*)KH+H- =diag W*, W*)N.
So K must be chosen to make (KH+H-) block upper triangular with n-by-n
blocks. The trailing 2-by-2 principal submatrices of the n-by-n blocks of H/ and H_
determine K.

The final orthogonal matrix W is chosen to return H to Hamiltonian-Hessenberg
form. Again we use Algorithm 1 modified to take advantage of the zero structure of
A, G and F. This time reflections of the form P(j,j-2, Aj_,,) are used.

7. Numerical examples and conclusions. The double Hamiltonian QR algorithm
was implemented in FORTRAN using DOUBLE PRECISION arithmetic on Cornell’s
IRM370/168. We also wrote a similar program to calculate a real Schur decomposition
[3]. We used both algorithms to solve several algebraic Riccati equations as described
in the introduction.

In order to minimize the effect of programming style on our observations, we used
our own implementation of the QR algorithm in preference to one of the fine programs
from EISPACK [12]. By using the BLAS [9] and several subroutines written in the
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spirit of the BLAS, we arranged for many of the innermost loops of both algorithms
to be executed by the same subroutines. Our QR algorithm ran somewhat slower than
EISPACK’s, but the difference could be attributed almost entirely to extra subroutine
calls. When subroutines were expanded in line, the execution times of our QR algorithm
and EISPACK’s differed by only a few percent.

Test problems were constructed by performing random orthogonal similarity
transformations of the following 5-by-5 patterns.

-1 1 1 1 1

-2 1 1 11A= 0-3 1 F=

0000-4150 0 0-

0 0 0 0 0
0 0 0 0 0

G- 0 0 0 0 0 X=
0 0 0 0 0

60 0 0 0

1 1 1 1 1
1 1 1 1

1 1 1 1

1 1 1 1

I_1 1 1 1 1

0 0 0 0 0

O0 0 0 0

0 0 0

0 0 0 010 0 0

Similar problems were run with dimensions n 5, 10, 20 and 30.
Both algorithms produced solutions of comparable accuracy. Table 1 compares

execution times. For small problems the two methods used approximately the same
amount of time. For larger problems, the advantage of the Hamiltonian-Schur
decomposition is unmistakable.

TABLE
Execution time of Francis QR algorithm versus Hamiltonian QR algorithm.

milliseconds
dimension 5 10 20 30

Francis QR algorithm 47 226 1474 4639
Hamiltonian QR algorithm 49 181 969 2681

The Francis QR algorithm requires two 2n-by-2n arrays for a total of 8n2 storage.
The Hamiltonian QR algorithm requires about 7n2/2 storage.

Both the Francis QR algorithm and the Hamiltonian QR algorithm produce the
same invariant subspace information. For problems of size greater than about 20, the
Hamiltonian QR algorithm requires significantly less work and storage. It is restricted
to problems that arise from single input control systems. However, the restriction is
necessary only at the first reduction to condensed form, so some modification either
in the condensed form or in the algorithm by which it is obtained may lead to a more
generally applicable algorithm.

(27)

Appendix A. Proof of Lemma 5. In the notation of 3, the matrix

satisfies (16).
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Proof Define L C2n2n in n-by-n blocks by

(28, L=[L1 L2]=[a*-kI,. G ][I. ][ q ]L L4 f -A- kin On -S C

The choice of V in (17) and and in (18) make L3=0. and L4 lower triangular.
Define M C2"2 by

M=
O. F -A+k. O. -g

Paition M into n-by-n blocks and use (17) to get

(29) M= M
M M V* (+g-V*r* - d

Recall that is zero except for s, C is diagonal, T is upper triangular, V is upper
Hessenberg, and F is zero except for f. Hence M is upper triangular and M is
lower Hessenberg. M is zero except for the last two components of the nth column.
An n- 5 example of the zero structure is

X X X X X

0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 x

,0 0 0 0

X X X X

x X X X

X X X x
x X X x
X X X x

x x 0 0
x x x 0
x X X x
x X X x
X X X X

X

x
x
X

X

0

0

0
X

X

Solving for m.., m2n_l, and m2n.n in (29) gives

m.. t..- v.v,.,
(31) m2,,-,,,,-

m2n, v.. (f..+ t..)-(k +
The choice of and in (18) makes m2._l,.=0 and m2.,. =-(k+/). The (9,5)
component of (30) is zero.

Using (18) to simplify (31) further gives

m.. t..-f..V**.GV..)/ r,

m2... k + k)f../ r

where r is given by (19). Define N by

N N4 o. w* -s c M M4"
The definition (20) of c and s shows that N3 =0., and, from definition (21), N4 is
lower triangular.
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With Q given by (27), equations (28) through (32) combine to show

NL-1= Q*S(k)= Q*(H+ k-/2,)(H-kI2,,)-’.
Recall N and L-1 are block upper triangular with n-by-n blocks. Hence Q*S(k) is
block upper triangular. The (2, 2) block of Q*S(k) is lower triangular since the (2, 2)
blocks of N and L-1 are. Thus Q*S(k) is syrnplectic triangular.

Acknowledgments. I am grateful to Charles Van Loan for his guidance and for
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FRONT TRACKING APPLIED TO RAYLEIGH-TAYLOR INSTABILITY*

J. GLIMMt, O. McBRYAN$, R. MENIKOFF AND D. H. SHARP

Abstract. A numerical solution of the two-fluid incompressible Euler equation is used to study the
Rayleigh-Taylor instability. The solution is based on the method of front tracking, which has the distinguish-
ing feature of being a predominantly Eulerian method in which sharp interfaces are preserved with zero
numerical diffusion. In this paper validation of the method is obtained by comparison with existing numerical
solutions based on conformal mapping. An initial study of heterogeneity is presented.

Key words, front tracking, hydrodynamic instability, Rayleigh-Taylor instability

1. Introduction. The Rayleigh-Taylor problem is the study ofthe fingering instabil-
ity of an interface between two fluids of different densities; it occurs when the light
fluid pushes the heavy fluid. In its simplest formulation the governing equations are
the two-fluid, two-dimensional Euler equations; these equations appear to be ill-posed
unless formulated with the interface in a space of analytic functions. This can be seen
from the fact that the unstable perturbations of wave number k on an initially flat
interface have exponential growth rates proportional to k1/-. Thus, at least within the
framework of the linearized theory, the class of C interface perturbations, which are
characterized as having polynomially decaying amplitudes as a function of k, are not
mapped into the space of distributions under time evolution for any > 0.

There is a complex phenomenology associated with this problem including the
formation of spikes and bubbles, the development of Helmholtz instability on the side
of the spikes, competition between bubbles leading to their amalgamation, formation
of droplets, entrainment and turbulent mixing, and a possible chaotic limit with a
fractalized interface.

A variety of physical factors influence the development of Rayleigh-Taylor insta-
bility. These factors are reflected in a modification ofthe incompressible Euler equations
and include surface tension, viscosity, compressibility, three-dimensional effects,
material properties, the equation of state and a variety of forms of heterogeneity.

In many cases of interest, these extra physical factors occur multiplied by a small
parameter. In other words they occur on small length scales, inaccessible to feasible
calculations. There are two obstacles to a correct calculation in such circumstances.
The small parameter and small length scale effects must somehow be included by
mathematical or computational modeling. At the same time, it is necessary to avoid
the incorrect simulation of physical effects by numerical artifacts. In particular conver-
gence under mesh refinement, while a necessary aspect of validation for such problems,
is not sufficient. Validation requires quantitative agreement with an independently
correct calculation, analytic solution or laboratory experiment.

The computational strategies which have been developed for this problem fall
into two groups: special purpose codes and general purpose codes. The special purpose
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codes are ones not readily adaptable to include the variety of physical factors mentioned
above. Outside the scope of these codes are ettects associated with physical degrees
of freedom in the interior of the fluid, such as variable mass or vorticity distributions
or diffusion phenomena. This narrower scope permits analytic simplifications, which
are utilized to a maximum degree. Two notable examples of such codes have been
developed by Menikott and Zemach [1], [2] and by Baker, Meiron, and Orszag [3].
The Menikott-Zemach code is based on conformal mappings. In the case of an infinite
density ratio and two fluids in an infinite strip, a time-dependent conformal mapping
takes the region occupied by the heavy fluid into an infinite half strip. In this half
strip, the known Green’s function for Laplace’s equation is used to express the interface
velocity as a quadrature.

The Baker, Meiron and Orszag code is based on boundary integral techniques,
in which the velocity potential is expressed as an integral over a dipole sheet distributed
over the fluid interface. Coupled Fredholm integral equations can then be derived
which determine the strength of the dipole sheet, and its time development.

The strong point of these special purpose codes is accuracy and speed. Thus they
can be used to validate general purpose codes. Of course, these codes have been
applied in their own right to study several interesting questions. For example, the code
of Baker et al [3] has been used to study the Taylor instability of a thin fluid layer
[4], and both codes have been used to confirm results on rising plane bubbles originally
obtained by Birkhott and Carter [5].

There have been numerous calculations of Rayleigh-Taylor instability using codes
which solve the full (two-dimensional) Euler or Navier-Stokes equations. Notable
examples include the work of F. Harlow and J. Welch [6], B. J. Daly [7], [8], W. P.
Crowley [9], J. R. Freeman, M. J. Clauser and S. L. Thompson [10], K. A. Meyer and
P. J. Blewett [11], [12] as well as several papers which compute Taylor instability of
laser driven fusion targets [13].

The goal of front tracking is to achieve the accuracy of a special purpose calculation
within the context of a general purpose method. In this paper we report on the degree
to which this goal has been realized for the Rayleigh-Taylor problem. The main idea
of front tracking is to introduce as a computational degree of freedom an interface or
front consisting of a (co-dimension one) set of curves, composed for example of
piecewise linear bonds joining vertices, or nodes on the front. This front is then
propagated, using the velocity and acceleration fields of the fluid in the present case
of a fluid interface discontinuity. In the case of a shock or other type of fluid wave,
the front is propagated with the corresponding wave speed. From this point of view,
front tracking in the Rayleigh-Taylor problem is a mixed Eulerian-Lagrangian
approach, with the front being a Lagrangian degree of freedom and all other grid
points being Eulerian. Because of the assumption of incompressibility, the equations
are elliptic. In particular it is necessary to solve elliptic equations at each time step
for the pressure and stream function. The unequal density leads to elliptic equations
which are singular exactly on the interface, either in their coefficients or in their source
terms or both. Accurate solution of such equations requires a special grid construction,
whereby the grid lines are displaced (aligned) so as to coincide with the interface.

There are a variety of adaptive grid strategies available. Our grid strategy was
designed to be robust and effective even in a deep nonlinear regime. This construction
is outlined in 3. Another method, not used here, is elliptic grid generation, whereby
a subsidiary elliptic equation is solved to give the grid lines and coordinate system for
the original problem. Usually the grids constructed by this method map the interface
onto a grid line. This construction provides advantages over our grids for not too badly
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distorted interfaces, as there is a smooth adjustment of the grid to the interface location
over several mesh blocks. However it appeared to the authors that this elliptic grid
construction would have three drawbacks, associated with the constraint of mapping
the interface onto a grid line. First, in the deep nonlinear regime, the interface is highly
fingered and so a mapping onto a grid line would lead to distorted grids inside the
finger region. Second, the solution of an extra elliptic equation is presumably expensive.
Third, in the case of interface breakup (droplet formation) it is topologically impossible
to map the interface onto a single grid line. The mesh alignment grid construction
used here maps finite element boundaries (horizontal, vertical or diagonal grid line
segments) onto the interface. The allowed extra freedom in choice of grid mappings
gives the desired properties of robustness and effectiveness even in the deep nonlinear
regime.

In 2, we cast the two-fluid Euler equations for incompressible flow into the form
used for our numerical computation. In 3, we discuss the solution method. Section
4 is a preliminary validation study. Section 5 presents calculations run with finite
density ratio. Section 6 gives examples of the effect of heterogeneity on the solution.
Conclusions are in 7. Preliminary announcements of some of the results presented
in this paper were made in [14]-[16].

2. Derivation of equations. The calculation solves the incompressible two-fluid
Euler equations in two dimensions. In this section we cast the equations into the form
which is implemented numerically. We introduce the following notation. Let be a
unit vector perpendicular to the x-y plane of the fluid flow. Let be the unit tangent
to the interface such that as one traverses the interface the light fluid is on the left and
the heavy fluid is on the right. Let a be the unit normal to the interface oriented so
that points from the heavy fluid to the light fluid. We denote by f+ and f- the value

of a discontinuous function on the left and right of the interface. Let If] =f+-f-
denote the jump at the discontinuity and f= 1/2(f +f-) the mean value.

2.1. The velocity equation. We assume each fluid is incompressible and irrotational.
As a result, the velocity field v is globally divergence free and, except on the interface
which separates the two fluids, it is irrotational. Let Xw denote the characteristic function
of the heavy fluid region. We define a delta function concentrated on the interface by

(2.1) 6,(x, y, t)= -. VXw(X, y, t)= I ds 6(x-x(s, t))6(y- y(s, t))

where x(s, t), y(s, t) are the co-ordinates of a point on the interface parameterized by
arc length s.

The vorticity has the form

(2.2) y6,(x, y, t),

where the vorticity density on the interface is

(2.3) y . [v].

In this notation, the equations for v are

(2.4)

(2.5)

V v=0,

V xv
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Introducing a streamfunction , we have

(2.6) v=7 (3),

(2.7) A -y6t.

2.2. The pressure equation. The equation for the pressure P expresses balance of
forces. Introducing the acceleration a, density p, gravitational potential -gpy, and
total time derivative D/Dr, we have

+(v.V)v=--VP-V(2.8) a-
Dt Ot p

Since

0v 07 v

Ot Ot

(2.9) -7 (pl-) 7P 7 (v 7)v.

This equation is the pressure equation, and the right-hand side is its source term. It
is necessary to interprete these equations carefully using distribution derivatives to
account for the discontinuities at the interface.

2.3. Singularities in the pressure source term. The V is a derivative to be taken in
the distribution sense, i.e. including delta functions which may result from differenti-
ation of jump discontinuities across the interface. The expression V. (v. V)v contains
products of distributions. The general theory does not guarantee that these products
are well defined. To check that they are meaningful, it is necessary to determine the
singularities in V. (v. V)v.

Near the interface g and define orthogonal curvilinear co-ordinates. It is

convenient to use the normal and tangential components of vector fields which we

denote with the subscripts n and s. From the geometry the derivatives of g and are

given by

as R’ as R’

(2.10)
a a-o, -o,
On On

a avn^ a avn^
Ot Os Ot Os

where R is the radius of curvature, and is positive if the normal points away from the
side where the center of curvature is located. We write the velocity as

(2.11) v= vsg+ v,.
Denoting an unspecified continuous function by "continuous," we have

(2.12) v, continuous,

(2.13) vs YX,, + continuous.

We extend a function defined on the interface to a region about the interface in the
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natural way, f(s, n)=f(s). From (2.10) and (2.11) the velocity derivatives are

(2.15)
0v Ovs +Ov,,
On On On

Substituting

(2.16)

into (2.4) and (2.5) and using (2.14) and (2.15), we obtain

(2.17) OVn OVs
On Os R’

OVs OVn Vs(2.18)
On Os R"

Furthermore evaluation of jump discontinuities commutes with tangential derivatives,
so we see from (2.12) and (2.13) and a piecewise smoothness assumption on the
solution that

(2.19) dv._ continuous,
Os

(2.20) av Oy

as as Xw + continuous.

Substitution of (2.19) and (2.20) into (2.17) and (2.18) gives expressions for the normal
derivatives of the velocity components,

Ov,, Oy
(2.21)

On Os
Xw + continuous,

(2.22)
On

y6x ---+ continuous.

Also, note that
2 2syX + continuous.(2.23) vs

Next, we consider

(v. V)v= v.+v (v.+v3)

v"--n+V os + v,+v+os s

(2.24)

Y-s- v,,
Os

t’ + continuous n

+ v,,,x +ss (/5)t’ + continuous s".

Thus, (. V) is well defined as a distribution. Basically, the possibly singular term
X(O/Os)x is not t’ which is ill-defined but 0 because (O/Os)xw =0.
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Finally, the pressure source term is

(2.25) V. a=V. (v. V)v=2y(-Ov" 6, +continuous Xw+continuous.

Away from the interface, because the fluid is incompressible, equation (2.4), the pressure
source term reduces to (Ovj/Oxi)(Ovi/Oxj). Thus it depends on two derivatives of the
stream function and not three. The acceleration has no 6 function singularities (physi-
cally no impulses). As a result the coefficient of i in (2.25) is

(2.26) . [a] 2y (--0v"--s/"
Even though the normal velocity is continuous at the interface for all time, the normal
acceleration is discontinuous. The discontinuity in a, has a physical interpretation.
On the right-hand side of (2.26) the first term is the difference of the centripital
acceleration and the second term is the difference of the convection. Both terms are
proportional to y and are due to the discontinuity in the tangential velocity.

2.4. The vorticity equation. The velocity is determined by the vorticity density on
the interface from (2.4) and (2.5). It follows from (2.8) that when the vorticity has the
form (2.5) at the initial time, it has this form at subsequent times. Thus we need only
consider the vorticity density on the interface. We use (2.3) and (2.8) to determine the
time rate of change of the vorticity density. Let the interface be parameterized by the
variable a. Suppose we propagate the interface with the average velocity

(2.27)
0r

Ot

where r(a) is a point on the interface. The interface motion is determined by the
normal velocity. The average velocity is equivalent to a particular choice for the
tangential velocity or a parameterization of the interface. From (2.3) and (2.10) we have

Substituting (2.8) and using

we obtain

V
+ ys, rc v --ys,

(2.28)
0y

___ft. 1Vp -yff.--.

We can relate the second term on the right-hand side of (2.28) to O/Ot (Os/Oa) as follows"

Then using = (OxlOa, OylOa)l(Os/Oa),

(2.30)
Ox 0,+OY O6e

00s Oa Oa Oa Oa

ot oa OS
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Substituting (2.30) into (2.28), we obtain

(2.31)
Ot

y
Oa

The right-hand side represents the generation of vorticity at the interface. It arises
because the gradients of the pressure and density are not parallel. The left-hand side
is a convection term. When the interface is propagated with the average velocity, the
total vorticity over any segment of the interface 3/ds would be conserved in the
absence of vorticity generation.

For other parameterizations of the interface (2.31) would contain an additional
convection term. In a numerical computation other parameterizations may also be
obtained by redistributing the points on the interface every few cycles.

In the limit p+ - 0 (Atwood ratio 1), the interface becomes a free surface on which
the pressure is constant. In addition, the limit of (OP/Os)/p+ is finite and well defined.
This case has been computed, for example, in [2], [3]. However, the pressure equation
(2.9) is not suitable for computation in this limit. We have performed calculations for
an air, water density ratio of approximately 1 "600. This closely approximates the
Atwood ratio 1 case over a large range of time.

3. Computational methods.
3.1. Grid construction. An accurate solution of the pressure and stream function

equations requires the use of a grid which is aligned with the interface. In the case of
finite elements, this means that the element boundaries must be aligned to coincide
with the interface. Since it is difficult to fit curvilinear boundaries with rectangular
elements, we employ triangles along the interface, and because of their greater accuracy,
rectangles away from the interface. The construction of the mesh aligned grid is an
essential feature of our method [17]. The construction begins with the. choice of a
rectangular grid. This rectangular grid may have irregular spacings, so that a type of
one-dimensional or tensor product mesh refinement can be introduced at this point.
The interface is defined as a set of points joined by linear or polynomial line segments.
The points are called vertices and the segments are called bonds. Next a modified
interface is formed by the introduction of new vertices at each intersection point of a
bond and a segment from the regular rectangular grid. Each new vertex divides a bond
in two, replacing it by two adjacent bonds. Going through this augmented interface
in the order defined by the interface itself, one of two actions is taken at each vertex.
Either a regular rectangular grid node is displaced, so as to have the same position as
the vertex, or the vertex is eliminated from the interface by joining two adjacent bonds
to form a single bond. In making these choices, care must be taken not to move the
same rectangular grid node twice. Also it is necessary to check against bad aspect
ratios which can result from this construction. If a triangle with a bad aspect ratio is
detected, the grid is discarded and the construction begins afresh with the number of
grid lines increased. The final grid constructed in this fashion is a grid of triangles and
regular rectangles (rectangles whose nodes were not moved by the construction, due
to their distance of at least a mesh spacing from the interface). The triangles result
from the bisection of irregular quadralaterals (rectangles whose nodes were moved by
the grid construction). If the interface passes through the quadralateral, it must by
construction coincide with an edge or diagonal. In the latter case, the interface diagonal
is the diagonal chosen to bisect the quadralateral into two triangles. Otherwise an
interior diagonal is chosen; for convex quadralaterals with two interior diagonals, the
shorter is chosen. This construction gives a grid with a rectangular index structure, so
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that fast iterative methods based on the fast Fourier transform can be used in the
solution algorithm. Figure 3.1 shows a typical grid constructed using these algorithms.

FIG. 3.1. Typical grid constructed using the algrorithms described in 3.1.

The rectangular grid used to begin the mesh alignment construction does not need
to be uniform. Using a nonuniform rectangular grid allows a type of one-dimensional
or tensor product mesh refinement. This can be used to increase the number of mesh
lines near the tip of the spike. In fact solution diagnostics show that the bubble is
easier to resolve than the spike, especially for the large density ratio problems.
Presumably the reason for this fact is that as the solution progresses, the bubble gets
wider and the spike gets narrower. A nonuniform mesh is a method to compensate
for this and to allow extra resolution within the spike.

3.2. Boundary data. The equations (2.6) and (2.8) are solved in a rectangle 0< x <
X, 0 < y < Y, with gravity pointing in the y direction. We impose Neumann (no flow)
boundary conditions on the side boundaries x 0 and x X. Specifically, the pressure
equation (2.8) has Neumann boundary conditions while the stream function equation
has constant Dirichlet boundary data on these sides since v, Oy. On the top and
bottom boundaries, y Y and y O, we impose Dirichlet boundary conditions

Py=o, Y given

on the pressure and the specified flow rate

l)y y=O, Y given

which translates into nonzero Dirichlet data for the stream function . The given
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values for vy at the top and bottom boundary are updated at each time step using
(2.8). The pressure values at y 0, Y must be given as part of the formulation of the
problem.

In order to compare our finite strip calculation to the infinite strip calculations
of [2], [3], one could think of taking a long finite strip and fixing a constant value of
the pressure, say

Py:r=O, Py=o= Po
and then a suitable value of the constant Po would allow comparison of the two
solutions. It was found that this strategy was not practical. Even for moderately long
finite strips, the influence of the boundaries could be observed in the solution. The
value of Po varies in time because the center of mass of the fluid is moving. Hence for
comparison and validation purposes only, we choose Py=o and Py= r to coincide with
the x, dependent computed values obtained by Menikoff and Zemach. In the numerical
solution of the discretized equations the nonzero boundary conditions are replaced by
an equivalent problem with zero boundary conditions and an extra source term.

3.3. Finite element spaces. The elements currently implemented and tested for use
in the solution of the pressure and velocity equations are linear, quadratic or cubic
for triangles and bilinear, biquadratic or bicubic for rectangles. These elements are
Lagrangian, or C. In order to resolve a curved interface, low order elements (and a
consequently finer grid) are desirable. In order to compute reliable second derivatives
of the stream function, as occur in the source term for the pressure equation, high
order elements are desirable. Furthermore a thin boundary layer in the air around the
falling spike, in which air velocities change rapidly, requires high resolution in the
first derivatives of the stream function. The pressure equation is used to determine
accelerations, which also change rapidly in a boundary layer around a falling spike.
The cubic elements, because of their bandwidth, lead to the use of coarse grids, and
so the compromise adopted in this paper has been to use quadratic elements. While
we have implemented isoparametric quadratic and cubic elements with curved bound-
aries, these have not been used in the current validations. Because of the choice of
matching Lagrangian elements on rectangles and triangles (quadratic-biquadratic or
cubic-bicubic) the resulting discretization matrix on a grid of the type described in the
previous section allows a natural rectangular indexing, leading to the possibility of
efficient solution schemes.

3.4. Solution of the algebraic equations. On a scalar machine, the major fraction
of the computational time is devoted to the solution of the algebraic equations which
result from the discretization of the pressure and the stream function equations. On a
vector machine or array processor this may no longer be the case. We have run our
codes on a VAX 11/780, using an FPS 164 Array Processor or a CRAY 1-S computer
to solve the algebraic equations. In these cases the algebraic computation steps become
negligible (in real time) resulting in a substantial speedup over running the code on
a VAX alone. We have solved these algebraic equations by direct methods (using the
Yale sparse matrix software) and iterative methods (using the accelerated conjugate
gradient method). The direct methods are faster than iterative methods on smaller
grids; we found approximate cross over at about 25 25 grids for quadratic elements.
The conjugate gradient scheme for linear elements can be efficiently accelerated by an
inverse to Laplace’s equation based on the FFT. For quadratic and cubic elements,
we have had reasonable success with an acceleration based on the same fast Poisson
solver, but for a finer grid--thegrid of finite element nodal points. With this acceleration



FRONT TRACKING APPLIED TO RAYLEIGH-TAYLOR INSTABILITY 239

operator, the number of iterations increases slowly with mesh refinement. A more
effective strategy has been to use a limited form of multigrid, to obtain a good initial
guess for the iteration. A hierarchy of grid levels is introduced, and the equations are
solved on each grid level, using the answer from the next coarser grid as an initial
guess for the current grid level [20].

The combination of a VAX and an FPS-164 was found to be especially effective
for these problems, the FPS-164 being substantially more cost-effective than the CRAY
for the linear equation solution. With the exception ofthe pre-conditioning acceleration,
all of the steps in the conjugate gradient solution are highly vectorizeable. In fact,
because the FFT fast solver vectorizes poorly, in some cases the un-preconditioned
solution uses less CPU time on the CRAY or FPS, despite the much greater number
of iterations involved. On a 64 64 mesh the speedup of the solution to the equations
was a factor of about 12 with the FPS and about 45 with the CRAY as compared to
single precision on the VAX. For efficiency it is important that the data conversion of
numbers between the VAX and CRAY be performed in binary. Due to the word size
of the FPS and CRAY compared to the VAX these attached processors have the
additional advantage of providing double precision solutions at no extra cost.

3.5. Interpolation. The CO elements used for the solution of the pressure and
stream function have less regularity than the solution requires. This is particularly
noticeable near the interface. Although the first and even second derivatives of quadratic
elements are well defined, the solution is only locally C 1. Its derivatives have discon-
tinuities at element boundaries. In addition, with linear bonds for the interface the
derivative of the velocity has a logarithmic singularity at the vertices because of the
discontinuity in the curvature. To overcome this limitation of the solution, we evaluate
velocities and accelerations (i.e. stream function and pressure gradients) at midpoints
of finite element triangle boundaries along the interface. Using three successive mid-
points, a Newton interpolation algorithm constructs a meaningful solution gradient at
each point of the interface. For a triangle near the boundary of the computational
region, a missing point for the Newton interpolation stencil can be reconstructed from
the knowledge of the boundary conditions. This procedure has been analysed in [21],
to which we refer the reader for further information.

3.6. Propagation and remeshing of the front. Velocities and accelerations computed
from the stream function and pressure are used to advance the points on the front.
These quantities are regularized as described above. The normal components determine
the interface considered as a curve. The normal velocity is continuous and thus unique
on the interface. The acceleration and tangential component of the velocity have
prescribed jumps. The tangential components determine a parameterization or remesh-
ing of the interface. For this reason either the left or right velocity or any combination
of the two may be used to move the interface. The acceleration has to take into account
the tangential motion. We have used the average of the left and right velocities at the
interface. The average velocity has the advantage in that the advection of the vorticity
simplifies. The appropriate acceleration for the average velocity is

l(0v+ 0v- )(3.1) =\0t +--
Performing the same sort of manipulations as used in 2.4 and from (2.8), we obtain

(3.2) a=- -V -y s--
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We remark that (2.31) and (3.2) can be combined to give Eq. (1) of [3]. This is an
equation for the change in vorticity in terms of the Atwood ratio and the average
acceleration.

After a sufficient number oftime steps, the interface points may become distributed
nonuniformly. It is important to remesh the interface. In fact the interface is a
Lagrangian degree of freedom, and it is well-known that occasional remeshing is
necessary to preserve the quality of the Lagrangian mesh. The problem here is elemen-
tary, as the interface is one-dimensional. The remesh is performed automatically as
the computation proceeds.

3.7. Improved finite element spaces. We are currently pursuing several strategies
which we believe have a potential to improve substantially upon our current results.
The strategies are the use of curved bonds for the interface, local mesh refinement and
Hermite or C finite elements in the region near the interface, where high resolution
in the first and second derivatives of the solution is essential.

The physics of the two-fluid Euler equation leads to discontinuities at the interface
in the derivative of the stream function and in the pressure and its derivative. With
Lagrangian elements the normal derivatives at the interface depend on the solution at
a distance one mesh block removed from the interface. We propose that elements with
specified jump conditions permit the use of normal derivatives evaluated directly on
the interface. Since we have not found a description of such jump discontinuous C
Hermite elements in the standard literature, we will indicate here how they may be
constructed.

We consider jump conditions of the form

[4,] Co4, + #o, IV.4,] ,v.4, +
If b is the stream function, then -/31 =y is the vorticity on the interface. In this
case ao =/30 a 0. If b P is the pressure, then/30 -(tr/R), where tr is the surface
tension. Also ao=0. To determine al and/31 we write

-A V,P

where A is the line source given by (2.26). Algebraic manipulation leads to the equations

and so by a convex combination of these equations,

Thus

[V,,P] =-P-----P A -p p
V,,P.

which is twice the Atwood ratio and

-/3- A.

We imagine a grid composed of rectangles and triangles with the interface (and
the jump conditions) confined to the triangle boundaries. Let bi be a basis element at
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a node where a jump condition is imposed. By a node we mean a specification of a
point on the triangle boundary and the appropriate derivative (b, b,, etc.) to be
evaluated there. Since a jump in the first derivative implies an unknown jump in higher
derivatives, we require the specified derivatives at the nodes to be first order. Because
of nodes at triangle vertices we require the normal to the interface to be continuous.
Otherwise the jump in the normal derivative will result in the function being discon-
tinuous. A continuous normal preserving the C continuity can be obtained by using
an isoparametric transformation to specify curved bonds as follows. We consider one
grid with linear bonds in (’, r/) space and transform to (x, y) space. The same Hermite
finite element basis is used to express the co-ordinate transformation. We choose the
values of (x, y) and (’, r/) to be equal at the vertices and obtain the curved bonds by
the choice of the derivatives. These may be obtained by fitting the x and y co-ordinates
of vertices along the interface with a spline parameterized by arc length in the (’, /)
plane. The choice of cubic splines results in the curvature being continuous in both
magnitude and direction. By choosing the Jacobian of the transformation to be the
identity for nodes away from the interface, the triangles join smoothly to the rectangles
without the need for a further co-ordinate transformation. The normal derivatives of
the co-ordinate transformation on the interface are arbitrary. One can use this freedom
to minimize the variation in the Jacobian of the co-ordinate transformation. In this
procedure noninterface bonds with a vertex on the interface cannot be chosen indepen-
dently and in general will also be curved. The use of Hermite elements for the
co-ordinate transformation enables its Jacobian to be continuous. Thus the transforma-
tion does not alter the C continuity of the basis elements. However, the Jacobian has
to be taken into account for the jump conditions in the (’, 7) space. We note two
exceptional cases. If the interface intersects itself, then there are not enough degrees
of freedom in the derivatives of the transformation to independently specify the
curvature on all bonds with the common vertex. Also, if two bonds of a triangle lie
on the interface, then a continuous normal at the common vertex implies a singularity
in the Jacobian (i.e. a nonsingular co-ordinate transformation cannot take a zero angle
into a nonzero angle). This would apply to curved bonds for Lagrangian finite elements
as well.

One set of elements with the appropriate properties consists of nodes at vertices
with b, bx, by specified and nodes at the midpoints of bonds with b, specified. These
are rather complicated and may lead to numerical difficulties. It may be sufficient to
use nonconforming elements with C continuity only at the nodes. An example of
such a choice would be the standard Hermite serendipity bicubics on rectangles and
the Hermite cubics on triangles. These have the advantage that the elements have
compatible boundaries and transition elements are not needed. These elements are
described in more detail in [18], [19].

The homogeneous jumps (proportional to the a’s) are handled differently from
the inhomogeneous jumps (proportional to the/3’s). To make this explicit, we write

where b vanishes at all nodes not equal to i, satisfies homogeneous jumps at node
(and thus at all nodes) and H or V---H as appropriate has unit value at node i.

The particular element b" vanishes at all nodes not equal to i, and P or V,P

as appropriate vanishes at node i. Thus bP satisfies homogeneous jump conditions at
the nodes not equal to i. At node i, bP satisfies the inhomogeneous jump condition
(and thus also the full jump condition at that node).
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In solving the finite element equations, b P ---i /P is thought of as a source term,
so that a variational principle is applied to bH i bH only. Finally we note that bH
and b P, restricted to a particular triangle, are expressed as multiples ofthe conventional
Hermite basis functions. These multiples depend on the a’s and fl’s at that node, and
can be regarded as connection coefficients. In this way discontinuous elements with
specified jumps are represented in terms of conventional Hermite elements together
with a set of connection coefficients.

4. Preliminary validation studies. The primary method which we use for validation
is quantitative comparison to the conformal mapping solution of Menikoff and Zemach
[2] for the case of an infinite density ratio. We are not set up to handle this limiting
case directly in our front tracking scheme and so we have chosen the density parameters
to be those of water and air, which are approximately in the ratio 600: 1. For the time
interval during which we follow the solution, the resulting difference between the two
problems is not significant. The Menikoff-Zemach solution describes flow in an infinite
strip,

a<x<b, -c<y<.

This is a natural choice for a method based on integration of Green’s functions. The
front tracking code uses finite elements to invert elliptic operators. In this case a
bounded domain with boundary conditions is the natural problem. To allow comparison
to the Menikoff-Zemach solution, we determine the (time and space dependent)
pressure of the Menikoff-Zemach solution at our upper and lower y boundaries and
impose these values as boundary conditions on the front tracking solution. The
calculations in [2] provide the solution only in the heavy fluid. However, the data on
the interface is sufficient to determine the solution in the light fluid in the limit of 0
density. This extension is described in the appendix.

These two solutions are compared with respect to interface position as well as to
a series of detailed diagnostic quantities such as velocity, acceleration and vorticity.
In general we get excellent agreement for the interface position on fine grids through
an amplitude to wavelength ratio greater than one, with divergence starting somewhat
earlier on coarse grids and for the more sensitive diagnostics, especially those containing
more derivatives of the solution. It is hoped that planned future improvements in the
calculation will improve both the coarse grid and sensitive diagnostics.

We choose for a test problem the case with gravitational acceleration g 1, fluid
densities Pwater 1, Pair 0.0017. At 0 we choose an initial interface y =-1/2 cos (x)
with zero velocity. In Fig. 4.1 we compare the time evolution of the interface for a
32 32 and 64 64 grid. We see that the solutions have converged under mesh refinement
up to 2.4. The coarse grid solution shows discernable errors at 3 due to a loss
of resolution in the spike region. The symptoms of this loss of accuracy are a decrease
in the acceleration of the tip of the spike and a corresponding increase in its width.
If the calculation were allowed to continue, the spike would develop a mushroom cap
shape similar to what occurs at lower density ratios due to Kelvin-Helmholtz rollup.

In Fig. 4.2 we display the velocity and acceleration fields at 2.4 and 3. This
shows the development of vorticity along the interface, especially on the sides of the
spike. The velocity and acceleration at the top and bottom boundaries are small. Thus
the mesh boundary has a small effect on the calculation.

In Fig. 4.3 we compare the position of the interface and the vorticity density along
the interface to the corresponding quantities in the Menikoff-Zemach solution. The
agreement between the interface positions is good except at the tip of the spike where
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FIG. 4.1. Time evolution of interface from =0 to 3 in steps of 0.6. Heavy fluid is on the bottom.
a) 32x32 run, b) 64 x64 run.

our solution is not accelerating quite as fast as it should. The vorticity density becomes
sharply peaked along the sides ofthe spike. As pointed out in [2], this leads to numerical
difficulties due to loss of resolution in the spike region.

Figure 4.4 is a comparison of the y velocities of the heavy fluid along the interface
in the present solution and in the Menikott-Zemach solution. The error in the vorticity

FIG. 4.2a. The velocity and acceleration plots with interface superimposed, at the time 2.4 from the
64 x 64 run of Fig. 4. lb.
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FIG. 4.2b. The velocity and acceleration plots with interface superimposed, at the time 3.0 from the
64 64 run of Fig. 4. lb.

density around the tip of the spike seen in Fig. 4.3 causes a lower velocity at the tip
of the spike. The oscillations in the raw velocity presented in Fig. 4.4a occur because
the finite elements for the stream function are only CO The velocity is discontinuous
at the vertices on the interface. This difficulty is alleviated by smoothing the velocity
as described in 3.5. See Fig. 4.4b.

In Fig. 4.5 we compare the pressure along the interface. The slight asymmetry
about the tip of the spike is due to a loss of resolution in the spike region and perhaps

FIG. 4.3a. Comparison between the 64 64 run of Fig. 4.1b and the Menikoff-Zemach solution. The
interface position is shown on the left and the vorticity density on the right, at the time 2.4.
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FIG. 4.3b. Comparison between the 64 x64 run of Fig. 4.1b and the Menikoff-Zemach solution. The

interface position is shown on the left and the vorticity density on the right, at the time 3.0.

also the grid construction algorithm, which does not try to enforce the symmetry. The
fact that the pressure on the interface is very small compared to the driving pressure
on the boundary and that there is good agreement in the interface pressures both
indicate that the difference in the problems (large vs. infinite density ratio) is not
significant at this time. At large time the pressure at the tip of the spike is on the order
of /gair/)

2 and would become important.
This example shows good agreement up to an amplitude to wavelength ratio of

about 1. Furthermore, the solution is improved by mesh refinement.

FIG. 4.4. Comparison with Menikoff-Zemach solution ofy velocity in heavyfluid on interface vs. arc length
at 3.0. a) raw data, b) smoothed data.
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FIG. 4.5. Comparison with Menikoff-Zemach solution ofpressure on interface vs. arc length at 3.0.

5. Finite density ratios. Moderate to low density ratios display qualitatively new
phenomena, as compared to the high or infinite density ratios discussed in the previous
section. In this case the spike develops a mushroom cap shape due to Kelvin-Helmholtz
rollup along the side of the spike. Along the base of the mushroom cap there is a
vortex rollup. This phenomenon occurs in principle for any finite density ratio, and
the distinguishing feature of the low to moderate density ratio range is that the
phenomenon occurs at an early stage in the development of the spike. Although the
conformal mapping methods of [2] apply in principle to this case, they have not been
so implemented. The boundary integral methods of [3] have been performed in this
case, and are in qualitative agreement with our results. However because their results
apply to the case of an infinite strip, detailed comparison with our results in a bounded
domain with boundary conditions is not appropriate. Many of the general purpose
codes cited in 1 have been applied to the moderate to low density regime. We again
agree with their calculations qualitatively, but should not and do not agree quantitatively
due to the presence of numerical diffusion in such codes and the absence of it in ours.

For front tracking methods the low to moderate density ratio regime is an easier
problem than the water-air case considered in the previous section. In fact the extra
topological complications associated with vortex rollup (interface tangling, etc.) are a
minor added difficulty while the decrease in singularity for the elliptic problem to
determine the pressure is a major simplification. Thus we rely partly on the validation
of the previous section for the present regime. Moreover we find that convergence is
achieved with fairly coarse grids (e.g. 15 15 for a single finger). Meaningful coarse
grid calculations are important in a study of multiple finger interactions.

Our main quantitative test of the front tracking code in the present regime is
convergence under mesh refinement. We examine both the front position and various
detailed diagnostics such as velocity and acceleration on the interface. The test runs
reported here used a density ratio of 4:1 (Atwood ratio of .6). The initial conditions
represent a fluid at rest with a sinusoidally disturbed interface. The gravitational
acceleration is g 1 and there is a constant pressure difference between the top and
bottom of the mesh to balance the initial gravitational force. In Fig. 5.1 we show the
development of a single finger, showing the interface position at a late time for a
46 46 grid.
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FIG. 5.1. Interface position at a late time for density ratio 4: 1.

6. Heterogeneity. In a highly developed regime for the Rayleigh-Taylor instability
one is interested in both the dynamics of a single finger and the interaction between
fingers. Heterogeneity affects both. There are of course a large number of possible
heterogeneity parameters. Examples include multiple frequencies in the initial interface
position, variable material properties such as density, variable vorticity as a distributed
external source or initial condition, and variable driving pressure in the externally
imposed boundary conditions.

We can divide these possibilities into two groups. The subharmonic heterogeneity
acts on length scales longer than that set by some dominant finger size. This case affects
the interactions between bubbles. The superharmonic heterogeneity acts on length
scales shorter than that set by the finger size. This case affects the finger shape. The
present section contains a preliminary examination of both of these possibilities. The
subharmonic example we present is the case of multiple frequencies in the initial
interface position, and the superharmonic example is vorticity as an external driving
source.

As a multiple frequency interface, we consider a combination of two sine waves
with a frequency ratio of 8"1, leading to the formula

y constant + a sin (klx) +/3 sin (k2x).

In Fig. 6.1 we show the time development ofthe interface position for the particular
choice

kl=l, k2=, c=.5, /3=2.

We see that the long wavelength modulation of the initial interface excites a mechanism
of bubble competition and probably eventually of bubble amalgamation. Since the
bubble growth is a function of the bubble size, we see that the long wavelength
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(a) (b) (c)

(d) (e)

FIG. 6.1a-e. Initial andfour subsequent time steps in the evolution ofa multifrequency interface. It appears
that the highfrequency modes grow rapidly initially and then saturate, while the lowfrequency mode is relatively
unaffected by the high frequency fingers growing off it. In order to progress from Fig. 6.1d to 6. le, some detail
in the vortex rollup was suppressed, as can be inferred by comparison to Fig. 5.1.

modulation produces an increased overall bubble growth rate. From another point of
view, the short and long wavelengths grow to a large extend independently of one
another. Once the short wavelength fingers are in a deeply nonlinear region, it can be
seen that trailing vortices prefer to form on the down wind side, as determined by the
long wavelength perturbation.

In two space dimensions vorticity can be regarded as a scalar. We construct a
random vorticity function random depending on three deterministic parameters and a
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further random variable. The three deterministic parameters are an amplitude and an
x and a .r’ length scale. The x and y length scales determine a discrete mesh. At each
point of this mesh we choose independent Gaussian random variables with mean 0
and variance given by the above amplitude. This construction defines an ensemble of
functions on the discrete lattice. Finally an interpolation gives an ensemble of
everywhere defined continuous random variables. The Gaussians at each mesh point
are evaluated using a random number generator thereby producing a point in the
ensemble, which is the desired vorticity function. A shift in the starting point of the
random number generator or other change in the random number generator produces
a new point in the ensemble, i.e. a new vorticity having the same values for its three
deterministic parameters [22].

A sequence of single finger runs was performed in which the heterogeneity
amplitude is continuously increased. The initial run in this series is the homogeneous
(zero heterogeneity amplitude) run of Fig. 5.1. The density ratio was fixed at 4"1 and
the heterogeneity length scales were of the finger wavelength, so the heterogeneity
is superharmonic. The results were presented in [16], and will not be repeated here.
The main conclusion is that heterogeneity can attect finger shape and if strong enough
can even cause splitting of fingers.

7. Conclusions. We have developed the front tracking method for two-dimensional
incompressible inviscid fluid flow. This code was applied to the problem of Rayleigh-
Taylor instability. Preliminary validation studies comparing this code to existing special
purpose codes have shown good results.

Several strategies for further improving the code have been identified. These
include local mesh refinement and the use of Hermite elements with prescribed jump
discontinuities in conjunction with isoparametric elements.

An initial study of the effect of statistically distributed heterogeneities was per-
formed. This work suggests that such heterogeneities can substantially modify the flow.
A systematic study of their effects is planned.

A capability of the code not utilized in this work is the existence of general data
structures which permit one to keep track of interfaces of arbitrary topology. This will
be brought into play in future studies concerning bubble amalgamation, disintegration
of spikes into droplets and the breakup of shells.

Another capability not utilized is a framework which can incorporate noninterface
physics. A use of this capability would be the modeling of diffusion of vorticity away
from the front. We also contemplate treating fine scale structure such as tightly wound
vortex spirals as interior or untracked degrees of freedom, while continuing to track
the main interface.

Appendix: Extension of the conformal map solution. The use of conformal maps
to numerically compute the solution of the Rayleigh-Taylor problem is described in
[2]. There an explicit calculation is performed for a single semi-infinite fluid with a
free surface. Here we briefly sketch how the data on the interface can be used to
determine the flow in the complementary semi-infinite region in the limit in which the
second fluid has 0 density.

We denote the first and second fluid with the superscripts and + respectively.
We suppose the position of the interface and the velocity of the first fluid are known
from the calculation in [2]. We express the velocity as the gradiant of a potential b
which satisfies the Laplace equation separately in each fluid region. The normal velocity
is continuous across the interface. Thus v provides the boundary condition for the
potential problem determining b+. Using the methods in [2], we can compute the
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conformal map for the region of fluid 2. (This map is different from the conformal
map for the first fluid because of the asymmetry between the bubble and spike.) This
determines the Green’s function which allows us to compute by quadrature the
tangential velocity from the normal velocity. The jump in the tangential velocity enables
us to determine the vorticity density y along the interface.

In order to calculate the pressure in the second fluid, we first need to calculate
the normal acceleration. The potential is determined by Bernoulli’s equation

1 v2 P
(A.1) O,b = +gy+-.

P

For the first fluid O,b can be calculated on the interface because for a free surface
P 0. Its tangential derivative may be obtained numerically. From the Green’s function
we can determine by quadrature

(A.2) .(,) ,.
from gs(d,b). The normal acceleration is

(A.3) a, a. (O, +v. V)v.

By using (2.17) and (2.18) this can be expressed in terms of quantities already known
on the interface

2 2
) "-I’- )

(A.4) a. .(,4’) + Vs ,9v, v,, ,gsVs-.
R

From the jump in the acceleration equation (2.26) and the jumps in the velocity and
its derivatives (2.12)-(2.23) it follows that

Thus we can determine O,,(,gtqb) in the second fluid. The normal acceleration in the
second fluid is determined from (A.4). We may also use the Green’s function to
determine by quadrature ds(d,b) from ,9,(,gtdp). This together with (A.1) for the second
fluid determines O(P/p). We can integrate this to determine Pip along the interface
of the second fluid. It is important that P/p is finite in the limit as/9+-> 0.

For a nonzero p+ the pressure on the interface may be substituted back into (A.1)
for the first fluid and this procedure can be iterated until the pressure converges. This
would provide an alternate method for computing the two fluid problem to that
described in [2].
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A FRONT TRACKING METHOD FOR ONE-DIMENSIONAL
MOVING BOUNDARY PROBLEMS*

GUILLERMO MARSHALLf

Abstract. We introduce a front tracking method for the numerical solution of one-dimensional Stefan
problems. It consists in the formulation ofthe Stefan problem as an ordinary differential initial-value problem
for the moving boundary coupled with a parabolic partial differential equation for the distribution of
temperatures. We present a variable time step procedure in which the initial-value problem is solved with
a predictor-corrector scheme; in the corrector step the function evaluation is done, iteratively, through an
implicit time discretization of the parabolic equation. Numerical results for one-dimensional, one-phase
Stefan problems with straight and curved moving boundary trajectories are presented. For these cases the
front tracking method presented gives greatly improved results.

Key words, initial-boundary value problem, Stefan problem, front tracking

1. Introduction. A moving boundary problem or Stefan problem is a nonlinear
initial boundary value problem with a moving boundary whose position is unknown
and has to be determined as part of the solution.

Among the various methods in current use for studying the Stefan problem, finite
difference and finite element methods are widely used and have proven to be the most
general. They can be classified into two main categories: the methods which explicitly
track the interface or front thus solving the differential problem in a time varying
domain, and those which use a fixed domain with the help of a weak or generalized
formulation. By a suitable coordinate transformation it is possible to obtain methods
that can be also included in the last category. An enlightening discussion of these
methods can be found in the works of Crank [3], Furzeland [5] and Meyer [11] (see
also Ockenden and Hodgkins [12]).

Finite difference one-dimensional moving boundary tracking methods, hereafter
called front tracking methods, have been classified by Gupta [6] as fixed and variable
grid methods. In the fixed grid method the space-time domain is subdivided into a
finite number of equidistributed cells, and the trajectory ofthe front does not necessarily
coincide with the cell nodes. In the variable grid method the space-time domain is
subdivided into a finite number of rectangular cells with only one side equidistributed,
the other side being subdivided in such a way that the trajectory of the front coincides
with the cell nodes. Examples of fixed grid methods can be found, for instance, in the
works of Crank [2], Meyer [10] and Furzeland [5]. Douglas and Gallie [4] were the
first to introduce a variable grid method; they subdivide the space direction into an
equally distributed mesh length and determine the time step in such a way that the
trajectory of the front advances one space cell per time step. For the solution of the
nonlinear system they introduce an iteration procedure by which, at every time step,
an arbitrary initial guess for the time step is chosen and the parabolic equation is then
solved using a strongly implicit time discretization scheme; for the next iteration the
new time step is corrected using a quadrature of the integral form of the moving
boundary condition. Stability and uniform convergence of the method in a suitable
restricted domain were also proven. However, Gupta and Kumar [6] showed that the

* Received by the editors November 8, 1983, and in revised form November 26, 1984. Part of this work
was done while the author was at the Courant Institute of Mathematical Sciences, New York University,
New York.

f Consejo Nacional de Investigaciones, Cientfficas, Buenos Aires, Argentina. Present address: Centro
de Cfilculo Cientffico, Comisi6n Nacional de Energia At6mica, 1429 Buenos Aires, Argentina.
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previous method did not converge under more rigorous conditions, and presented a
new variable time step method which is closely related to the Douglas and Gallie
method. It differs in the way in which the new time step is corrected: Gupta and Kumar
use a first order finite difference approximation of the ditterential form of the moving
boundary condition.

In the present work we propose a new front tracking method which shares some
of the ideas discussed above. It consists in the formulation of the one-dimensional
Stefan problem as an ordinary ditterential initial-value problem governing the moving
boundary coupled with a parabolic partial ditterential equation describing the diffusion
process. This slightly different formulation, that grants equal importance to the moving
boundary and to the dittusion process, leads naturally to a consistent difference
approximation. We introduce a variable time step procedure in which the initial-value
problem is approximated with a second order predictor-corrector scheme; in the
corrector step the function evaluation is performed, iteratively, through the use of an
implicit time discretization of the parabolic partial ditterential equation. As will be
shown, this front tracking method yields a simple, robust, fast and accurate numerical
procedure. We present numerical results for two test cases involving straight line and
curved line front trajectories and a comparison with other authors’ results.

2. Formulation of the Stefan problem. We reformulate the Stefan problem using
the test case presented by Douglas and Gallie [4]. One-dimensional, one-phase Stefan
problems consist in finding the space-time curve S(t) along which the front moves
satisfying the initial-value problem

(.
as

x=S(t), t>0,
dt Ox’

(2.2) S(t) =0, t=O,

and the value of the function u(x, t) in the region 0 _-< x =< S(t) satisfying the following
parabolic partial differential equation for the function u(x, t)

(2.3) Ou_O2u, 0<x<==S(t), t>0,
Ot 02X

with initial and boundary conditions

(2.4) u=O, O<-x<-_S(t), t=O,

Ou
(2.5) --=-1, x=0, t>0,

Ox

(2.6) u=O, x=S(t), t>O.

An alternative formulation is to replace (2.1) and (2.2) by its integral form

s(t)

(2.7) S( t) t- u dx.
Jo

It can easily be shown (see for instance Cohen and Tadjbakhsh [1]) that the Stefan
problem is a nonlinear problem. Performing the coordinate transformation z x $(t)
system (2.1)-(2.6) becomes

(2.8)
dS Ou

z=0, t>0,
dt Oz’
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(2.9) s(t) =0,

(2.o) ou_
Ot Oz

02 tl

Ozz,
-S( t) <- z <= O, t>O,

(2.11) u=O, -S(t)<-z<=O, t=O,

Ou
(2.12) 1 z---S(t), t>O,

OZ

(2.13) u=0, z=0, t>0.

The convective term appearing in (2.10) has a coefficient which depends on the unknown
u(z,t).

3. The numerical problem. This section discusses numerical approximations for
the Stefan problem (2.1)-(2.6) using front tracking methods. The space-time domain
0 -< x =< S(t) is discretized with a rectangular grid which distribution is discussed below.
Space and time increments are indicated by h and k, respectively. As usual the value
of the numerical solution for x ih and nk (i and n integers) is given by u(x, t)=
u(ih, nk)= u’. Assuming that the space-time curve of the front is a parabola, the
following strategies for the discretization of the domain can be envisaged: a) to make
a uniform mesh distribution in space with h fixed for all times and a variable mesh
distribution in time with k chosen in such a way that the front is always kept at the
rightmost node at any time, see Fig. 3.1; b) to fix the value of the time step (not
necessarily constant for all times) and to search for the position of the front using a
fixed space step for all times, except for the last node which is variable, see Fig. 3.2.

3.1. Uniform mesh distribution in space and variable mesh distribution in time.

/
tam h __.ph# O<p <1

x xl+ xt

FIG. 3.2. Fixed time step and uniform mesh in space except for the last cell which is variable.
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The advantages and inconveniences of these methods will be later discussed. Now we
introduce the finite difference approximation utilized. Assuming that the front position
and the function u(x, t) are known at the n time level, as shown in Fig. 3.3, the problem

:I, i+1

FIG. 3.3. Front position at two consecutive time levels.

is to obtain the front position and the function u(x, t) at the next time level. To this
end the initial-value problem (2.1)-(2.2) describing the front movement is approximated
with a predictor-corrector scheme of the form

(3.1)
S*"+I-Sn

k
aF(S(t), u,,)",

S"+ S"
(3.2)

k
=flF(S*(t), u*)"++(1-fl)F(S(t), Ux)

where a and/3 are weighting factors lying in the interval 0_-< a,/3 <_- 1, and F(S(t), Ux)"
and F(S(t*), u*)+ represent the right-hand side of equation (2.1) evaluated at the
time level t, and tn+l, respectively. The intermediate function evaluation is obtained
via the solution of (2.3) with an implicit time discretization scheme of the form

(3.3)
U/n+l- u’/

0 6u* "+ + (1 O) 6u’/,
k

where 6 is the standard three-point centered finite difference operator and 0 is a
weighting factor lying in the interval 0_-< 0 _-< 1; for 0 =0, 1/2 and 1, explicit, Crank-
Nicolson and strongly implicit schemes, respectively, are obtained. Thus, to advance
the solution from the n to the n + 1 time level, equations (3.1) to (3.3) are solved
iteratively and convergence is achieved if in two successive iterations the values of the
unknowns differ in less than a prescribed precision (usually 10-6).

Returning to the discussion of the two methods described at the beginning of this
section we note that in the first method, which is usually called a variable time step
method, t(S), therefore the initial-value problem (1.1)-(1.2) is formulated inter-
changing the role of the dependent and independent variables. In the second method,
S S(t) and the initial-value problem remains in its original form. When the trajectory
of the front has a slope near unity any method will do; however, if tends to zero
(for instance when a stationary state is sought) clearly the first method cannot be used,
since at some point of the calculations the independent variable will fall outside of
the domain and the numerical method will fail to converge. Similarly, the second
method will fail when tends to infinity. In this work we discuss the first method;
the second method is presented in Marshall and Smith [9]. Further details about the
approximation used for the right-hand side of the predictor-corrector scheme (3.1)-
(3.2) as well as for the difference scheme (3.3) are given in the appendix.

It can be shown that the finite difference system (3.1)-(3.2) and (3.3) is consistent
with the differential problem (1.1)-(1.6). A linear stability analysis shows that a
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necessary condition for the numerical stability of the corrector scheme (3.2) is

2 1
(3.4) k-<- for 0-</3 <1/2,

1-2fl Fs
(3.5) no restriction for/3_->1/2,
where Fs is the maximum value, between the time levels n and n + 1, of the derivative
of F(S(t), u,,) with respect to S. This stability condition is valid only if Fs remains

positive. In the same fashion a linear stability analysis shows that a necessary condition
for the numerical stability of the implicit time discretization (3.3) is

h2

(3.6) k-< for0_-<0<1/2,
2(1-20)

(3.7) no restriction for 0 >_- 1/2.
The stability conditions (3.4) to (3.7) are valid for both methods except that, for the
first method, in (3.4) Fs changes to F, and the restriction is in the space step rather
than in the time step. In passing we note that for concave up front trajectories F, is
always positive. Numerical evidence shows that the stability analysis presented remains
valid for the nonlinear case.

4. Numerical results. We present numerical results obtained with the front tracking
method applied to straight and curved front trajectories. The accuracy of the results
obtained by the front tracking method is checked against exact and approximate
analytical solutions; the efficiency of the method is compared with that of other
numerical techniques.

The straight line front trajectory. This problem which is taken from Furzeland [5]
and is due to Hoffman [7] is described by (1.1)-(1.6) with the following modification
for the boundary condition (2.5)

(4.1) Ou_ e’, x=0, t>0.
Ox

The exact solution of this problem is

(4.2) u(x, t)= e-- 1,

and the trajectory of the front in the x-t plane is the straight line

(4.3) S(t)--t.

Figure 4.1 illustrates the exact solution in the x-t plane. The computations were done
on an IBM 370/158 (under CMS-VM) with a Fortran compiler, in single precision,
using the front tracking method. We found that the most accurate results were obtained
using a three-point Lagrangian interpolation for the approximation of the front slope
(all the calculations use this procedure). Table 1 shows the exact and computed position
of the front, for different values of the mesh and of the numerical parameters. These
results are shown to converge to 10-6 in seven iterations for h-0.1, two iterations for
h =0.025 and one iteration for meshes not coarser than h =0.01. This last rather
remarkable result is mainly due to the presence of a predictor scheme which is consistent
with the differential problem. The number of inner iterations is primarily a function
of the precision sought. For fixed precision, the number of iterations decreases as the
mesh is refined, for the simple reason that an initial guess based on the previous time
level solution is closer to the final solution when the time step is smaller. Obviously,
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J(X,t)

FIG. 4.1. Exact solution in the x-t plane of the straight line front trajectory problem.

TABLE
Position of the straight line front trajectory as calculated with the front tracking method.

Space

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CPU
IBM-370/158
(seconds)

=0.10
=0.88
=0.88

0.0000
0.1000
0.2000
0.3008
0.4013
0.5016
0.6017
0.7015
0.8012
0.9008
1.0002

0.10

Time (computed)

=0.025
=0.89
0.89

0.0000
0.1001
0.2003
0.3005
0.4005
0.5005
0.6004
0.7003
0.8001
0.8999
0.9997

0.23

=0.010
=0.90
0.90

0.0000
0.1001
0.2002
0.3002
0.4002
0.5002
0.6002
0.7002
0.8001
0.9000
1.0000

0.67

Time
(exact)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

for fixed precision and mesh size the number of inner iterations is a function of the
numerical scheme used. It was also found that for fine meshes the weighting coefficients
/3 and 0 do not affect appreciably the number of inner iterations but do affect the
accuracy of the results. In this connection it would be expected the most accurate
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results to occur for values of/3 and 0 near 0.5; however, the presence of oscillations,
typical of Crank-Nicolson type schemes, makes that the most accurate results are
attained for values of/3 and 0 near 0.9 (Table 1 shows that the error--measured as
the difference between the numerical and exact solutions--decreases in time to a
minimum, changes its sign and increases thereafter). For values of/3 and 0 equal to
one the error increases monotonically (not shown here).

For comparative purposes we reproduce in Table 2 some of the results obtained
by Furzeland [5] for the same problem using the Landau coordinate transformation,
first with an implicit time discretization method (first and second columns), and then
with the method of lines in space (third column). Regarding his first method, which
is directly comparable to the front tracking method, Furzeland reports having reached
a precision of 10-6 with two and three inner iterations. The front tracking method
needs only one iteration and its results are more accurate, even more so considering
that the word length used is shorter. The results of Furzeland’s second method, the
accuracy of which is nothing less than remarkable, can be compared with the front
tracking results, for the same grid, in relation to accuracy and simplicity (leaving aside
the computing time). In relation to accuracy, the superiority of Furzeland’s results is
only apparent considering that we have used single precision and a shorter word length
(the NAG ODE package requires double precision arithmetic). The implementation
of the method of lines in space is, indeed, very attractive: ease of programming and
use of a robust ODE integrator package. So is the tracking method which consists in
the solution of only one ODE involving the inversion of a tridiagonal system; it can
be improved further using an automatic ODE solver rather than a predictor-corrector
scheme. Moreover, the front tracking method has none of the inconveniences of the
other methods discussed here. The latter need a coordinate transformation, and, in
addition, the global accuracy of the method of lines depends on the spatial discreti-
zation. As this is refined, the ODE system increasingly stiffens. It is concluded in the
light of the evidence presented that the front tracking method appears to be superior.

TABLE 2
Position of the straight line front trajectory as calculated by Furzeland 5].

Time

0.1
0.2
0.5
0.9
1.0

CPU
ICL 1906A
(seconds)

Space (computed)

Implicit time discretization
h 0.01 h 0.01
O= 0=0.5

0.1000
0.2001
0.5003
0.9006
1.0007

0.1003
0.2003
0.5003
0.9003
1.0003

Method of lines
h =0.025

0.1003
0.2003
0.5003
0.9003
1.0003

12

Space
(exact)

0.1
0.2
0.5
0.9
1.0

The curved line front trajectory. This problem which is taken from Douglas and
Gallie [4] is described by (1.1)-(1.6). An approximate analytic solution of this problem
was given by Gupta and Kumar [6] using Goodman’s integral method

(4.4) u(x, t) A(x- S)+ B(x- S)2,
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where S S(t) and

1-sqrt (1+4S)
2S

1 + 2S-sqrt (1 + 4S)
4S2

The trajectory of the front is given by

(4.5) =(5+ S +sqrt (1 + 4S)).

In Fig. 4.2 the approximate analytic solution is illustrated.

FIO. 4.2. Approximate analytic solution in the x-t plane of the curved line front trajectory problem.

Table 3 presents the results obtained with the front tracking method for different
values of the mesh and the approximate analytic position of the front. We found that
the optimum value of/3 and 0 is one. The results converged to 10-6 in eight iterations
for h 0.1, four iterations for h 0.025 and two iterations for h 0.01. The number
of inner iterations is higher as compared with the previous test problem because of
the curved trajectory of the front. Moving along the rows of Table 3 (from coarser to
finer meshes) it is possible to see that the results tend asymptotically to a fixed value,
which is a practical proof of the convergence of the method. In passing we note that
the approximate analytic solution gives good results only for values of S(t) that are
not too far from the origin. Table 4 shows the results obtained by Gupta and Kumar
[6] for the same problem using an implicit time discretization and a first order
approximation for the treatment of the front slope, together with the results obtained
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TABLE 3
Position of the curved line front trajectory as calculated with the front tracking method.

Space

0.0
0.3
0.6
0.8
1.0
1.5
2.0
2.5
3.0

CPU
IBM-370/158
(seconds)

h =0.1
/3= 1.0
O= 1.0

0.0000
0.3450
0.7582
1.0646
1.3927
2.3004
3.3225
4.4500
5.6762

0.52

Time (computed)

h =0.025
/3=1.o
0= 1.0

h 0.01
/3= 1.0
O= 1.0

0.0000
0.3403
0.7450
1.0452
1.3675
2.2611
3.2691
4.3833
5.5944

0.0000
0.3421
0.7491
1.0507
1.3745
2.2724
3.2862
4.4062
5.6257

3.89 11.3

Time
(integral method)

0.0000
0.3392
0.7444
1.0568
1.3727
2.2865
3.3333
4.5069
5.8028

TABLE 4
Position of the curved line front trajectory as calculated by Gupta and Kumar [6] and with the front

tracking method.

Space

0.2
0.6
1.0
1.6
2.0
2.6
3.0

Time (computed)

Gupta and Kumar [6]

h =0.1
0= 1.0

0.2091
0.7186
1.3285
2.3944
3.1993
4.5340
5.5035

h =0.01
0 1.0

0.2172
0.7406
1.3604
2.4413
3.2522
4.5916
5.5599

Tracking method

h =0.1
0= 1.0

/3= 1.0

0.2230
0.7616
1.3937
2.4934
3.3176
4.6792
5.6696

h =0.01
0= 1.0

/3= 1.0

0.2190
0.7458
1.3688
2.4559
3.2725
4.6211
5.5955

Time
(integral method)

0.2181
0.7444
1.3727
2.4854
3.3333
4.7564
5.8028

with the front tracking method. The results of Gupta and Kumar converge to a precision
of 0.5 percent apparently after several iterations (not specified by the authors); the
tracking method results converge to the same precision in one iteration. Comparison
with the results of the approximate analytic solution (for values near the origin), that
can be considered the most accurate, reveals that of the two finite difference methods,
front tracking is the most accurate and the fastest. This can be attributed to the use
of a higher approximation for the treatment of the front slope, and of a predictor
scheme which is consistent with the differential problem.

5. Conclusions. A new front tracking method for the numerical treatment of
one-dimensional moving boundary problems has been presented. It consists in the
formulation of the Stefan problem as an ordinary differential equation for the moving
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boundary coupled to a parabolic equation for the diffusion process. A variable time
step procedure has been introduced in which the ordinary differential equation is
solved with a predictor-corrector scheme and the parabolic equation with an implicit
time discretization. Numerical experiments with straight and curved front trajectories
and comparison with other author’s results evidenced that the front tracking method
is an efficient, simple and accurate numerical procedure which produces greatly
improved results.

Appendix. Here we discuss in some detail the implementation of the front tracking
method. The right-hand side of (3.1) and (3.2) involves the approximation of the slope
of the front as given by (2.1). This can be done, for instance, using linear or quadratic
Lagrange polynomials:

(A.1) (0xU) =(uj-uj_l)/h,

(Ott) =(3uj-4Uj_l+Uj_2)/(2h).(A.2) xx
Equations (A.1) and (A.2) are two-point and three-point backward approximations of
the first derivative of u(x, t) at the j node. Using a fictitious node it is possible to
obtain a centered approximation"

(A.3) (0_) ._(Uj+l_Uj_l)/(2h)"

The fictitious centered approximation is locally the most accurate due to the nature of
its truncation error; however, numerical evidence shows that with a quadratic Lagrange
polynomial a better global accuracy is attained.

The implicit time discretization (3.3) of the parabolic equation (2.3) can be written
(dropping the star superindex for convenience)

u, 0 1),,+1+(1- O)
(A.4) u’+l

k =h--’ui-l-2ui+ui+ h2 U,_l 2U, + U,+l)",

which is valid for values of lying in the interval 1 -<_ -<_j. Rearranging (A.4) we obtain

(A.5) ,,+1
-vru_l + (1 + 20r)u’+1 Oru"+i+1 Oi,

where
D7 (1 0)ruT_ +{1-2(1 O)r}u’/+(1 O)ru’L.

The boundary conditions are incorporated as follows. For 1 a centered difference
approximation of (2.5) yields

(A.6) U2-- U0----1.
2h

Eliminating Uo from (A.6) and (A.5) with i= 1, we get

(A.7) (1 + 20r)u’+1 20ru+1= D,
where

D’ {1-2(1 O)r}u’ + 2(1 O)ru-2rh.

The right-hand boundary condition (2.6) at =j yields

(A.8) 0ru_+ + (1 + 20r)u’]+1 D.,
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where D; is the same expression as in (A.5) but for i=j. The value of uj"+l in (A.8)
is obtained by an extrapolation procedure which uses (A.1), (A.2) or (A.3). Finally
the tridiagonal system of order j becomes

(A.9) -Or l+20r -Or U7+1 D7
-Or 1 + 20r u’+1 Din

This algebraic system can be easily inverted using an upper-lower triangular decomposi-
tion (see for instance Isaacson and Keller [8] or Richtmyer and Morton [13]).

It is worthwhile to examine the starting algorithm. Here we propose the following
procedure. Let us assume the situation depicted in Fig. A1. We wish to compute the

FIG. A1. Scheme for the starting procedure.

numerical solution at the time level/n+l. To this end we write the following ditterence
approximation at node i= 1, for the initial-value problem (2.1) and for the parabolic
equation (2.3) and its boundary conditions"

(A.10)

(A.11)

Sn+l S n+l n+l
U2 --U

k h
n+l--rug+l+ (1 +2r)u’+1- ru2 u,

n+l n+l

(A.12) u -Uo
=-1,

2h
n+l

/’/2 U 0,

where we have used a first order approximation for the front slope and a strongly
implicit time discretization for the parabolic equation. Recalling that in the variable
time step method k is the unknown (t,+- t, k, time being the dependent variable),
and h S"+1- S" is given, we obtain a nonlinear system of three equations with three

n+l and .+1unknowns" k, Uo ul The nonlinearity of system (A.10)-(A.11)-(A.12) can
easily be established replacing the value of r= k/hE obtained from (A.10) into (A.11).
However, for this particular case, an explicit solution is available, by solving the

,+1 (here called u for convenience)quadratic equation in u

(A.13) u- +pu + q 0, where p 2 and q -2h.
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A GENERAL FAMILY OF NODAL SCHEMES*

J. P. HENNART"

Abstract. Nodal schemes have been originally developed in numerical reactor calculation, especially
in the area of neutron dittusion problems. Broadly speaking, they constitute accurate and fast methods
sharing many attractive features of the finite element as well as of the finite ditterence methods. In a previous
work, some of the simplest nodal schemes were identified with nonstandard nonconforming finite element
schemes exhibiting O(h) convergence in H norm. We present here a more general family of nodal schemes
with O(h ’) convergence for any positive integer k under appropriate smoothness assumptions. This new
family is first introduced within a straightforward nonconforming finite element framework. Under special
numerical quadrature schemes, we are then led to nodal schemes which can be obtained directly through
basic physical principles. Finally, dimensionally reduced versions are obtained by transverse integration
and stand as strong candidates to practical implementations of the alternating direction type.

Key words, nodal schemes, nonconforming finite elements, fast solvers, alternating direction schemes

1. Introduction. Modern coarse-mesh and (or) nodal methods have been
developed during the 70’s in numerical reactor calculation, especially in the area of
neutron diffusion problems. The interested readers are referred to a recent review paper
by J. Dorning 1] for a general discussion of the different methods available in that
particular area of application as well as for the corresponding extensive bibliography.

As pointed out in [ 1], the distinction between coarse-mesh and nodal methods is
so slight (and is in fact eliminated in the formalism proposed hereafter) that we shall
exclusively speak in the following of "nodal" methods.

Broadly speaking, nodal methods are accurate and fast methods which share many
attractive features of the finite element method (FEM) as well as of the finite difference
method (FDM). With the FEM, they have in common the fact that the unknown
function is approximated by a piecewise continuous, usually polynomial function over
a given coarse mesh. Since the final equations are normally derived from physical
considerations, the relationship with known finite element schemes is somewhat obscure
and the tendency in the past has been to consider them as quite distinct methods. With
the FDM, they share the fact that the resulting algebraic systems are in principle quite
sparse and well structured: this is true of course for meshes not too irregular, like
unions of rectangles, for which standard, i.e. conforming, finite elements would lead
to much more coupled systems of equations.

In numerical reactor calculation, the domain 12 c R with boundary F -over which for instance the neutron group diffusion equation [2] are to be solved is
usually fairly regular and can generally be discretized by a "triangulation" ’h using a
coarse rectangular mesh

(1.1) l"lh t.J K,
K

where the "nodes, blocks, cells" or "elements" are closed n-rectangles, which are
as large as possible (whence the name "coarse-mesh methods") and over which
homogenized properties (or "cross-sections" in the nuclear engineering jargon) are
available. As nuclear reactors are actually quite heterogeneous, these homogenized

* Received by the editors November 29, 1983, and in final revised form September 24, 1984. This
research was supported in part by the IBM Corporation Scientific Centers, Palo Alto, California and Mexico
City, Mexico; by the Institut National de Recherche en Informatique et Automatique, France, and by the
Mexican Consejo National de Ciencia y Technologia.

f IIMAS-UNAM, Apartado Postal 20-726, Delegaci6n A. Obreg6n 01000 M6xico, D.F. Mexico.
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properties usually result from preliminary fine cell calculations at the subassembly
level: after a nodal scheme has been applied to determine the coarse neutron flux
distribution, a dehomogenization must normally be performed to recover the underlying
fine flux distribution. The basic nuclear reactor type of calculation consists thus of
three elementary stages, namely:

1. homogenization stage,
2. coarse mesh calculation stage,
3. dehomogenization stage.
In the potential applications to the oil reservoir simulation we have in mind, it

seems well that the overall calculation boils down to the second stage, i.e. a coarse
mesh calculation: the value of physical parameters of the reservoir such as porosity,
permeability, etc. are not usually known with great accuracy and the typical oil
engineering calculations assume that they are piecewise constant, i.e. that for each
block only a constant or mean value of these parameters is available. The fact that
most public [3 or private reservoir simulators still use finite differences certainly means
that many practical situations can be modelled over domains of the type union of
rectangles as above: for these domains, nodal schemes have proved to be far more
efficient for a given accuracy than finite differences and standard (i.e. conforming)
finite elements in static and dynamic diffusion calculations 1].

This certainly justifies the development and implementation of mathematically
well founded nodal schemes which should hopefully lead to computer codes of the
"fast solver" type, applicable to many practical oil reservoir situations.

In a recent paper [4], we established the equivalence between some simple nodal
schemes, namely those described in [5], [6] and using sums of 1D polynomials as
basis functions, with some nonconforming finite elements. These first though apparently
limited results actually have deep practical consequences, as we shall see in 2 of this
paper. Understanding the limitations of these simple nodal schemes will in particular
lead us to develop in 3 an apparently new family of nodal schemes of any order,
free of these limitations. As we shall show in the same section, the resulting algebraic
equations already have much structure. This new family is introduced in 3 within a
straightforward nonconforming finite element framework, and the corresponding
schemes are therefore named mathematical nodal schemes. If physical rather than
mathematical arguments are used to derive the final algebraic equations, we obtain
the physical nodal schemes of 4, where it is shown in particular that any physical
nodal scheme corresponds to a mathematical nodal scheme associated to some par-
ticular numerical quadrature of the matrix elements, leading to particularly simple (i.e.
sparse) algebraic equations. In 5, dimensionally reduced versions are obtained by
transverse integration as in 1 and they clearly stand as strong candidates to practical
implementations of the alternating direction type.

To keep this first paper within reasonable limits, we limited ourselves to a typical
second order elliptic equation

(1.2a) Lu=--V.pVu+qu=f on fc R"

subject to boundary conditions

(1.2b) u=O onF,

OU
(1.2c) 0 on F2,

On

where F f f F1 t_J F2 with meas (F1) # 0 and F1 f’l F2 . Most of our results can
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readily be extended to parabolic equations of the type

OU
(1.3) --+ Lu f

Ot

Extensions to hyperbolic equations are at first sight less clear but quite feasible as we
believe. If a fully nodal simulator is to be applied to oil reservoir simulation, we clearly
need practical nodal schemes for each kind of equation, although a good elliptic and
(or) parabolic fast solver would already be quite helpful for the pressure equation.

As a rule we assumed the coefficients p and q to be constant or at least piecewise
constant: the considerations on the structure of the elementary mass and stiffness
matrices found in 3 and 4 are clearly valid in that case. This is also true for the
structures obtained as the result of some particular quadrature schemes, independently
of p and q. Since in the piecewise constant coefficient case the exact solution belongs
at most to the Sobolev space V= {v HI(l)); v=0 on F1}, no extra smoothness can
be assumed and the interest or efficiency of higher order schemes can only be tested
numerically. The theoretical convergence aspects in presence of smoothness and the
practical implementation problems with numerical results in realistic situations will
appear subsequently, as we decided to first present this new family of nodal schemes
with only qualitative statements on its convergence properties and numerical
implementation aspects.

2. Some backgroand material on nodal schemes. As we consider the typical elliptic
problem described by (1.2), we shall in the following restrict ourselves to the two-
dimensional case (l’l c R2) for the sake of simplicity. The nodal schemes presented in
[5] and [6] when applied to (1.2) consist in looking for a finite-dimensional approxima-
tion Uh Vh of U, which in the so-called sum or E-schemes can be described as follows"
the restriction Uh/K of Uh Vh to the node K ’h are finite-dimensional spaces PK
{Uh/r;Uk Vh} spanned by sums of one-dimensional polynomials of degree k->2,
namely

(2.1) Pr k,O (J 0,k,

where k.-- {x’Yt, a <-_ k, <= 1}. In the original presentation [5], [6], Uh/K was defined
in terms of a set Er of basic parameters which were the value of Uh at the barycenter
of the node K (or the average of Uh over K) and some of the moments of Uh over K
if k > 2, as well as the values of Uh at the midpoints of the faces, Uh,, Uh,, Uho and
Uhu(L, R, D & U standing for _Left, _Right, _Down & _Up, _Front and _Back being used
also in 3D). For reasons which will be clear later, we shall use instead the mean values
of Uh over the faces of the nodes. In accordance with 3, where a precise definition
of these moments will be given, including a quite convenient normalization, these
parameters will be denoted m where B L, R, D or U and m, C standing for _Cell,
m being in particular the average value of Uh over the given cell (see Fig. 1). In the
general case, for the nodal scheme of type (k)

Pr k.o U 0.k, dim PK 2k + 1

E/( ={m, m, mj, m%, mc, i=0,... k-2 withj=0
and 0 withj 1,. , k 2},

(2.2) card E/( 2k + 1,

and it is easy to check that any polynomial in the space Pr is uniquely determined
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U

O,k-2

R

D

FIG. 1. 2 nodal schemes of type (k), k => 2.

by its moments constituting EK. In addition, only the inclusion

(2.3) /1C PK
holds, independently of k, where k --- {xY, a + <= k}.

In most papers dealing with nodal methods, as for instance [5] and [6], the final
nodal equations are derived in agreement with the physics ofthe problem, by expressing
that the mean value of Uh and of the corresponding mean values of the normal flux
q. n--pVu, n are continuous through the faces of the nodes, and also that some
weighted balance equations over the nodes are satisfied. With the above choice of
parameters, the continuity of the mean values of Uh is trivial as soon as the same
parameter is chosen on the common face of two adjacent nodes. The final nodal
equations reduce thus to the mean normal flux continuity equations through the node
faces:

(2.4) [pV uhlC, --PV I’IhIKj] 1 ds =0,

VKi, Kj rh with Ki fq Kj F (in other words, Ki & K are adjacent nodes), and
where In is some (arbitrary) unit normal to OK, and to the (eventually weighted) cell
balance equations

(2.5) w[-V pVtlh + qUh--f] dx =0 VK ’h,
K

where wj’s are weighting polynomials of degree <= k-2 in x or y, namely

(2.6) wi(x,y)=xy, i=0,...,k-2withj=0andi=0withj=l,.",k-2.

Clearly the wo’s span k-2,o (-J O.k-2 and in (2.6) x and y are reduced coordinates over
K. For the boundary nodes, the mean value on F1 (and eventually the mean flux on
F_) is taken to be zero.

This physical way of deriving the nodal schemes of the g or sum type is certainly
quite attractive as it automatically ensures some average balance and continuity
properties. In the following, we shall speak of the physical nodal method (PNM) as
we refer to these particular schemes. Clearly, the PNM is closely related to the FDM
when the finite difference equations are obtained by box integration (see e.g. [7]).
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A more mathematical way to approximate the solution of the problem at hand
consists in considering the weak form of (1.2): in other words, u V=-{v H(12),
v 0 on F} is looked for such that

(2.7) a(u, v)=f(v) Vv V,

where a(-,-) & f(. are the usual bilinear and linear forms

(2.8a) (u, v)= In (pV u V v + quv) dx,

(2.8b) f( v) Iafv dx.

In standard, i.e. conforming, situations, a finite-dimensional Vh subspace of V is
considered and a discretized form of the above problem is to find Uh e Vh such that

(2.9) a(uh, Vh)=f(vh) VVh e Vh.

If we choose to approximate V by the finite-dimensional space Vh defined at the
beginning ofthis section by the restrictions of its members to a particular node K, Vh V
because Uh is not continuous through the faces of K (only its mean value is). We are
thus in a nonconforming situation, where the discrete equations (2.9) can still be used
provided a(.,.) is replaced by ah(’," where

(2.10) ah(U, V)= IC (pVu" Vv+quv) dx,
K

since a(u, v) would have no meaning for u, v Vh. The convergence of this approximate
solution, obtained by the so-called mathematical nodal method or MNM in the
following, is guaranteed by the mean value continuity through the faces of the nodes:
consequently, the "patch test" [8], [9] is passed, and this justifies a posteriori the minor
modifications to the set Er of basic parameters proposed hereabove.

In [4], we proved that the PNM was in fact a MNM in which the matrix elements
were not calculated exactly but only approximately by using some numerical quadrature
of the Radau type in a nonstandard way. Some similar results will be proven in 4
for a much more general family of nodal schemes.

Once the simple nodal schemes of [5], [6] had been identified with finite element
schemes combining two well-known "variational crimes," namely nonconformity Vh C-
V) and numerical quadrature (ah(’,’)" h(’,’)), the door was clearly open for a
complete numerical analysis of these schemes, following for instance Chapter 4 of
Ciarlet’s book [10]. As far as we know, such an analysis was not yet available: it is
sketched (with some minor mistakes) in [4] and given with more details in [11]. In
practice, the numerical quadrature needed to relate the MNM and the PNM are always
of high accuracy and their effect on the convergence of a given scheme is not crucial:
they do however affect in a very definite way the structure of the resulting systems of
algebraic equations and their impact on practical implementations is therefore quite
important. If nonconformity only is considered as with the MNM, the error is by virtue
of the second Strang lemma [ 10, p. 210]

(2.11) IlU--tlhllhC( inf IlU--13hllh-]" sup lah(U’Wh)iS(Wh)l)
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where

)/2(2.12) IIv ll Y IVh[ z1,K
k

with

(2.13) Ivl,,r VVh" VVh dx

A priori the mapping

(2.14)

is only a semi-norm over the space Vh, but it can be shown to be actually a norm (see
e.g. [11]) for nonconforming elements ensuring mean value continuity. In that case,
the bound (2.11) is valid. Clearly, it is in two parts. The first term, apart from a different
value for the constant, corresponds to the term in Cea’s lemma [10, p. 104], i.e. the
only one we obtain with conforming finite elements: it can be bounded by well-known
interpolation theory arguments. Assuming that the exact solution has enough regularity,
the nodal E-schemes of any index k will only be able to reproduce polynomials of
degree 1 because of (2.3) and the first term in (2.11) will thus be of O(h), independently
of k. The second term in (2.11) arises from the nonconformity of the method and may
be interpreted as a consistency error. The fact that the nodal E-schemes only ensure
the continuity of the average u between adjacent elements can be shown 11 to lead
to an estimate of O(h) for the second term in (2.11), again independently of k.
Aubin-Nitsche like arguments would thus lead at most to an error estimate in L- normof O(h-), independently of k. Numerical results were given in [4], [ 11], which confirm
this theoretical analysis and show that when k is increased, the approximation is
eventually better but that because of the O(h2) estimate valid for all index k, some
saturation effect is clearly noticeable. In numerical reactor calculation where piecewise
continuous material properties over polygonal domains are the rule, boundary and
interface singularities prevent the solution from being very smooth 12] and the above
arguments are presumably valid only for the smooth part of the solution, which is well
observed far from asymptotic [13]. In those cases, the practical efficiency of a given
scheme can only be decided after extensive numerical experiments, where an important
aspect is the ease of its practical implementation. For the nodal E-schemes recalled
in this section, this was certainly a strong argument in their favor as they provided
final algebraic systems quite reminiscent of the 5-point (or 7-point in 3D) finite
difference equations. The readers interested in more details are referred to the original
papers [5], [6]. In [4], we show how these particular simple algebraic structures arise
from some reduced integration schemes [14, Chap. 20], quite similar to the ones
proposed in 3 and 4 of this paper.

The above discussion implies that the first nodal schemes exemplified by the nodal
E-schemes of [5] and [6] have important built-in limitations. The nuclear engineers
involved in their early development noticed that with these schemes the physical leakage
through the faces of the nodes were only constant: with the terminology used in 5,
the "transverse leakage" is a constant for each face of a given cell. In more recent
nodal schemes, the unknowns on the faces of the nodes basically remain the same
ones as above, i.e. average or mid-node values, but the transverse leakage representation
is improved by a quadratic fit involving the neighbor cells. This idea has been quite
successful and is now considered as standard. It is however more difficult to formalize
and analyze, and we prefer our approach of 3, where transverse leakage of any



270 J.P. HENNART

polynomial degree can be directly built into the individual cell. This is done by
introducing higher order moments of u on the cell faces, say the (k + 1) first moments,
so that a higher order patch test is passed and the consistency error due to nonconformity
will now be of o(hk/l). A consistent interpolation error is obtained if the inclusion
(2.3) is replaced by

(2.15) k.l c p/,

showing in particular that we need cross-terms like xy in Pr, a fact that most nuclear
engineering papers do not admit. With moments up to order (k + 1) on the faces and
the inclusion (2.15), we can expect errors in norm L of O(hk+2), as numerical
experiments do confirm [15].

The main difficulty remains to pick up the correct spaces Pr such that a given
set of linear forms E/ defined on K and with card / =dim Pr would lead to
unisolvency. A family of such spaces of any index k is developed and its propeies,
analyzed in 3.

Before leaving this section, a last comment should be made. Recognizing that
some well-known or less well-known nodal schemes are paicular nonconforming
finite element schemes with consistent or reduced integration has a very practicaI
consequence: these nodal schemes can actually be imbedded in general purpose finite
element codes and thus compared with more or less classical finite element schemes
in basically the same environment. After reflecting upon our past experiences reposed
in [16], [17], we wrote such a general purpose modular code during the spring of 1982.
This code was used to produce the results reposed in [4], [11] and [18] and a first
global and fair comparison between the best finite element and nodal schemes finally
seems to be at hand.

3. A general family of nodal schemes in 2D.
3.1. The general case. For a function u(x, y) defined over the reference square

cell K [-1, +1] x [-1, +1], we shall introduce the following linear forms (see Fig. 2):

(3.1a) m=’ P,(y)u(-1, y) dy P(y) dy, i=0, k,
--1

/i_P,( )u(+l y) dy P(y) dy, 0,.. k,(3.1b) mR y ",

/i(3.1c) mo P(x)u(x,-1) dx P(x) dx, i=0,..., k,
-1

(3.1d) my P,(x)u(x, +1) dx P(x) dx, i=0,..., k,
--1 -1

as well as

/I_-’ I(3.1e} m P,(x)(y)u(x, y) dx dy P(x) dx. P( dy,
--I --I --I

,j=0,...,k,

where the subindices mean "left, right," "down," "up," and "cell" respectively. In
3D, we shall also need "&ont" and "back:" this explains why we preferred "up" and
"down" to "top" and "bottom." ese linear forms constitute a set E with N card E
(k+ l)(k+ 5), where the P’s are the normalized Legendre polynomials over [-I, +I].
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FIG. 2. Nodal scheme of type k ), k >= 0.

(3.2)

For a given integer k->_ 0, the general nodal function of index k will be given as

k

.u(x, )+ .u9(x,y)+mUh(X, y) Z [mL y mR" UR(X, y)+ mD V" Uv(x, y)]
i=0

k k

+ Z Z miJ u(x,y)C
i=0j=0

J all belong, to the spacewhere [/L t/R /’/D [/U and Uc

(3.3) P =- ,k+2,k I,.J "k, k+2,

k, being spanned by xy, a <-_ k, fl <- I. Clearly

dim (,-k+2,k -J k,k+2) dim ,.k+2,k-Ji--dim k,k+9_-- dim "k,k

(3.4) (k+3)(k+ 1) + (k+ 1)(k+3)- (k+ 1)2

(k+ 1)(k+5),

so that dim P card E.
To show that the triple (K, P, E) is a finite element, it is sucient to exhibit the

corresponding basis functions since dim P card E.
Let us first consider the basis functions associated to the boundary parameters

is(L, R, D or U) as for instance u. A general form for u

k+2

(3.5) u(x, y)= Z pk(x)(y),
j=O

where

(3.6)
p.(x), j=0," ", k e k+2(X),

j= k+ 1, k+2e k(X),

(x) being the space of polynomials in x of degree less or equal to I. Clearly the
number of free parameters in (3.5) is (k + 1)(k + 5) as expected.

For u L, we have in particular
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a. Left and right boundary values.
+1 k+2 2

ilP(Y) E p(-1)P(y) dy
2/+1-1 j=O

/=0,...,k,

or

(3.7) pLj(-1) 0, j=0,..-,k,

where we used the fact that

P(y) dy-
1’ PI(Y) E pj(+l)P(y) dy=O,

-1 2/+ --1 j=O
1=0,’’ .,k,

or

(3.8) pb(+l) =0,

b. Down and up boundary values.

(3.9) pj(x)P(x) dx 0,
j=O

and

j=O,’.-,k.

1=0,..-,k,

k2 I +1

(3.10) (-1) p.j(X)Pl(X) dx=O,
j=O --1

where we used the fact that P(-1) (-1).
c. Cell values.

2I+II+’p(x)P(y).Pl(X)Pm(y)dxdy=O
j=O --1 --1

/=0,... ,k,

or

+l

(3.11) p(x)Pt(x) dx=O, j,/=0,..., k.
-1

From (3.9), (3.10) and (3.11), we directly deduce that for j= k+ 1, k+2, p(x)e
k(X) is orthogonal to Pt(x), /=0,..., k and therefore identical to zero. For j=
0,..., k, pLy(x) k/2(X) must satisfy (3.7) and (3.8) and is also orthogonal to P(x),

0,..., k because of (3.11). From these orthogonality relations, we deduce that

(3.12) p(x) a Lj t4Pk+2(x), j 0,..., k,

where

(3.13) ab(_l),+ +/3, k+j(--1) =6j, j=O,’’ ",k,

and

(3.14) a/4+fl/4 =0, j=0,... k.

Solving (3.13) and (3.14), we get

(3.15)

so that p(x) --= 0 unless j i.

+1/2(_l)k+Ol Lj ij,

3i k+Lj--"--1/2(--1) lij,
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In summary,

(3.16)

where

(3.17)

with

(3.18)

Similar arguments lead to

(3.19)

where

(3.20)

with

u(x, y)=p(x)Pi(y),

p(x) (P/,(x) P,/(x)),

UiR(X, y) p(x)Pi(y),

PR Ol R(Pk+I(X) / Pk+2(X)),

(3.21) ai _1
R--:2.

u(x, y) and u u(x, y) are then obtained from u(x, y) and u(x, y) by a simple
permutation of x and y in (3.16) and (3.19).

let us consider the more symmetricIn order to obtain the basis functions Uc,
expression

k k

u(x,y)= Z Z m,P(x)P,(y)
m=O n=O

2 k

(3.22) + Z Z P+(x)P(y)
m=l

k 2

where again the number of free parameters is (k + 1)(k / 5).
For u j

c, we have
a. Left and right boundary values.

or simply

k 2 k

P(Y)" Z ,.imn(_l)mp,.,(y) + Z Z d,,(--1)k+P,,(Y)
m=0 n=0 m=l n=0

/ Z Cmn(--1) Pk+,(Y) dy=O,
m=O n=l

/=0,...,k,

k 2
ij ij(3.23) ZTb ml(-- 1) + Y’. mr(-1. 0, /=0,...,k,

and the corresponding expression on the right boundary

k 2

(3.24) Z a,,+ Z g,=0, /=0,...,k.
m=0 m=l



274 J.P. HENNART

b. Down and up boundary values.

I+l I k k 2 k

P,(x) Z Z ’a’ijmnpm(x) 1)"+ Z Z
--1 m=O n=O m=l n=O

+ E c,P,,(x).(-1)k+" dx=O,...,
m=0 n=l

/=0,...,k,

or simply

k 2

(3.25) Z (-1)+ Z 1(-1)k+"=0, /=0,...,k,
n=O n=l

and the corresponding expression on the right boundary

k 2

(3.26) . a, lniJ + c ,ijn l k+ O /=0,.. k.
n=0 n=l

c. Cell values.

P(x)P,.(y)" Z a.pqPp(x)Pq(y)
--1 --1 p=O q=O

+ Z , p%Pk+p(x)Pq(y)+ Z cpqPp(x)Pk+q(y) dxdy
p=l q=0 p=0 q=l

4

(2/+ 1 )(2m + 1)
/, m=O,...,k,

or

(3.27) 0,, ,,,Sj,, m, n 0,. k.

Clearly, the (k + 1)2 coefficients ’m are given by (3.27) and (3.23) and (3.24), as
well as (3.25) and (3.26), provide the 4(k+ 1)g,’s and c,,’s as soon as we know the

ij
t, lm S. Trivial algebraic manipulations lead to

d -1/22, 1 + (- 1)’-k-"],,..= m 1,2, n=O,..-,k,

and

(3.28) era, __1/26,m[l+(_l)---], m=O,...,k, n=l,2.

After some other algebraic manipulations, we finally get"

(3.29) u(x, y)= Pi(x)P(x)- Pk+m(i)(x)Pj(Y)- Pi(X)Pk+,,j)(Y),

where m(i) is equal to 1 or 2 and such that m(i)+ k and have the same parity (odd
or even).

Before leaving this section, we would like to mention that the general family of
elements developed here can be extended to include elements with different degrees
in x and y. Hereabove, the degree in x and y of the monomials present in the basis
was at most k+ 2 for both x and y, but there may exist situations with thin or thick
rectangles where it would be more natural to use different maximal degrees in x and
y, say k + 2 and + 2. Possible applications will be described in 19]. Appendix A gives
the expressions for the basis functions, in the (k, l) general case: these expressions



A GENERAL FAMILY OF NODAL SCHEMES 275

reduce of course to the expressions derived in this section when k- I. Some particular
examples with k and k are given in Appendix B, while trivial reductions to 1D
and extensions to 3D are given in Appendix C.

3.2. General properties of the corresponding nonconforming schemes.
a. Basis functions associated to boundary values. Let us consider for instance the

basis functions UL(X, y) associated to the left (x -1) boundary values mL, 0, , k.
From (3.16), it is clear that

(3.30) UC[Pk/I(X)--Pk/2(X)]" Pi(Y), i-0,’’’, k,

so that u 0 as soon as x is one of the (k + 2) Right Radau points XIR, 1, k 4- 2,
including x 4-1, or y is one of the (assuming i> 0) Gauss points Ym, m- 1," ", i.
The zeros of u L are shown in Fig. 3 for k- 0, 1 and 2.

k=O

k=l

k:2

i=O

i=O i=1 i=2

FIt. 3. Zeros of u i=O,. kfork-O, and 2.L

b. Basis functions associated to cell values. Using the general expression (3.29), it
is easy to see that

(3.31a) u(x, +l)oc

and

(3.31b) u(+l, y)oc Pk+m(j)(Y),

so that u g 0 on the boundary of the reference square when x (resp. y) is one of the
l= k+ m(i) (resp. k+ m(j)) Gauss points x. (resp. y), n= 1, for y (resp.
x) +1. The zeros of some of the u’s are shown in Fig. 4 for k 1.

c. Relationships between the boundary and cell basis functions. Let us define
Pm(X, y) as follows

(3.32) P,,(x, y)=- P(x)P,,(y).

Using the definition of the boundary and cell basis functions, it is easy to get the
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O0
U

11
U
C

O1
U
C

FIG. 4. Zeros of uc, u and u for k 1.

tbllowing relationships

P,m(X, y) (--1)tU(X, y)+ U(X, y)
(3.33)

lm+(-1)muto(x, y)+ulu(x, y)+uc (x, y).

d. Elementary mass and stiffness matrices. Let us introduce the elementary mass
and stiffness matrices M and K of order N as

(3.34) Me (m), Ke=(k),
where

I+l I+lme
--1 - u,(x, y) u(x, y) dx dy, i,j= 1,..., N,

(3.35)

k= Vur(x, y)" Vu(x, y) dx dy, i,j 1, , N.

Assume now that the vector tu [Ul, , us] ofbasis functions is partitioned following

(3.36) u

L.-j
where

’.. F,,L ., .%,..
(3.37) tuc [u, u,. ukck],

’- [.o,’’’, ., .,’..,
As M and K are partitioned accordingly, we have for instance

Men. MHC MeHV
(3.38) Me--MeCH Mecc Mcv.

MVH Mvc Mw
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If the matrix elements are evaluated exactly, it is easy to realize that

(3.39) Mev tKeMvn K n-iv vi =0.

so that the coupling between the H (for horizontal) and V (for vertical) components
is only via the cell parameters.

It is also interesting to note that the couplings between horizontal components
due to mass and horizontal stiffness (corresponding to Ox(p 0x’)) are almost only
between those horizontal components belonging to a given vertical moment, for instance

ilthe unknowns ’m mk; mc, 0,. ., k; m/R], 0," ", k, are coupled together
through mass and horizontal stiffness but they are not directly coupled to nan,
m 0,. , k where m l, unless m and have the same parity. Thus for k 0 and 1,
there is no coupling at all, but for k => 2 some coupling appears, which can in fact be
eliminated by an almost consistent numerical integration of the Gauss tensor product
type with k + 1 or k + 2 Gauss points in each direction.

The mass matrix can be greatly simplified if reduced integration is used in a
somewhat nonstandard way. The keypoint here is to use a product Radau (k + 2) points
rule corresponding to the matrix element we want to determine. Each time a boundary
basis function us where B is L, R, D or U appears, the corresponding Radau rule
should have sampling abscissae or ordinates xRR, xRL, yRU or yRO respectively. As a
result the elementary mass matrix M only has nonzero entries in Mecc. For the
elements of Mecc, we have thanks to (3.33)

4
(3.40) (u, Uckt) (P, Pkt)=(2i+ 1)(2j+ 1)

,kj,,

since the Radau rule is correct for x’y, a,/3 <= 2k+ 2. The simplest elementary mass
and stiffness matrices are sketched in Fig. 5, without and with reduced integration.

k.O

M (i R)

k.1

FIG. 5. Elementary mass and stiffness matrices without and with reduced integration for k 0 and 1.
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4. The physical nodal method. By _P(hysical) _N(odal) _M(ethod) as opposed to the
_M(athematical) _N(odal) _M(ethod) presented in 3, we mean a nodal method of index
k using the same basis functions as above, but where the equations are derived through
more physical arguments, namely:

1. Cell balance equations. The Pm, l, m 0," ’’, k first moments of the equation
over a cell are zero:

(4.1) f Plm(X, y)[LUh--f] dr=O, l, m =0,..., k,
dK

2. Current continuity conditions. With the basis functions defined hereabove, the
first (k + 1) moments of the function u are automatically continuous from one cell to
its neighbors. The current continuity conditions simply ensure that the corresponding
moments of pVu are continuous through cell interfaces"

(4.2) f Pt(s)[pVul,-pVul]" 1, as =0, 1=0,..., k,
dF12 KII’I K2

where 1, is some (arbitrary) unit normal to F12.
The following general theorem can be proved.
THEOREM. Assuming that p and q are cellwise constant, the PNM is equivalent to

the MNM with Radau reduced integration.
Proof. The MNM consists of finding Uh Vh such that

(4.3) Vl)h Vh, R,h(Uh, l)h) f(vh),

where

(4.4)

and

7"h(’lh, )h)--" K’r fK (pTl,l" V)h "31-qUhVh)dr,

(4.5) f( 1)h I fl)h dl*

a. Let us take as /)h the cell basis functions u c, i,j 0,. ., k associated to some
element K. Equation (4.3) becomes

(4.6) Ir pV tt V U iJc + qtlhU iJc ftl iJc dr=O, i, j O, k,

or equivalently

(4.7) tl(pVtth" ln) ds+ u{-V pVUh + qUh --f} dr=0,
K

Let us first show that the boundary term Ior
rewrite Uh e Vh as

k k

Uh Z -, mlcmpim(x, Y)
1=o m=O

(4.8)
k

+ . [m*u(x, y)+ mUR(X, y)+ mto*uo(x, y)+ mu(x, y)],
/=0

i,j=O,...,k.

is zero: with (3.33), it is easy to
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so that the contribution of the Pm terms to the x and y components of V Uh is
proportional to Pro(Y) and P(x) respectively. With p a constant over a given cell, the
corresponding boundary terms are zero as u is orthogonal on the boundary to P(y)
and P(x), m,/=0,..., k (see 3.2b).

The contributions of the boundary basis functions to V Uh are easily seen to be
proportional to P(x or y), 1-0,..., k or to Pk+l 4-Pk+E(X or y). In the first case, the
corresponding boundary terms are zero for the same reason as above while in the
second case, they disappear if Radau reduced integration is used. Equation (4.7) under
Radau reduced integration finally becomes

(4.9) f Po{--V’pVUh+qUh--f}dr--O, i,j=O,’’’,k,
dK

and is therefore equivalent to the cell balance equations (4.1).
b. Let us now take as Vh the boundary basis functions u, i=0,..., k where

reducing to U R on K1B L, R, B or T. For the sake of simplicity, let us consider u
and to uL on K2 with 1-’2 K1 ffl K2 as shown in Fig. 6. For this particular example,
(4.3) becomes

(4.10)

(pVu[ VUR+ qUhUR --fUR) dr

+ (pVu. VuL+quhu--fu’) dr=O, i=0,’’ ",k,

or equivalently (after Radau reduced integration)

(4.11) fo URpVUh" I,,ds + Io upVUh, l,2 ds=O, i=O, k.
KI K

Since u is either zero (u R on L1, u on RE) or because of Radau reduced integration
on D, U, DE and U2, (4.11) reduces to

(4.12) [ P(y)[pVun]r-pVUn]l2]" 1 dy=O, i=0,’", k,
12

and is therefore equivalent to the current continuity conditions on F2. QED.

U

K

U2

K2
L2 R2

r- R1-- L2
FIG. 6. Two adjacent nodes K and K2.

5. Dimensionally reduced nodal methods. By _D(imensionally) _R(educed) _N(odal)
_M(ethods), as opposed to the _F(ully) _D(imensional) _N(odal) _M(ethods) presented in

3 and 4, we mean mathematical or physical nodal methods of index k with the
same basis functions over a given cell as above, but where the equations are derived
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in such a way that an efficient solution of the global system of algebraic equations is
directly suggested.

The basic idea here is to proceed to some transverse averaging of the given
equation. In 2D, we shall follow the notation of Fig. 7. The original equation

(5.1) -V. pVu+qu=f Vrl),

is successively multiplied by Pit(Y), /=0,..., k and integrated in the y direction
between Yoj and ycr, j 1,..., J, pj(y) being the modified /th Legendre polynomial

[2(y-yj)]y.Yo
(5.2) PjI( Y) Pl[. _---. --_.

The same is done in the x direction between xLi and xm, 1, , I after multiplication
by pi(x), 0,. ., k. Let us introduce the following transverse moments of u:

.y.uj (x, y,o p,(y)u dy(5.3a) ux(x) =’ yu p]( y) dy
j= l, J, l=O, k,

YDj

and

(5.3b) U,ty(y) =I p,(x)u(x, y) dx

I Pt(x) dx
i=l,...,I, l=O, k.

The result of the transverse averaging procedure is a set of 2(k + 1) one-dimensional
and uequations for the 2(k + 1) moments ux i,,, namely

+qu )=fx(X), I=0,’-’, k,(5.4a) -p
dx

d2uy(Y)+ qU,y(y)= f,/y(y), I=0,. , k,(5.4b) -p
dy2

where we have assumed p and q constant for the sake of simplicity. In (5.4a), f(x)
for instance is an effective source term including the/th 1D moment off, ft(x) defined
analogously to ux/(x), as well as a transverse leakage term, Itxj(X), arising from the cell
boundary values of the y integral of the differential operator with respect to y. For

YDj

--’(xi ,yj

FIG. 7. Dimensionally reduced nodal methods.
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instance

and

(5.5)

where

fxj(X) fj(x) + (1/ Nj){(-qyt(x) + qyo(x))},
flxj(X) fj(x) + (1/Nj){-p(ut(x)- uo(x) kj( qrv(x + qyo(x))/2}

f2j(x) f2j(x) + (1/ N2j){k(-qyv(x) + qyo(x))/2

3p(uv(x)+ riD(X))+ 6puj(x)},

Nj kj
kj yvj yoj,2/+1’

q -pVu qxlx + qyly,
and

(5.6) uu(x)= u(x, yvj), qyv(X) qy(X, yvj), etc.

Clearly over the cell Kij=--[Xt,i, XRi] [Yoj, Ytj], we must have the compatibility
conditions

(5.7) iy(y) dy=-mc, l,m=O,...,k.
Niy

In fact, these conditions are automatically satisfied as soon as a given unique representa-
tion of Uh(X, y) over each cell is looked for as in our case. Let Uh(X, y) be given as in
(3.2)

(5.8)

k

(x, y)+ uoo(x, y)+ mouo(x y))Uh(X, y)= E (mliju[ij(x, Y)+ mRijueo mo,j
/=0

k k

+ ., E mc’jUtcj(x, Y) V(x, y)e Kj,
1=0 m=0

where the basis functions and the corresponding moments are now defined with respect
to Kij, so that for instance

uij(x,y)=u(2(x-xi) 2(y yj).)hi kj
(5.9)

mlLij_
1 fyujNj PJl(Y)tlh(XLi’ y) dy =- Uj(XL,),

YDj

k
ml ml(5.10) uj(x)lr, m,u[,(x)+ m,u,(x)+ E mc, uc,(X),

m=0

where

m lLi :-- m Lij, m lRi =-- m lmj, m lci m co,

etc. Therefore it is easy to see that the restriction uj(X)[l,:o of ulj(x) to Kij is given by

1 fYujULi(X) =---7- po(y)utij(X, y) dy,Nxj

urn(x)-=-7-t po(y)ulRo(X, y) dy,
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while

1 fYuj UCij(X, y) dy, m 0, , k.(5.11) Uc,(X)

After a standard mapping to the reference element [-1, + 1 ], the above basis functions
are clearly the nodal basis functions in 1D:

( X XL,
=_

(
ml =- u’(x), m 0,.Uc 2(x- x,)!

where we have dropped the Ith moment superindex as the 1D basis functions are the
same for any/th moment, 0,. ., k. Expressions similar to (5.10) are clearly valid
for the restriction Uiy(y)lKO and we realize that the restriction to Kj of each transverse
moments depends on (k + 3) parameters which are its values at the end points and its
first (k + 1) moments. The (k + 1)2 moments over the cell ensure the 2D coupling while
the values at the end points only belong to vertical or horizontal transverse moments
and realize the coupling in the other (i.e. horizontal or vertical) direction.

A numerical solution of each of the equations (5.4) is quite naturally obtained by
a standard Galerkin approach using the same set of parameters as above, namely
end-points values and in-cell moments: in other words, a nodal method in 1D is used,
in either the mathematical version with consistent integration or the physical version
with reduced integration. Since the end points values are common to adjacent elements,
the corresponding approximation in 1D will now be conforming (Vh H(,)).

In any case, the final scheme is an iterative one: at iteration (n), the x one-
dimensional equations (5.4a) are solved assuming that the transverse leakage terms in
the y direction are known from iteration (n- 1). The same is then done for the y
one-dimensional equations (5.4b) assuming that the transverse leakage terms in the x
direction are known from iteration (n) and so on. The corresponding iteration will
eventually converge and several acceleration procedures are available for these alternat-
ing direction like methods. We shall not pursue in that direction and leave those details
for a subsequent paper on the practical implementation of these nodal schemes.

Before leaving this section, we would like to make some comments with respect
to the numerical solution of equations (5.4)" first of all, the x or the y one-dimensional
equations are all similar since only their second members change, which means that
increasing the order k is not very expensive, since assembly and factorization are done
once for all. Moreover, we are not limited to polynomial nodal methods and analytical
nodal methods can easily be implemented in 1D as in [20], especially if the coefficients
p and q are piecewise constants. In this case, the general solution of any ofthe equations
(5.4) over a given interval I is a linear combination of cosh x/L and sinh x/L, where
L= (p/q)/2 is the characteristic length known as the diffusion length by the nuclear
engineers, plus a particular solution of the given equation: if f(x) is a generic second
member, this particular solution is given by G(xlxo)f(x)dx where G(xlxo) is the
one-dimensional Green’s function. In practice, f(x) is truncated to the first few terms
of its Taylor expansion and the corresponding general solution is therefore correct
only for second members which are polynomials up to some degree: this method is
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closely related to the ’l-finite element method of [21] where a detailed analysis is
given. Finally, we should say that in n-dimensions the transverse integration procedure
can still be used leading to sets of one-dimensional differential equation, provided the
transverse moments are taken over all the variables minus one.

6. Conclusions. In this section, we would like to summarize some of the results
we have obtained. Starting from early nodal methods ofthe E type [5], [6], we developed
in 3 a general family of nodal methods, which are not affected by the limitations
inherent to the early nodal schemes: in other words, the convergence order in L2 norm
is of O(h k+2) for the nodal scheme of index or type (k), while the early nodal schemes
had convergence orders of O(h2) for any k. A version of these schemes based on more
physical considerations was presented in 4 and was related to the original (or
mathematical) nodal schemes of 3 through the use of properly chosen quadrature
rules. In 5, finally, dimensionally reduced versions were introduced which directly
lead to iterative strategies of alternating direction type.

In Fig. 8, we sketch the spaces P of index k 0, 1, 2, and show their relationship
with the Raviart-Thomas spaces [22] used in the mixed finite element approximation
ofthe given elliptic problem. Corresponding to P =- ‘@k+E,k 1 ‘@k,k+2, Raviart and Thomas
pick up q in V-- V1 x V2-- ’k+l,k X‘@k,k+l and u in W=- "@k,k, and they show that

(6.1) div V= W.

/ / ,.\/ -,,,-- ,,/,/" \\

V " xY XYZ" XzY XY

F. 8. Relationship between nodal pace of index k 0, 1, and 2 and the lowest order Raviart-oma
spaces (k 0 and k ). V, V and W (see text) are shon for k 1.

In the particular case, k 0, if u is taken in ’2,0 J ,@0,2, clearly q is in V and the
relationship of the corresponding nodal scheme with a mixed-hybrid finite element
one can be shown [23]. In the general case, k>0, q will be in (‘@k+l,kJ ‘@k-l,k+2)X
(‘@k+E,k-1LJ k,k+l)D V and the relationship with mixed-hybrid finite elements is less
clear, although the dimensionally-reduced forms seem closely related as the L2 projec-
tion provided by the transverse integration forces q in V again. In a future paper, we
plan to further explore this interesting relationship.

Note. In a recent work [24], it is shown how the general nodal schemes proposed
here do in fact provide a quite natural enhancement of the Raviart-Thomas mixed
finite element approximations, when a mixed-hybrid implementation is proposed as
in [25]. By "enhancement," it is meant that one order of convergence is gained by a
post-processing operation performed element by element, which turns out to be trivial
if the parameters chosen are the edge and cell moments used hereabove.
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Appendix A. The general case (k, 1) in two dimensions. Assuming that the maximal
degrees in x and y are k + 2 and l+ 2 respectively with k, l_-> 0, the set E of basic
parameters will be

(A1) E=-{m i O,...,k’j 0,.’. I},o, me, i=O,’’’,k;m,mR,j=O,’’’,l;mc,

while the corresponding basis functions will belong to the space

(A2) P ’k+2,1 -J "k,l+2"

Clearly

(A3) card X=dim P= (k + 1)(/+ 1)+ 2(k + l+ 2).

With the same kind of arguments as in 3.1, one easily obtains the following
expressions for the basis functions

(x, y)=1/2(--1)’+lp(x)(Pl+l(y)--Pl+2(y)),l,l D

u(x, y)=1/2P,(x)(P,+I(y)+ P,+2(Y)),

u(x, y) 1/2(- 1)’+l(Pk+l(x) Pk+z(X)) P(y),

UR(X, y) 1/2(Pk.+1(X) + Pk+2(x))P(Y),
and

(A4)

i=0,...,k,

i=0,...,k,

j=0,...,l,

j=0,...,l,

u(x. y) Pi(x)P(y)- Pk+,,(i)(x)P(Y) Pi(x)Pl+,,,(.)(y),

i=0,’..,k,

where m(i) and m(j) have the same meaning as in (3.24).

Appendix B. Some particular examples.
a. k 0 (the "quadratic" nodal scheme [5]).

UL(X, y) -1/2(PI(X)- P2(x)),

u(x, y)= +1/2(P,(x)+ P2(x)),

UOD(x, y)= u(y, x),

U(x, y)= u( y, x),

Uc(x, y)= l P:z(x)- P:( y).

b. k=/=l

u(x, y) =1/2(P2(x)- P3(x)),

UR(X, y)= 1/2(P2(x) + P3(x)),

uo(x, y)= u(y, x),

u(x, y)= u( y, x),

u[(x, y) 1/2(P2(x)- P3(x))P,(y),
UR(X, y) 1/2(Pz(x)+ P3(x))PI(Y),
ulo(x, y) u(y, x),

ulv(x, y) UR(y, x),

u(x, y) l Pz(x)- P2(y),

j=0,"" ",l,
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u(x, y) Pl(X)- P3(x)- PI(X)P2(y),

u(x, y) PI(Y)- Pa(Y)- P2(x)P,(y),

ul(x, y) PI(x)P(y)- Pa(x)P(y)- PI(x)Pa(y).

c. k=2, 1=0.

UL(X, y) -1/2(Pa(x)- P4(x)),

uOR(X, y) 1/2(P3(x)+ P4(x)),

UD(X, Y) -1/2(Pl(Y) P2(Y)),

u(x, y) 1/2(P(y)+ P(Y)),

UD(X, y) -1/2Pl(x)(P(y)- P2(Y)),

u(x, y)=1/2Pl(x)(Pl(Y)+ P(Y)),

U2D(X, y)= -1/2P2(x)(P(y)- P2(Y)),

u2(x, y)=1/2P(x)(Pa(y)+ P(y)),

u(x, y) 1 P4(x)- P2(Y),

u(x, y) P(x)- P3(x)- P(x)P2(y),

u(x, y) P(x)- P4(x)- PE(X)PE(y).

Appendix C. Summary of the nodal basis functions in R’, n 1, 2 and 3.
a. Nodal basis functions in 1D.

,----{mL, mR, mi, i=0,..., I},

P i+2,

card dim P + 3,

ur(x) 1/2(- 1)’+[P+(x) P+2(x) ],

UR(X) 1/2[P,+I(X) + Pl+2(x)],

u’c(x) Pi(x) P,+,,,(i)(x), i= 0,’" ", l,

where m(i)= 1 or 2 and such that and l+ re(i) have the same parity.

b. Nodal basis functions in 2D.

,----{mL, mR, mD, mv, i=O, l; m, i,j=O, l},

P +2, U ,+, card dim P + 1 )(1 + 5),

uL(x, y)=1/2(-1)l+l[P,+l(X)-P,+(x)]Pi(y), i=0, , 1,

(x, y) =1/2[P+l(x)+P+E(X)]Pi(y), 0,"" l,1/R

u(x, y) =1/2(-1)+P,(x)[P,+(y) PI+2(Y)], i=O, 1,

ub(x, y)=1/2P,(x)[P,+l(y)/ P,+:(y)], i=0, , l,

uc(x, y)= P(x)Pi(y)-P+m,)(x)P(y)-P(x)P+,,.)(y) i,j=O,

where re(i) (resp. re(j))= 1 or 2 and such that and l/ m(i) (resp. j and l/ re(j))
have the same parity.
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c. Nodal basis functions in 3D., =-- {m ij m, mij ij ij, D, re’b, mF, ms, C j=0,’’’, l; mk, C j, k, =0,..., 1},

P 1+2,1,1 [..J ,I,1+2,1 [-J 1,1,1+2,

card E dim P (l + 1)2(1 + 7),

u(x, y, z)=1/2(-1)t+l[ei+l(X)-Pt+2(x)]Pi(y)ej(), i,j=O,. ., l,

u(x, y, z)= 1/2[Pt+l(x) + Pt+2(x)]P,(y)P(z), i,j=O, l,
’J z) 1/2(1)uo(x, y, P,(x)[Pt+I(y)-P,+2(y)]P(z), i,j=O, l,

u(x, y, z)=1/2P,(x)[P,+I(y)+ Pt+2(y)]P(z), i,j =0, , l,

u(x,y,z)=1/2(-1)t+lpi(x)P(y)[Pt+(z)-Pt+2(z)], i,j=O,. .,l,

u(x, y, z)=1/2Pi(x)P(y)[P,+,(z)+ P,+2(z)], i,j=O, 1,

uk(x, y, Z)= P,(z)P(y)Pk(Z)- P,+m,)(x)P(y)Pk(z)- P,(x)P+mj)(y)Pk(z)

-Pi(x)ej(y)Pl+m(k)(Z), i,j, k=0,...,

where m(i), m(j) and m(k) have the same meaning as above.
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A FINITE DIFFERENCE SCHEME FOR THE EQUILIBRIUM
EQUATIONS OF ELASTIC BODIES*

T. N. PHILLIPSf AND M. E. ROSEt

Abstract. A compact difference scheme is described for treating the first order system of PDE’s which

describe the equilibrium equations of an elastic body. An algebraic simplification enables the solution to

be obtained by standard direct or iterative techniques.

Key words, elasticity, finite difference, iterative methods

Introduction. The conditions for the static equilibrium of an elastic body are
described by an elliptic system of partial differential equations for the displacements
and stresses. This paper describes a finite difference scheme which can be solved by
standard direct or iterative methods and yields a solution which approximates smooth
displacements with second-order accuracy. Iterative techniques can be attractive as a
means of solving three-dimensional problems because they minimize storage require-
ments and present an algorithmic structure well-suited to advanced computer architec-
tures. For material problems, these features can be useful for solving layered composite
materials as well as materials with nonlinear properties.

As described here, a serious limitation of this method vis-a-vis finite element
methods is that it is applicable only to bodies which can be subdivided into cube-like
volume cells. However, a means ofremoving this restriction will be described in another
paper.

Part I describes an algebraic approximation to the equilibrium conditions in a
cell as expressed by tractions and displacements on the surface ofthe cell. The condition
that traction forces balance across cell faces leads to an algebraic condition for
equilibrium between any neighboring cells expressed solely in terms of displacements.
A finite-sum approximation to the work due to tractions leads to an energy estimate
and to a variational description of the algebraic equilibrium equations.

Part II illustrates this development for an isotropic material using a plane stress
assumption to reduce the problem to two dimensions. Several simple iteration schemes
are used to investigate the numerical convergence of the method when a singularity
is present.

The methods described in this paper are closely related to those described by the
authors in the context of a simpler problem 1 ].

I. General development.
1.1. The equilibrium problem. In this section we describe the equilibrium equations

for an elastic body and attempt to motivate the origin of the finite difference scheme
which will be described in the following section.

We consider a material body occupying a domain [l on whose boundary, F, n is
an outward unit normal; u=(ul, u2, u3) T denotes the displacement vector, ’=
(1, "1"2, */’3) the symmetric stress tensor, and e (e, 12, 13) the symmetric strain tensor.

* Received by the editors February 28, 1984, and in final revised form January 22, 1985. Research was

supported by the National Aeronautics and Space Administration under NASA contract no. NASI-17070
while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, Virginia 23665.

t Institute for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, Virginia 23665.

288



FINITE DIFFERENCE SCHEME FOR ELASTIC BODIES 289

In the absence of body forces, the equations of equilibrium are described by the
following system of first-order partial differential equations:

(a) Ox’rl -" Ox2"g2 nt- Ox3’l"3 0,

(1) (b) e(u)=(grad (u+ur))/2 inf,,

3

(c) "ri(u) Y c0e(u) i= 1, 2, 3.
j=l

Here (a) states the conditions for the equilibrium of forces, (b) defines the strain tensor
in terms of the displacement, and (c) is the constitutive relationship between stress
and strain (Hooke’s law). In (c), (c:) involves 21 parameters. By assumption

(2) r E r, >= 0
with equality holding itt e 0.

On the boundary surface F, we let 1-- r. n denote the traction due to the stress.
Then boundary conditions associated with (1) are

u=u on F1,
(3)

i=1 onF,

where r and F2 form a disjoint partition of F; if l-’l then the solution of (1) will
be determined to within a rigid body displacement.

As a result of solving this boundary value problem, the tractions 1 will be
determined on F and the displacements u on F2. Thus the tractions on F, say l(F),
will be determined by the displacements u(F) on F, a fact we indicate symbolically by

(4) o(F) Rau(F).

We call the boundary operator Rn a transmission operator.
Let II(f) {to} denote a partition of fl into volume cells. Standard integration

arguments show that u must be continuous and the surface tractions must balance
across cell faces. Clearly, a necessary and sufficient condition for equilibrium in fl is
that any individual cell be in equilibrium with any neighboring cell.

Consider a cell to whose volume is O(h3), where h is a representative length scale,
and whose boundary surface y consists of m faces. In equilibrium, the tractions l(Y)
on y will be related to the displacements u(y) on y by means of a transmission operator
Ro,, i.e., l(Y)- R,ou(y). Let () indicate a vector whose m components represent the
average values of on the faces of to. We may then relate the average tractions (l)v
on the faces of to to the average displacements on the faces by

(5) (p) Rh(u),
where Rh is an rn x m transmission matrix which is related to R,,. When conditions
for the balance of average surface tractions across cell faces are adjoined to (5), as
well as boundary conditions for average tractions and displacements on F, we may
expect that the resulting system of algebraic equations for average displacement values
will yield an approximation to the equilibrium problem for (1)-(3) as h o0.

This approach can be made practical only if the transmission matrices Rh in (5)
can be approximated without an a priori knowledge of the transmission operators
related to the continuous problem. A general method for constructing Rh on arbitrary
cells will be described in a separate paper.
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In this paper we describe a simple construction for R h, which results when cubical
cells are employed. In this case, the equilibrium conditions (5) and the balance of
traction conditions can be given a particularly simple form using finite difference
notations and which we then call a compact finite difference scheme. Finite difference
methods can then be used to obtain a finite sum energy estimate and also to characterize
the average displacement values as the solution of a quadratic variational problem.
As a result, the algebraic solution of the compact scheme can be obtained by either
direct or iterative methods using a priori facts about the structure of the algebraic
system. This development is explained below.

1.2. A compact difference scheme. In this section we describe a compact difference
scheme (10) which approximately describes the equilibrium of a cell due to displace-
ments and tractions on the cell faces. We then develop an energy estimate and present
a variational principle for the difference scheme. An appropriate method for solving
the difference scheme is given in the following section.

We suppose that f can be partitioned into regular cubical cells whose faces are
parallel to the coordinate axes; to(x) indicates a cell with centerpoint at x (xl, x2, x3).
We denote the average value of a function b on a face whose centerpoint is by b().
If hi Axi/2, 1, 2, 3, the volume of to is Ato 8hlh2h3.

Next, define central average and central divided difference operators/z and 61 by

(6)
’61(X) (b(Xl-" hi, x2, x3)+ b(Xl- h, x2, x3))/2,

61(X ((X "- h, x2, x3)- 6(x- h, x2, x3))/2h1.

The operators Ix2, 62,/x3 and 6 are defined similarly. Also define

(7)
gradh b (61 b, 62b, 63b),
diVh U--= 6U + 62U2 + 63U3.

Finally, we write

(8)

eh(u)=--gradh (u +ur)/2,
t?h(u) gradh (u uT")/2,

’r/h(u) Y Cqe’(U), i= 1, 2, 3.
j=l

Thus, eh(u), h(u) and h(u) are finite difference approximations to the strain, stress,
and rotation tensors respectively.

The restriction to cube-like cells simplifies the evaluation of surface tractions. Let
::, i- 1, 2, 3, denote the centerpoints of the opposite faces of a cell to. The outward
normals n(sC:) satisfy n(:)=-n(:-) so that the average surface tractions p(sC:) are

given by

(9) p(::) +x,(::), i= 1, 2, 3.

In the following discussion the stress components arise as traction forces on the
faces of cells. An important consequence is that then the conditions for the balance
of average traction forces across cell faces simply reduce to the conditions that the
jump in value of "ri vanish across a face xi const., i= 1, 2, 3.



FINITE DIFFERENCE SCHEME FOR ELASTIC BODIES 291

Corresponding to the equilibrium equations (1), we propose to consider the
following compact scheme" in each cell to

(a)

(10) (b)

(c)

Here y, K are parameters, K # 0, and k is a vector determined such that the values i’i
in (c) satisfy (a), i.e.,

(10d) k p,/,u 2 P, k(u)
i=l i=1

where p (h)-2.
Clearly, (10) is consistent with (1) for h0. Since #0 by assumption, (10) can

be written

(10)’ i=1,2,3
8,,

where k(u) is given by (10d). The assumption 7 # 0 insures that the only solution u
of (10)’ for which/ixi- 8i,r =0, 1, 2, 3, is u const, and is the discrete analogue
of the fact that the only displacements which produce zero stresses in the continuous
problem are u const.

Figure 1 indicates, with reference to a rectangular cell, the variables associated
with the sides of the cell by the scheme (10). These equations thus result in a system
of 18 algebraic equations for the 18 components of u and the 18 components of the
tractions on the faces of a cell.

u,:

U,’

FIO. 1. Variables associated with cell sides by the difference equations in two dimensions.

We now indicate how (10) leads to a finite-sum energy estimate. Recall that the
work W done on the body can be evaluated from (1) by the use of integration by parts
and the use of Gauss’ theorem with the result

(11) 2W-,fe,jrodto-lr.. puy-l-Ir ., dy- I. div rdto.
l,J

For finite dierences summation by pas results from the identity

(12) 8,(ff) (,)(8,) + (,)(8,), i= 1,2,3.

using (6). Also, using (7), Gauss’ theorem holds in the form

(13) divh yam = vrnAT,
mO F

in which Ay is the area of a face of a cell on which n is the outward normal.
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Using (12),
3

(14) diVh uT E ’liuT ii"(, 7-)h,
i=l

where, from (8),
3

(15) (e, 7-)h
i=I

Next, using (10c),

where k is determined by (10d). Thus, if we define

(16) [e, 7-]h (e, r)h +E <2h(tS,’r,)2,

then (14) assumes the form

(17) diVh uT e, 7-]h + kT diVh 7".

Recalling earlier remarks we see that e, 7"]h >= 0 with equality holding itt u const.
Also, recalling (9), diVh uTT" is seen to represent the work per unit volume done by
traction on the faces of a cell to.

Summing (17) over cells in f

(18) Z diVh uAto Z [e, 7"]hAto + Z kT diVh 7"Ato,

so that for a solution of the compact scheme (10)

(19) diVhUTT-Ato= [e, 7"]hAto >-- 0.

Also, using Gauss’ theorem in the form (13), (18) can be written (compare (11))

(20) [e, 7"]hAto=pT"uA)’+uTpA)’- kCdivhT"Ato,- F F -where use has been made of (9). In this equation, u, pO are to be interpreted as the
average values on cell faces on F of the data given by (3).

Consider a problem in which u is prescribed everywhere on F. The preceding
discussion can be used to verify that the average values of displacements on cell faces
which solve the compact scheme (10) also solve the variational problem

(21) min [E, 7-]hmto=pTuOm’}/
f F

for u satisfying the boundary conditions on F. The Euler conditions for this problem
simply express the balance of traction forces, expressed in terms of u by the use of
(10), across cell faces.

Having obtained an energy estimate in the form (20), it is not a major step to
establish convergence. As mentioned earlier, we will describe elsewhere how these
ideas may be adopted to treat cells having general shapes. For this reason we shall
not present here the details of the convergence argument as it applies to (10) except
to cite the result: for any fixed values of the parameters K, y, the solution uh of (10)
converges to the solution u of (1) with accuracy O(h2) in an /2-norm while ph(uh)
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converges to p(u) with an accuracy O(h). These remarks apply, of course, only to
sufficiently smooth solutions of (1).

An important feature of the compact scheme (10) is that it only employs values
of the displacements and tractions which arise as average values on cell sides. This is
in contrast to many finite element methods which employ edge and vertex values of u.

1.3. Solutioa method. The compact scheme (10) may be solved by direct algebraic
techniques such as Gauss elimination, considering the displacements and tractions as
unknown variables. A preferable approach, which we shall now describe, is to eliminate
the traction variables so as to obtain an algebraic system involving only the displacement
variables. We first indicate, in general form, the steps which lead to this elimination.
The specific result upon which numerical calculations can be performed is given by (32).

Let y(to), i= 1, 2,..., 6 indicate a face of a cell to and write

(22)
[u]v=-[u(y), u(y2),""", u(y6)] r,
[P]v-= [P(7,), P(T2),""", P(T6)] ,

where, for brevity, reference to to has been omitted.
Using (10)’ we may write the tractions [p] in terms of the displacements [u], in

the form

(23) [p]v Rh[u],
where Rh is a block 6 x6 transmission matrix associated with to which we write in
terms of its rows as

(24) Rh

A direct evaluation using (10)’ shows that this matrix is symmetric. Thus (23) states

h(25) p(yi(to)) r(y,(to))[u] v(o,), i- 1, 2,..., 6.

As noted earlier, diVh u represents the work per unit volume due to the tractions
arising from the displacements on the faces of to. Let

Ay diag (Aye, AYE," Ay6) .
In terms of the notations just described and recalling (19) we then have

(26) 0 < (diVh u)Ato [u] v Ay[p]v [u] ,AyRh[u] v"

This shows that Rh is positive semidefinite since the equality in (26) holds, according
to (19), iff [e, Z]h>--O and this was seen to hold iit u(yi) constant, i-1,2,... ,6.

Since [e, Z]h diVh U, the variational principle (21) also applies in the form

(27) min E [U] T h(o,)A YRo,[u] o,.
toD,

The conditions for a minimum resulting from this problem are, as remarked earlier,
simply the balance of average traction forces across any face common to any
neighboring cells which, using (25), may be written as

(28) h hr )[u]v)+ r,( )[u] v,) 0.
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If lies on 1-’1, then also

(29a) u() =u(/)

while if lies on [’2, then

(29b) rh()[U] (,o)= pO(
Earlier remarks show that this system has a unique solution for u() unless F1 4.
We now give the explicit result of applying (28) on cell faces. Indicating by p(:)

the tractions on cell sides, as in (9), and using the definitions of the operators /xi, 8i
given by (6) we have

(30) p(?) h,,, +/- ,,.
Let tOt, m,,, indicate a cell whose centerpoint is x= (lAxl, mAx2, r/Ax3). Then across the
face of tO...,, incident with tO+,,.,. (28) may be expressed, using (30), as

(31) (h8’r +/zlxa)l,ot q- (ht’r -/xl’rl) 0,1+,
--0

or, more simply,

ILI(tI’T1) I(jtLI’T1) 0.

Using (10)’, it then follows that

tOl[.Ll(ttLlU- ,(U))-- I(,Tlh(u) -4 ’yzh2t(u)).

More generally the balance of traction conditions across each of the sides of
may be expressed as

(32) p,tz,(tz,u-k(u))=6,(’rh(u)+yZh2h(u)), i= 1,2,3

in which k(u) is given by (10d) and "rh(u) is given by (8).
These equations are supplemented by the boundary conditions (3). At points of

the boundary on which tractions are prescribed the use of (30), in which 6’r,/z,ri are
given by (10)’, leads to an effective and simple means of imposing traction boundary
conditions and will be employed in the example discussed below.

In these equations we have left unspecified the parameters y, K. Provided that
K # 0 (cf. [1]), these may, as indicated in the next section, be chosen for convenience
since, as indicated earlier, their particular choice will not affect the asymptotic behavior
of the solution as h 0.

We call (32) the stress-eliminated form of the compact scheme (10).
In summary, then, the system of equilibrium equations (28), (29), in which Rh is

the transmission matrix for the compact scheme (10), arises as the Euler equations for
a related positive definite quadratic variational problem. For three-dimensional
problems, in particular, it is natural to consider iterative solution methods.

II. Example of an isotropic material.
II.1. Equilibrium equations. We consider an isotropic material characterized by

Young’s modulus E and Poisson’s ratio u. We use a plane stress assumption to formulate
the problem in two dimensions, the x-x2 plane say. This involves setting 3 0 and
assuming that the stress components , ’22, ’2 are independent of x3 (Timoshenko
and Goodier [2]). In two dimensions, the stress-strain relationship (lc) may be written
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in component form as follows:

"/’12-- 7"21 O’E12

or, in terms of the displacement u,

7"11 Ox, 1,11 + "q Ox2tt2,

(33) 7"22 r/0x,

7"12-- 7"21 1/20"(0x21gl
The parameters ’, r/and r are given in terms of Young’s modulus and Poisson’s ratio
as follows;

E Ev E
’=(l_vU), 7 (1_v2), r-(l+v

The quantity 1/2r is known as the shear modulus.

II.2. Method of solmion. In this section we write down the compact scheme for
the two-dimensional case when square cells are employed and obtain the transmission
matrix which relates the tractions and displacements in each cell. The properties of
the resulting system are then discussed in the context of its iterative solution.

Analogous with (10), and upon elimination of the strains, we have the following
compact scheme for the components of displacement and stress:

(34a)
6, 7"11 + 627"12 0,

6X 7"21 + 6X 7"22 0,

]x17"11 Sx1/’/1 --(34b)
/x7"22 r/6, u + ’6,,u2,

ax,- 1/2 o-(,u + ,u)+1/2,-(u-u),
a- 1/2 o-(,u +,u) + k,h-(,,u x,u),

(34c)
/x,,/,/1 K2h26xt 7"11 ]x2Ul K2h26x2T21,
x2//2 K2h28x27.21 ]Ax2/g2 K2h28x27.22

Recalling (9) we may solve for the tractions [P]v in terms of the displacements
[u]v in each cell w to obtain

[p] REu],(35)

where
[p], (p(-), p(sC-), p(-), p(:-))r,

[u] (u(), u(;), u(;), u(;)),
and in which the transmission matrix Rh, is given by

0--1
(36) R ho,

2h

I + 011 --(I- 0c12) I- 011 --(I + 0C12)]
-(I

I
0c21 I + 0c22 -(I + 0c21) I- 0c22 |

I

OCll -(I + 0C12 I "+ OCll -(I- 0C12)/
L-(I + 0c21) I- 0C22 --(I-- 0C21 I "- 0C22 I..i
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in which 0 2c2 and

Cll [0 (tr+),2h2)/2 c22- 0

c’2= c2T1= (or-- y2h2)/2

The matrix R is obviously symmetric and is easily shown to be positive semi-
definite for positive 0. Balancing the tractions across vertical and horizontal faces
common to neighboring cells, we obtain, with reference to Fig. 2,

2(I+ Oc,,)u(Po)+(I- Oc,,)(u(P,)+u(P2))
(37a)

(I / 0cl2)(u(Q) +u(Q)) + (I 0Cl2)(u(Qo) +u(Q3)),

2( + Oc)u( Qo) + Oc)(u(Q) +u(Q))
(37b)

(I + Oc2)(u(P) + u(P,)) + (I Oc2)(u( Po) + u(P3)).

Q2

Q0

.P

Q4

P2

FIG. 2. Points associated with the stress-eliminated equations (37).

These equations correspond to the stress-eliminated form (32). If F2-- b, i.e., the
values of the displacements are prescribed on the boundary, then the coefficient matrix
of the above problem is symmetric and positive definite. A natural iterative method
for solving (37) is line SOR. The method involves solving block tridiagonal systems
firstly along all horizontal lines and then along vertical lines. In the next section we
will compare this and point relaxation methods on a simple problem.

II.3. Numerical example. Consider a square domain on whose vertical edges the
displacements are fixed and which experiences a uniform load along its top horizontal
surface. This situation is illustrated in Fig. 3.

The boundary conditions are

U--’(0, 0) T on x 0, 1,

’1"2 (0, 0) T ony=0,

’I"2=(0,--1) T ony= 1.

Our experiments were performed using the plane stress approximation with values of
Young’s modulus and Poisson’s ratio given by E--107, /-’0.3. The equilibrium
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FIG. 3. Description of the plane stress test problem.

displacement ul is anti-symmetric and I/2 is symmetric about the line x 1/2. However,
in the computations that were performed, no advantage was taken of this symmetry.

We have remarked earlier that a fixed choice of the parameters y, K will not affect
the asymptotic convergence rate of the scheme. For y # 0, K # 0 the system of equations
for the displacements is positive definite and leads to a unique solution for the
displacements. Reference to (10)’ shows that the condition 0Y 2--(ty+’Eh2)-1 is
required if the tractions are to be determined from the displacements in any cell. The
condition y 0 simply insures that any two displacement distributions which produce
the same traction forces in a cell differ by a constant, while if y- 0 the same stress
distribution will be produced by more general displacement fields. Since our primary
interest in the following calculations was to determine the stress field we chose the
values of 3’ 0, 2 1/ r.

In our experiments we used the point Gauss-Seidel, point SOR, and line SOR
methods. The parameters for the SOR methods were chosen to be the optimum ones
for Laplace’s equation. Initially, the value of u was taken to be zero at all the grid
points. Keeping in mind that the method can be expected to yield only second-order
accuracy, the iterations were terminated when the 12-norm of the residuals was less
than 10-3.

In Table 1 we show the dependence of the number of iterations required to attain
the convergence criterion on the mesh size for various iterative schemes.

TABLE
Dependence of number of iterations on mesh size.

h pt. Gauss-Seidel pt. SOR line SOR

1/2 42 34
1/4 100 54 30
1/8 325 97 51
1/16 1240 191 99

These results indicate that the rates of convergence of the Gauss-Seidel and SOR
methods on this problem are O(hE) and O(h) respectively. Table 2 contains the values
of the /E-norms of the solutions to the stress-eliminated equations (37) for different
grid sizes.

We note that the convergence of [[Ul[[2 is O(h2) while that of [lU2[[2 is O(h3/2) as
h- 0. This degradation in behavior is due to the singularities which are located at the
top corners.
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TABLE 2
12-norms of numerical solution.

1/2 0.0221 0.0979
1/4 0.0086 0.0710
1/8 0.0055 0.0603
/ 16 0.0048 0.0568
1/32 0.0046 0.0556

The values of the tractions are calculated by substituting the values of u in (35).
The components of displacement and traction display the relevant symmetric or
anti-symmetric properties to four decimal places. There are two integral checks that
can be carried out to verify the computations, namely

"r,,(O, y) dy + "/’11(1, y) dy O,

(38)
z2,(1, y) dy=

These conditions express the integral condition

z.ndy=O
F

using the assumed symmetry of ’/’12 about x -1/2. These integrals were computed numeri-
cally using the midpoint rule. The first integral check held exactly while the second
one was found to be correct to the number of decimal places specified in the displace-
ment calculation.

O. 000

:"..
CONTOUR FROM 80000 TO 2. Zl0
CONTOUR INTERVAL IS 20000

’1" 11

FIG. 4. Plot of the stress component
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Various plots are given of the solution. Figures 4, 5, 6 are contour plots of the
stress components ’1, 22, "/’12 respectively. These were obtained using 64 cells in each
direction. Figures 7a and 7b show the principal stress vectors within each computational
cell. The principal stress directions are defined to be those vectors x 0 which satisfy
the eigenproblem

(’r-AI)x-O.

CONTOUR FROM 96000 TO 0
CONTOUR INTERVAL IS 60000E-01

22

FIG. 5. Plot of the stress component "r22.

/,’ ’, ", ", "-.
-’ ’, ,, ",. "\

aNN..- ?,,,,,;
0. 0

Is
IS /

T12
FG. 6. Plot of the stress component ’.
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(a) (b)

FIG. 7.’ Principal stress vectors.

Concluding remarks. The treatment of equilibrium with a volume force f requires
no essential modifications to the method. In this case (la) has the form Y, iOx, x, =f;
correspondingly (lOa) is modified to

(lOa’) 6x,,r, f.

We leave the details of the consequent developments to the reader.
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FULLY ADAPTIVE SOLUTIONS OF ONE-DIMENSIONAL MIXED
INITIAL-BOUNDARY VALUE PROBLEMS WITH APPLICATIONS

TO UNSTABLE PROBLEMS IN COMBUSTION*

M. D. SMOOKEf AND M. L. KOSZYKOWSKI

Abstract. We develop a fully adaptive method for solving one-dimensional mixed initial-boundary
value problems. The method adaptively adjusts the number of grid points needed to equidistribute a positive
weight function over a given mesh interval at each time level. In addition, when the solution can be described
accurately by a fixed number of points, the mesh is moved by extrapolating the nodal positions from earlier
time levels. We monitor the solution from one time level to another to insure that the local error per unit
step associated with the time differencing method is below some specified tolerance. The method is applied
to several unstable problems in combustion.

Key words, adaptive gridding, unstable combustion, initial-boundary value problems

1. Introduction. Many problems n the physical sciences can be reduced to the
solution of a set of coupled time-dependent partial differential equations of the form

(1.1a) ut=f(x, t, u, u,, Uxx), a<x<b, t>O,

(1.1b) gl(a, t, u(a), u(a)) O, t>O,

(1.1c) gE(b, t,.u(b), ux(b))=O, t>O,

(1.1d) u(x, O) r(x), a <x < b,

where u, f, gl, g2 and r are N vectors. Problems of this type can arise in heat and
mass transferme.g., combustion and flow through porous media. Most ofthese problems
are sufficiently complex that analytical solutions cannot be obtained. As a result,
numerical methods must be used.

For problems in which the solution is smoothly varying with respect to the spatial
variable (i.e., no sharp peaks or steep fronts), an equispaced or mildly nonuniform
grid is ordinarily chosen a priori and then used for the entire calculation. However,
for problems that exhibit a high degree of spatial activity, a uniform grid held fixed
for the entire calculation can be computationally inefficient. Ideally we want to
concentrate grid points in regions where the spatial variation of the solution is large.
If the solution can be described accurately with a fixed number of points (e.g., a moving
flame front), we want to move the points along with the region of high spatial activity,
but if the time evolution of the solution is such that a variable number of points is
needed to resolve these regions, we want to change the number of grid points as the
calculation progresses.

In this paper we develop an algorithm that obtains fully adaptive (space and time)
solutions to mixed initial-boundary value problems of the form (1.1). By discretizing
the time derivative in (1.1) we obtain a nonlinear two-point boundary value problem
at each time level. We solve the boundary value problems with a finite difference
method in which the grid points are chosen such that a positive weight function is
equidistributed over each subinterval. This procedure has the advantage of automati-

* Received by the editors June 23, 1983, and in revised form September 11, 1984. This work was
supported by U.S. Department of Energy Office of Basic Energy Sciences.

f Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520.
t Sandia National Laboratories, Livermore, California 94550.
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cally adjusting the number of grid points at each time level (a variable node, static-
rezone approach). However, when the number of points does not change, then for
reasons of computational efficiency, we move a fixed number of nodes by extrapolating
their positions from previous time levels. In addition, we monitor the solutions of the
boundary value problems from one time level to another to insure that the local error
per unit step associated with the time differencing method is below some specified
tolerance.

In the next section we present some background material on other approaches
used to solve mixed initial-boundary value problems with moving adaptive grids, and
in 3 we develop our fully adaptive algorithm. The method is applied to several
unstable combustion problems in 4.

2. Background. Several approaches for solving one-dimensional mixed initial-
boundary value problems with moving adaptive grids have recently appeared in the
literature. For example, Miller and Miller [12] (see also Gelinas, Doss, and Miller [9])
have implemented a moving finite element method in which the solution is expanded
in a series of piecewise linear polynomials where both the time-dependent coefficients
of the series and the grid points are unknown functions of time. These quantities are
determined by minimizing the partial differential equation’s residual in a least squares
sense. Davis and Flaherty [4] have also developed an adaptive finite element method.
In their implementation the calculation of the solution and the grid points are not
coupled together. White [20] has generalized the idea of equidistributing the arc-length
of the solution of a two-point boundary value problem to one-dimensional mixed
initial-boundary value problems. In his approach the solution and the grid are calculated
together by a finite difference method. Other approaches have been considered,
for example, by Dwyer, Kee, and Sanders [6], Tscharnuter and Winkler [18], and
Bolstad [2].

With the exception of the work by Bolstad on hyperbolic systems, all of these
methods move a fixed number of grid points so they are concentrated in regions where
the spatial activity of the solution is highest. At each time level, the approaches can
be viewed as equidistributing a positive weight function over a fixed number of spatial
intervals. Aside from the choice between finite difference and finite element spatial
discretizations, the methods vary primarily in the choice of the weight function, and
its implicit or explicit dependence upon the solution. In the implicit case the solution
components and the grid are calculated together, while in the explicit case the grid is
determined by using a previously calculated solution--the solution and grid calcula-
tions are not coupled.

For problems in which a fixed number of grid points are to be used throughout
the entire calculation, the coupling of the grid and the solution has the potential of
accurately placing the grid points in regions of high spatial activity. However, the extra
differential equations needed to locate the points can increase significantly the size of
the problem as well as the time required to solve it. It is our experience that one does
not have to couple the calculation of the grid and the solution components in order
to obtain accurate placement of themesh. In particular, one can obtain accurate grid
placement if a static-rezone approach is combined with a moving grid method based
upon extrapolation. If the extrapolated grid points have moved out of the high activity
regions, we can rezone. In addition, for problems in which the high spatial activity of
the solution either increases or decreases, the variable node, static-rezone approach
has the ability to either insert or take away grid points to maintain a specified degree
of accuracy.
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3. Method of solution. The applications we consider occur in the realm of heat
and mass transfer--in particular, combustion. The time evolution of these problems
ordinarily requires that implicit time discretization methods be employed. For the
discussion that follows, we consider a backward-Euler approximation to the time
derivative in (1.1). We point out that, in principle, a higher order backward differenti-
ation formula or an implicit Runge Kutta method could be used as well.

Starting from the initial point o= O, we obtain a numerical solution of (1.1) at
time levels 0 o < < 2 <. < I if, for some finite time ft. If for a continuous
mapping g’[0, if]--> 2(a, b), we define gn(x)=g(x, tn), n=0, 1,2,... ,J, then the
system in (1.1) can be written in the form

u+’(x)-u(x)
(3. la) ,+ =f(x, "+ u"+ u,,"+, u,,,n+ + p"+(x),

(3.1b) g,(a, n+l, un+l(a), 11 l(a)) =0,
(3.1c) g2(b, t"+l, u"+(b), un+l(b))
(3.1d) u(x)=r(x),
for n =0, 1, 2,..., J-1, where the time step r"+= "+- t" and the discretization
error p"+(x) [Ou(x, )/Ot2]z"+/2, It, t"+l].

If we rearrange (3.1a) and neglect the discretization error, we have the following
semidiscrete approximation to (1.1)

(3.2a) f(x, "+1, /n+l ~n+l, ~n+l)__
/n+l

t)x t)xx +1 q.n+l,

(3.2b) g(a, n+l, tn+l(a), Vx~n+l(a)) O,

(3.2C) g2(b, n+l n+l(b), ~n+lv (b)) =0,

(3.2d) (x) r(x),

where n 0, 1, 2, , J- 1, and where the change of notation from u to recognizes
the fact that the solution of (3.1) is in general different from the solution of (3.2). We
observe that solution of the original mixed initial-boundary value problem has been
reduced to solving a nonlinear two-point boundary value problem at each time level.
We solve the problems in (3.2) by applying a finite difference method (though another
two-point boundary value solution method could be employed as well).

Newton’s method. Our goal is to obtain a discrete solution of (3.2) on the mesh
,/n+l

n+l n+l(3.3) ,+l={a =x+<x <"" <xM-/,= b},

where h’+ x+1- x_+, j 1, 2,..., M"+1, and h "+1
max<__j__<M-+, h+1. The time

level superscript on the mesh is used to account for the fact that, in general, the number
and/or the location of the grid points can differ from one time level to another.

We approximate the spatial derivatives in (3.2) using finite difference expressions.
In particular, omitting the discretization error and the time level superscript, we write

(3.4, 0( Oxg) (2)a(x) O:(ajg) (a+|/20g+1-a:_|/:Ogj),
Ox x x+ x_

and

0_- Og, j --1, 2, M,(3.5)
\o.,/
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where for a continuous mapping g: [a, b] --) R 1, we define gj g(xj),j 0, 1,. , M, and

(g+l + g)
(3.6) g+l/2=

2
j =0, 1,..., M- 1,

(g+’- gJ)
j=O, 1,. , M- 1.(3.7) 0g+

h+
By replacing the continuous ditterential operators in (3.2) by expressions similar

to those in (3.4)-(3.7), we convert the problem of finding an analytic solution of (3.2)
,+1 of the meshto one of finding an approximation to this solution at each point x

"+. Upon denoting this approximation by vj’+, j =0, 1,..., M"+1, we seek the
v ,..., v.+,) of the system of nonlinear differencesolution

equations

(3.8) ( V’+I) F( V"+) -(V’+-V")7+1 =0, n=>0,

where the (N)(M"/1+ 1) vector F corresponds to the discretization off, g, and g2 at
each point of the mesh .+1.

For an initial solution estimate that is sufficiently close to V+1, we can, in principle,
solve the nonlinear equations in (3.8) by Newton’s method. We write

(3.9) (J(Vc+l)-I’)(Vc-ll- Vc+l)=-Ak;(Vc+l), n>-_O, k=0,1,’.-,

where V+ denotes the kth solution iterate, Ak the kth damping parameter (0 < h -< 1),
I the identity matrix, and J(V+I)=oF(V+)/OV"+ the (N)(M’+I+I)
(N)(M’/I+ 1) "steady-state" Jacobian matrix. At each iteration a system of linear
equations is solved for corrections to the previous solution vector.

For problems in which the cost of forming and then factoring the Jacobian matrix
(J- I/r"+) is a significant part of the cost of a full Newton step, it is natural to apply
the modified version of Newton’s method in which the Jacobian is re-evaluated
periodically. In such cases we implement the modified Newton method

(3.10) (J( r+ ----/+’7. w,+ V+,’k+l--o ,/( )=-(V+I), n>0, k=0,1

where the Jacobian matrix is evaluated at the initial solution estimate. The immediate
problem one faces when applying the modified method is to determine whether the
sequence of successive modified Newton iterates is converging at a fast enough rate.
If the rate of convergence is too slow, we want to revert to a full Newton method,
make use of new Jacobian information, and possibly employ a damping strategy. An
estimate that enables us to determine an upper bound for the size of the sequence of
modified Newton iterates, assuming the Kantorovich convergence conditions are
satisfied, has been derived in [16]. As a result, if after solving (3.8) we determine the
size of AV+1 w.+l Vc+1--k+-- to be larger than the value the estimate in [16] predicts,
we form a new Jacobian and restart the modified Newton algorithm with a new initial
solution estimate given by V+.

Adaptive gridding. If the boundary value problems in (3.2) admit solutions that
exhibit regions of high spatial activity, it is crucial that the grid points be placed
adaptively in these regions to obtain an efficient solution algorithm. The use of an
equispaced or mildly nonuniform grid can require a large number of points to obtain
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the solution to the same accuracy One of the reasons initial value (e.g., shooting)
methods have been used to solve two-point boundary value problems has been the
adaptive mesh capability of the initial value solver. In such methods the solution is
monitored and the spatial step size appropriately chosen as the integration proceeds.
Global solution procedures such as finite differences and collocation require that a
mesh be determined before the calculation is begun.

Many of the methods that have been used to obtain adaptive grid spacings for
two-point boundary value problems can be interpreted as equidistributing a positive
weight function on a given interval (e.g., see Kautsky and Nichols [10]). Essentially
one attempts to determine a mesh M such that the weight function achieves the same
variation over each subinterval. Among the various approaches, White 19] has equidis-
tributed the arclength of the solution, and Pereyra and Sewell 13] have equidistributed
the local truncation error. For an excellent discussion of various equidistribution
methods, see Russell [15].

The mesh M is equidistributed on [a, b] with respect to the nonnegative function
w and the constant C if

(3.11) wdx=C, j=0,1,...,M-l,

where for convenience, we have omitted the time level superscript. For our purposes,
however, we will employ the convention that is equidistributed if the integral in
(3.11) is less than or equal to C. Our experience with the various equidistribution
techniques indicates that while they may all be viable in theory, some are to be preferred
over others in practice. We attempt to equidistribute the difference in the components
of the solution and its gradient between adjacent mesh points. Upon denoting the
vector t [tl, 2," ", u], we seek to obtain a mesh such that

+l d,
(3.12) dx max -min

xj
axb axb

j=0, 1,. ., M-1, i= 1, 2,.-., N, and

Xj+l d2i d d
max min(3.13) dx <- y
,<=x<-b -X--a<--x<--b -Xxj

j 1, 2, , M- 1, 1, 2, , N, where 8 and / are small numbers less than one
and the values of max i, min ti, max d/dx, and min d/dx are estimated from a
numerical solution on a previously determined mesh.

A potential problem of such an equidistribution procedure is the formation of a
mesh that may not be smoothly varying. For example, the ratio of consecutive mesh
intervals may differ by several orders of magnitude. This can affect the accuracy of
the method as well as the convergence properties of the Newton iteration. As a result,
we impose the added constraint that the mesh produced by employing (3.12) and (3.13)
be locally bounded, i.e., the ratio of adjacent mesh intervals must be bounded above
and below by constants (see also [10]). We require

(3 14)
1 hj--<-_-< A, j=2,3,...,M,
A-h_

where A is a constant ->1. This smooths out rapid changes in the size of the mesh
intervals.
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In the implementation of the adaptive mesh algorithm, we first solve the boundary
value problems in (3.2) on a given mesh. The maximum and minimum values of i
and di/dx are then obtained. We test the inequalities in (3.12) and (3.13) for each of
the N dependent solution components at the nodes of the mesh. If either of the
inequalities is not satisfied, a grid point is inserted at the midpoint of the interval in
question. Once a new mesh has been obtained, we check to see whether it is locally
bounded. If it is not, a grid point is inserted at the midpoint of the intervals in which
(3.14) is not satisfied. The previously converged numerical solution is interpolated
onto this new mesh and the result serves as an initial solution estimate for Newton’s
method on this finer grid. The process continues until the inequalities in (3.12), (3.13),
and (3.14) are satisfied.

We remark that nothing prevents the use of other weight functions in (3.11). In
particular, we could choose to equidistribute the local truncation error associated with
the spatial differencing. For very "nonlinear" problems, we have found that the grids
determined with the weight functions in (3.12) and (3.13) are similar to the grids
determined with the local truncation error. In addition, for high order spatial methods,
they eliminate the need to evaluate high order derivatives numerically.

Interpolation. We observe that solution of the boundary value problem in (3.2)
at time level n + 1 requires a knowledge of the solution at time level n at the grid
points X;+1, j=0, 1,..., M"+1. If the same spatial grid were used for the entire
calculationmat time levels , tl, tJmwe would have solution values available at
the proper mesh points. The physical locations of the grid points at one time level
would be identical to the locations of the points at any other time level. However,
since we may have to determine adaptively the proper location of the grid every time
the boundary value problem is solved, it is likely that the number as well as the location
ofthe grid points will change from one time level to another. In such cases we interpolate
solution values from the previous time level to obtain solution information correspond-
ing to the location of the grid points at the current time. (We point out that for finite
element boundary value solvers, e.g., COLSYS [1], there is no interpolation problem
since a continuous representation of the solution is available.)

In our finite difference method we must be able to relate a given grid point at
level n + 1 with the same physical point at level n. We have chosen to use linear
interpolation. For example, suppose the grid points at time levels n + 1 and n are given
as in Fig. 1. We see that the point at level n + 1 does not coincide with any point from

x
r

X X+
FIG. 1. Illustration ofgrid points at time levels n and n + 1. The physical location ofx+ does not coincide

with either x, or x+l.

level n. We assume, however, that we can bound the point x;+] above and below by
two points from the nth levelmsay x and x,/l. To obtain v’ we form

k+l +1(3.15) v =v+ (x; -x).
-x,/k+l

(An equivalent expression can be derived if v’ is expanded about xT,+.) As a result,
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the fully discrete form of (3.2) becomes

"+ "+ V;+, Ova’+ 0 "+1 /);+1
f(x v

(3.16)

.+ v+ (x+-xx+,-xU

with appropriate initial and boundary conditions. We point out that an additional
spatial discretization error is introduced into our finite difference algorithm as a result
of the interpolation procedure used in (3.15). In paaicular, if we let
{(x, t)l(x, t)s(a, b)x(O, ff]}, then for a function g(x, t) where g,,s C2() and
C3() we can show

x+ x]
x) 8g;+ + I/n+l h+l(X+1-x)(3.17) .+1

Z
n+l Ot

We see that the discretization error associated with the time derivative term has an
additional error O(h+l(x+l-x)/+l). As we will see sholy, this error influences
the way the adaptive time steps are chosen. In addition, since [x+-xl h+/2 or

ix+l_xk+l[<hk+/2, the finite difference equations are consistent providing (hk+l" )2
goes to zero faster than 2+.

Grid propagation. One of the advantages in adaptively solving the boundary value
problems in (3.2) is the ability to adjust the number of grid points at every time level.
This is paicularly useful for problems in which the spatial activity of the solution
changes as a function of time (e.g., an unstable flame front). To be assured that the
spatial potion of the discretization error is uniformly bounded over all time steps, we
must be able to vary the number of points as the solution evolves. The finite difference
method we employ is implicit with respect to the time discretization. As a result, we
must solve systems of nonlinear equations. Since we employ Newton’s method, a
Jacobian matrix must be formed and factored at each time level. However, if at some
time during the calculation the solution can be determined accurately with a fixed
number of moving grid points (e.g., a stable flame front), then we can keep the Jacobian
fixed; its factorization can be stored and the cost of propagating the solution will, in
general, be less than if the variable node, static-rezone approach had been used. For
purposes of the discussion that follows we introduce the following definitions.

DEFINITION 1. We say a problem is of Class 1, if the number of (possibly moving)
nodes required to satisfy (3.11) varies from one time level to another, i.e., M"+

DEFINITION 2. We say a problem is of Class 2 if the number of (possibly moving)
nodes required to satisfy (3.11) remains fixed from one time level to another, i.e.,
M+=M.

We point out that a problem exhibiting Class 1 characteristics can be solved as
if it were a Class 2 problem if enough (possibly moving) grid points are used. For
example, if the nodes of a mesh that contained the largest number of points needed
to equidistribute the weight function at each of the J time levels were moved appropri-
ately, then a Class 1 problem could be solved as if it were Class 2. However, in some
problems we anticipate a loss of efficiency if such a procedure were employed. Instead,
it may be preferable to determine both the number and the location of the nodes at
each time level (see 4).

The moving finite element method of Miller and Miller [12] and Gelinas et al.
[9], the adaptive finite element method of Davis and Flahey [4], and the arclength
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approach of White [20], for example, all attempt to move a fixed number of grid
points. In our implementation we begin the calculation by applying the variable node,
static-rezone approach--we assume initially the problem is of Class 1. As soon as the
number of nodes required to equidistribute the weight function remains constant for
several time levels, we assume the problem has shifted to a Class 2 type problem.
Given M grid points at time levels n and n- 1, we predict the location of the points
at level n + 1 by solving

n--1

(3.18a) dxj=xj -xj
j=I,2,. .,M-1,

dt

(3.18b) x(O) x-1

which can be integrated to yield

(3.19) x( t) x x t+ "-- Xj j=l,2,...,M-1.

In particular, for n+l- "-, we have

(3.20) x+ x xj ,r,,+ +
"1"

Xj j=l,2,...,M-1.

We see that the grid locations are linearly extrapolated from their positions at time
levels n and n- 1. We have found this approach to work well though higher order
extrapolation methods are less reliable in tracking regions of high spatial activity (see
also [4]).

Two problems can occur if an extrapolation method such as (3.20) is used to
move the grid. First, suppose that two grid points at time levels n and n- 1 are given
as in Fig. 2. As the dotted lines indicate, the trajectories have crossed so grid point

FIG. 2. Illustration of interior grid crossing as a result of extrapolation.

n+lx+ is now positioned before point x+. The difficulty is easily rectified by reordering
the nodes so x’+l < xj’++ etc. The second difficulty occurs when grid points near the
boundary are extrapolated out of the spatial domain as in Fig. 3. In such cases we
bring the node in question back inside the region a, b]. Since we anticipate its location

n+lto be close to Xo a, we typically position the node midway between a and the next
interior point. If the extrapolation procedure tends to move slightly the nodes out of
the region of high spatial activity, the buffering of the mesh produced by (3.14) absorbs
some of the inaccuracy of the grid points’ locations. Most importantly, however, once
a solution to (3.2) is obtained after a grid extrapolation, we recheck the equidistribution
conditions in (3.12)-(3.13) as well as the local boundedness criteria in (3.14) to
determine whether or not new nodes have to be added.
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Xi,+l

FIG. 3. Illustration of extrapolation out of the computational domain.

Time stepping. We choose the time steps T", n 1, 2,..., J, such that the local
error per unit step associated with the time differencing scheme in (3.16) is below some
given value e. The local error at the point x+1 can be estimated by

(x,;+,(3.21) I.e. e
2

+ 2/3h+1 -x,),

wh r . m.x,o__<,<__,o+, la u/a and fl max, Io=./a==l. paial derivativesXXn+
in a and fl are approximated by finite difference expressions. For the point x+1, we
want to determine the value of n+l such that

(3.22) l.e. 0e"+1,

where 0 < 0 1 is a safety factor designed to account for the fact that the expression
for the local error in (3.21) is only approximate. For purposes of the discussion that
follows, we assume that we have an estimated value of n+l (e.g., the last accepted

n+l The value of T
n+l that we want to calculatetime step r") which we denote by Told

n+lwe denote by nw. Hence, if the contribution to the local error arising from the
interpolation process is denoted by eint, we can write

n+lx2
Tnew)(3.23) a < n+l

ffETne Eint2

and similarly
n+lx2

Told(3.24) a -_< I.e.- eint-2

If we eliminate a we find
/ n+l\2

tTne int/ Tnew
n+l

(3.25) .+
\ Told / I.e.- ein

"+ Choosing the largestThe above expression can be solved for the two roots of Tnew-
positive root, we have

n+l)2Told(3.26) n+l Oe
Tne I.e.- Ein

with the restriction that

n+lx4,a2 2 n+l 2 /ITold O 6 t4Told Ein

/"+" "/ "i.". ’nt" "i’f Eint)

(3.27) e => x/4eint(1.e.- eint)
n+l

Told 0

This procedure is carried out for each of the Mn+l- 2 interior nodes. We choose T
"+

n+las the smallest of all the calculated values of Tnew. If at any time in the calculation
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we find that we are unable to obtain a converged numerical solution to the difference
equations in (3.8), we halve the time step and restart the (n + 1)st level calculation. If
after a successful calculation at the (n + 1)st level, we find that the time step determined
from (3.26) should be smaller than the value we have used, we redo the calculation
at the (n + 1)st level with the new value of z"+1. In addition, to prevent the time steps
from increasing too rapidly, we impose the criteria ‘T"+/z"-<_ 2.

Several points are worth mentioning. If no interpolation error were present, we
n+lsee that the expression for ‘Tnew in (3.26) reduces to

n+l)2
(3.28) ,,+ < ’Told 0e

Tne loeo

as one would expect for the backward-Euler method. The restriction on e in (3.27)
can be attributed to the fact that part of the local error arises from the interpolation

n+l 0process. For the inequality in (3.25) to make sense, we must have oe‘Tew- eint--
which implies that the interpolation errors cannot be too large. If the expression in
(3.27) is not satisfied we increase the number of spatial nodes in the manner described
earlier. In practice, for the problems and the tolerances we have considered, the
restriction in (3.27) presents no difficulty. We point out that the above analysis can be
generalized to accommodate higher order interpolation and time discretization
methods.

Computational considerations. Before concluding this section, it is worthwhile to
discuss a few points concerning the numerical implementation of the method.

Numerical Jacobian. With the difference approximations we have chosen, the
Jacobian matrix in (3.9) can be written in block tridiagonal form. Although we
considered evaluating the Jacobian analytically, we found that in combustion problems
characterized by complicated transport coefficients such a procedure was not very
efficient [ 17]. Since our interest centers around problems of this type, we evaluate all
the Jacobians by a numerical finite difference procedure. The method implements the
ideas outlined by Curtis, Powell, and Reid [3]. For our problem we can compute
several columns of the Jacobian simultaneously by first evaluating at some vector
Z. We then perturb every 3Nth element of Z beginning with the first. The function is
evaluated at this new point and the approximate difference quotient found. The
procedure is repeated beginning with the second element ofZ and the cycle is continued
until the first 3N elements of Z have been perturbed. As a result, we can form the
entire numerical Jacobian in 3N+ 1 vector function evaluations. Once the Jacobian is
formed, a block tridiagonal set of linear equations must be solved. We use the block
tridiagonal subroutines DECBT and SOLBT written by Hindmarsh [8].

Damping, convergence, and rezoning. The choice of the damping parameter Ak to
ensure monotonic convergence of the full Newton iteration (3.9) has been studied in
depth by Deuflhard [5]. We have implemented a variation of his method for nonsingular
Jacobians; however, we have found that at a given time level we almost always take
full Newton steps, i.e., Ak 1. We terminate the Newton iteration when

v-,,+l ,,+ < TOLN, k 0, 1,(3.29) IIA k+ll]2 Vk+I- V+III2
where we typically take 10-6=<TOL=< 10-9.

The converged numerical solution at the nth time level is ordinarily an excellent
initial approximation to the solution at the (n + 1)st level. As a result, we employ this
strategy directly when the number of nodes is not changing from one time level to
another (Class 2). When the problem exhibits a numerical solution that is operating
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in a Class 1 mode, the number of nodes can change from one time level to another.
If the solution at the nth level were used as a starting guess for the solution at the
(n / 1)st level, the converged solution at the (n + 1)st level would contain all the nodes
from the nth level plus those added at the (n / 1)st level. This can increase rapidly
the number of grid points used in a calculation--especially for problems that exhibit
unstable burn front type characteristics. To alleviate this difficulty, we ordinarily use
one half the number of grid points from the nth level as our starting mesh for the
(n / 1)st level. This "skeleton" mesh then serves as the initial grid from which we can
determine adaptively a solution to the problem at the (n / 1)st level. This procedure
restricts the unwanted growth in the number of nodes during the variable node,
static-rezone part of the calculation.

4. Numerical results. In this section we apply the fully adaptive algorithm to two
unstable problems from combustion. Both problems exhibit extended periods of Class
1 behavior. In the first problem we calculate the temperature and mass fraction profiles
of an unsteady propagating flame. In the second problem we consider the modeling
of solid-solid alloying (aluminum and palladium) reactions. Our goal is to compare
the accuracy and efficiency of the method to three other solution procedures. The first
of these is a variable node, static-rezone (VNSR) approach without any grid extrapola-
tion. In the second procedure a fixed number of nodes is used to equidistribute the
arclength of the temperature (ARC) at each time level. In this formulation the indepen-
dent variable x and the temperature are scaled between zero and one, and the calculation
of the temperature and the grid are not coupled together. In the last method (EQUI)
a fixed number of equispaced points are used for the entire calculation. We anticipate
that for these problems the variable node, static-rezone approach with grid extrapolation
(VNSR-X) will be the most efficient of the four considered.

Problem 1. The first problem we consider is an unsteady propagating flame with
one-step chemistry and Lewis number different from unity [14]. The governing
equations are

(4.1)
OT 02T

4r R,
Ot OX2

(4.2)
0 Y_ 1 t92 Y

R,
Ot Le Ox2

where T is the normalized temperature Le is the Lewis number and Y is the normalized
mass fraction of the reactant. The normalized reaction rate R is given by

/32 ( /3(1- T)
(4.3) R =e Y exp 1-ii )]’
where/3 is a nondimensional activation energy and t is a nondimensional heat release
term. The initial conditions are given by

(4.4a) T exp (x), x _-< 0,

(4.4b) Y 1-exp (Le x), x<-0,

and

(4.4c) T 1, x > 0,

(4.4d) Y=0, x>0,
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and the boundary conditions by

(4.5a) T 0 as x -,
(4.5b) Y 1 as x -,
and

dT
(4.5c) 0 as x ,

dx

dY
(4.5d) =0 asx

dx

We solve the problem for a .8, /3 20.0, and Le 2.0. All of the calculations
for this problem were carried out on the region -50<=x<-50. For the VNSR and
VNSR-X methods the values of 8 and y in (3.12) and (3.13) and e in (3.22) were
chosen such that the numerical solutions were accurate to two significant figures. In
particular, we set 8 y .1 and e 10-3. The value of the local boundedness constant
A was set equal to 2.5, and both calculations had initially five equispaced subintervals.

Our numerical results reveal that the temperature and species profiles and the
velocity of propagation oscillate as a function of time. In Fig. 4 we illustrate the
calculated temperature profile for the VNSR-X method during a typical oscillation
(the VNSR calculation gave comparable results). We observe that the peak temperature
changes 10-15% from its initial maximum value. It is during the period of temperature
rise that the velocity of the flame increases substantially. In Fig. 5 we illustrate the
velocity of propagation as a function of time for the VNSR-X method. We notice that
the velocity of the flame oscillates with a period of about ten seconds and the ratio of
the peak to minimum flame speed is approximately equal to six. During the period of

t=4.5

DISTANCE

t=8.8

t=9.4 t=15.6

FIG. 4. Calculated temperature profiles (VNSR-X) during an oscillation of the unsteady propagating flame.

D STANCE D STANCE
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FIG. 5. Calculated velocity ofpropagation (VNSR-X) for the unsteady propagating flame.

velocity increase, the solution exhibits Class 1 behavior. Both the VNSR and VNSR-X
methods increase the number of grid points needed to satisfy (3.12)-(3.14). As the
solution propagates with a more constant velocity (Class 2) the number of grid points
used in both calculations remains fairly constant. The VNSR-X calculation used a
maximum of 206 grid points and a minimum of 103 while the VNSR calculation used
a maximum of 150 points with a minimum of 101. The difference in the maximum
number of points for the two methods stems from the fact that at some time during
the calculation the extrapolation procedure moved the grid out of the flame zone and
extra points had to be added to satisfy (3.12)-(3.14). To be assured that the profile in
Fig. 5 represented a "reference" solution, we performed VNSR and VNSR-X calcula-
tions with up to three times the number of adaptive grid points used to produce the
results in Fig. 5. No observable differences in the velocity profiles were found.

We next ran the calculation for the equispaced and arclength procedures. In both
calculations we used 150 points--the maximum number required by the VNSR
approach. In Figs. 6 and 7 we illustrate the temperature profiles for the EQUI and
ARC calculations respectively. The profiles were taken at the same times as the profiles
in the VNSR-X calculation. The resolution of the flame front is poorer, and we observe
that the position of the flame is shifted from the position of the front in Fig. 4.

Although the temperature is an important measurable quantity, the velocity of
propagation is also a quantity of physical significance. It enables one to determine the
time for a flame to propagate a fixed distance. This is important in a variety of
combustion applications. As a result, we performed equispaced and arclength calcula-
tions with an increasing number of grid points in an attempt to match the velocity
profile of the VNSR-X calculation. In Fig. 8 we illustrate the velocity of propagation
as a function of time for the EQUI calculation with 150, 250, 500 and 4000 points.
We obtain a very "noisy" profile for 150 and 250 points. The velocity oscillates with
short periods and small amplitude variations. It was not until we used 500 points that
we started to see behavior that remotely resembled the results in Fig. 5. We continued
the calculation on grids with 1000, 2000 and 3000 points. It was not until we used an
equispaced grid with 4000 points that we were able to obtain results within 5% of
both the period and peak amplitude of the VNSR-X calculation. In Fig. 9 we illustrate
a similar set of calculations for the arclength method with 150, 250, 500 and 3000
points. In the calculations with 150 and 250 points we obtain velocity profiles that
oscillate with large amplitude variations and much smaller periods than the VNSR-X
calculation. However, as the number of nodes increases, we gradually obtain results
similar to those in Fig. 5. It was not until we used 3000 arclength points that we were
able to obtain velocity profiles in which both the period and peak amplitude of the
oscillation were within 5% of the values of the profile in Fig. 5.
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FIG. 6. Calculated temperature profilesfor the unsteady propagatingflame. The calculation was performed
with 150 equispaced points (EQUI).

1.0

t=4.5

D STANCE

t=8.8

DISTANCE

D STANCE

t=9.4

-1,.o d.o ,,.o
D STANCE

t=15.6

FIG. 7. Calculated temperature profilesfor the unsteady propagatingflame. The calculation was performed
with 150 equi-arclength points (ARC).
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FIG. 8. Calculated velocities of propagation for the unsteady propagating flame. The calculations were

performed with 150(a), 250(b), 500(c), and 4000(d) equispaced points (EQUI).

(a) (b)
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FIG. 9. Calculated velocities of propagation for the unsteady propagating flame. The calculations were

performed with 150(a), 250(b), 500(c), and 3000(d) equi-arclength points (ARC).
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If we normalize to one the CPU time for a velocity oscillation of the VNSR-X
calculation, then a comparison of the cost of an oscillation for the other three methods
(we use the 4000 EQUI and 3000 ARC calculations) is given in Table 1. We also
include the maximum and minimum number of nodes used in each calculation. All
four calculations were run with TOL= 10-8. This problem exhibits both Class 1 and
Class 2 behavior and we observe that the VNSR-X approach is the most efficient of
the four considered.

TABLE
Computational statisticsfor the unstablefreelypropagatingflame.

Method CPU Max Min

VNSR-X 1.0 206 103
VNSR 2.3 150 101
ARC 3.6 3000 3000
EQUI 4.2 4000 4000

Several points are worth discussing. Based upon the difference in the number of

grid points between the arclength, equispaced, and VNSR-X calculations, we might
expect an increase in efficiency of the VNSR-X method over the ARC and EQUI
methods by a factor of 10-20. However, when the solution exhibits Class 1 behavior,
the VNSR and VNSR-X methods adjust the number of grid points at each time level.
This requires building up a solution from a skeleton grid. As a result, we generally
form one Jacobian on the skeleton grid and another one on the finest grid. When these
results are combined with the facts that approximately 50% of the cost of the VNSR-X
calculation occurred when the solution was propagating in a Class 1 mode, and that
the Jacobian in the ARC and EQUI calculations was often used for as many as ten

time steps, it is clear why we obtain a factor of 3-4 over the fixed node methods. If
the solution to this problem were such that the increase in spatial activity occurred
for only.a short period of time, the cost of the variable node methods would decrease

compared to the fixed node methods. The cost of the VNSR and VNSR-X methods
would be lower since we would only have to propagate the maximum number of nodes
(150 and 206 points respectively) for a small time interval. If the solution propagated
with extended periods of Class 2 behavior (without any large changes in spatial activity),
the VNSR method would still form Jacobians at each time level. Assuming that fewer
than 3000 equi-arclength and 4000 equispaced points could be used, we would expect
the efficiency of the fixed node methods to increase with respect to the VNSR approach.
The VNSR-X method would still be competitive, however. Finally, if the solution
continually propagated in a Class mode, the efficiency of the variable node methods
compared to the fixed node methods would be similar to the results in Table 1 for the
VNSR and fixed node methods--the VNSR-X and VNSR methods would be the same.

Problem 2. The last problem we consider involves the modeling of solid-solid
diffusion controlled alloying reactions (see e.g., [7]). Such problems are important in

pyrotechnic applications. The model assumes we have two materials in powder formmA
and B (e.g., aluminum and palladium)--having different radii. At a given temperature
material A melts and it starts to coat B. As A diffuses into B chemical energy is released
and a reaction front begins to propagate. We model this process by a nonlinear energy
equation and a time-dependent source term. The governing equations are

(4.6) pcOT O (k Ox +AhOf
Ot Ox Ot’
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Of D exp (-E/T) (1 _f)l/3
(4.7)

Ot R2 1-(1-f)l/3’

where T is the temperature and f is the fraction of the product formed. The initial
conditions are given by

(4.8a) T(x, 0)-- 300,

(4.8b) f(x, 0)= 10-3,

and the boundary conditions for t-< .05 by

(4.9a) T(0, t) 3.4 x 104t if- 300,

(4.9b) 0__T(L, t) 0,
Ox

and for > .05 by

OT(o,t)=O,(4.10a) 0-
OT

(4.lOb) ox(L, t)=0.

In addition to the quantities already defined, k, denotes the thermal conductivity;

p, the density; c, the specific heat; D, a diffusion rate; E, the activation energy; R, the

radius of the unmelted particle and Ah, the heat of reaction. In this problem heat is

added at the left boundary until the temperature reaches 2000 K. The heat source is

then turned off and the reaction begins to propagate. The length of the domain L was

5 cm., and we performed the calculation with the same values of the tolerances used
in Problem 1.

Due to nonuniform packing densities, nonuniform particle sizes and material

impurities, the peak temperature and the velocity of propagation can vary as a function

of time. The velocity of propagation can also vary due to a pulsating instability similar

to the one in the gaseous case considered in Problem 1. This has been investigated,
for example, by Margolis [11]. In this problem, however, we consider variations in

the temperature and velocity profiles due strictly to mixture variations. To simulate

such behavior we pack a one-dimensional reactor with sections having different material

properties. While we know a priori where these sections are located, in a realistic

problem they can be randomly distributed throughout the reactor. In the sections

between .25 <-x <= .375 cm. the particle size decreases linearly by a factor of two, and
the heat release term increases by 30%. Both quantities then increase linearly (until
x .5 cm.) to their original values. These striations are then repeated in the regions
beginning at x .75, 1.25, 1.75,. , 4.25, and 4.75 cm.

As our calculations indicate, once the burn front enters these sections, the velocity
of the front begins to increase. In addition, due to the larger heat release term, the

peak temperature increases as well. As the additional heat pulse develops, the VNSR
and VNSR-X methods increase rapidly the number of grid points needed to satisfy
(3.12)-(3.14). We performed both calculations with an initial equispaced grid consisting
of 50 mesh intervals. The VNSR calculation used a maximum of 362 and a minimum

of 57 points. Similar results were observed for the VNSR-X calculation in which a

maximum of 437 and a minimum of 65 points were used. In Fig. 10 we illustrate the
temperature profile for the VNSR-X calculation as the front emerges from the first
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FIG. 10. Calculated temperature profiles (VNSR-X) for the solid-solid alloying problem.

striation and as it propagates through the second nonuniform zone. We see that the
peak temperature increases by as much as 1500 K. In Fig. 11 we illustrate the velocity
of the front from the time the heat source is turned off (t .05 seconds) until it reaches
the beginning of the second striation (approximately .04 seconds later). As the figure
illustrates, the velocity increases by a factor of four over its uniform material value.

We next performed the same type of grid point study as in Problem 1. We ran
the problem with the EQUI and ARC methods. For both the equispaced and arclength
calculations with 150, 250, 500, 1000, and 1500 points, the reaction "went out" after
the heat source was turned off. Heat diffused away faster than it was produced. It was
not until we used 2000 arclength points and 4000 equispaced points that we were able
to propagate a reaction with adequate resolution of the temperature profile. The
velocities of propagation, however, (Figs. 12a and 12b) differ dramatically from the
VNSR-X calculation. We notice immediately the very noisy profiles, and, for the
equispaced calculation, the total lack of resolution of the velocity spike. It is worthwhile
to point out that this same behavior was observed in our initial calculations with these
methods for test Problem 1. By lowering the Newton tolerance from 10-6 to 10-8,
however, we were able to eliminate much of the noise in the velocity profiles (see Figs.
8d and 9d). The noisy profiles were observed not only on the finest grids but on the
150 and 250 point grids as well. The VNSR and VNSR-X calculations for Problem 1,
however, were free from noise for TOL= 10-6.

By requiring a stricter termination criteria for Newton’s method, more modified
Newton iterations are performed per time step than if a less severe criterion is used.
As a result, since the CPU times listed in Table 1 were for TOL 10-8, the efficiency
of the VNSR and VNSR-X methods compared to the ARC and EQUI methods is
actually greater than that reported. In this test problem the calculations that produced
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FIG. 11. Calculated velocity ofpropagation (VNSR-X) for the solid-solid alloying problem.
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(a) (b)
FIG. 12. Calculated velocities ofpropagation for the solid-solid alloying problem with TOL= 10-6. The

calculations were performed with (a) 2000 equi-arclength points and (b) 4000 equispaced points.

the results in Figs. 11 and 12 were performed with TOL-10-6. If we run the EQUI
and ARC calculations with a stricter Newton tolerance, we can reduce the noise in
the velocity profiles (see Figs. 13a and 13b). We found that a tolerance of 10-9 for
both the ARC and EQUI methods was sufficient. The peak velocities and the time that
the peaks occur are within 10% of the values for the profile in Fig. 11. As one would
expect, however, the stricter Newton tolerance increases the CPU time over the 10-6

calculations.
If we normalize to one the average CPU time required for the VNSR-X method

to propagate a solution from one striation to the next, then a comparison of the cost
of the calculation for the other three methods is given in Table 2. All reported CPU

()o

0.07 0.07
TIME SECONDS ME N SECONDS

(b)
FIG. 13. Calculated velocities ofpropagation for the solid-solid alloying problem with TOL 10-9. The

calculations were performed with (a) 2000 equi-arclength points and (b) 4000 equispaced points.
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TABLE 2.
Computational statistics for the solid-solid alloying problem.

Method CPU Max Min

VNSR-X 1.0 437 65
VNSR 1.9 362 57
ARC 1.8 2000 2000
EQUI 3.3 4000 4000

times are for TOL 10-9. Again, due to the difference in the required Newton tolerances,
the efficiency of the VNSR-X and VNSR methods compared to the ARC and EQUI
methods is actually greater than that reported. This problem exhibits Class 1 and Class 2
2 behavior, and we again observe that the VNSR-X approach is the most efficient of
the four considered.

5. Summary. We have developed a fully adaptive method for solving one-
dimensional mixed initial-boundary value problems with particular emphasis on
unstable problems from combustion. The method adaptively adjusts the number of
grid points needed to equidistribute a positive weight function over a given mesh
interval at each time level. In addition, when the solution can be described accurately
by a fixed number of points, the mesh is moved by extrapolating the nodal positions
from earlier time levels. We monitor the solution from one time level to another to
insure that the local error per unit step associated with the time differencing method
is below some specified tolerance. We have applied the method to several problems
of physical interest.

Both of the test problems considered exhibited extended periods of Class 1
behavior. As a result, the VNSR and VNSR-X methods frequently adjusted the number
and the location of the grid points required to satisfy (3.12)-(3.14). In addition, when
the solutions to both problems were propagating in a Class 2 mode, the VNSR-X
method kept the number of grid points fairly constant. In both problems we found
that a combination of static-rezoning and grid propagation was the most efficient of
the four methods considered. Although we have not reported any results for problems
that exhibit extended periods of Class 2 behavior (e.g. a stable burn front), we have
performed a number of such calculations. As one would expect, the VNSR method is
the least efficient. Formation and factorization of the Jacobian at each time step is far
too costly to make the VNSR method competitive. However, the VNSR-X and ARC
methods are competitive as a result of their ability to use a Jacobian for several time
steps. Both methods are significantly more efficient than equispaced calculations.

Our results suggest that when a solution propagates with "large" changes in its
spatial activity (steeper fronts, additional peaks etc.), methods that attempt to adjust
the number and the location of the grid points (VNSR-X) can be more efficient than
methods that employ a fixed number of moving nodes (ARC). However, when a
solution propagates without any large change in the regions of high spatial activity,
methods that attempt to move a fixed number of grid points at each time level (VNSR-X
and ARC) are to be preferred over methods that employ a totally variable node
approach (NSR). In addition, any of the adaptive techniques considered in this paper
are to be preferred over an equispaced calculation. Finally, while the method developed
in this paper is important for one-dimensional unstable problems, it is essential in
two-dimensional calculations. The savings in CPU time and central memory that can
result from applying adaptive methods to two-dimensional problems can be the deciding
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factors as to whether a problem is computationally feasible. In a future paper we will
present the results of generalizing the VNSR-X method to two dimensions.
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this material.
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INTERPOLATION SCHEMES FOR COLLOCATION SOLUTIONS OF TWO
POINT BOUNDARY VALUE PROBLEMS*

STEVEN PRUESS

Abstract. Several interpolatory approximations for collocation solutions to systems of two point boun-
dary value problems are studied. These interpolate superconvergent values "are produced by the usual

Gauss-Legendre collocation algorithm. Comparisons are made to the collocation solution in terms of

accuracy, storage requirements and number of operations; numerical examples are given which illustrate

typical behavior.

Key words, spline interpolation, collocation for mixed order systems, stability of spline interpolation,
two-point boundary value problems

1. Introduction. Numerical approximations to solutions of two point boundary
value problems are often computed only on a discrete set of mesh points; some type
of interpolation is necessary if solutions are desired at points not in the mesh. This is
not the case for collocation as implemented in COLSYS of Ascher, Christiansen and
Russell [2], since closed form approximations in terms of B-splines are available.
However, the findings of Ascher, Pruess and Russell [3] indicate that there are
computational advantages in using local monomial representations which admit savings
in time and space when only mesh point values are computed. In addition, the error
estimates for collocation are asymptotically smaller (superconvergent) at the mesh
points than at nonmesh points. This paper examines several interpolation schemes and
compares them to each other and to the collocation solution in terms of efficiency
(time and space) and accuracy (theoretical and actual). The paper is written with
collocation in mind, but should be relevant to other discretization methods.

As in COLSYS [2], systems of mixed order ordinary differential equations are
considered. For simplicity, only linear equations are treated, though one of the major
needs for interpolation schemes (when only mesh values are available) is in solving
nonlinear systems by linearization. We write (D denotes ddx)

p m(j)

(1.1) Dm(l)tll E E ClijDi-ltlj+fl, I<=I<=P
j=l i=1

with {Cij} and {f/} the given coefficient functions over some interval [a, hi, and u (ut)
to be determined. With

p

(1.2) m*= E m(j),
j=l

m* boundary conditions also must be given. In the program used to generate the
numerical results, the boundary conditions were assumed to be linear and separated
[9, 1.2], but the exact form is not critical for the discussions of 2-4.

For the remainder ofthe paper, in order not to complicate mathematical statements,
it is assumed that (1) the coefficient functions (hence, the solutions) are sufficiently
smooth that all indicated derivatives exist and (2) there is a unique solution to (1.1),
i.e., a Green’s matrix exists for the problem with homogeneous boundary conditions.

* Received by the editors November 23, 1983, and in final form September 27, 1984.

f Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
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Three types of interpolation schemes are considered, as well as the algorithm for
computing the collocation solution (using a local monomial representation). All three
use the superconvergent mesh point approximations and differ only in how remaining
approximations (if needed) are generated. The first uses the differential equation and
possibly its derivatives, while the second uses superconvergent values from neighboring
intervals. The third differs from the second in that a different polynomial is used for
each desired derivative approximation. In terms of efficiency, for a fixed mesh some
of the alternative algorithms are superior to the full collocation solution. However, in
terms of accuracy this may not be the case: the alternative algorithms may have
difficulties on highly nonuniform meshes or on some singular perturbation problems.
Details are given below.

A brief outline of the paper is: Section 2 contains known results about the error
of the collocation solution and new results on stability of piecewise polynomial
interpolants. Since the numerical algorithm for collocating (1.1) based on a local
monomial representation has not appeared elsewhere, this is briefly derived in 3. The
final section presents numerical results and conclusions.

2. Mathematical preliminaries. Notation similar to that in [1], [3] is used in
describing the collocation approximation. The space of all polynomials of order M
(degree < M) is denoted by Pt. Set A {a x < x2 <. < XN+ b}, h x+ x,
h max h. Sometimes it will be necessary to restrict partitions to that subset of all
partitions having bounded local mesh ratios, i.e., there is a constant R >= 1 such that
for any A in the subset

(2.1)
1 hj--_-<=< R for allj.
R hj_

By Pa,M is meant the space of piecewise polynomials of order M with breakpoints
in A.

To estimate solutions of (1.1) for some choice of k(l) we seek
C"t)-l[a, b] which satisfies the m* boundary conditions and collocation conditions
(the differential equation is satisfied exactly on some finite set of points called the

pcollocation points). Since {u}=l together involve N Y,P=I k(j)+ m* free parameters,
the total number of collocations per interval must be P= k(j). In order to use the
same collocation points for each component we require k(1)- k for all I. Various
authors have established convergence results for collocation methods applied to various
types of ditterential equations. The standard reference is de Boor and Swartz [7] where
nonlinear scalar mth order problems are considered. Cerutti [5] treats nonlinear mixed
order systems, but the rates of convergence are not sharp in the superconvergent case.
Houstis [8] has the correct rates, but assumes the order m is the same for all components
and requires some extra unnecessary assumptions. When the collocation points are
Gauss-Legendre points, these results can be summarized in

THEOREM 1 1]. For any partition A with h sufficiently small, assume k >-m(l) for
all 1, then there exist unique {t}’=, lPk+,n),a cmt)-[a,b], satisfying the kpN
collocation conditions and the m* boundary conditions. Moreover, for 1 <-_ <= p

(2.2) forx in A ID’-lut(x) D’-l(x)l_--< Ch2k, l<--i<--m(l),

(2.3) forxnotin A IDi-at(x)-Di-lu(x)l<-_ Chm’+k-i+, l<--i<-m(l)+l.
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Here, and in what follows, C is a generic constant which may depend on k, the
solution u and its derivatives or {m(/)}’=l, but not on the partition A. Henceforth, we
also assume

(2.4) k ->_ m(l), 1 <- -< p,

and h is sufficiently small so that (2.2), (2.3) hold; clearly, superconvergence occurs
only when strict inequality prevails in (2.4).

The piecewise polynomial approximations to fi are described in terms of linear
projectors, i.e., linear idempotent maps. Interpolation polynomials will be defined on
a standard interval [-,, 1 + ,] where v is a nonnegative integer which depends on the
order of fi and/or the order of the differential equation, but not on the partition A.
This standard interval is then mapped into the appropriate piece of A by a change of
variables. In detail, let Sn be the piecewise linear change of variable map from
C[Xn_ Xn+l/, to C[-,, 1 + ,], i.e.,

(2.5) (Sg)(t) g((t-j)hn+j + x+j), [j, j + 1]

j--,, -,+ 1,..., ,. For an interpolating set in [-,, 1 + ,] containing the distinct
points {srj}]__l with respective multiplicities {/z}]=l, set M 1/z, and for any G in
CM[-,, 1 + 9] define PG to be that polynomial in P4 which interpolates G over this
set. Thus,

(2.6) (D’-IPG)()=(D’-IG)(j), l<-i<-i., l<-_j<-d.

Finally, define the interpolatory map Pa from C [a, b] onto Pa. by

(2.7) Pg S-PSg, x [x, X/l], 1 -< n <_- N.

Since [0, 1] gets mapped into [x, X/l] by S, in order for Pag to be well defined at
points of A, it is assumed that 0 and 1 are in the interpolating set {’j} and have the
same multiplicity. For the applications considered here, 0 and 1 will have multiplicity
at least m, the order of the differential equation for the component under consideration,
so Pg Cm-l[a, b] in all cases.

If ’ i(j), i(j) + 1] for some i(j), then the interpolation conditions (2.6) can also
be written

(2.8) (D-lPag)(%)=(Dt-lg)(,l) l <-_l<-t.t

with r/. (’ i)h+,+ x+,; 1 -<_j <-_ d, 1 -<_ n <_- N.
Error bounds for the case v 0, are well known (for special cases see de Boor [6],

Schultz [11], or, in general Pruess [10]); but for , > 0, there does not appear to be
one source which treats errors in the generality given here.

THEOREM 2. If g C[a, b] then there exists a constant C such that for any A
with bounded local mesh ratios (2.1), 1-<_i_-< M

(2.9) max ID’-(g- Pag) <- C. Rh-’+1 max DMgl-
[x..x,+t] [x,_x,++]

Moreover, if , 0 then the assumption of bounded local mesh ratios can be omitted.

Proof. For x Ix., X.+l]

IO’-’(g- Pag)l IO’-S;2S..g D’-S2PS..gl

ISD’-I(1 P)S.gl/h’-I < [D,-I(1 P)S.gl/h

But D-IP induces a projector on P-/I, as described in [10], so by Lebesgue’s
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inequality
IDi-l(g- P/,g)l <- C dist (D’-(S,g), PM_,+)/h’-1

_--< C sup IOM(S,g)l/h’d-[-v,l+v]

--<_ C max (ha max IOgl)/h-n--,<--_j<--n+ [xi,Xj+l]

M, M-i+<-- CR h. max
xn- ,,,x,,+

Also, note that if" v =0 then max s_.+ h h, so the factor R does not arise.
In this paper the main concern is in extending such bounds to the case when only

approximate data are used for the interpolation conditions (2.8). Stability results have
been established for smooth spline approximations (e.g., Swartz and Varga 12]) and
some local ones (Birkhott and de Boor [4]) but not for arbitrary meshes in the generality
needed here.

Define a projector/3 from C[a, b] onto P, which satisfies (instead of (2.8))

(2.10) (D’-I Pag)(r/,j) ce 0, l<-i<-_txj, l<-j<-d.

Then the following stability theorem can be established.
THEOREM 3. If g C[a, b] and for {ce} in (2.10) there exists a constant C

independent of A and g such that

(2.11) c 7s (D’-g)(/.s)l <_- ChM-’+1 max
[Xn--v,Xn+l+,]

for 1 <= <= j, 1 <-j <- d, 1 <-_ n <- N; then for partitions having bounded local mesh ratios

there exists a constant C independent of A and g such that for x in [xn,

(2.12) ID’-l(g- 16ag)(x)l_<_ CRh-’+ max IDgl
[x,,_,xn+t+]

1 <= <- M. If (2.11) is replaced by the weaker inequality

(2.13) Ice 7s-(D’-g)(r/.s)l <-- Ch-’+llDgll

then (2.12) can be replaced by

(2.14) D’-(g -/ag) I1-<- CRMh-’+llOMgll"
Moreover, if , 0 then the assumption of bounded local mesh ratios can be omitted.

Proof. Choose Ors in P so that

(D’-lOrs)()=8,rS, l <-_r<-_lx, l <=s<=d;

then for any G CM[-,, 1 + ,], PG =.a Es G)()Ors. Hence
r=l

d

Pag S-PS,,.g Y ., (Dr-lS.g)(K)S-Ors
s=l r=l
d /x

,)(
s=l r=l

(i(s) as in the definition of r/n in (2.8)). Now D-l(g-fiag)=D-l(g-Pag)+
D-I(Pa -/3a)g and the first term on the right can be bounded in the desired manner
from Theorem 2. For the second, if x Ix., x.+l]

d /x

r-l[l-r-lg 1-1 -1D’-(P P)g E E h,.)t. )(,.)-]D
s-----1 r--1

d

E E - - -1D- -h,s)[(D g)(rl.s)- ot]S,,, Or" h,
s=l r--1
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SO

d /s
1] 1-t DI-1ID-(PA--/3a)gl < Y Y [h "-1ChMn-r+,(s) h, 0,11

s=l r=l

max
[x._,x.+t+v]

s=l r=l
max

Result (2.14) follows by a similar argument using (2.12). The v 0 case is self-evident
since i(s)= n for all s when v=0.

One extension of Theorem 3 is needed for the algorithms of the next section. The
interval [x,_, x,++l] containing the interpolating points PM,a is symmetric about
Ix,, x,/] and difficulties arise near the ends of the partition. A study of the above
proofs shows that this symmetry is merely for convenience (the actual value of the
error constant C is also smaller in the symmetric case); the important thing is that the
number of subintervals of A in the smallest interval containing the interpolating points
be bounded by some fixed integer for all the partitions under consideration. This
integer appears in place of v in the exponent of R in (2.12) and (2.14). Secondly, the
set of interpolating points {’j} could vary from interval to interval. The bounds (2.12)
and (2.14) would remain valid as long as a l-

= E+/- liD 011, Ors as in the proof of
Theorem 3, is uniformly bounded over the various choices of interpolating points. For
the examples to follow, the number of choices of interpolating points is always some
small integer independent of N, so this uniform bound does exist.

These interpolation schemes were chosen because the analysis is straightforward;
while Lagrangian interpolation is more natural, at the time this paper was written,
stability bounds of the type in Theorem 3 for general meshes were unknown to the
author (they have since been proven). The actual behavior of Lagrangian interpolation,
however, is qualitatively similar to that of the schemes considered here.

3. Collocation with monomial bases for mixed order systems. In this section we
briefly describe how fi, the collocation approximation to u, is computed. There are
several ways of representing fi; motivated by the findings of Ascher, Pruess and Russell
[3], we use a local monomial representation. Thus, on each subinterval [x,, X,/l] of
A write

"(o (IY-l)(x.)(x x,,) (x x,,
(3.1) l(x) + hmn (l) Wnljl)m(l)’J

h,,= (j-l)!

Here, each (m(l),jE Pk+m(l) with Di-lpm(l),j(O)--O 1 <- i<=ml for consistency of nota-
tion. The remaining degrees of freedom in b,,l), are arbitrary (as long as the set
remains linearly independent), but for computational reasons detailed below, it is
convenient to require

(3.2) (D

From (3.1) it follows that for 1 -< <- m(l) + 1

l<=j<_k, l<=i<=k.

(3.3)

re(l) DJ-ll(Xn)(X__ Xn)J-iD’-’ al(X E
j=, (j- i)!

+ hmn(l)-i+l WnljDi-lm(l)’J
h.j=l

Collocation of the differential equation (1 1) at nr--Xn "4" prh., {Pr} k
r= the roots of the
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kth degree Legendre polynomial shifted to [0, 1], yields

re(j) Clij(nr)(prhn-i)j(xn)E E +f/(,r)
j=l /z=l i=1
g.

(/x i)!

=1 j=l L i=1

forl-l<--_p, l <-_r<-_k.

Define

(3.4)
z (, Dj,’’’, D()-’), l<=j<=p,

z=(z,,... ,z,),

w,,=(w,,,,..., w,,p,), l<-i.t<-k, l<-n-N.

Then the collocation equations can be written in the form

(3.5) H,,z(x,,)+(f. (,r)) k Gn(w,,) k

with H,,kp by m*, G,,kp by kp. Since G, is an O(h,,) perturbation of a generalized
Vandermonde matrix, for h, sufficiently small G’ exists and, hence, (3.5) can be
rewritten as

(3.6) (wn,) k
=1 G-IHnz(xn) + G-l(f (nr)) k

The requirement that Dm’- be continuous over [a, b] is not built into the representa-
tion (3.1), so z(x,++,) z(x+) must be imposed explicitly. From (3.3) it follows that

(3.7) z(x.+l) M.z(x.) + N. (w..)=1
where M, is m* by m* block diagonal with m(1) by m(1) upper triangular diagonal
blocks (entry i-j is h-/(j i)); N, is m* by kp. The nonzero entries of N, have
the form h)-+D-mt),(1); because of (3.2) each row of N, contains exactly one
nonzero entry, viz., in row (1 i m(l)) of block-row (1 lp) the nonzero entry
h)-+ occurs in column of block-column i.

Substitution of (3.6) into (3.7) yields

(3.8a)

where

(3.8b)

(3.8c)

z(x,+,) F,z(x,) + g,

gn= NnG-l(f (nr)) k
r=l,

F,,= M,,+ N,,G-’H,.
The simplest procedure for computing F, and g, is to set up H,, f., Gn; then solve
G-H,,, G-(f.). Multiplication by N, is just simple scaling, and addition of M, only
affects diagonal blocks.

Note that if the collocation solution (x) is to be recovered, i.e., w,, as well as
z(x,) are to be computed, then the quantities G-’H,, and G’(f.) must be saved
globally. Then w,, can be evaluated from (3.6). This requires Nkp(m*+ 1) storage
locations. In contrast, if only the superconvergent quantities (z(x,), 1 <- n =< N+ 1) are
desired, there is no need for this additional storage.

4. Interpolation algorithms. In this section the four algorithms for computing
approximations v to u are described. It is assumed that the superconvergent quantities,
z(x,), 1 =< n =< N+ 1, have been computed, and since these are used by all four algorithms
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the storage and operations needed for their calculation are not counted. The algorithms
differ in how they utilize the superconvergent quantities to produce a v which can be
evaluated for any x in [a, hi.

In what follows, we give detailed descriptions of the four algorithms, asymptotic
errors, operation counts and storage requirements. The latter two are implementation
dependent so must be viewed with some skepticism; however, order of magnitude
comparisons should be useful. The only operations counted are * and / which are
weighted equally. It is assumed that values of the independent variable used to produce
divided difference representations of interpolating polynomials will be generated as
needed and not stored for the entire partition A (so that their storage requirements
are independent of N). The first algorithm computes the actual collocation solution
ft. To calculate the quantities w,o in (3.1) it is necessary to save G-IH, and G-l(f
as mentioned at the end of 3. Calculation of w,o and scaling then produces
Di-ltt(x/l) w,i/hi-"(0/1, m(l) < <-_ k, (cf. (3.2)). This computation requires (m* /
1)(kp- m*) operations. The collocation solution then has an interpolatory representa-
tion in terms of ,. ., D"(-lt at x and x/l, and D"(, , om(l)+k-l at X/l
for each component I. If the Newton divided difference form is used and the required
ditterences computed once and for all for the total partition, then 1/2N P= (re(l) + k).
(re(l) + k 1) operations and (kp + m*)N locations are needed. However, the storage
used earlier to produce w,0 can be overwritten so no additional storage is actually
necessary. The error is given by (2.3) and to evaluate Di-I, 1 - - re(l), 1 - l-p, at
a single point is just the usual Newton divided difference algorithm. In summary, we
have

(4.1)

error:

storage"

operation counts:

]D’-(u,- at)(x)l <= Chin(t)+k-i+

Nkp(m* + 1)

l<--i<--m(l)+l

[overhead (m*+ 1)(kp-m*)+- iE1= (m(l)+ k)(m(l)+ k- 1) N

p

evaluation offi’) (k- 1)m* +p+ E re(l)2.
/=1

The reasons for considering alternate approximations were to possibly reduce the
amount of storage and computation needed and to improve the (asymptotic) accuracy.
The first alternative, Algorithm 2, constructs an approximation v which uses a local
2kth order Hermite representation for each component. For this, estimates of D-u
at mesh points are needed for 1 <-i<= k. The superconvergent quantities (Di-)(x,,),
1-< =< m(l) provide a start, and the differential equation can be used to generate the
higher derivatives. Since

p re(j)

Dm(l)+#Ul= ., E D(CtijD’-lu)+D"ft, I <--I<-P
j=l

the higher derivative estimates can be computed recursively with the superconvergent
approximations used to start the recursion. Errors can be bounded using the results
in 2. For this example v- 0, the interpolating set {} consists of k zeros and k ones,
and the perturbation inequality (2.11) holds with M 2k (by recursion). Thus, the
error in the ith derivative is O(h:-).
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Of course, this algorithm suffers from the disadvantage that derivatives of the
coefficient functions (or O(h2k) approximations to them) are needed for k > re(l). The
numerical results in 5 have used exact derivatives, but it would be more convenient
(though more expensive) to use difference approximations. In either case extra function
evaluations are needed; the summary below assumes exact derivatives are available.
Once the mesh point values have been computed, the work to generate the divided
difference tables and storage requirements is similar to Algorithm 1, except here the
polynomials all have order 2k instead of m(1)+ k.

(4.2)

error: [D’-l(ut-vl)(x)l<=Ch2k-i+1, l <=i<-m(l)+ l

storage: 2Nkp

operation counts:

overhead

evaluation of v()

kp(2k-1)+m* (k-m(l))(k-m(l)+l)]N1=1

(2k-1)m*+p

fn. evaluations: kp m*)(m* + 1) N.

The remaining two algorithms avoid the extra coefficient evaluations of Algorithm
2, as they use only superconvergent quantities to generate interpolants. To do this,
however, they need values from several intervals to produce approximations on one;
consequently, factors from local mesh ratios appear in the error bounds and numerical
difficulties may be anticipated for highly nonuniform meshes.

Algorithm 3, at least away from the ends of the partition, in the notation of 2
has v=int ((k- 1)/(m(l)) for the/th component of v. The integers -9+ 1,. ., v are
in {srj}, each having multiplicity m(/); the remaining values -9, 1 + v occur with equal
multiplicity such that there are M 2k total points. Hypothesis (2.11) is satisfied for
this M so the error in each component is given by (2.12) for the stated 9. In short,
each component of v on [x,,x,+l] is an order 2k polynomial which interpolates
superconvergent data from nearby symmetric intervals. Near the ends nonsymmetric
superconvergent data must be used: this makes the effective v in the error bound (2.12)
larger, but the asymptotic behavior, O(h2k), remains the same. The work and storage
is the same as for Algorithm 2 once the latter’s extra higher derivatives are available.

(4.3)

error: [Di-l(ul--v)(x)l<=CR-k"(Oh2k-i+, l <=i<--m(l)+ l

v(/) int ((k-1)

storage: 2Nkp

operation counts:

overhead

evaluation ofv(’)

kp(2k -1)N

(2k-1)m*/p.

The final algorithm fits polynomials to each derivative independently using 2k
superconvergent values chosen symmetrically. Thus, for this case , k-1, {stj}
{-9, ., 1 + ,} with each interpolation point having multiplicity one. Again nonsym-
metric points must be used near the ends of the partition. The work and storage counts



330 STEVEN PRUESS

differ from the previous two algorithms, since a divided difference table is generated
for each derivative of each component of v. The (apparent) advantage is that the
asymptotic rate of convergence is better for the higher derivatives.

(4.4)

error:

storage:

operation counts"

overhead

evaluation ofv()

IDi-(u- v)(x)l <-_ CR2k(k-)h2k,
2Nkrn*

l<=i<--m(l)+l

km*(2k 1)N

2km*.

To make some comparisons, see Table I which contains storage requirements, operation
counts and asymptotic error form for the special case of p mth order systems when
k- 4. For large p there is definite savings in storage with the alternative algorithms;
however, Algorithm 2 requires a large amount of overhead, and Algorithms 3 and 4
may have trouble for nonuniform meshes. Actual accuracies achieved for typical
examples can be seen in the next section.

TABLE
Comparison of algorithms for mth order systems m <= k 4).

Algorithm

storage (* N)
operation counts:
overhead (, Np)
per evaluation of v
error bound for v

2 3 4

4mp + 4p 8p 8p 8mp

m(4-m)p+1/2(m2+5m+20) m(4-m)(5-m)p+28 28 28m
(m2+3m + 1)p (7m+ 1)p (7m+ 1)p 8mp

hm+4 h RS[3/,.3h R2,*h

5. Numerical examples and conclusions. Many varied examples of systems have
been tried using the four algorithms from the preceding section. These tended to be
either easy problems where small N and uniform meshes were sufficient, or problems
with boundary layers or some other kind of rapid change where nonuniform meshes
are crucial for accurate results. Three typical examples are presented here. All calcula-
tions were done in REAL 8 arithmetic (14 hexadecimal digits) on an IBM 4341. The
notation .5-4 for .5 x 10-4 is used in the tables. Gauss elimination with partial pivoting,
but without row scaling, was used to solve linear systems. All displayed results used
k 4 though other values have been tried with similar outcomes. The column heading
ef refers to ut- vt.

The first example has very smooth solutions and is presented to illustrate the rates
of convergence predicted by the theory.

ul u-4 exp (2x)u2+4(x2+ 1) exp (x),

u.=-xul + xu’- u-4x2 exp (x)+ (2x- 1) exp (-x),

Ul(0) u2(0)= u(1)= u2(1)=0,

so that u(x) x(x- 1) exp (x), u2(x) x(x- 1) exp (-x). Here m 3, m2 1 so O(h8)
accuracy is expected at mesh points, while the order for max-norm errors depends on
the algorithm being used. Table 2 displays the numerical errors for uniform meshes
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TABLE 2
Numerical results for Example 1.

Maximum error at knots

Algorithm

N

8
12
16

8
12
16

8
2 12

16

8
3 12

16

8
4 12

16

rate

.15-10

.61-12 7.9

.62-13 8.0

e rate

.76=10

.30-11

.31=12

rate

.19-9

.75-11

.76-12

.24-10

.94-12

.96-13

Maximum error over [0, 1]

.28-10

.14-11 7.4

.18-12 7.1

.16-10

.63-12 8.0

.64-13 8.0

.20-10

.79-12 8.0

.80-13 8.0

.10-6

.46-8 7.6

.50-9 7.7

.15-8

.13-9 6.0

.24- l0 5.9

.76-10

.33-11 7.7

.39-12 7.4

.25-9

.14-10 7.1

.19-11 6.9

.13-6

.59-8 7.6

.64-9 7.7

.92-7

.12-7

.30-8

.20-8

.16-9

.30-10

.12-7

.11-8

.20-9

.16-6

.73-8 7.6

.79-9 7.7

rate

.17-7

.23-8 4.9

.56-9 4.9

.24-10

.96-12 7.9

.98-13 7.9

.37-7

.17-8 7.6

.18-9 7.8

.37-7

.17-8 7.6

.18-9 7.8

when N-8, 12, 16, as well as estimated rates. The latter are calculated by
log e(N1)/e(Nz)/log N2/N1. The rates are in agreement with the theory; however, it
is interesting to study the actual magnitude of the errors. The collocation solution
(Algorithm 1) for Ul using these meshes is actually better than for the asymptotically
more accurate Algorithm 4, while for u2 the results are comparable. Ofcourse, eventually
the results for Algorithm 4 would be superior, but this will not occur until extremely
high accuracy is attained. Such behavior seems typical for those problems with very
smooth solutions. Algorithm 2 yields the most accurate solutions for these N, with
little accuracy being lost (except in e’) in the interpolation process. Algorithm 3 is
only slightly better than Algorithm 1 for these accuracies, even though it has faster
asymptotic convergence.

The second example (from 1]) has a spike at x 0 so variable meshes must be used.

u"= -(rx sin 7rx)u/e xu’/e "/r
E
COS q’J’X,

u(-1) -2, u(1) =0,

which has the solution u(x) =cos 7rx +erf (x/,,/-e)/erf (1/x/--e). For e 10-4, N= 32
the points of A chosen symmetrically about the origin, A {..., 0, .0045, .0092, .014,
.019, .024, .03, .038, .045, .054, .067, .11, .25, .44, .65, .83, 1}, the results are summarized
in Table 3. Note that this mesh was a consequence of attempting to equi-distribute an
approximation to 11u6) [11/6 (similar behavior occurred when various other quantities
were equi-distributed).

Here, Algorithm 4 really suffers because it interpolates data over seven subintervals
to calculate v on one subinterval" the factors from local mesh ratios play an important
role in the error. Algorithm 3 is also impacted by this, but to a much lesser extent as
it only reads data from three adjacent intervals to calculate v on one. The surprise for
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TABLE 3
Numerical results for Example 2.

Maximum error at knots

Algorithm Maximum error over [-1, 1]

.19-6

.11-1

.11-5

.26-3

.25-3

.27

.38-3

.10

this example is how poorly Algorithm 2 performed. The higher derivatives estimated
from the ditterential equation using the approximations t and t’ are quite large near
+ 1, even though u is smooth there. This results from the 1/e factor in the differential
equation magnifying the errors in t and t’; in fact, if u" 7r

2 cos 7rx, u’"= q..3 sin 7rx

are used to generate values for Algorithm 2 away from the spike at x 0, then e .72-6,
e’ 28-4 which compares favorably with the collocation solution. Ofcourse, in practice,
one does not have the exact answer at hand!

The final example is chosen to mimic the behavior of another example from 1]
without requiring such complicated constants.

u" 100u2,100ul Ul

U --104Ul + 104U2 U,

u(0)+ u(0) 3 + 101 exp (-500)/50,

u2(0) 1- 2 exp (-505),

u(5)- u2(5)= 101(1 -exp (-505))/50,

u(5) + u2(5) 1 +201 exp (-505)/50.

Here, the exact answers are

Ul(X) 1-2 exp (-x)+ {exp [100(x- 5))-exp (101x)}/50,

u2(x) 1-2 exp (-x)-2 exp [100(x- 5)] +2 exp (-101x).

This problem has mild boundary layers along with some oscillation; as in the previous
example, nonuniform meshes are called for. Table 4 displays the results for N- 20
with A--{0, .0095, .02, .032, .048, .068, .097, .15, .31, 1.25, 2.35, 3.67, 4.7, 4.85, 4.90,
4.93, 4.95, 4.97, 4.98, 4.99, 5}.

As earlier, Algorithm 4 is inferior due to the nonuniform mesh, Algorithm 3 is
much less affected by this. Algorithm 2 is more accurate than Algorithm 1, though
some accuracy is lost from that of the superconvergent values.

From examining these examples (and others not included), it is clear that no
matter which alternative is used, at least some of the accuracy of the superconvergent
quantities is often lost through the interpolation process. At times the results are inferior
even to the collocation solution. Algorithm 4 has little to recommend it; it is no more
efficient than Algorithm 3 and its superior asymptotic accuracy is rarely evident. More
importantly, it suffers severely on problems with highly nonuniform meshes. Algorithm
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TABLE 4
Numerical results .for Example 3.

Maximum errors at knots

Algorithm

e

.85-7

.19-5

.15-6

.58-5

.16-2

e

.20-6

Maximum error over [0, 5]

.31-4

.19-5

.58-4

.16

.71-5

.72-6

.17-3

.16

.31-2

.19-3

.58-2
.16+2

2 can be expensive because of the extra function evaluations required, but it fairly
consistently produced the most accurate results. Unfortunately, as Example 2 shows,
this algorithm can produce quite poor results in isolated cases. In contrast, Algorithm
3 seems fairly attractive: it produces answers whose accuracy is comparable to that of
the collocation solution, and it requires less storage and computation. The savings are
considerable in the case of large systems (large p).
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the Australian National University. The author is grateful to Mike Osborne and other
members of the Department of Statistics for their hospitality.
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SMOOTHER INTERPOLANTS FOR ADAMS CODES*

H. A. WATTSf AND L. F. SHAMPINE:I:

Abstract. The Adams family of ODE methods is based on polynomial interpolants to past values
obtained on a discrete mesh. It is desirable, and in some circumstances essential, to have an interpolation
scheme which produces globally continuous approximations to both the solution and its derivative. In this
paper we describe several ways of achieving the desired result in an efficient manner, and we give particular
emphasis to the task of achieving mathematical continuity by the computational algorithm.

Key words, ordinary differential equations, Adams methods, smoother interpolants

1. Introduction. Discrete valued methods for the solution of the initial value
problem

y’(x)=f(x,y), a<-_x<-_b,

y(a) given

produce approximate solution vectors y,,’-y(x,) on a mesh a Xo<Xl <"’. They
also produce an approximate derivative at mesh points by

y’,,=f,=f(x,,,y,,).

The Adams methods are based on polynomial interpolants to the y, and f, values. As
a consequence there are several natural polynomial approximations to y(x) and y’(x)
which are as accurate for x between mesh points as the approximations at the mesh
points themselves. Just which interpolant seems most natural depends on the point of
view. In the next section the two most popular interpolants are described. In one
respect, neither is natural; either the approximation to y(x) or the approximation to
y’(x) has jumps at all the mesh points. For example, the interpolant of SODE [3] and
of DE/STEP, INTRP [6] and its descendant DEABM [7] defines a globally continuous
approximation to the derivative, but the interpolant itself has a jump at each mesh
point of a size which is comparable to the local error tolerance.

In general, it is desirable, and in some circumstances essential, to work with an
interpolant which produces globally continuous approximations to both the solution
and its derivative. This paper describes several ways of achieving the desired result in
an efficient manner. One of our goals is to implement the scheme so that roundoff
effects are minimized when evaluating the interpolant at the mesh points; i.e., we
would like for the mathematical continuity to be very nearly achieved by the computa-
tional algorithm.

2. Interpolation formulas. Suppose that the numerical solution has been advanced
to x. and that the data y.+l_j and

are available for j 1,..., k. The explicit Adams-Bashforth formula of order k is
defined in terms of the polynomial Pk.,,(X) of degree (at most) k- 1 which is uniquely

* Received by the editors May 22, 1984, and in final form November 5, 1984. This work was performed
at Sandia National Laboratories and was supported by the U.S. Department of Energy under contract
DE-ACO4-76DP00789.

f Applied Mathematics Division, 2646, Sandia National Laboratories, Albuquerque, New Mexico 87185.
Numerical Mathematics Division, 1642, Sandia National Laboratories, Albuquerque, New Mexico

87185.
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determined by the interpolation conditions

Pk.,.(X.+l_j)=f.+l_j, j=l,’’ .,k.

The formula then defines a "predicted" solution P.+I at x.+l x. + h.+ by

Xn
P.+I Y. + Pk..( t) at.

A function evaluation is now made,

fP.+=f(x.+,p.+),

and the new information is used to define a "corrected" approximation to y(x,,+).
There are two natural ways to proceed. One is to drop the oldest value f,+-k, and the
other is to retain it and raise the degree of the interpolating polynomial. We shall
suppose that the latter approach is used so that the integration is advanced with the
result of an Adams-Moulton formula of order k + 1 (local extrapolation). This is done
by first defining the polynomial Pk*+I.,(X) of degree k which satisfies

Pk*+I.,(X,+I-j) =f,+,-, j 1,’’’, k,

P*+I..(x.+I) =/P.+,,

and then defining the corrected approximation y.+ by

Xn+l
Pk+l,.(t) dr.Y,+I Y. + *

This process defines a numerical solution only at the end of the step. A very
natural interpolant which defines an approximation for all x, < x <_-x,+l is

(1) /(x) y,. + P*+l.,.(t) dt=y.+.+ P*+l..(t) dt.

Notice that because of the way y.+ is defined, r/(x) is a polynomial of degree k + 1
which satisfies r/(x.)= y., r/(x.+l)= y.+, and

r/’(X.+l_) f.+_j, j=l,...,k,

n’(Xn+l) fPn+l.
If this interpolant is used for each interval (x., x.+l), it is clear that the resulting
piecewise polynomial function is globally continuous. Unfortunately, its derivative is
not. This is seen from the fact that the interpolant on (x., x.+) has

’/’(Xn+l)--fPn+l =f(x,+,, P-+I)

and the interpolant on (x,+, x,+2) has

/’(Xn+l) =fn+l =f(Xn+l, Yn+l).

In general p.+ y.+a; indeed, a fraction of the difference y.+-p.+ is an estimate of
the local error of the step. The jump in the derivative can be bounded by

IIf.+.-f.+lll-<- LII Y.+I p.+lll

where L is a local Lipschitz constant for f
There is another natural way to interpolate (which is implemented in the codes

of [3], [6], [7]). Using.the polynomial Pk+..+(x), an approximation is defined for all
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X < X Xn+ by

(2) yt(x) y.+ + Pk+l,,,+(t) at.

This is a polynomial of degree k + 1 with yI(Xn+l)--Y.+I, and the defining conditions
for Pk+l,.+ are

y(x.+l_j) Pk+I,.+,(X.+,-j)=f.+l-j, j 0, 1,""", k.

This piecewise polynomial interpolant leads to a globally continuous approximation
of y’(x), but because normally y,(x.) y., the interpolant itself has jumps at mesh
points. The report [5] identifies the jump at x. as

y. yt(x.) h,,+lgk+l,,[f+--fP+l]

where

and

Xn+l
h,,+gk+, (.Ok(t) dt

j=l Xn+ Xn+ -j/

The jump can be bounded by

It is argued in [5] that the right-hand side here is normally comparable in size to the
local error tolerance which the user specifies.

3. Polynomial representations. Very efficient schemes have been based on back-
ward divided difference representations for the underlying polynomial interpolants.
In particular,

Pk,.(t) =f[x.] + t- x.)f[x., x._,] + x.)( x._,)f[x., x.-i, x.-2]
(4)

+’’" + x.)( Xn_l) t- X.-,+z)f[x., X._,, X._+,]

with fix.,. , x.-i+l] being the usual notation for the divided differences of the f._j+a
values. One of the advantages of using the divided difference form is that it is easy to
obtain the polynomial which interpolates to one additional data point. Thus

(5) * "",P+,,.(t) P,.(t) + t- x.)(t x._,)’’" t- x._,+l)fP[x.+,, x., x.-,+l]

P+,,.(t)where the superscript p on the divided difference is used to remind us that *
interpolates to f.+ at x.+. However, we could also express this polynomial by the
mathematically equivalent form

(6) P*+,.(t)=fP[x.+l]+(t-x.+)fP[x.+,x.]+(t-x.+)(t-x.)fP[x.+,x",x"-]
+.." + x,,+,)( x.) t- x._+2)ft’[x.+,, x.,

a fact we shall use later on. Similarly, we can write P+,.+(t) either as

Pk+,,.+(t) =f[x.+] + x.+,)f[x.+i, x.] + x,,+,)( xn)f[Xn+l, Xn, Xn-,]
(7)

+’’" + X.+,)( X.) t-- X.-,+2)T[x.+,, X.,
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the form used in the interpolation routine in [3], [6], [7], or else as

(8) Pk+l.,,+l(t) Pk.,,(t) + (t-- X,,)(t-- Xn_l) (t-- Xn_k+l)f[Xn+l, Xn, Xn_k+l].

If we define

i--1

6,(n+l)=X.+l-X._,+,= Y h._+,,
j=O

it is easy to see that for >_- 1,

fPn+l-f,,+,
(9) fP[x.+,,X,, ,X._i+,]=f[x.+,,X., ,X,_,+I]+

l(n + 1)q2(n + 1)... qt,(n + 1)"

It is convenient and economical to modify the divided differences so that they reduce
to backward differences when the step sizes are constant. This is achieved by defining

th,(n + 1) --f[Xn+l] --fn+l,

ch+l(n+l)=q,,(n+l)q2(n+l) O(n+l)f[x.+,,x,,. ", x.-+l], i-->l.

Using these modified divided differences, we can now express (9) more simply as

(10) thP(n + 1)= ck,(n + 1) + (fP.+l -f.+l),

which is valid for each _>-1. Note also that we can write

(11) th,(n + 1)- bi+l(n + 1)
l(n + 1)... b,_,(n + 1)

th,(n) b*(n),
l(n)""" ti-l(n)

which relates the differences at steps n and n + 1 (using the same notation as in [2], [6]).
When integrating the underlying polynomial interpolants, we also find that it is

convenient to introduce a normalized variable s such that x, / shn+l for integrations
of (4), (5) or (8) and such that t-X,+l-sh,+l for integrations of (6) or (7). (The
implementation of the yI(x) interpolant in [3], [6], [7] uses t= X,+l+ s(x-x,+l).)
Furthermore, effective implementation of predictor-corrector schemes, derived from
integrating (4) and (5) to produce P.+I and Y,+I, respectively, require efficient use of
storage and this dictates that some computations be performed in a certain order and
in a certain way. Without going into the details, which can be found in [2] or [6], the
polynomial representations for (4) and (5), which are used in [3], [6], [7], are

k

(12) Pk,.(t)= E c,..(s)ck* (n),
i=1

and

(13) P*k+,.,(t)=Pk..(t)+Ck+,..(s)Pk+,(n+l),

where the c.,(s) coefficients are just the to_(t) of (3) in the new variable, and which
can be written as

1,
(14) c,..(s) s, i=2,

y,..(s)c,-1.,(s), i>=3,

with

(15) %..(s) 1 + (s- 1)h.+
i_l(n+ 1)

=-l+(s-1)a,_,(n+l).
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Using (11), (12), (14), (15) with the representation of Pk+..+l(t) given by (8), we
obtain

Pk+...+,(t)= Pk..(t)+ck+l..(S)k+.(n+ 1)
k

(16) E c,..(s){6,(n+l)-6,+(n+l)}+Ck+..(s)chk+(n+l)
i=l

k

61(n+ 1)+ E {c,+..(s)-c,..(s)}ch,+(n+ 1).
i=1

This form will be useful in the subsequent development. We shall also need the
following mathematically equivalent formulations: Setting h=x-x.+ and letting
ci../(s, h) denote the coefficients defined by the interpolant yi(x), corresponding to
the use of form (7), we have (upon employing (10) and noting the similarity of (6) to
(7))

k+l

Pk+..+(t)= Y’. c,..+(s,X h)b,(n+ 1)
i=1

k+l k+l

(17) c,,.+(s, h)dp(n+ 1)+(f.+l-fP.+) c,..+(s,h)X
i=1 i=1

k+l

Pk*+,,.(t) + (f.+l--fP.+,) E ’c,,.+,(s,h).
i=1

4. Smoother interpolants. The two interpolants r/(x) and yi(x) defined in 2 have
the same order of accuracy; it is their global smoothness that distinguishes them in
practice. Stetter [9] has suggested that r/(x) should be preferred for approximating
y(x), and y(x) for approximating y’(x). This is intuitively clear based on our earlier
observations about the behavior of the interpolants at the mesh points. He also points
out that if the routine INTRP in [6] were supplied with the bP(n+ 1) differences
instead of the bi(n + 1) values, the polynomial *Pk+,,(t) would be obtained instead of
Pk+,+(t) (compare (6) and (7)), yielding, therefore, r/(x) and r/’(x) instead of yi(x)
and y’i(x). Of course it is too expensive to retain both sets of differences, and it is the
most recent b(n + 1) values which must be kept. A simple way of modifying an
algorithm like INTRP to compute r/(x) and y(x) simultaneously is the following
(suggested by Krogh [4]): Integrating (17) and using (1) and (2), we find

(18)

k+l

y,(x)=y.++h g(h)b,(n+l)
i=l

k+l

rl(x)+(f.+l-fPn+l)h g,.l(h)
i--1

where h x-x.+ and the g.(h) are precisely those coefficients already computed in
INTRP,

gi.(h) s,iI,n+l( h) as.

Thus, one can form r/(x) by "correcting" y(x) provided that fn+l--fPn+l is made
available. This is certainly a simple and inexpensive way to define approximations to

the solution and its derivative which are globally continuous, at least mathematically.
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Numerical continuity is apparently not achievable with this form (see the results in
6) because roundott cannot be eliminated at the mesh points. Furthermore, this

approach is conceptually a bit unsatisfactory because the derivative approximation is
not the derivative of the solution approximation.

Stetter also discusses another interpolant, requiring an additional function evalu-
ation per step, which is defined as a correction to r/(x). Based on his analysis, he
concludes that this results in an improved interpolation procedure. We have not
implemented and tested this interpolant because it is too costly except in the context
of using the asymptotically correct local error estimate which he proposes. Moreover,
the derivative of the new interpolant has a jump at each mesh point, just as r/(x) does.

Stetter’s conclusions are plausible enough, but just how smooth should the inter-
polant be globally? The normal assumption is that f(x, y) is continuous, so that y(x)
itself is at least globally C 1. This suggests increasing the order of interpolation to
provide a globally C interpolant. This we describe how to do in the remainder of the
paper. The worth of a smoother interpolant is easily seen in the context of the common
task of finding where a given function g(x, y(x), y’(x)) has a root. The solution y(x)
and its derivative y’(x) are replaced by interpolants so it is obviously valuable to avoid
jumps in the approximating functions. One of us (HAW) was recently extending the
DEABM code to provide this capability and recognized that the present study was
needed.

To approximate y(x) for x, < x <-Xn+ we consider a polynomial T(x) of degree
k + 2 which satisfies

r(x,,)=y,,, T(x,,+)=y,,+,

T’(x.+,_) f.+,_, j=0, 1,...,k.

This polynomial interpolates all the data on hand describing the solution ofthe problem
and obviously furnishes a globally C approximation. The trick is to evaluate T(x) in
an efficient manner so that the continuity conditions are well satisfied when the finite
precision arithmetic of the computer is used. It is natural to proceed from either r/(x)
or y,(x) because efficient, numerically effective schemes for their evaluation are known,
and they need only small "corrections" to get rid of their jumps and so result in T(x).
It is immediately verified that T(x) can be written in the form

Q(x)
T(x) y,(x) + y,, yI(Xn)]

Q(x,)

where

Q(x) t- x,+)tok( t) at

and tOk(t) is given by (3). Integration by parts leads to

Q(x) h(h+d/k(n+l)] ’gk+,l(h)- h2g+l,2(h),
upon using the notation explained earlier along with h x-x,+l. This formulation
requires the evaluation of

S1
(S, h) ds dSl,g+l,(h) c+,.+

but, as noted in [8], a simple extension of the scheme already being used allows us
to evaluate Q(x) and, hence, T(x) with reasonable efficiency.
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Notice that we need to evaluate yI(x.), Q(x.) as well as yi(x), Q(x), meaning
that the interpolation coefficients g andi,1 gk+l,2 must be computed for two different
values of h. We shall (loosely) describe this situation as "having to perform two
interpolations". Obviously it would be better to have a scheme which computes only
one set of interpolation coefficients, especially when dealing with problems requiring
answers at a great many specified output points. Although it is easy enough to organize
matters so as to form the coefficients g,(-h,,+) and g+,2(-hn+l) in an initialization
phase and then reuse them for each x. < x < x.+, we do not consider it to be worth
a design inconvenient to users. Instead, we describe an alternative approach below for
reducing the work.

A seemingly different formulation is provided by the following approach [4]:
Consider adding a higher order difference term to (7) and integrating it in the same
manner as described previously. Making the natural extension to c (s, h) andk+2,n+l

looking at the first part of (18), this suggests writing

T(x) y,(x)+ hgk+2,1(h)e,

where e represents some higher order difference expression and, as before, h is the
quantity x-x,+. All interpolation conditions will be satisfied provided e is chosen
by the requirement T(x,)- y,. Thus, we obtain

k+2,1 h
[y. yt(x.)].T(x) y,(x)-

h.+lgk+2.1(-h.+a)

However, the recursive scheme used to define y(x) shows that (see, e.g., [2], [6] or [8])

, (h)=(h+k(n+l) h g+l,2(h).gk+2,1 q+( i3 ]gk+"l(h)--@k+l(n+l)
Comparing this definition to the form of Q(x), we see that this representation for T(x)
leads to an algorithm which is virtually identical to the previous one. So nothing is to

be gained with this formulation whenever the recursion is used to evaluate the integral
coefficients.

In order to eliminate most of the work arising from the extra set of interpolation
coefficients, it is necessary to use a different approach for the integration of P+,.+(t).
Specifically, using the form (16), we define

S(x) y. + Pk+l,n+,( t) dt

(19)
=y,,+h,,+ g,()(n+l)+ [gi+l,()-gi,()]dp,+(n+l)

where (x x)/ h+ and

(20) gi,l()--- Ci,n(S) ds.

We remark that the gi,l(1) values for 1,..., k+ 1 are precisely the coefficients
generated in defining p./ and y.+. Now, following the earlier construction, we set

R(x)
(21) T(x) S(x)+[y,,+,- S(x.+)]

R(Xn+l)
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with

R(x) Xn+l)(.Ok( t) dt 2hn+l{(:- 1)gk+l,l()--gk+l,2()}.

This arises by integration by parts and defining

(s) ds ds(22) gk+,2(:) Ck+l,n

Then

(23) cr
R(x) (- 1)gk+l,l()--gk+l,2()

R(x,,+,) --gk+,,2(1)

Unfortunately, the quantity gk+l,2(1) is not generally available. It can, however, be
obtained readily as we shall see in the next section. Although we have not succeeded
in eliminating completely the cost of "an extra interpolation," this approach represents
a substantial improvement over the procedure described in [8] and discussed earlier.

5. Implementation matters. In order to obtain good numerical continuity with the
interpolant T(x) defined by (19), (21), (23), we rearrange the computations as follows"
For xn < x -< xn+ and (x x,,)/hn+l

(24)

and

(25)

T(x) (1 -or)y, + cryn+

+ h,+ { g.(:)- crg.(1)]6(n + 1)

+ 2 ([g,+,l()--gi,()]--o’[g,+,l(1)--gi,l(1)])c,+l(n+ 1)
i=l

T’(x) (y,-y,+,)/hn+l + [C,,n() +/zgl.l(1)]b,(n + 1)

+ E ([ci+,.()-c,..()]+tz[gi+l.l(ll-g,.l(1)]),+l(n+ 11
i=1

where/x =(:-1)Ck+.n()/gk+l.2(1). The advantage of the form (24) for obtaining y,
and y,+ numerically as cr tends to 0 or 1 is obvious. When x x,, we have : 0 and
all g.j(0)=0, hence or=0 and T(x,,)= y,. To obtain T(x,,+)= Yn+l, we must have s
exactly equal to 1, which leads to ty being exactly 1. While : (x,/- x,,)/hn/ 1 in
principle, care must be taken to ensure this with computer arithmetic. This is because
the step size h,+ is formed first, and then X,+l x, + h,+ is defined. Thus the floating
point result of x,+-x, can differ from the stored hn/ Pl(n + 1) by as much as a

unit roundott in the larger of x, x,/, and hn+. This is easily remedied, however, by
redefining h,+l X,+l- x, as a variable local to the interpolation routine.

For T’(x) we note that when := 1, we have all c.n(1)= 1 and /z =0, hence
T’(x,,+l)=Ckl(n+l)’-f,,+. Although bl(n+l) equals f,+l in principle, this is not
usually the case in practice. With Adams codes, there are many differences computed
(and retained) in the course of advancing a single step. In order to conserve storage,
a compact (and efficient) scheme is used, whereby the various differences created are
written on top of the previously used quantities. For example, in the codes we have
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referenced, the values defined for bi(n + 1) are obtained by the following steps:

b,+l(n + 1) 0,

b’(n + 1)= b,%l(n + 1)+ b*(n), i=k,k-1,. .,1,

bk+(n + 1) =f,+l-- b(n + 1),

c,(n+l)=dp(n+l)+bk+l(n+l), i=k,k-1,... 1.

Thus it is clear that bl(n+ 1) will be only approximately equal to fn+ in computer
arithmetic. Similarly, we find that for :=0, all ci,,(0)=0 except Cl,,(0)= 1, so that
/z=0 and T’(x,)=ckl(n+ 1)-b2(n+ 1) "--f,,+-(f,,+-f,,) "-f,,. Although we would
prefer that the interpolant derivatives match the computed function values better, a
discrepancy is not as important as when occurring in the solution approximation. Since
we do not have a simple way to eliminate this drawback, we shall content ourselves
with this interpolant.

The new interpolation algorithm requires the evaluation of c1,,(), , Ck+l,n()
g.l(),’’’,gk+,(), gk+,2(), and gk+l,2(1). (Recall the comment about
g1,1(1),’’’, gk+l,(1) already being available.) The c,,(:) values are simple and inex-
pensive to obtain; it is the integral quantities g, that require some work. In order to
achieve numerical continuity, the algorithm for evaluating gd(:) must be compatible
with that used for evaluating g,(1) and, in fact, be identical when : is taken to be 1.
As already mentioned, Krogh [2] devised a scheme for evaluating such coefficients
based on recursive evaluation of repeated integrals of the ci,,(s), which was used by
Shampine and Gordon [6]. Referring to (14), (15), (20), (22), and defining gi,q(:) to
be (q-l)! times the q-fold integral of c.,(s), repeated integration by parts leads to
the recursion

(26) q,,q()=[l+(-l)a,_,(n+l)]g,_,q()-a,_l(n+l)g,-,q+l()
for q 1,..., k-i+3 and i=2,..., k+l. From the definition we find that

gl,q() -, g2,q(S) q(q + 1"
Evaluating (26) can be visualized as forming a triangular tableau where the column
of values g2,q() for q 1,- ., k + 1 can be used to initialize the process. By sweeping
from the top downward and overwriting previous values (i.e., the jth pass determines
g+,q() for q beginning with 1 and proceeding to k-j+2), these computations are
performed within a single vector of storage. However, an additional working vector is
also needed to save the g,x() values of interest before they are lost by overwriting in
the next pass. Note that gk+.2() is the last value computed by the procedure.

When 1, (26) reduces to

g,,q(1) g,_,,q(1)- a,_,(n + 1)g,_,,q+,(1)

which is exactly the recursion used in [3], [6], [7] to generate the coefficients needed
for p,+ and y,+. These values can now be used in the interpolation algorithm.
Unfounately, we also need gk+l,2(1), and this quantity is not generally available. It
can, however, be evaluated readily in the interpolation routine once the proper informa-
tion has been stored and made available. Basically, the idea is to compute a "diagonal
extension to the triangular array" by a simpler recursive operation of the form

(27) 8+= g,_+2(1) a(n + 1)
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for j- M,’’., k. Here M->_ 2 is an appropriate index determined by the sequence of
lowering and raising of the order of the integration method and changing of the step
size. The 8j can be likened to entries gj,k-;/3(1) in the triangular tableau. The gj,k-j+2(1)
are previously computed values which have been stored during the computation of
y,/. Actually, they represent a portion of the diagonal entries of the triangular array
diagram corresponding to order k. When M=2, (27) is started oit with 82
1/(k+ 1)(k+2); otherwise, 8t gM,k-M+3(1), a value presumed to have been stored.
Finally, the item of interest gk+l,2(1) 8k/l. Notice that the values g,l(1), , gk+l,l(1)
are not regenerated, and so a computational savings is achieved.

We remark that it will not always be necessary to compute gk+,2(1) in the
interpolation routine. Rather, advantage can be taken of the fact that in the process
of computing some gi,(1) in the main recursion scheme, the quantity gi-,2(1) has also
been computed and can be stored. Thus, the needed gk+,2(1) value will already be
available in those circumstances when the current order k is smaller than on an earlier
step taken, while the step size has remained unchanged throughout this sequence of
events.

For further details regarding the implementation see 10]. The algorithmic structure
is similar to that which is described in [6]. Reference [10] also contains a listing of
the interpolation routine along with a correction to the STEP code given in [6] and
being used in DEPAC [7]. (In certain circumstances, higher order integration
coefficients g,l are not formed correctly.)

6. Numerical results. In this section we provide some computational statistics
regarding the various interpolants discussed earlier. Although our primary emphasis
has been on obtaining a smoother interpolant, we also present some results reflecting
on the accuracy of the interpolated values. We display statistics gathered from three
problems taken out of a larger test collection (11 problems in all) which we examined.
These are problems A1, B4, and D1 in 1], except for a longer integration interval for
A1.

Problem 1. y’- -y, 0 <-_ x <- 50, y(0) 1.
Problem 2. Integral surface of a torus, 0-<_ x _-< 20,

y -yE- yya/ r, el(0)- 3,

Y Y Y2Y3/ r, y2(0) 0,

y=y,/r, y3(0) 0.

Problem 3. Newton’s equations of motion, 0-<_ x _<- 20,

Y’’ -el r3, el(O) 0.9, y(0) o,
y -y2/r3, y2(0) 0, y(0) x/11/9.

In the last two problems r is defined by rE-- y2 4-y22.
We solved these problems for several tolerances using a mixed error test in which

both the relative and absolute error parameters are taken to be the sameml0-2, 10-4,
10-6, or 10-a. The results were obtained on a CYBER 855 for which the unit roundoff
value (relative machine precision) is approximately 7.1.10-5.

Let I,(x) denote one of the interpolants, yx(x), ,/(x), or T(x), to be evaluated
for x, <_- x <_- x,+. Table 1 shows the relative discrepancies 8 max, 8,, 8’ max, 8’, in
achieving the continuity conditions at the ends of the interpolation intervals, where

8,,-max
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and similarly for 3’,. In the case of systems we display the values from the worst
behaving components. The computational results were produced by using the INTRP
routine for yi(x) and y(x), (18) and its corresponding derivative form to define
and r/’(x), and (24) and (25) for T(x) and T’(x). Table 1 shows that T(x) is globally
continuous and that the (computational) jumps in T’(x) at the mesh points are small
indeed. The jumps occurring in y1 and 7’ are quite visible, as expected. In the tables,
the notation 1.2(-3) means 1.2,10-3.

TABLE
Relative discrepancies 8 in satisfying continuity conditions.

Tol. YI Y rl r T T’

Problem

10-2 2.9 (+3) 1.7 (-11) 3.6 (-11) 57. 0. 2.4 (-12)
10-4 26. 2.3 (-13) 5.3 (-13) 15. 0. 7.1 (-14)
10-6 24. 5.6 (--13) 6.2 (--13) 17. 0. 1.4 (--13)
10-8 22. 2.2(--13) 3.9(--11) 11. 0. 8.4(--14)

Problem 2

10-4 2.2 (-4) 2.7 (-12) 2.2 (-12) .27 0. 2.9 (-14)
10-6 5.2 (--5) 7.2 (--12) 7.1 (--12) 3.7 (--3) 0. 1.8 (--14)
10-8 1.3 (-7) 2.5 (-11) 9.0 (-12) 6.0 (-2) 0. 2.1 (-14)

Problem 3

10-4 4.1 (-3) 5.6 (-12) 4.9 (-5) 2.9 (-2) 0. 2.2 (-14)
10-6 4.4(-5) 1.2(-11) 2.0(-8) 5.0(-4) 0. 8.8(-14)
10-8 2.7 (-5) 4.2(-11) 4.2(-11) 3.6(-5) 0. 3.0(-13)

Next, we display some statistics aimed at comparing the accuracies of the various
interpolants. Again, let I,(x) denote one of the interpolants for x, _<-x _<-x,+l and define

ti,. x. +-- h.+l for 1, , 9,

e. max (]y(x.) y.], ly(x.+l) Yn+l]),
i,. =]y(ti..)-I.(t,..)l,

9i=1

N total number of steps taken.

The interpolation error measures presented in Table 2 are the averages of the
and (fl’./e’.) quantities based on the number of steps taken.

These computations confirmed the expected behavior of the various interpolants.
Values of T(x) offer a distinct improvement over those of y(x), certainly in the
smoothness and possibly in a slight reduction in the error of the interpolated values.
There appears to be a slight degradation in the accuracy of interpolated derivative
values T’(x). Because we have examined other implementations for T’(x) and found
the same behavior, we are inclined to think this is due to the fact that the degree of
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the T(x) polynomial is one higher than that of yi(x). In general, errors in T(x) tend
to be rather uniform throughout each step interval, but the errors in T’(x) on the
interior of each step interval can be an order ofmagnitude worse than at the neighboring
mesh points.

TABLE 2
Error measures.

Tol. N YI Y’ rl rl T T’

Problem

10-2 31 1.3 0.85 0.45 1.1 0.65 1.1
10-4 46 1.2 1.9 0.55 1.5 0.69 2.5
10-6 74 1.1 1.9 0.68 2.1 0.76 1.8
10-8 91 1.1 3.1 0.69 4.1 0.76 3.7

Problem 2

10-4 101 0.97 1.6 0.91 2.2 0.89 1.9
10-6 144 0.99 1.6 0.97 2.5 0.96 2.4
10-8 182 0.97 2.5 0.94 3.9 0.95 4.9

Problem 3

10-4 86 0.93 1.2 0.86 1.6 0.86 1.8
10-6 135 0.93 1.3 0.87 2.1 0.87 2.0
10-8 208 0.93 1.7 0.93 1.5 0.93 1.9
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IMPLEMENTING DENSE LINEAR ALGEBRA ALGORITHMS USING
MULTITASKING ON THE CRAY X-MP-4
(OR APPROACHING THE GIGAFLOP)*

JACK J. DONGARRA.’]" AND TOM HEWITT$

Abstract. This note describes some experiments on simple, dense linear algebra algorithms. These
experiments show that the CRAY X-MP is capable of small-grain multitasking arising from standard
implementations of LU and Cholesky decomposition. The implementation described here provides the
"fastest" execution rate for LU decomposition, 718 MFLOPS for a matrix of order 1000.

Introduction. Over the past few months we have been experimenting with some
simple linear algebra algorithms on the CRAY X-MP-4 multiprocessor. The CRAY
X-MP family is a general-purpose multiprocessor system. It inherits the basic vector
functions of CRAY-1S, with major architectural improvements for each individual
processor. The CRAY X-MP-4 system is a four-processor model housed in a physical
chassis identical to the CRAY-1S. The system can be used to perform simultaneous
scalar and vector processing of either independent job streams or independent tasks
within one job. Hardware in the X-MP enables multiple processors to be applied to
a single Fortran program in a timely and coordinated manner.

All processors share a central bipolar memory (of up to 16 million words),
organized in 64 interleaved memory banks. Each processor has four memory ports:
two for vector fetches, one for vector stores, and one for independent I/O operations.
In other words, the total memory bandwidth of the four processors is up to sixteen
times that of the CRAY-1S system.

This note describes results obtained from three experiments: LU decomposition
based on matrix-vector operations, LU based on a "best" implementation for the
architecture, and an implementation ofCholesky decomposition based on matrix-vector
operations.

LU decomposition. The versions of LU and Cholesky factorization, used here,
are based on matrix-vector modules that allow for a high level of granularity, permitting
high performance in a number of different environments, see [2].

The algorithm designed to give the "best" performance on the X-MP architecture
is worth noting. It is based on standard Gaussian elimination with partial pivoting.
The algorithm is organized such that it zeros out three columns (below the diagonal)
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Office of Energy Research, U.S. Department of Energy, under contract W-31-109-Eng-38.

t CRAY Research Inc., Chippewa Falls, Wisconsin 54701.

347



348 TIMELY COMMUNICATIONS

of the matrix, then applies these transformations to the rest of the matrix. The
application of the transformations to the remainder of the matrix is split up among
the processors. An assembly language kernel is used to apply the three pivot rows for
simultaneous row operations. This reduces memory traffic and allows a single processor
of an X-MP to obtain its theoretical maximum sustainable computation rate of 198
MFLOPS. The assembly language kernel was multitasked in the experiment among
two, three, and four CPUs. Fortran-callable assembly language synchronization sub-
routines were used. These require less than half a microsecond for synchronization.

The process of finding the three pivot rows was not multitasked. However, it was
written as an assembly language kernel to reduce overhead for small problems. As the
factorization proceeds, the size of the relevant vector and submatrix decreases. The
final 15 15 block of the reduction was performed by an unrolled [2] version of
standard Gaussian elimination. This portion is entirely single-threaded Fortran and
runs at two to three times the speed of the Fortran which has not been unrolled.
Synchronization was accomplished through a fork-and-join mechanism using the
cluster (shared) registers of the X-MP.

Listed in Table 1 are the results of the experiments; speedups range from 1.3 on
a problem of size 50 50 to 3.8 for a matrix of order 1000 1000. The performance
ranges from 97 MFLOPS to an impressive 718 MFLOPS for four processors on a
1000 1000 matrix. For small problems, startup times dominate the overall perform-
ance. It is interesting to note that a system of equations of order 1000 can now be
factored and solved in under a second! (The same problem on a VAX 11/780 would
take roughly two hours to complete.)

TABLE
High-performance LU decomposition.

Order

50
100
200
400
600
1000

MFLOPS
#processors
2 3 4

97 124 135 145
145 230 281 325
172 330 426 526
183 353 507 652
186 364 535 689
188 372 550 718

Speedup over processor
#processors

2 3 4

1.28 1.39 1.49
1.64 1.94 2.24
1.81 2.47 3.05
1.93 2.77 3.56
1.96 2.87 3.70
1.98 2.92 3.81

For comparison we give in Table 2 the results for LU decomposition based on
matrix-vector operations. The parallelism here is gained by simply splitting the matrix-
vector operation across the processors (see [1] for details on the algorithm). The

TnBLE 2
LU based on matrix-vector operations.

Order

50
100
200
400
600
1000

MFLOPS
(4 processors)

57
167
343
537
608
675

Ratio of algorithms from
Table 1/Table 2

2.54
1.95
1.53
1.21
1.13
1.06
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matrix-vector modules have been coded in assembly language. The same number of
operations is performed here as in the version that gives "best" performance.

As we can see, for lower order matrix problems, the high-performance algorithm
is far more efficient. For large problems, however, there is not too much difference;
for the matrix of order 1000 thereis only a difference of 6% in the running time. This
fact shows one of the strengths in using the matrix-vector design for algorithms of this
nature. The matrix-vector modules can be easily changed as we go to a different
architecture, but the basic algorithm is unaltered.

Cholesky decomposition. A version of Cholesky decomposition for a symmetric
positive definite matrix was implemented on the CRAY X-MP-4 based on matrix-vector
routines (see [2] for algorithm details). Table 3 gives the performance of that routine
when run on 1 and 4 processors. In addition, the algorithm was reorganized to compute
information necessary to perform four steps of the decomposition during the same
step. This results in four independent "full size" matrix-vector multiplications. This
information is listed in the last column of Table 3.

TABLE 3
Cholesky decomposition based on matrix-vector operations.

Order

50
100
200
400
600
1000

MFLOPS
4 processors

processor (MY split)

59 52
117 154
163 345
184 544
189 623
193 689

Speedup

.88
1.32
2.12
2.96
3.30
3.58

MFLOPS
4 processors
(4 MV ops)

97
264
460
631
683
733

Synchronization was accomplished via the X-MP shared registers and semaphores.
Multiprocessing overhead in this case is largely the result of code changes and of the
breaking of a large piece of work into smaller pieces--each of which has essentially
the same startup time as the original large piece.

The apparent overhead for multitasking small problems is largely caused by the
following items:

1. Single-threaded portions of work. Finding pivot rows, scaling rows of the
matrix, the scalar square root in Cholesky decomposition--these are all of
great importance in the current study.

2. Less parallel work per processor in the computational kernel. Even in scalar
operations the X-MP uses a considerable amount of parallelism. In vector
mode, 100 floating-point operations can be performed in the time it takes to
call a subroutine and scores of flops in the time required to initialize a DO loop.

3. Additional memory-bank conflicts. The single CPU times were run with no
activity in the other three CPUs. When four processors are active, additional
conflicts will occur, though in this case the effect is small as the matrix-vector
operations are conflict-insensitive on the X-MP.

4. Synchronization overhead. This is dominated by the time a CPU is waiting for
all of its vector memory references to be completed. Thus, it is generally wise
to complete all vector memory references before synchronization, as it elimi-
nates the possibility of an inter-CPU memory race condition.
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Conclusions. The CRAY X-MP is capable of small granularity multitasking. For
large problems that are both vectorized and parallelized, performance of the X-MP-4
should be in the range of 400 to 700 MFLOPS. For smaller problems the startup time
of the parallel processes can dominate the execution time. This feature becomes more
important as more processors are applied to the problem.

Note. Since the time this work was conducted, CRAY Inc. Research has introduced
micro-tasking, which provides a mechanism for the user to conveniently, and with low
overhead, exploit small-granularity parallelism from Fortran programs with compiler
directives.
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A DIRECT METHOD FOR COMPUTING HIGHER ORDER FOLDS*

ZHONG-HUA YANG AND H. B. KELLER

Abstract. We consider the computation of higher order fold or limit points of two parameter-dependent
nonlinear problems. A direct method is proposed and an efficient implementation of the direct method is
presented. Numerical results for the thermal ignition problem are given.

Key words, two-parameter nonlinear problems, simple limit points, higher order fold points, double
extended systems, Newton’s methods

1. Introduction. This paper is concerned with the computation of special kinds
of singular points, which are called (simple) higher order fold or limit points. They
may arise in two parameter nonlinear problems of the form

(1.1) f(A,/, x) 0

where A,/ , x X, a Banach space, and f is a C mapping from x x X --> X. A
problem in the theory of thermal ignition is one such problem [1], [2], [3] which we
treat. Two parameter nonlinear problems arise in many other physical applications [6],
[8]. The problem in thermal ignition has the form

Lx h(A,/x, x),
(1.2)

Bx 0

where L is a uniformly elliptic differential operator, B is a boundary operator, A is a
rate parameter,/ is related to the activation energy, and h has the form

(1.3) h(A, p, x)= A exp (1...?X.x).
The solution x is the dimensionless temperature. Of particular interest are the values
Ao and o which correspond to the loss of criticality in the exothermic reaction described
by (1.2). These values correspond to "folds" or "limit" points.

Spence and Werner 10] proved that a cubic fold point (Ao,/Xo, Xo) off with regard
to A corresponds to a quadratic fold point (Ao,/Xo, Xo, 4o) of an extended system, F,
of f, provided certain conditions are satisfied. They located the cubic fold by using a
continuation method [5] to compute the quadratic fold point of an "extended system".
The main idea in this paper is to reduce a problem with cubic folds to a regular problem
by using a larger "double extended system". We also present an efficient implementa-
tion for solving the larger "double extended system". Thus we locate a cubic fold
directly, without any continuation. Related techniques in 11 show how to find isolas
and cusps using extended systems.

In 2 we give a brief review of simple fold points, the degree of a fold, and
extended systems. The main idea of our treatment of higher degree fold points is
contained in Theorem 2.1. The efficient implementation of Newton’s method is given
in 3. In 4 we give numerical results.

* Received by the editors May 15, 1984, and in revised form February 25, 1985. This work was supported
by the U.S. Department of Energy under contract EY-76-S-03-0767, project agreement no. 12, and the U.S.
Army Research Office under contract DAAG 29-78-C-0011.

" Department of Mathematics, Shanghai University of Science and Technology, The People’s Republic
of China.

Applied Mathematics, California Institute of Technology, Pasadena, California 91125.
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2. Folds, degree of a fold, and extended systems. First we review some of the
definitions and the main results about folds. Let Y be a Banach space and consider
the C mapping

Y- Y,
F"

(Ix, y --> F Ix,y

We use the notation F, (a), F,, (a), Fy(a), F,y(a), Fyy (a), Fyyy a),. ., to denote the
partial Fr6chet-derivatives of F at a (Ix, y) R x Y. We denote the dual pairing of
y Y and q Y* by q,y.

DEFiNiTION 2.1. A point ao (Ixo, Yo) Y is a fold point of F (with respect
to Ix) if

(2.1) F(ao) :0,

(2.2) Ker Fe(ao) # 0,

(2.3) F,(ao) - Range F(ao).
DEFINITION 2.4. A fold point ao is a simple fold of F if in addition to (2.1)-(2.3)

(2.4a) dim Ker Fr(ao)= codim Range F(ao)= 1.

In this case there exist nontrivial bo Y and qo Y* such that

(2.4b) Ker Fy(ao) {otdpola },

(2.4c) Range Fr(ao) {y YIq’oY 0}.

As is well known, near a simple fold point ao, the zero set of F, denoted by F-l(0),
is a smooth curve

F: F-’(O) fq U {[ t(s), y(s)]llS Sol <-_ 6}.

Here (J is a neighborhood of the fold point ao, 6 is positive and Ix (.), y(. are smooth
mappings satisfying

Ix(So)=Ixo, y(so)=Yo, I’(s)l/lly’(s)ll>O.

Along F we have the identity

(2.5a) F(Ix(s), y(s))=0

and we can differentiate it with respect to s as many times as the smoothness of F
allows. In place of F,(Ix(s),y(s)),. .,Fyyy(Ix(s),y(s)), we shall write
F($),""", Fyyy(S). Then we get by differentiating in (2.5a)

(2.5b) F,(s)Ix’(s)+Fy(s)y’(s)=-O, IS-Sol<&
Obviously (2.3) and (2.4) imply from (2.5) evaluated at So, that

(2.6a) tx’(So) =0,

(2.6b) y’(so) a4o for some a R, a 0 (say a 1).

The first nonvanishing derivative of Ix(s) at So determines the "degree" of the fold.
We formalize this in

DEFINITION 2.7. A simple fold point aoX Y is said to have degree m if
dPIx(So)/dsp --0 for all p < m and d"Ix(So)/ds" #0.

The result in (2.6) implies that all simple folds have degree two or greater. To
actually find the degree of a simple fold we need only differentiate further in (2.5a)
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or (2.5b) and find the first nonvanishing derivative of z(s) at So s. Thus from (2.5b)
we obtain

F, (s)l"(s) + Fy(s)y"(s) + Fro, (s)la,’(s)tz’(s) + 2F,y (s)/x’(s)y’(s)
(.5c)

+Fyy(S)y’(s)y’(s)=O, Is- ol< .
With a simple fold at s So we use (2.6) and (2.4) in the above, apply qo and note
that (2.3) and (2.4c) imply qoF,(So)SO to get

(2.7a) z"(So)--
FyY(S)66
qoF so)

So a simple fold is of degree two if and only if
(2.7b) toFyy(So)oo O.

We introduce the extended or inflated mapping

x Yx Y-+ Yx Y,

(2.8) G: (it, y, b)- F(/x, y)
Fy tz, Y qb

where l Y* is chosen later on in 3. It is not difficult to show (see [10, Thm. 2.1])
that if

(2.9a) G(/Xo, Yo, bo) 0

and (tXo, Yo) is a simple fold of F of degree two, then

o o(2.9b) DG F. Fy 0
o o oFwyqbo Fyypo Fy

is nonsingular. As a consequence, the system G( tz, y, b) 0 can be solved by Newton’s
method in some neighborhood of (/Zo, Yo, bo). G(/z, y, b)=0 is called an extended
system for F(/x, y) 0. Various kinds of extended systems have been used by different
authors [6], [9], [10] following their introduction by Keener and Keller in [4].

We next consider two parameter nonlinear problems involving the smooth mapping

x R x X---> X,
(2.10) f’( (A, t, x) -f(A, t, x).

For some fixed value of t to we assume that

g(A, x)=- f(A, lo, x) =O

has a simple fold point (Ao, Xo) with respect to A, according to Definitions 2.1 and 2.4.
We introduce, in exact analogy with (2.8), an extended system for f(A, t, x)=0

[ 14b-i
(2.11) F(A,/, x, b)-= / f(A,/, x) | =0.

\fx(A, i, x)ck]
Here Fis amapping fromXX to XX. If we denote Y=XX
and y -= (A, x, 4) e Y, the extended system F(A, t, x, 4) 0 can be written as
F(/x, y) 0.
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Our main idea is to extend this extended system, F(, A)= 0, again and to get
the doubly extended system

(2.12) H(/x, y, ) =- F(/x, y) / 0

Fy l, Y d/
where Y, L Y*. A specific L =- (0, l, 0) will be chosen later on in order to simply
(2.12). Using this system we obtain

THEOREM 2.13. Assume F : Range Fy. Then a third degree simple fold point
(Ao,/Zo, Xo) of f(A,/x,x) with respect to A corresponds to a regular solution
(Ao, tZo, Xo, Cho, Vo) of the inflated system

(2.14) / f(A, Ix, x) /=0.
\ L4,4, +Lvl

Proof. According to Spence and Werner [10, Thm. 3.1] a third degree fold point
(Ao,/Xo, Xo) of f(A,/z, x) with respect to A corresponds to a second degree fold point
(/Zo Yo) (Ao /Xo Xo bo) of F(tz, y)in (2.11) with respect to /z provided F Range F
Further applying [10, Thm. 2.1] to F(/x, y) we get that a second degree fold point
(tZo, Yo) of F(/x, y) with respect to/z corresponds to a regular solution (/Xo, Yo, @o) of
the doubly extended system H(/x, y, )=0 in (2.12) i.e. H(/z, y, )=0 is a regular
system at (/Zo, Yo, o), provided L 1.

Next we show that the double extended system H(/x, y, )= 0 is equivalent to
(2.14) for a particular L. Let

= u

and choose L= (0, l, 0). Then (2.12) becomes

(2.15a)

(2.15b)
(2.15c)
(2.15d)

(2.15e)
(2.15f)
(2.15g)

L- I lu-1 =0,

F(/x, y) / f(A,/x, x) ) 0,

\L(, , x)4,

Fy(/Z, y) f f trfa+fxU
x6 fxx4 \Lx6 +fxx4U +Lv

By Definition 2.1, we know thatf Range fx at a fold point. From (2.150: rf +f,u =0.
We thus get tr=0 and then u N(f,,). From (2.15d) and Definition 2.4 of a simple
fold we have u cbo. Using this u in (2.15a) we get a 1 in order to satisfy (2.15b).
The solution of (2.15) is thus

(2.16) /=/Xo, Y=Yo=- Xo =o--- 4)0

o/ Vo
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Here Vo satisfies

lvo O, fx,,dpoCko+fvo=O,

and/Zo and Yo satisfy F(/Xo, Yo) 0. This shows that (ho,/Xo, Xo, bo, Vo) is also a solution
of (2.14).

On the other hand, if we know the solution (ho,/Xo, Xo, bo, Vo) of (2.14), we can
easily construct a solution of (2.15) as in (2.16). Actually we have reduced (2.15) to
(2.14), which is also a regular system, by choosing the particular L= (0, l, 0). D

Since the inflated system (2.14) is regular, we can solve it by using Newton’s
method. The solution of (2.14) is just the third degree fold point with respect to h of
the original two parameter nonlinear problem, f(h,/z, x) 0.

We now turn to the efficient solutions of (2.14).

3. Efficient implementation of Newton’s method. After discretization (2.14)
becomes a finite-dimensional nonlinear system. Let x, b, v E", the dimension of
(2.14) is actually 3n-2 because we can choose lb =br 1, Iv= vr=0, where r is a
positive integer in 1 -<_ r <= n. For convenience we shall choose r 1 and the discretized
system of (2.14) is denoted by the same notation. Newton’s method applied to (2.14)
yields:

(3.1)
-lch+ 1

[-fx 4 4)

(,)

Here superscript (v) denotes evaluation of the coefficient matrix and the right-hand
side at (/,
/x -/x 6A =h -h 6x =x -x ,6v =v -v.

In expanded form, and with the superscripts of (6Ix, 6A, 6x, 6qb, 6v) suppressed,
(3.1) can be written as

(3.2) ab =0,

(3.3) a/ =0,

(3.5)

(3.6) 6v + 6A D5 + 6/x D6+26b+6x C3.
Here we have introduced

x )6

v, X q v, Xa2=fx,x(A v,/x )b "+Lx(A /x )v
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(3.7)

Nowlet

and

,Ss r (i,, ix_ ix#,. ., ix, ,Sx #, ),

Bt T (BA, iq2, ", ib.),

BrT SA, BY2, ", 6V. ),

(,’ ),

i.e.,/ with first column replaced by D1. We rewrite (3.4), (3.5), (3.6) as

(3.8)

(3.9)

(3.10)

M6s C1 + Sxl C2- 6/x

MBt C2-BIX-t- 6A, (D-D3)-6/z"

M6r=C3-2I6qb -25x + 6A (D-Ds) 6/x. D6.

Close to the fold point, M will be nonsingular by [7, Thm. 1] with Px x- Xl(]) and
the condition (I-P)CboO is satisfied by the bo given in (2.4b). Thus (3.8) can be
solved for Ss in terms of Bx and 5/x. By solving Ma C1, M/3 C2, M: D2 we obtain

(3.11)

(3.12)

Ss a +x /3 8t," :,

ax (ax,, +x,(/+ ;)-. ,..., .+ x,(.+ 6)- a. .).

Substituting (3.11), (3.12) into (3.9) gives

Mat C4+ aX C + 6" C6,

where

0

C4 C2 1 !2 + a(9-93),

1 /+6c=-a, 2.
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0

C6 B1 ..2 1()1 -[])3) -[])4.

Then (3.9) can be solved for 6t in terms of 6Xl and 6/.. By solving My C4, ,’/ C5,
M" C6 we get

(3.13)

(3.14)

6t y + 6Xl r/+ 6/x. sr,

6A ’Y1 + 6Xl */1 + 6tZ" ’1,

61t) r (0, Y2 + Xl 2+" 2," Yn + Xl n +" n).

Substituting (3.11), (3.12), (3.14) into (3.10) gives

d6r C7 + 6x1C + 6C9,
where

0 0

C7 -- C 2B1 72
B2

a2 -- OI(D1 D7),

Now (3.10) can be solved for 6r in terms of 6X and 6/x. By solving Me C7, ,0"--C8,
Msr C9 we get:

Thus

(3.15)

(3.16)

6r e + 6X O" + 6].1, 7".

6A 61 + 6X O" + 6[.1, 7"1,

31) T (0, 17,2 -- 6X2 0"2 + 6[d, 7"2, E ql_ 6X 0"n + 6[d, 7"n )"

Finally we solve for 31, 6/x and 6X from (3.11), (3.13), (3.15) and we get 6x, 6oh, 6v
by substituting 31, 6/x and 6Xl into (3.12), (3.14), (3.16). This concludes one step of
Newton’s method (3.1) applied to (2.14). Our indicated algorithm for solving the linear
system defining the Newton iterates is similar to one proposed in [7].

4. Numerical example. We consider the boundary value problem

(4.1a) fCA, l,x)=--x"+A exp
l+/xx

(4.1b) x(0) x(1) =0
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which describes an exothermic chemical reaction in an infinite slab [3]. It is discretized
on the mesh tj =jh, j 0, 1, 2, , n + 1 using the Collatz Mehrstellenverfahren:

h2

X(tj_l) 2x( tj)-F X(tj+l) -i- IX"(tj_l) -I- 10x"(tj) d- X"( tj+l)] h2x"( tj) -F O(h6).

The discretized form of (4.1) is thus"

(4.2) Ax+E(A,z,x)=O, xo=x,/=O,

where

(4.3a) E=(E,. ,E,) r,

(4.3b) +expE, - A exp
1 -i-1’ + 10 exp

1 + txxi 1

(4.3c) A--

(-2 1 0 01
1 -2 1 0

1. 0

1 "-2
1 -2

The double extended system now has the form

(4.4)

1- 1

Ax + E(A, lz, x)
[A + Ex(A, tx, x)]ch =0.

Exx(A, be, x) +[A+ E,,(A,/x, x)]v
lv

We choose so that hh th,, lv= v,, where rn (n + 1)/2. (Of course we must
choose n odd.) The calculation of each Newton’s step requires solving nine n x n
systems with the same coefficient matrix. The results of computation are given in tables
1, 2 and 3. They show good agreement with the results in [10].
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Abstract. A modification (MAP) of the algorithm (AP) of Alefeld and Platz6der (SIAM J. Numer.
Anal., 20 (1983), pp. 210-219) for the solution of systems of nonlinear algebraic equations which is similar
to the modification (MKM) of the Krawczyk-Moore algorithm (KM) which has been suggested by Wolfe
(SIAM J. Numer. Anal., 17 (1980), pp. 376-379) is described. Theoretical results for MAP which are similar
to those which have been derived by Alefeld and Platz/Sder for AP are presented. Numerical results comparing
the algorithms KM, MKM, AP and MAP are given.

Key words, interval mathematics, nonlinear algebraic equations, algorithm, efficiency index, inner
iterations, strategy
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1. Introduction. The Krawczyk-Moore algorithm [13], [14], [15], [16] for bound-
ing an isolated zero of a given mapping f: R R" using interval arithmetic is known
to be very effective, especially when combined with a search procedure of the kind
which has been advocated by Moore and Jones [16], [11], [12]. Subsequently several
authors, among whom are Hansen [7], Wolfe [22], Hansen and Sengupta [9], Qi 19],
[20] and Alefeld and Platz6der [3], have suggested modifications of the Krawczyk-
Moore algorithm which improve computational efficiency. In this paper, KM and AP
denote the Krawczyk-Moore and Alefeld-Platz/Sder algorithms respectively.

As pointed out by Alefeld and Platz6der, AP requires less computational labor
per iteration than does KM, and is capable of more sophisticated implementation than
they themselves describe. It is the purpose of this paper to show that a simple
modification of AP gives rise to an algorithm MAP which is more efficient computa-
tionally than KM, the modification KKM of KM which has been suggested by Wolfe
[22], and the algorithm AP in the basic form which has been described by Alefeld and
Platz/Sder [3 ].

2. Notation. The symbols R", M(R"), I(R "), and I(M(R ")) denote the sets of
n 1 real vectors, n n real matrices, n 1 interval vectors, and n n interval matrices
respectively. Elements of R", M(Rn), I(Rn), and !(M(R")) are represented by the
lower case italic, upper case italic, lower case bold, and upper case bold letters
respectively. The notation which is used in this paper and that which is used in [22]
are identical in all other respects.

Let A M(R") and b I(R) be given. The result of applying the Gauss algorithm
[1] to the pair (A,b) is represented by g(A, b)6 I(R"). As explained by Alefeld and
Platz6der [3], if A-1 exists then =IMA M(R") depending only on A, such that

()
and

(e)

w(g(A, b)): MAw(b),

A-lb_ g(A, b).

3. Preliminaries. This section contains some results which are required in the
proof of the theorem which is presented in 4. Let KN" I R" I M(R" )) M(R

*Received by the editors July 10, 1984, and in revised form January 14, 1985.
Department of Applied Mathematics, University of St. Andrews, St. Andrews, Fife, KY16 9SS,

Scotland.
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I(R") be defined by

(3) KN(x, F, A)= re(x) -g(A, {f(m(x))-(a-F)(x- re(x))})

where A is nonsingular, g: M(R") x I(R")- I(R") is given by (1), and f: R" R" is
a given mapping.

LEMMA 1. (i) If x, y I(R") and fl > 0 are such that w(y) <_- flw(x), F I(M(R")),
A M(Rn), and A-1 exists, then

W(KN(y, F, A)) _-</3W(KN (x, F, A)).

(ii) If F, G I(M(R" )) are such that G F, x I(R" ), A M(R "), and A- exists
then

W(KN(X, G, A)) -< w(Ku(x, F, A)).

LEMMA 2. Suppose that f: D
_
R" R" is a given mapping with f C(D). Let

f" I D I M R )) be a continuous inclusion monotonic interval extension off" D -M R’* ). Suppose that ::IA >0 such that (Vx6 I D

(4) w(f’(x))[[ A w(x) II.
Then :I tx > 0 such that (Vx I(D))

W(KN(X, f’(x), m(f’(x))))ll--< w(x)[I =.
The validity of lemmas 1 and 2 follows easily from (1), (2), and from the results which
have been established in [3].

4. The Algorithm MAP. Let f: D R" R" be a given mapping with f cl(b)
where/

___
D is an open convex set. Let f: I(/) I(R) and f" I(D) I(M(R" )) be

continuous inclusion monotonic interval extensions of f: D R and f" D M(R)
respectively. Let I(3), a sequence of nonnegative integers p(k), and a [0, 1) be
given. Then the algorithm MAP for bounding an isolated zero of f in is as follows.

1. x() :--
2. F<) := f’(x<))
3. B<) :- m(F<))
4. x(’) :: x
5. form=0top()do

5.1. X
(0’m+l)

6. x() := X(O’p()+I)

7. k:=l
8. while true do

8.1. Fk) := f’(xk))
8.2. A(k) := m(F(k))

A(k)8.3 u<k):= KN(X(k) Fk),
8.4. z
8.5. if w(u)) <_-- cw(xk))

then
8.5.1. B<):= A<)

8.5.2.
8.5.3. for m=l top(k) do

8.5.3.1. u(k’") := KN(X(k’m), F(k), A(k))
8.5.3.2. x(k’ ’+) := u(’0) c x(k’"

8.5.4. X
(k+l) :--" X

(k’p(k)+l)
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else
8.5.5. B(k:= B
8.5.6. v
8.5.7. X

(k’l) :-- V(k) (’ Z
(k)

8.5.8. for m 1 to p(k) do
8.5.8.1. V

(k’m) :--" KN(X(k’m), F
8.5.8.2. x(k’r"+l) := (k,m) (. x(k.m)

8.5.9. X
(k+l) :-- X(k’p(k)+l)

8.6. k:= k+l

If p(k)-0 (’k_-->0) then MAP and AP are identical. Otherwise f’(X(k)) is re-used p(k)
times in iteration k.

THEOREM. Let f: D_ Rn R be a given mapping, with f CI() where )_ D
is an open convex set. Let f" I D - I R and f" I D - I M R be inclusion
monotonic interval extensions off: D - R andf" D- M R respectively. Suppose that
x( I(/) is such that w(x()>0, that B(= m(f’(x()) is nonsingular, and that for
some a [0, 1)

(5) w(Kv(x(, f’(x(), B())) aw(x()).

If x() contains a zero x* off, then the sequence (x(k)) which is generated from MAP is
well defined and x(k) _> x* k -> o). Ifalso (4) holds, then for each p(k) >_ 0 =i tx

(k) > 0 such
that

If MAP terminates because an empty intersection occurs in one of the steps 5.1, 8.4,
8.5.3.2, 8.5.7, or 8.5.8.2, then there is no zero off in x(. Finally if, instead of (5),

(7) KN(x(), f’(x()), B()) c int(x())
then (5) holds for some a [0, 1) and :Ix* x() such that f(x*) O.

Proof. The proof follows closely that of the theorem which has been proved for
AP by Alefeld and Platz6der [3], and therefore only an outline will be given.

By Lemma 2 [3], A(k)-I exists (’k_-> 1) so the sequence (x(k) generated from
MAP is well defined provided no empty intersections occur. A simple inductive
argument shows that (x*x() ^f(x*) =0)=:>(x* x(k)(Ck-->0)). Another inductive
argument using Lemma 1 (i), (ii) shows that (k >-0)

w(x(+’) __< +’ w(x().
So W(x(k))--> 0 (k--> ), whence, because x* x(k)(’k_-->0), x(k)--> X* (k--> ). The result
(6) is a consequence of Lemma 2. The remainder of the proof follows closely that of
the theorem which is given in [3]. l-1
The theoretical results given by Wolfe [22] for MKM are valid with p(k) replacing p.

5. Methods for determining the ptk). Computational experience with both MKM
and MAP has shown that the choice of the number of inner iterations, p(k, greatly
affects the efficiency of both MKM and MAP. Wolfe [22] has considered choosing
p(k)= p, (’k_-> 0), for some fixed integer p in the implementation of MKM, and has
suggested that the optimal value for p might be estimated using techniques similar to
those described by Brent [5]. This is, however, difficult to implement in practice.
Hansen and Greenberg [8] suggest re-using the Jacobian matrix while the width of
successive iterates is being suffieiently reduced. Unfortunately it is difficult to determine
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what constitutes a sufficient width reduction since this varies greatly from problem to
problem.

In this section two methods which automatically select p(k), independently of the
size and complexity of the system of equations, are presented. Assume that the iterate
x(k’’’) (k >-0, m >-1) has been computed, and that a reliable estimate of the relative
efficiencies of computing a new outer iterate, x(k+1’1) and that of computing a new
inner iterate, x(k’m+l) can be obtained. Then, whichever iterate is expected to be more
efficient could be computed and the decision process could be repeated. Efficiency
indices pi and po corresponding to the computation of X(k’m+l) and X

(k+l’l) respectively
are given by

and

p, -ln (11 w(x(,+’)) II/II w(x(,)) II)/T,

Po-- -In (llw(x(/’"))lllllw(x(,))ll)l o,
where TI and To are the CPU times required to compute x(k’m+) and x(+’1) respectively
from x(’’’). Experience with both MKM and MAP has shown that the CPU time
required for each outer iteration does not vary greatly with k. Therefore the CPU time
for the next outer iteration could be estimated by the CPU time required for the
previous one. Similarly the CPU time for the next inner iteration could be estimated
by the CPU time for the previous inner iteration. The theory corresponding to both
MKM and MAP suggests that if x(+’)-- x(’") then

w(x(/’,’))l M()II w(x(,))ll-
where

and that

where

M()- IIw(,,’<,’))lllllw(x’<,O))ll

w(x(’<,’+l))l N(’<,,,,)II w(x(’<,,,,))

N(k,’)-

The two strategies for deciding whether or not to compute another inner iteration
use some or all of the above approximations, and are as follows.

Strategy 1. 1. Compute the efficiency index pi for an inner iteration from

p, -In (llw(x(’<,’>)lllllw(x(,"-l))ll)l T(k’’’)

where T(k’m) is the time required to compute X
(k’m) from )[(k,m-1).

2. Estimate the efficiency index po which would have been obtained if instead
x(k+’l) had been computed with ]I

(k+l’0)
X
(k’m-1) from

po -In ((M(’<)llw(x(’<,"-l))llblllw(x(’<,"-’))ll)l T(’’).

3. If po > pl then recompute the Jacobian. Otherwise re-use the Jacobian.
Strategy 2. 1. Estimate the efficiency index p1 for the inner iterate x(’"+1) from

pI -In ((s(’,’)llw(x(’,’))ll)lllw(x(’,’))ll)l T(’’).

2. Estimate the efficiency index po for computing the outer iterate x(+’) with
X
(k+l’0)

X
(k’m) from

po -In ((M()llw(x(,>)llblllw(x(,’))ll)l T(k’’).

3. If po > pl then recompute the Jacobian. Otherwise re-use the Jacobian.
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Although strategy 1, by the nature of its design, should always give one inner
iteration too many, it uses fewer approximations than strategy 2. In practice there is
little difference between the results obtained from the two strategies when they are
applied to MAP.

6. Numerical results. The algorithms MKM and MAP have been implemented in
Triplex S-algol [4], [6], [17] using strategies 1 and 2 to determine the p(k) and have
been used to solve several systems of equations on a VAX-11/780 computer. Numerical
results for five examples are given in this section. Examples 1 and 2 are of the form

(8) Ax + d(x)+ c=0

where A M(R") is tridiagonal, d" R" - R" is a diagonal operator and c R". Example
1 is the same as Example 2 in [1] and Example 2 is the same as Example 2 in [3].

Examples 3 and 4 are of the form

Ax+ Td(x)+c=O

where A, T M(R") are tridiagonal, d: R R" is a diagonal operator and c R". In
Example 3 the system of equations is obtained by using a discretization, described by
Henrici [10], to solve the boundary value problem

u"(t)=2(u(t)-t/2+l)2, u(0)--u(1)=0.

Example 4 is obtained by using the same discretization to solve the boundary value
problem

u"(t)=1/2(u(t))3, u(0)=l, u(1)=2.

Example 5 is described by Rail [21, pp. 66, 183] and the corresponding system of
nonlinear algebraic equations, which is obtained using a discretization described by
Ortega and Rheinboldt, 18, pp. 14-16], has the form (8) where A M(R" ), d: R" R"
is a diagonal operator and c R ". The numerical results which are presented in this
section are obtained using the initial interval x()= (xl)),l where for 1,..., n x
has the value [0, 5], [50, 100], [0, 4], [0, 10], and [1, 7] for Examples 1-5 respectively.

For each example, (5) is satisfied with

a max {(w(K(x(, f’(x()), B())))/(w(x())i[i= 1,..., n}

and (7)is also satisfied. The convergence criterion for each example is W(x(k))II --< 10-1.
Tables 1-5 give the CPU times, in seconds, which are required by the algorithm MKM

TABLE

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

5 46.55 52.64 52.68 47.48 48.53 50.29 52.27
10 153.74 153.84 174.98 141.87 136.75 144.44 145.35
20 605.96 520.16 772.83 598.44 540.51 445.11 434.73

TABLE 2

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

5 30.06 30.66 40.30 30.02 32.63 29.80 29.58
10 76.17 84.00 101.93 73.82 81.30 72.45 72.83
20 380.82 289.93 478.24 348.59 370.79 285.99 287.18
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to converge in Examples 1-5 respectively. Tables 6-10 give the CPU times, in seconds,
for the algorithm MAP to converge in Examples 1-5 respectively.

TABLE 3

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

5 21.93 23.77 24.49 22.50 23.44 25.19 23.93
10 82.21 75.61 83.96 73.38 71.94 78.77 74.77
20 495.43 450.03 922.34 688.09 501.41 535.31 466.16

TABLE 4

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

5 22.22 22.48 25.36 22.15 23.41 23.98 25.39
10 77.09 73.18 91.03 74.77 78.79 76.93 78.49
20 510.70 542.44 960.83 626.15 566.86 506.66 488.94

TABLE 5

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

9 37.92 44.20 44.79 36.33 43.96 38.56 41.92
16 202.59 224.07 296.36 197.98 211.50 181.76 183.00
25 532.40 498.73 1048.32 669.48 702.19 517.96 407.83

TABLE 6

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

5 48.92 49.35 54.13 48.87 50.72 50.42 54.21
10 123.58 125.41 135.28 118.00 120.71 129.18 130.25
20 391.47 383.09 439.00 387.50 378.80 385.29 390.74

TABLE 7

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

5 30.82 34.20 39.21 30.60 33.72 29.58 30.09
10 75.01 84.49 98.19 74.63 84.75 74.00 72.44
20 240.38 252.06 311.07 228.94 268.73 215.00 211.39

TABLE 8

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

5 21.72 22.09 23.89 21.43 21.65 24.88 22.78
10 78.40 74.19 84.09 74.29 72.05 79.70 75.67
20 326.00 336.55 408.51 343.42 305.88 342.54 309.03
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TABLE 9

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

5 21.78 22.10 25.05 22.16 22.79 22.95 24.84
10 76.17 74.63 90.68 76.61 78.03 78.56 79.73
20 333.72 344.45 459.76 350.47 358.12 359.13 340.37

TABLE 10

n Strategy Strategy 2 p 0 p p 2 p 3 p 4

9 35.17 37.98 41.92 35.86 41.42 37.69 41.10
16 122.91 126.68 160.11 127.34 138.57 122.38 133.19
25 320.14 335.36 428.28 317.32 350.63 321.89 331.65

7. Conclusions. The results given in Tables 1-10 illustrate quite clearly that the
algorithm MAP is more efficient than the algorithm MKM and the increase in efficiency
becomes greater as n increases. The results also show that although the two strategies
to select the number of inner iterations do not always choose the optimal value for
p(k), they do always produce a very significant increase in efficiency over the algorithm
AP, and this improvement increases with n. Thus of the four algorithms KM, AP,
MKM, and MAP, MAP, using either strategy to determine the number ofinner iterations
p(k), is the most efficient.

REFERENCES

G. ALEFELD, Ober die Existenz einer eindeutigen Lisung bei einer Klasse nichtlinearer Gleichungssysteme
und deren Berechnung mit Iterationsverfahren, Aplikace Matematiky, 17 (1972), pp. 329-340.

[2] G. ALEFELD AND J. HERZBERGER, Einfiihrung in die Intervallrechnung, Reihe Informatik 12, Bib-

liographisches Institut, Mannheim, 1974.
[3] G. ALEFELD AND L. PLATZDER, A quadratically convergent Krawczyk-like algorithm, SIAM J. Numer.

Anal., 20 (1983), pp. 210-219.
[4] P.J. BAILEY, A.J. COLE AND R. MORRISON, Triplex User Manual CS/82/5, Department of Computa-

tional Science Univ. St. Andrews, North Haugh St. Andrews, Fife, KY16 9SX, Scotland.

[5] R. P. BRENT, Some efficient algorithms for solving systems of nonlinear equations, SIAM J. Numer.
Anal., 10 (1973), pp. 327-344.

[6] A. J. COLE AND R. MORRISON, An Introduction to Programming in S-algol, Cambridge Univ. Press,
Cambridge, 1982.

[7] E. HANSEN, Interval forms of Newton’s method, Computing, 20 (1978), pp. 153-163.
[8] E. HANSEN AND R. I. GREENBERG, An interval Newton method, Appl. Math. Comput., 12 (1983),

pp. 89-98.
[9] E. HANSEN AND S. SENGUPTA, Bounding solutions of systems of equations using Interval analysis,

BIT, 21 (1981), pp. 203-211.
[10] P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, John Wiley, New York,

London, 1962.
11 S. T. JONES, Searching for solutions offinite nonlinear systems-An interval approach, PhD thesis, Univ.

Wisconsin-Madison, 1978.
12] ,Locating safe starting regionsfor iterative methods: A heuristic algorithm, in Interval Mathematics

1980, K.L.E. Nickel ed., Academic Press, New York, 1980.
[13] R. KRAWCZYK, Newton-Algorithmen zur Bestimmung yon Nullstellen mit Fehlerschranken, Computing,

4 (1969), pp. 187-201.
[14] R. E. MOORE, A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal., 14 (1977),

pp. 611-615.
15] ., A computational testfor convergence ofiterative methodsfor nonlinear systems, SIAM J. Numer.

Anal., 15 (1978), pp. 1194-1196.



NOTE ON THE ALGORITHM OF ALEFELD AND PLATZ}DER 369

[16] R. E. MOORE AND S. T. JONES, Safe starting regions for iterative methods, SIAM J. Numer. Anal., 14
(1977), pp. 1051-1065.

[17] R. MORRISON, A. J. COLE, P. J. BAILEY, M. A. WOLFE AND J. M. SHEARER, Experience in using a

high level language which supports interval arithmetic, read at ARITH6, the sixth symposium on
computer arithmetic, Aarhus, Denmark, 1983.

18] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution ofNonlinear Equations in Several Variables,
Academic Press, New York, 1970.

19] L. QI, A generalization ofthe Krawczyk-Moore algorithm, in Interval Mathematics 1980, K. L. E. Nickel,
ed., Academic Press, New York, 1980.

[20] L. QI, Interval boxes of solutions of nonlinear systems, Computing, 27 (1981), pp. 137-144.
[21] L. B. RALL, Computational Solution of Nonlinear Operator Equations, John Wiley, New York, 1969.
[22] M. A. WOLFE, A modification ofKrawczyk’s algorithm, SIAM J. Numer. Anal., 17 (1980), pp. 376-379.



SIAM J. ScI. STAT. COMPUT.
Vol. 7, No. 2, April 1986

() 1986 Society for Industrial and Applied Mathematics
003

CONVERSION OF DECIMAL NUMBERS TO IRREDUCIBLE
RATIONAL FRACTIONS*

R. PYZALSKI" AND M. VALA*

Abstract. A simple method for the conversion of decimal numbers to irreducible rational fractions is
formulated using a continued fraction expansion. A condition has been found such that the conversion may
be performed in a single-valued way for any set of decimal numbers. The algorithm has been applied to a

modified computer program and used to recover lost precision in certain computer calculations.

Key words, decimal number, conversion to fractions

1. Introduction. In many computations it is convenient to give the final results as
irreducible fractions instead of decimal numbers. Matrix elements in quantum
mechanics, in spectroscopic calculations, and in group theory are examples. Moreover,
an algorithm for the conversion can be used for the recovery of precision in numbers
being used as intermediate results in some computations. Many algorithms for such a
conversion have been used without publication. In the Statistical Analysis System
(SAS) there exists a machine language subroutine for the conversion of output numbers
called the FRACT format [7]. A common feature of these algorithms is the lack of
control of correctness of the conversion in relation to the precision of the numbers to
be converted. Without this, the conversion is not single-valued, i.e., the same number
can be converted to several fractions according to an arbitrarily selected difference
between the number and the fraction.

The conversion of decimal numbers to irreducible fractions is a simple example
of the more general mathematical problem concerning the approximation of algebraic
numbers by rational numbers. Although an old problem (cf. [1], [2], [6]) for which
good approximations are known [1], the application of the results to a computer
conversion of a set of numbers is not straightforward.

In this paper a method for the conversion of decimal numbers belonging to the
interval (0, 1) to irreducible rational fractions is described assuming that the maximum
expected denominator of the fractions to be obtained is known. This assumption allows
us to find a simple equation for the precision of the numbers to be converted. The
conversion is performed with the same precision. The conversion has an important
feature. If the number to be converted is computed from a rational function in an
approximate way, then one can calculate the necessary precision of the number to get
the same fraction as from exact computation. A brief outline of the method was
published earlier [5]. Its generalization for any decimal number greater than one is
straightforward.

The method is based on a continued fraction expansion of a rational number.
The expansion and some of its properties are given in 2. The conversion of an
approximate number (i.e., with a value different than the expected fraction) and the
propagation of errors of the decimal number through the different levels of a continued
fraction is described in 3. In 4 a condition is formulated for the conversion to be

* Received by the editors October 4, 1983, and in revised form June 13, 1984. This work was supported
by the National Science Foundation under grant CHE-8206142.

t Department of Chemistry, University of Florida, Gainesville, Florida 32611. Present address, Theoreti-
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single-valued for a set of decimal numbers. A summary and the conclusions are given
in 5. The Appendix contains a Fortran subroutine for the conversion.

2. Continued fraction expansion of a rational number. Consider a rational number
Ul which is greater than zero and smaller than one,

(1) 0<Ul<I.

Expressing ul as a finite continued fraction

U 1/(hi +//2)-- 1/(hi + 1/(n2+/’/3))
()

1/(nl+ 1/(n.+... + link))

where the ith partial denominator is the nearest small integer of 1/ui

(3) ni=[1/u]

and

(4) ui 1/ui-1- ?li-1.

Following Knuth [4] a set of the partial denominators n for 1, 2,..., k in the
expansion (2) will be called the Euclidean representation (ER) of the number ul. The
number of elements of the set will be called a dimension of the ER. The continued
fraction (2) can be converted to a rational fraction I/m by the recurrence equations [9]

li li-l ni + li-2,

mi mi-l li + mi-2,

(5)

(6)

where

(7) l= Ik, m= mk, /o=0, mo=l.

The sequence of li/mi fractions gives all the best approximations of ul by fractions
whose denominators do not exceed the value m [1].

If the following inequality

(8) 0<u<l

is satisfied for i= 2, 3,..., k, then the expansion (2) is a single-valued one [3], [9],
i.e., the rational number ul has one and only one ER.

If instead of (3) for i= k, we allow

(9) n’k [1/ Uk] l,

then we get another ER with k + 1 dimensions. In this case

(10) ul 1/(nl + 1/(n2+’’’ 1/(n,+l/1))).

So now nk+l 1 and Uk+ 1. One can easily check that the recurrence equations (5)
and (6) lead to the same fraction l/m for both ERs. Thus the two ERs are equivalent.
The method of introducing the second ER looks artificial. However, both are necessary
for a description of the conversion of the approximate numbers, i.e., greater or smaller
in comparison to Ul l/m.

3. Conversion of an approximate number. If the expansion (2) together with the
recurrence equations (5) and (6) are applied to a decimal number, they give an exact
conversion where I/m is equal to the converted number. Assume that instead of the
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Ul, we want to convert an approximate decimal number u u, --A with

(11) 0<u<l

(similar to (1)). When can this number be converted to the l rn fraction, i.e., converted
the same as the exact Ul number? From our previous consideration we conclude that
it may be done only when the number u can be represented by an ER whose k or
k + 1 initial ni numbers have the same values as one of the two ER for the exact Ul
number. Thus what condition must be imposed upon A1 to get this ER? The condition
will arise from properties of the expansion of the approximate number.

The reciprocal of u can always be written as

(12) 1/u nl + u2+ A2

where nl and u2 are the same as for the exact number ul. If nl is to be obtained from
u by the same equation as (3) i.e.,

(13) nl [l/u],

then the condition which must be satisfied is

(14) 0< u2+ A2 < 1.

Otherwise the nl number will be different than for the ul and the ER will not be
preserved. The u2 +/12 can be decomposed analogously to ul +/11 in (12) and the whole
expansion to a continued fraction may be carried on as for the exact number. For each
level of the continued fraction we obtain the fractional parts ui +/1 instead of u. So
the error/11 introduced to the exact number propagates through levels of the continued
fraction. It can be shown that the errors are connected and that

(15) mi+ -mi/(ui(ui-- mi) ).

In order to get the same ER as for the exact number it is sufficient to take the expansion
up to i= k or i= k+ 1 and for each assume (as in (14)) that

(16) 0< u +/1 < 1.

If this condition is satisfied for each 2, 3,. , k, the expansion of u has the form

U U -[-/11 1 / (nl + u2 +/12)

(17) 1/(nl + 1/(n2+ u3+/13))

1/(nl + 1/(n2+’’’ + 1/(nk +/1k+l)))

where it was assummed that a k-dimensional ER is necessary. The second possibility
will be given below.

The appearance of Ak/l in (17) changes this expansion from the exact number
expansion given by (2). The value of Ak+l cannot be arbitrary. The limitation of only
positive values arises in the same way as the conditions (14) and (16) did

(18) 0 /1k+ < 1.

Keeping in mind that the same fraction 1/m may be reached from a (k + 1)-dimensional
ER, we get a limitation on the negative values of the Ak+l. The formal transition from
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a k-dimensional ER to k + 1 can be written as

1/(nk+Ak+l) 1/(n’k+l+Ak+)

(19) 1/(n’+uk+)

1/(n+ 1/(nk+ + Ak+2))

where

(20) n’k= nk-1,

(21) nk+l 1 + Ak+l,

(22) nk+, =[1/Uk+],

(23) A+2 1/Uk+-- nk+.

Because Uk+ in the (k + 1)-dimensional ER must satisfy the condition

(24) 0 < Uk+ <- 1,

its introduction by (21) makes sense only when the Ak+ has a negative value and
satisfies the condition that

(25) -1 < A+ =< 0.

Since in the (k+ 1)-dimensional ER, n+ is equal to one, so, from (22), we have

(26) 1/2< u+-< 1.

This condition limits (25) to

(27) -1/2<A+,<0.

Combining (18) and (27) we get a general condition

(28) -1/2 < Ak+, < 1

obeying both ERs.
This condition is of great importance in our problem. It enables us to calculate

minimum and maximum values of the approximate number u which can be converted
to the same fraction l/m. These limiting values could have been calculated by using
the recurrence relation (15), but this is inconvenient for our purposes. We notice that
the recurrence equations (5) and (6) are correct even if the partial denominators in
(2) are not integral and they can be applied to the continued fraction (17). This leads
to

(29) u lk_fik

where

(30)

The remaining numbers in (29) are calculated in the same way as for the exact number
u. In order to get the two limiting values of the approximate number u it suffices to
substitute into (29) two limiting values of the A+ from the inequality (28). Because
it is more convenient to discuss the error A we write

(31)
m
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Its two limiting values are

(32) AI(-1/2) --(lk_im- lmk_)/(2m2- mmk_l),

(33) A(1) lk_ m lmk_)/ m+ mmk_).

These values confine the error of the numbers to be converted to the fraction l! m.
Moreover, they also give limiting values of a difference between the approximate
number u and the fraction l/m to be obtained. This result gives an important contribu-
tion to the algorithm for the conversion. In order to terminate the expansion process
of the number u in the place where li and mi m, it is necessary to compare the
difference u-li/m for each with values not exceeding (32) and (33). But direct
application of this simple procedure is not effective. First of all, if only the number
to be converted is known and not the final fraction, the allowed interval cannot be
calculated. The problem may be removed by decreasing the allowed error interval of
the numbers to be converted. This will be done in 4 for the conversion of a set of
numbers.

4. Conversion of a set of approximate numbers. Assume that we want to convert
numbers to various fractions with denominators from two to a maximum value M.
Because the characteristic interval of error cannot be evaluated for each number, we
will find one universal interval for the whole set. We take this interval to be the smallest
one belonging to the fractions of interest. The negative bound of the interval is given
by (32) for the case where

(34) l=M-1, m=M.

In this case

(35) mk-1 lk-1 1

and k 2. Then (32) becomes

(36) AI(- 1/2) -1/(2M2- M) -A.

A positive bound is also given by (32) for the case when

(37) /-1, m=M.

In this case k--1 and

(38) mk- m0 1, Ik-i =/o 0.

So the (32) becomes

(39)

Therefore, the maximum common interval is determined by the two fractions, the left
bound by (M-1)/M and the right one by 1/M. The interval can be treated as a
universal one for all fractions of interest. All numbers belonging to both the interval
(0, 1) and one of the intervals

(40) (1/m A, 1/rn + A),

where A is given by (36), and m 2, 3, , M and 1, 2, , M- 1, can be converted
to fractions with denominators from two to M. The differences between the fractions
and the converted numbers never exceed A

(41) u--- <A.
m
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Moreover, the absolute value of the ditterence between another fraction with a
denominator smaller than M and the number u cannot be smaller than A. This means
that with < k for a k-dimensional ER or with < k + 1 for a (k + 1)-dimensional ER
we have

lu l,I m,I Ill m l,I m, + A,I
(42) > IA-Illm- l,/m, ll_--> IA-- 1/Mm,

--> I- 1/(_,w’- ,,vt)I->_ la-2AI a.
The inequalities (41) and (42) determine the termination of the expansion (17) for an
approximate number.

5. Summary and conclusions. The expansion (17) together with the recurrence
equations (5) and (6) and the inequality (42) form the basis of the algorithm for the
conversion of a set of approximate numbers to fractions. If the maximum M of the
expected denominator is known, the allowed precision of the converted numbers is

(43) A=+I/(2M2-M).
This means that each number to be converted has to satisfy the condition (41). The
numbers which do this are exact or approximate in comparison with the fraction lm
to be obtained. They may be called accurate and their conversion single-valued.

The algorithm can be written in the following way:

1. A= 1/(2M2-M); v=u
2. 1-1--1; m_l=0; 1o=0; mo 1; i=0
3. i=i+l; n,=[1/v]
4. l l_ln + l_:; m mi_Ini + mi-:z
5. if u- l/m,I < a then l= l and m m; end
6. v=l/v-n;gotostep3.

If the conversion described by the above algorithm is applied to other numbers
belonging to the (0, 1) interval but do not satisfy (41), the resulting fractions always
have denominators greater than M. These numbers may be called inaccurate. The
appearance of a denominator greater than M is a convenient feature when the
conversion is applied to a modification of a computer output and indicates the lack
of precision of the converted number.

Finally, we discuss the method of forming the ER for a number. It has been
assumed that the ER can be obtained by the successive application of (3) and (4). The
full solution of this problem gives the Knuth-Sch6nhage algorithm (see [4], [8], and
references therein).

It is worth noting some additional properties of the present conversion. The
fractions are always irreducible. This feature is a result of the continued fraction
method applied to the conversion [9]. The number of steps for the conversion (which
is equal to the dimensions of the ER) is small. The recurrence formulas (5) and (6)
show that the number of iterations which are necessary to convert a decimal number
to a rational fraction is larger the smaller the partial denominators (3). The greatest
number of steps occurs for fractions whose ER contains only ones. The sequence of
the numerators and denominators of the rational fractions represented by these ERs
with increasing dimension can be obtained immediately from (5) and (6). Each element
of the sequence is a sum of two previous ones

(44) li li-1 -t- li-:z, mi mi_ + mi-2.
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Therefore both sequences are the Fibonacci ones. The fractions li/mi form the sequence
which converges to (x/-1)/2. The elements of this sequence belong to the interval
(1/2, ). The decimal numbers with values from this interval are converted to the rational
fractions which may (but do not need to) have the biggest ERs among all fractions
with denominators not exceeding a given value. Thus, these numbers may require the
largest number of iterations. From the above consideration one can find easily the
maximum number of iterations for a given denominator. It is given by the number
(diminished by one) of the elements in the Fibonacci sequence with a value not
exceeding the maximum denominator. For example, when the maximum denominator
is 100 then the maximum number of iterations is 10. An increase in the denominator
by one order of magnitude gives an increase in the maximum number of steps by 4
or 5. Numerical tests have shown that most fractions (from a set of all fractions with
denominators not exceeding a given value) have significantly smaller ERs in comparison
to the maximum one.

The application of this conversion to the modification of a computer output is
not complicated. A subroutine in Fortran language which may be applied for this
purpose is included in the Appendix. We have applied the conversion to the matrix
elements and coefficients of wave functions in calculations of atomic properties. Having
the values expressed as fractions permits them to be manipulated more easily without
any accumulated rounding errors.

In some computations intermediate results are calculated from rational functions.
Because of rounding (and other reasons) these numbers are only approximate. If the
maximum denominator is known and the precision of the intermediate numbers is
high enough to make the conversion in a single-valued way, the conversion and,
subsequently, the division of the numerator by the denominator result in a higher
overall precision. The improvement of the precision is dependent on a difference
between the precision of the numbers to be converted and computer precision which
limits the final division precision. Situations where this procedure can be applied exist
in many computations in physics and chemistry.

Appendix. The presented subroutine was tested on the Amdahl 470 computer. A
systematic test was done for fractions with denominators smaller than 1,000. Selected
numbers were converted to fractions with denominators up to 107. Fractions with larger
denominators require the numbers with precision comparable to or higher than available
in double precision calculations.

SUBROUTINE CONV (D, UU, NUM, DEN)
C D MAXIMUM DENOMINATOR
C NUM NUMERATOR

REAL,8 P, Q, U, UU
INTEGER D, NUM, DEN
P= 1D0/(2D0,D,D- D)
U=UU
L0=
M0=0
L1 =0
M1 =1

10 Q= 1D0/U
N=Q
NUM L1,N+ L0
DEN= M1,N+M0
IF(DABS(UU,DEN- NUM).LT.P,DEN)RETURN
L0 L1
L1 NUM

UU
DEN

NUMBER TO BE CONVERTED
DENOMINATOR
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M0= M1
M1 DEN
U=Q-N
GOTO 10
END
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THE USE OF ITERATIVE LINEAR-EQUATION SOLVERS IN
CODES FOR LARGE SYSTEMS OF STIFF IVPs FOR ODEs*

TONY F. CHANt AND KENNETH R. JACKSON

Abstract. Systems of linear algebraic equations must be solved at each integration step in all commonly
used methods for the numerical solution of systems of stiff IVPs for ODEs. Frequently, a substantial portion
of the total computational-work and storage required to solve stiff IVPs is devoted to solving these linear

algebraic systems, particularly if the systems are large. Over the past decade, several efficient iterative

methods have been developed to solve large sparse (nonsymmetric) systems of linear algebraic equations.
We study the use of a class of these iterative methods in codes for stiff IVPs. Our theoretical estimates and

preliminary numerical results show that the use of iterative linear-equation solvers in stiff-ODE codes

improves the efficiency--in terms of both computational-work and storagemwith which a significant class
of stiff IVPs having large sparse Jacobians can be solved.

Key words, iterative linear-equation solvers, inexact Newton methods, stiff-ODE solvers, initial value

problems

1. Introduction. As Gear [36], [37] and many others have noted, a major open
problem in scientific computing is the efficient solution of large systems of stiff
initial-value problems (IVPs) for ordinary differential equations (ODEs) of the form

(1.1) fc(t)=f(t, y(t)), y(to)=Yo.

These problems arise either directly in models of physical systems (such as chemical
kinetics or electrical networks) or indirectly as a step in the solution of another problem
(such as the application of the method-of-lines to a system of parabolic partial
differential equations [61]). Consequently, the efficient solution of large systems of
stiff IVPs is of great practical importance.

Although several authors have investigated techniques for avoiding implicitness
in the numerical solution of stiff IVPs, most workers in the field still agree with Stetter’s
comment [82] that "all reasonable methods-for stiff systems of ODEs have to be
implicit," except, possibly, for special classes of problems. That is, a system of linear
or nonlinear algebraic equations must be solved at each step of the numerical integra-
tion. Moreover, it seems that a Newton-like method must be used to solve the nonlinear
systems to avoid a severe restriction on the stepsize. Consequently, large systems of
linear equations must be solved in this case as well.

As we explain in more detail in 4, frequently a substantial portion of the total
computational-work and storage required to solve large systems of stiff IVPs is devoted
to solving systems of linear algebraic equations. Therefore, any improvement in the
efficiency with which these linear systems are solved will directly improve the perform-
ance of the integrator. Fortunately, the linear algebraic systems that arise in large
systems of stiff IVPs are usually sparse and this property can be exploited to great
advantage.
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Over the past decade, several efficient iterative methods have been developed to
solve large sparse systems of linear algebraic equations. The Krylov subspace methods,
of which the conjugate gradient method [44] is a well-known example, have proven
to be particularly effective for solving the linear systems that arise in the numerical
solution of elliptic and parabolic partial differential equations. (See, for example, [2],
[11], [14], [15], [17], [18], [25], [43], [55], [57], [59], [62], [63], [70], [71], [72], [84],
[86], [89] and the references therein.) Therefore, it is natural to consider the use of
iterative linear-equation solvers in codes for large systems of stiff IVPs for ODEs. Not
only are iterative methods faster than direct solvers for many systems of linear algebraic
equations, but also they require significantly less storage than direct solvers in most
cases. In addition, the use of iterative methods will ease some of the restrictions on
the stepsize- and order-selection strategies used in stiff-ODE codes; we believe that
this may improve the efficiency of these codes as well.

The outline of the remainder of this paper is as follows. In 2, we review the
numerical solution of the implicit formulas used in many of the most popular stiff-ODE
codes, emphasizing the relationship between the user specified error tolerance for the
IVP and the accuracy with which the implicit formulas must be solved. We also show
that a large class of stiff IVPs have properties that make the associated systems of
linear algebraic equations amenable to solution by iterative methods. We then review
the "inexact Newton methods" in which the systems of linear equations that arise in
Newton’s method are solved approximately, rather than exactly. Again, we emphasize
the relationship between the accuracy with which the implicit formulas and associated
linear algebraic systems must be solved.

In 3, we review iterative linear-equation solvers with particular emphasis on two
Krylov subspace methods: the preconditioned conjugate residual method for symmetric
positive-definite systems and preconditioned Orthomin(k) for nonsymmetric positive-
real systems. We also point out how these iterative linear-equation solvers can be
used in a stiff-ODE code that does not explicitly compute or store the Jacobian
associated with the IVP, and, in particular, how the linear systems can be preconditioned
in this case.

In 4, we develop theoretical estimates of the computational work and storage
required to solve the spatially-discretized two- and three-dimensional Heat Equation
using a stiff-ODE solver that employs either direct or iterative linear-equation solvers.
In 5, we present numerical results for the solution of the spatially-discretized two-
and three-dimensional Heat and Convection-Diffusion Equations as well as the 30
Stiff Detest Problems [28], [30] using stiff-ODE solvers based upon either direct or
iterative linear-equation solvers. Both the theoretical and numerical results look quite
promising.

Finally, in 6, we present our conclusions.
This paper complements the work of Miranker and Chern [66], Gear and Saad

[38], and Brown and Hindmarsh [3], who also studied the use of iterative linear-
equation solvers in stiff-ODE codes. We believe our development of the properties of
the linear algebraic systems that arise in stiff-ODE solvers that make these linear
systems amenable to solution by iterative linear-equation solvers is new, as is our
analysis of the relationship between the three tolerances required in a stiff-ODE code
employing an iterative linear-equation solver. In addition, our theoretical estimates

A real square matrix A is a positive-real with respect to a real inner-product (.,-) if and only if
(x, Ax) > 0 for all nonzero real vectors x. Typically, the usual Euclidean inner-product, (x, y) Y’. xi" yi, is
used.
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and numerical results extend the work of the authors referenced above, and, in
particular, show the importance of preconditioning in the solution of some large
systems of stiff IVPs.

Although their point-of-view is distinctly different, the predictor-corrector methods
developed and analyzed by van der Houwen and Sommeijer [52] are related to the
stiff-ODE methods discussed in this paper and those referenced in the preceding
paragraph.

2. Implicit formulas. Many numerical methods have been developed during the
past few decades for the solution of systems of stiff IVPs for ODEs, and this continues
to be an active area of research. Most of these methods can be classified as being in
one of three families: linear multistep (multiderivative) methods, implicit Runge-Kutta
methods, and extrapolation methods. Of these, the linear multistep methods have so
far proven to be the most successful [28], [30], with the most widely used codes being
DIFSUB [34], [35], GEAR [45], EPISODE [5], and LSODE [49], each of which is
based upon the Backward Differentiation Formulas (BDFs) popularized by Gear [35].
Therefore, in our discussion of implicit formulas below, we concentrate on the BDFs,
although much of what we say applies to stiff methods in general.

A k-step BDF for the solution of (1.1) can be written in the form
k(2.0.1) y, a nYn_ +’’" d- otnYn_k d- h,,fl,dc( t,, y.).

Tables of coefficients for these formulas may be found in [35]. To advance the numerical
solution from t,-1 to t, t_l + h,, (2.0.1) is solved for the approximation y to y(t,,)
using the previously computed approximations {y,-i}. Because (2.0.1) is implicit in
y,, an equation of the form

(2.0.2) F(y.) y. h.(t., y.) + c. O

must be solved at each step of the integration, where c, contains the terms in (2.0.1)
that do not depend upon y,.

2.1. Accuracy requirement for (2.0.2). In general, (2.0.2) is nonlinear and cannot
be solved exactly. Shampine [76], [77] discusses accuracy requirements for this
equation. He notes that most stiff-ODE codes attempt to compute an approximate
solution, y’,, to (2.0.2) satisfying

(2.1.1) Ily,, 97,, =< c,. TOL,

where TOL is the user specified error tolerance for the IVP and cl is a positive constant
(usually less than 1). Shampine [77] presents a convincing argument that, for a stiff-ODE
solver, a more appropriate criterion is to accept )7, if

(2.1.2) IIF(jT.)II <- Cl" TOL.

Not only is this criterion more easily related to the accuracy requirement for the IVP,
but also it is simpler to implement. Furthermore, Shampine gives an intuitive argument
that suggests that, for most stiff problems,

(2.1.3) Y. )7. F07. )11-
However, Houbak, Norsett, and Thomsen [51] demonstrate that it often takes more
computational work to satisfy (2.1.2) than (2.1.1) with little or no gain in the accuracy
of the numerical solution of the associated IVP. Although we do not address the
interesting question of which of these stopping criterion is more appropriate in a
stiff-ODE solver, we do develop a bound on IIY,-37,11 in terms of IIF(j;.)[I similar to
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one given by Williams [87], but using a somewhat different (and possibly simpler)
derivation. This bound and some of the relations used in its derivation are important
to our discussion of inexact Newton methods and iterative linear-equation solvers
below.

The validity of (2.1.3) is intimately related to the stability of the associated IVP.
Assume that the IVP satisfies

(2.1.4) (f( t, y) f( t, z), y z) <-- y(y z, y z)

for all (t, y) and (t, z) in the domain of interest, where y and z are real vectors, 3’ is
a real (possibly negative) constant, and (.,.) is a real inner-product. This assumption
is frequently made in studying the nonlinear stability of formulas for stiff IVPs as it
ensures the stability of the IVP (1.1) in the following sense. Let y(t) be a solution of
(1.1) and let z(t) satisfy the same differential equation but have a different initial value,
Z(to). If (2.1.4) is satisfied in a domain containing both y(t) and z(t), then

(2.1.5) IlY(t) z( t)l _--< eV(t-to)lly (to) z(to) II,
where [1" is the norm associated with the inner-product in (2.1.4). We say that the
IVP is dissipative if and only if y < 0. In this case, the IVP is asymptotically stable in
the sense that the distance between y(t) and any neighbouring solution ofthe differential
equation, z(t), decreases exponentially with t.

Inequality (2.1.4) can also be used to bound Ily -7. in terms of I[F()7,)II. Assume
that (2.1.4) holds at t, in a domain containing both y, and 37,. By (2.0.2) and (2.1.4),

(2.1.6) (1-h,,,,y)(y-z, y-z)<-(F(y)-F(z), y-z).

Hence, if 1- h,/3,y > 0, then, by (2.1.6) and the Cauchy-Schwarz inequality,

1
[[y- zll <- F(y)- F(z)lI.1 h..y

Taking y y, and z y’,, we get

1
(2.1.7)

1

from which it follows that, if y_<0, then (2.1.3) holds for any h,>0, since/3,>0 for
the BDFs. Note also that, if 1- h,fl,y> O, then (2.1.7) ensures that any solution of
F(y,) 0 is unique in the domain for which (2.1.4) holds. Moreover, if (2.1.4) holds
at t= t, for all real vectors y and z and if 1-h,/3,y>0, then, by the Uniform
Monotonicity Theorem [69], the unique solution of F(y,)=0 exists.

Now we consider in more detail for which class of stiff IVPs we can expect the
condition 1- h,,y > 0 to hold throughout the course of the numerical integration.
First, note that, if the Jacobian fy(t, y) exists and is continuous, then the algebraically
smallest y for which (2.1.4) holds is

(fy(t,y)v,v)
(2.1.8) 3’ max

(v, v)
where the maximum is taken over all nonzero real vectors v and all (t, y) in the domain
of interest. Hence, Fy(y,) I h,ffy(t,, y,) is positive-real if and only if 1 h,,y > O.

It is easy to show that

max {Re (A): A an eigenvalue of fy (t, y)} <= y,

where Re (A) is the real part of A. If f(t, y) is symmetric, then equality holds in the
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last inequality, but, if fy(t, y) is nonsymmetric, then the inequality may be strict, as
the example below demonstrates. However, the proof of [40, Thm. 1] can be adapted
easily to show that, for any fixed (t, y) and any e > 0, there exists a real inner-product
and an associated 3’ satisfying (2.1.8) for which

(2.1.9) 3’- e <- max {Re (h): h an eigenvalue of fy(t, y)} _--< 3’.

For IVPs having a symmetric Jacobian, it is quite reasonable to expect I h,fl,,3" > O.
In fact, for a large subclass of these problems, all the eigenvalues of the Jacobian
fy(t, y) are nonpositive, from which it follows that 3’-<_ 0, whence 1- h,fl,3" >_-1, since
h,,fl, > 0. Thus, (2.1.3) holds. On the other hand, if y > 0, then the Jacobian must have
a positive eigenvalue arbitrarily close to 3’ in the domain of interest. Consequently,
the differential equation has solutions whose components may grow like ev in a
neighbourhood of the solution of the IVP. Hence, it is reasonable to expect a stiff,ODE

solver to choose a stepsize h, for which 1- hfl3" > 0 to control the accuracy in the
potentially growing components of the solution. In fact, if 3’ > 0, one would expect
1 h,,3" to be close to 1, at least if the error tolerance is sufficiently stringent. Moreover,
the numerical solution of (2.0.2) requires that Fr(y.) be "numerically" nonsingular.
This effectively ensures that 1- h,,3" > 0, provided that h,/3, changes by small incre-
ments, since this inequality holds initially for h, sufficiently small and, as 1- h,fl,3" is
essentially the algebraically smallest eigenvalue of Fy(yn) I h,fly( t,, y,), 1
can never approach or pass through zero. Thus, for IVPs having a symmetric Jacobian,
it is reasonable to expect that Fy(y,) will be positive-definite and (2.1.7) will hold in
the event that (2.1.3) does not.

If the Jacobian fy(t, y) is nonsymmetric, then the assumption that 1 h,,3" > 0 is
somewhat more problematic, since, for a given inner-product, the associated 3’ given
by (2.1.8) may be much larger than the real part of any of the eigenvalues of fy(t, y).
For example, consider the differential equation ))--Ay, where

A=
0 -1

The eigenvalues of A are both -1, but, for the usual Euclidean inner-product,

(x, Ax)
3" max

(x, x)

can be arbitrarily large even though the eigenvalues of A are fixed. In particular, if
lal > 1, then A is not negative-real. Moreover, if a stiff-ODE solver is used to integrate
.f Ay over a long time interval with absolute error control, the numerical solution
will decay exponentially outside of an initial transient region and h. will become large.
Hence, for large t, it is reasonable to expect that 1- h,,3"<< 0 and Fy(y,)= I-
will not be positive-real. Furthermore, for the usual Euclidean norm, the smallest
constant c that ensures that

Ily zll <-- cllF(y)- F(z)ll

is II(I-h.fl,,A)-’ll, which may be larger than x/Sa/27. Thus, for large a, the residual
is not a good estimate of the error for this problem in the usual Euclidean norm. This
is not to say that, for the usual Euclidean inner-product and all IVPs having nonsym-
metric Jacobians, the condition 1- h,/3,3’ > 0 will be violated and Fy(y,,) will not be
positive-real or that the residual will be a poor estimate of the error in (2.0.2), but this
is the case for some problems.
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On the other hand, even if the Jacobian fy (t,, y,) is nonsymmetric, by an argument
similar to the one used in the symmetric case, it follows that it is reasonable to expect
that the stepsize, h,, in a stiff-ODE solver will be restricted by accuracy considerations
to the extent that 1- h,/3, Re (A)> 0 for all eigenvalues A of fr(t-, y,). In fact, for
many stiff IVPs, Re (A) <= 0 for all the eigenvalues offy t,, y,), whence 1 h,,fl, Re (A) >--

1 without any restriction on the stepsize h,. In any event, if 1- hal3, Re (A)> 0 for all
eigenvalues A off(t,, y,), then, by (2.1.9), there exists a real inner-product with respect
to which Fy(y,,) is positive-real, although this inner-product may depend upon (t,, y.).
For example, for the matrix A above, if we use the real inner-product (x, y)7- (x, Ty),
where T diag (2, 1) and (.,.) is usual Euclidean inner-product, then

max
(x, Ax)7-
(x,x)

which, for 8= e/a, is within e of-1. Hence, for 0<8<l/la], A is negative-real,
whence I-h,,,,A is positive-real with respect to the (.,.)T inner-product for any
h, > 0. Although these observations may not be of any practical importance in the
selection of an error control strategy for a stiff-ODE solver, we believe that they may
be of significance for the implementation of iterative linear-equation solvers, as will
become evident in 3. Moreover, as we explain in that section, the iterative solvers
that we consider are guaranteed to converge if Fy(y,,) is positive-real, but may break-
down otherwise. Hence, their break-down gives a warning that inequality (2.1.7) is
violated.

2.2. Numerical solution of (2.0.2). For nonstiff-ODE solvers, it is common to use
functional iteration to solve (2.0.2) or to employ an implicit formula, such as (2.0.1),
as the corrector in a predictor-corrector method. However, for stiff-ODE solvers, the
use of either of these techniques severely restricts the stepsize and it is exactly this
type of restriction that must be avoided for stiff problems. Therefore, in most stiff-ODE
solvers, a chord-Newton method is used to solve (2.0.2) at each step in the integration.
That is, given an initial approximation yO, to the solution y, of (2.0.2), the system of
linear equations

(2.2.1) ...g, k+l_,’,,t,y, yk) + F(y) 0

is solved repeatedly until an acceptable approximation y, is computed, where W, is
an approximation to the Newton iteration matrix

(2.2.2) Fy(y,) I h,/3,fy (t,, y,).

Frequently, W, is just the Newton iteration matrix retained from an earlier iteration
on the current or a previous step. Of course, if (1.1) is linear and the exact Newton
iteration matrix (2.2.2) is used at each step, then (2.2.1) gives the solution to (2.0.2)
in one iteration.

With the exception of GEARBI [48], all the "production" codes for stiff IVPs
known to the authors employ direct methods to solve the system of linear algebraic
equations (2.2.1). For example, GEAR, EPISODE, and LSODE each use Gaussian
Elimination (GE) with partial pivoting, while DIFSUB computes the inverse of W,
explicitly. For large systems of stiff IVPs, great savings in both computational-work
and storage can be achieved by taking advantage of the sparsity of the Jacobian. This
observation led to the development of codes that employ either banded GE (such as
GEARB [46], GEARIB [47], and LSODE) or sparse GE (such as GEARS [80] and
LSODES [50]).
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Furthermore, much of the consideration in choosing the formulas, strategies, and
heuristics in a stiff-ODE solver is directed towards solving (2.0.2) as efficiently as
possible. To this end, most stiff methods evaluate the Jacobian and refactor Wk as
seldom as possible, since, as explained in more detail in 4, the cost of these two
operations may dominate the computation. Hence, in most stiff-ODE solvers, W,k

remains unchanged for several consecutive integration steps.
The desire to avoid refactoring W,k also affects the choice of stepsize- and

order-selection strategies in a stiff-ODE solver. If the stepsize or order is changed from
one step to the next, then at least one of the terms h, or/3, occurring in the Newton
iteration matrix (2.2.2) is changed as well. Therefore, unless wk, is updated and
refactored, it may be a poor approximation to (2.2.2). As a result, the chord-Newton
iteration (2.2.1) may fail to converge or converge too slowly. (Note that this observation
applies to linear as well as nonlinear IVPs.) Consequently, the stepsize- and order-
selection strategies in most current stiff-ODE solvers are restricted by this consideration.
For example, EPISODE changes stepsize and/or order only after a failed step or when
it estimates that it can increase its stepsize on the next step by a factor of at least 1.3.
In addition to forcing the method to take more steps and function evaluations to
integrate a problem than might otherwise be required, this constraint on the order-
and stepsize-selection strategies reduces the "smoothness" of the dependence of the
actual error committed by the code in solving a problem on the user specified error
tolerance; it is generally agreed [37] that such "smoothness" is a very desirable property
for an ODE solver to possess.

The choice of variable-stepsize implementation of a multistep formula is also
affected by the consideration of how this choice will effect the efficiency of the Newton
iteration. The two commonly used implementations are the fixed-coefficient
implementation (FCI) of Nordsieck [67], which is used in DIFSUB, GEAR, and
LSODE, and the variable-coefficient implementation (VCI), which is used in EPISODE.
For nonstiff problems, both theoretical considerations and numerical testing have
shown VCI to be superior to FCI for the Adams formulas. (See, for example, [29],
[39], [53], [78] and the references therein.)

However, this clear superiority of one implementation over the other for Adams
codes does not extend to stiff methods based upon the BDFs. The reason for this seems
to be that, when VCI is used with a k-step BDF, the coefficient/3, in (2.2.2) continues
to change on each of the k- 1 steps following a stepsize change. Therefore, unless wk,
is updated and refactored on each of these steps, it may be a poor approximation to
the Newton iteration matrix (2.2.2). On the other hand, FCI does not share this
disadvantage, since, for this implementation,/3, is a constant that depends only upon
the formula being used. We believe that it is primarily for this reason that the numerical
results in [28], [30] indicate that GEAR is more efficient than EPISODE. On the other
hand, the numerical results in [6], [7] suggest that EPISODE is more robust than
GEAR. This empirical observation is supported by the theoretical results in [39], which
show that VCI is more stable than FCI for the BDFs. (See [54] for a more detailed
discussion of this topic.)

The cost of solving the implicit equation (2.0.2) also affects the choice of formulas
used in a stiff-ODE solver. For example, although A-stable for arbitrarily high orders,
the classical implicit Runge-Kutta formulas (IRKFs) [4] suffer the major disadvantage
that the implicit system of equations associated with an S-stage formula is S times as
large as the corresponding system (2.0.2) for the BDFs.

There has been a considerable effort during the past decade to alleviate some of
the difficulties discussed above associated with solving an implicit equation of the form
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(2.0.2) at each step of the integration of a stiff ODE. However, one approach that has
only recently begun to be investigated actively is the use of iterative methods to solve
(2.2.1) [3], [38], [66].

For parabolic PDEs, iterative methods have been popular since the early days of
computing: SOR and ADI have been used effectively for several decades [83]. More
recently, the conjugate gradient method [2], [17], [18], [57] has received a considerable
amount of attention. We believe that the use of iterative methods in stiff-ODE codes
should be investigated as well. It appears that these methods offer a great potential
for reducing the cost--in terms of both computational work and storage--of solving
large systems of stiff IVPs having sparse Jacobians. Furthermore, as discussed in more
detail below, the use of iterative methods may alleviate some of the constraints on the
stepsize- and order-selection strategies discussed above.

2.3. Inexact Newton methods. To begin, note that the linear equation (2.2.1) is
solved only to obtain an approximate solution to the nonlinear equation (2.0.2): there
is no reason why a direct linear-equation solver must be used in a stiff-ODE code to
solve (2.2.1). Moreover, Sherman [79] and Dembo, Eisenstat, and Steihaug [16] show
that it is only necessary to approximate the solution of these linear equations
"sufficiently accurately" to obtain a quadratic rate of convergence for the Newton
iteration.

More specifically, consider the class of inexact Newton methods [16]. Given an
initial guess yO, any such method computes a sequence of values {yk} satisfying the
recursion

(2.3.1) IIFy(yk,,. k+l_ k
,,)tY,, yk,)+ F(y,,)l <__ rlkllF(yk)ll,

where r/k <= ’0max < 1. In the next section, we discuss the use of iterative methods to
compute (yk+_yk) satisfying (2.3.1), but, independently of how yk,+ is determined,
Dembo, Eisenstat, and Steihaug [16] prove that, under the usual assumptions for
Newton’s method, yk, y,, with a rate of convergence that is at least linear.

Even though it is not necessary to factor or invert Fy(yk) in an inexact Newton
method, it is necessary to evaluate the Jacobian of the IVP, fy(tn, y,k), to compute
Fy(yk,) on each iteration. For large problems, the evaluation of the Jacobian may be
very expensive, and, consequently, should be avoided whenever possible. Therefore,
we consider the class of inexact chord-Newton methods for which (2.3.1) is replaced
by

(2.3.2) wk(yk+--Yk) + F(Y)II -< IIF(Y)II,
where, as in the previous subsection, Wk is an approximation to Fy(yk,). But in this
case, if an iterative method is used to solve (2.3.2), there is little additional cost
associated with using the current value of the scalar h,/3, in wk, although the Jacobian
may remain unchanged from one inexact chord-Newton iteration to the next. In any
case, the proof of Theorem 2.3 in [16] can be adapted easily to show that yk,,y,,
linearly for an inexact chord-Newton method if in addition we assume that W is a
good approximation to Fy(y,) in the sense that

wkn Fy(Y,,)II <= 3 and [l(wk)-1- Fy(yn)-II[ 3/,

where 3’ is the constant appearing in the similar inequalities (2.3) and (2.4), respectively,
of 16].

Like a chord-Newton method, the rate of convergence of an inexact chord-Newton
method is not superlinear in general. This together with the convergence results quoted
above suggest that an appropriate choice for r/k is a constant < 1.
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In choosing a value for r/, it is useful to note that, in many stiff-ODE solvers such
as GEAR, EPISODE, and LSODE, yd, is normally a very good initial approximation
to yn in the sense that both [[y-y,ll and [IF(y)ll are close to TOL, the user specified
error tolerance for the IVP, since yd, is computed by an explicit formula of the same
order as the implicit corrector. As a result, usually only one or two iterations of (2.2.1)
are required to compute yk, satisfying either (2.1.1) or (2.1.2). To avoid an excessive
number of evaluations of F(yk) when using an inexact chord-Newton method to solve
(2.0.2), we also require that, on most steps, only one or two iterations of (2.3.2) be
used to compute an acceptable yk. Furthermore, note that

F(yn+l) k k+Fy(yn)(y, yk,)+ F(yk,) wk(yk,+l_ yk,)+ F(yk,).

Hence, if IIF(y.)ll -TOE and we want y to satisfy (2.1.2), then a reasonable value
for r/ is r’cl, where r < 1 is a positive constant and Cl is the constant appearing in
(2.1.2). An alternative is to replace (2.3.2) by

(2.3.3) wkn(yk+--Yk) F(yk)[Jn < r. c TOL,

since we require only that ykn satisfy the acceptance criterion (2.1.2) and not that y kn
ultimately converges to y,.

Based upon the relationship between [[y.-y.II and IIF(y.)ll developed in 2.1,
it also seems appropriate to use either (2.3.2) with rt r. Cl or (2.3.3) as the acceptance
criterion for an inexact chord-Newton method when the acceptance criterion for the
implicit equation (2.0.2) is (2.1.1) rather than (2.1.2), although the justification is more
tenuous in this case. However, our numerical tests reported in 5, based upon a
modified version of LSODE which employs LSODE’s acceptance criterion of the form
(2.1.1) for (2.0.2) and the acceptance criterion (2.3.3) for the inexact chord-Newton
method, show that this heuristic works quite well in practice.

A stopping criterion of the form (2.3.3) for the inexact Newton method is also
used by Brown and Hindmarsh [3] in their modified version of LSODE. In addition,
they prove a result about the iterates y,k, which, although apparently not tight, suggests
that the stopping criterion (2.3.3) is appropriate for stiff-ODE solvers.

Finally, we note that the accuracy of the approximation yk, to y, affects not only
the accuracy and stability of the underlying implicit ODE formula [60] but also other
formulas, strategies, and heuristics used in the ODE solver. For example, in our
preliminary numerical tests with a modified version of LSODE, we found that y, yd,
often satisfied (2.3.3), particularly on the initial steps of the integration. However,
accepting yl=, yd, has a deleterious effect upon the code, since the error estimate in
LSODE is based upon the difference between y0, and the accepted y kn and, moreover,
the stepsize- and order-selection strategies are based upon the magnitude of the error
estimate. Hence, the error may be grossly underestimated and too large a stepsize
selected for the next step. We were able to avoid this difficulty in part by taking --F(yk,),
rather than 0, as the initial guess for yk+l--yk in the iterative solution of (2.3.3).
Moreover, as this initial guess corresponds to the usual corrector in a predictor-corrector
method, it produces a good initial approximation to the nonstiff components of (2.3.3).
The choice of a good initial guess for yk,+l_yk, is discussed in more detail for linear
systems of IVPs in [66], where, in our notation, they consider initial guesses for yk,+ yk,
of the form -(I / A +. + A)F(yk,) where A I- W,k. Other polynomial approxima-
tions to (I- w,k)- could be considered also. However, the effect of the accuracy of
the approximation yk. to y, on the formulas, strategies, and heuristics of an ODE solver
clearly requires much more study, not only for methods employing inexact Newton
methods, but also for all methods based upon implicit formulas.



ITERATIVE LINEAR-EQUATION SOLVERS IN STIFF-ODE CODES 387

3. Iterative linear-equations solvers. In this section, we discuss the choice of
iterative methods for solving the systems of linear equations that arise in inexact
chord-Newton methods (2.3.2). Because these iterative methods must function as a
component of a general purpose stiff-ODE solver, it is essential that they perform
effectively for general sparse systems of linear equations and are not dependent upon
any special matrix properties such as those, for example, associated with the five-point
operator for the two-dimensional Laplacian. This consideration immediately eliminates
PDE-related methods such as ADI or multi-grid. Moreover, even for the application
of the method-of-lines to parabolic problems, many of these PDE-related methods are
unsuitable because they require specific information about the PDE itself (e.g., grid
structure or operator splittings) which is not usually available to a general-purpose
stiff-ODE solver.

Although the classical iterative methods, such as Jacobi, Gauss-Seidel, and SOR,
are not restricted to PDE-related problems, they may not converge for general linear
systems. Moreover, even when they do converge, these methods are often slow when
used on their own and are, therefore, frequently coupled with an acceleration technique
to improve their convergence rate. For example, the Symmetric SOR (SSOR) method
[88] may be accelerated by either the Chebyshev semi-iteration method or Richardson’s
second-order method [41]. One undesirable feature of these acceleration techniques
is the need to estimate parameters to make them effective. Typically, these parameters
depend upon the eigenvalues of the coefficient matrix, which are generally not known
to the user a priori. However, adaptive Chebyshev methods, which automatically
estimate these parameters, have been developed recently [62], [63] for both symmetric
and nonsymmetric problems. These methods may be particularly effective for time-
dependent problems, since the coefficient matrix Wk of (2.3.2) (and, hence, the
associated optimal Chebyshev parameters also) change slowly from step to step
throughout the numerical integration of (1.1). Moreover, the Chebyshev iteration is
guaranteed to converge if the required parameters are chosen "correctly" and if the
real part of each of the eigenvalues of Wk is positive. As we argued in the last section,
if this last condition is not satisfied, then the stepsize hn is almost surely too large and
should be reduced until this condition is satisfied to ensure a reliable numerical
integration. However, to date we have not investigated in depth the use of adaptive
Chebyshev methods in stiff-ODE solvers.

The Conjugate Gradient (CG) method [44] is possibly the most well-known
example of another class of iterative methods that has received considerable attention
recently since being re-introduced by Reid [70] as an iterative method for large sparse
systems of linear equations. It has proven to be very effective in this role for a wide
range of problems arising from, for example, geophysical applications [74], elliptic
PDEs [11], [12], [14], [15], [75], and time-dependent PDEs [2], [17], [18], [57]. We
believe that this class of iterative methods is also suitable for solving the linear systems
that arise in stiff-ODE solvers. In particular, we consider the Preconditioned Conjugate
Residual method [11], [25] and one of its generalizations for nonsymmetric problems,
Preconditioned Orthomin [21], [25], [84]. In the remainder of this section, we give a
brief description of these methods.

3.1. The preconditioned conjugate residual method. Throughout this subsection, let
A be a symmetric positive-definite matrix. To solve the system of linear equations

(3.1.1) Ax=b,

the Conjugate Residual (CR) method, like CG, requires only that the user supply a
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routine to compute the matrix-vector Av for any given vector v. Thus, CR can take
full advantage of the sparsity of A. However, the effectiveness of CR can often be
improved dramatically by applying CR to the equivalent preconditioned system

(3.1.2) ;=/

instead of (3.1.1), where S-1AS-’ is a symmetric positive-definite matrix since A
is, S’x, f9 S-lb, and Q SS is "close" to A (in a sense to be made more precise
below), but substantially less "expensive" than A to invert. We refer to CR applied
to (3.1.2) as the Preconditioned Conjugate Residual (PCR) method and Q as the
preconditioner.

One of the several equivalent forms of PCR is given in Fig. 3.1.1. Although any
inner-product can be used with PCR, the usual Euclidean inner-product is most often
used in practice.

Choose x0.

Set b Axo.
Solve Qo ro-
Set po 7o.
FOR 0 STEP UNTIL convergence DO

Solve Qqi Api.

ai , Ai / Ap,, q ),

xi xi + atpi,

r’i+ i aiqi,

b, (,+,, A,+,)/( ,, A,),
Pi+l r’/+t + btPi-

END FOR

FIG. 3.1.1. The Preconditioned Conjugate Residual (PCR) method.

If Q =/, then PCR reduces to CR. Both methods require the same amount of
storage, but, for Q I, PCR requires one additonal solve of the form Qu v per
iteration. Note, though, that the matrix S associated with (3.1.2) is not required
explicitly. Also, if Q /, only the residual i Q-(b-Axi)= Q-lr is available in this
implementation of PCR; if the residual ri for (3.1.1) is required also, then either one
additional matrix-vector product of the form Qu must be computed per iteration or

one additional vector must be stored.
It is well known [1], [11] that PCR is an optimal polynomial-based method in

the sense that the ith iterate x computed by PCR minimizes

(3.1.3) I1 ,11 i)’/2 (ri, Q-lri)’/

over the translated preconditioned Krylov subspace

(3.1.4) Xo+(Q-lro, (Q-1A)Q-’ro, (Q-1A)i-lQ-’ro)

where r b Ax is the residual for (3.1.1) associated with x, for 2 Sxi, i fg-,
S-r is the corresponding residual for (3.1.2), Xo is the initial guess for the solution
of (3.1.1), and ro b Axo is the associated residual.

The Preconditioned Conjugate Gradient (PCG) method can be implemented in
a similar way, but we believe that, for our application, PCR is more appropriate than
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PCG. First, note that the inexact chord-Newton method requires that the residual of
(2.2.1) satisfy (2.3.2). Therefore, for this problem, CR is the optimal unpreconditioned
Krylov subspace method in the sense that it minimizes the norm of the residual over
the Krylov subspace (3.1.4) with Q L On the other hand, CG minimizes the A-norm
of the error

(3.1.5) lix-x, llA=(X-X,, a(x-x,))/2=(r,,a-r,)l/2=llr, llA-,

rather than the residual itself, over the same space (3.1.4). However, this advantage is
partially lost for the preconditioned methods, since PCR minimizes IIr, llo-’ while PCG
minimizes Ilr, lla-’ over (3.1.4). Second, PCR can be generalized more easily than PCG
for nonsymmetric problems, partly because (3.1.3) defines a norm for any nonsingular
matrix A, provided Q is positive-real, while (3.1.5) does not. Moreover, the precondi-
tioned Krylov subspace methods discussed in the next subsection which extend PCR
to nonsymmetric systems are capable of minimizing the residual associated with (3.1.1)
provided the preconditioning is applied "on the right". Therefore, we consider PCR
only throughout the remainder ofthis subsection, although similar results hold for PCG.

Since xi is a member of the affine space (3.1.4), the residual i associated with
(3.1.2) satisfies

(3.1.6) (I Pi-l(fi))r"o R,() o,
where Pi-1 is a polynomial of degree i-1 and Ri is a polynomial of degree that
satisfies Ri(0)= 1. One can derive from (3.1.3) and (3.1.6) the bound [11]

(3.1.7) I1,11 -< [min max [R(j)I] Ilr%ll
[..R _II _!

where IIi is the set of polynomials of degree or less that satisfy R(0) 1 and {j} are
the eigenvalues of , which are also the eigenvalues of Q-1A since these two matrices
are similar. Using the ith Chebyshev polynomial as a particular choice for R, one can
derive the following bound 1 ], 11

(3.1.8) ,11 _-<2 [1-1//K(fl)l’1+ 1/,/K(A)J I1oll

where K()= Xmax(/)fXmin(/) is the spectral condition number of . Since I1,11
IIr, llo-’, inequalities (3.1.7) and (3.1.8) hold with I1,11 and r%ll replaced by IIr, llo-’ and
roll o-’, respectively.

If A is well-conditioned or the eigenvalues of A are clustered, then CR reduces
the error in the initial approximation very rapidly. Therefore, this method can be
expected to perform very effectively on the linear equations that arise in mildly-stiff
IVPs or in large IVPs for which the eigenvalues of the associated Jacobian form a few
clusters. In particular, CR is well suited for problems with a few stiff components only.
(See [31], [85] and the references therein for a more detailed discussion of this latter
class of problems.) On the other hand, if A is ill-conditioned with its eigenvalues
spread throughout a very large interval, then these bounds suggest that CR may require
a great many more iterations than PCR to generate an acceptable approximation to
the solution of (3.1.1). Since such linear algebraic systems arise during the numerical
solution of many large systems of stiff IVPs (in particular, those that arise from the
spatial discretization of time-dependent PDEs), we believe that it is necessary to
consider effective preconditionings for use with iterative linear-equation solvers in
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codes for stiff ODEs. The importance of preconditioning is demonstrated in the next
two sections.

Typically, stiff IVPs are nonstiff during an initial transient phase where the accuracy
requirements force the stepsize hn to be small relative to the size of the eigenvalues
associated with the problem. This is followed by mildly-stiff and stiff phases as the
transient decays and the stepsize increases. In some problems, mildly-stiff or nonstiff
phases re-occur. To take advantage of this behaviour, several authors have developed
codes that use inexpensive functional iteration during the nonstiff phases of the
integration and more expensive Newton-like methods during the mildly-stiff and stiff
phases. An important advantage of using either CR or PCR together with an inexact
Newton iteration is that the transition from an inexpensive method using only a few
(P)CR iterations during the nonstiff and mildly-stiff phases of an IVP to a more
expensive method using many (P)CR iterations during the stiff phases takes place
automatically and "continuously" as the stiffness of the problem varies.

Among the more popular preconditionings for symmetric positive-definite systems
are SSOR [43], [88], the Incomplete Cholesky (IC) factorization [65], and the Modified
Incomplete LU (MILU) factorization [42], a generalization of the Dupont-Kendall-
Rachford (DKR) factorization [19]. Each of these preconditionings can be written in
the form

Q=LL’=A+E,
where L is a lower triangular matrix and E is an error matrix. In this paper, we always
choose L to have the same sparsity structure as A, although allowing more fill-in in
L may yield a more accurate incomplete factorization. Hence, the preconditionings
that we consider do not require more storage than the original matrix A and, if
implemented carefully [20], may require substantially less. Furthermore, to solve a
system Qu v or to compute Qu for any of the preconditionings that we consider
does not require more computational work than multiplying a vector by A and, when
embedded in PCR, may require substantially less [20].

As explained in 2.1, if the Jacobian fy(t, y) is symmetric, then it is reasonable
to expect that the chord-Newton iteration matrix wk (2.2.1) will be symmetric positive-
definite. If this is not the case, then the stepsize hn is almost surely too large for the
IVP and should be reduced until wk is positive-definite to ensure a reliable numerical
integration. For wk symmetric positive-definite, the SSOR preconditioning is well
defined and both the IC and MILU incomplete factorizations can usually be formed
[58], [64], [65].

3.2. Preconditioned orthomin. Although both PCG and PCR have proven to be
very effective methods for solving symmetric positive-definite systems oflinear algebraic
equations, only recently have they been extended to solve more general systems
effectively. As explained in the previous subsection, the solution of symmetric indefinite
systems is not of great importance for stiff-ODE solvers. Therefore, we consider the
solution of nonsymmetric systems only in this subsection.

An obvious way to extend either PCG or PCR to solve a nonsymmetric system
Ax b is to apply either of these methods to the symmetric positive-definite normal
equations AtAx Atb or to the related system AA’y b, x Aty. In either case, though,
for the badly conditioned systems that arise in stiff-ODE solvers, this approach is not
attractive because it frequently leads to a slow rate of convergence.

Recently, several effective Krylov subspace methods have been developed which
extend PCG and/or PCR to nonsymmetric systems. For example, Concus and Golub
[13] and Widlund [86] developed a technique known as the Generalized Conjugate
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Gradient (GCG) method which uses the symmetric part of A, S-1/2(A+At), as a
preconditioning. GCG is particularly effective if a "fast" solver exists for S. Although
this may be the case for many parabolic problems, this method is not well suited for
use in a general-purpose stiff-ODE solver, since there is no guarantee that systems of
the form Sx- b can be solved cheaply.

We chose to base our investigation of the use of iterative linear-equation solvers
in codes for stiff IVPs upon the Preconditioned Orthomin (k) (POR (k)) method [21],
[25], [84], an extension of PCR to nonsymmetric systems, partly because Elman’s
codes [22], [26] were available to us and partly because, like PCR, POR (k) minimizes
the residual associated with the preconditioned system over a subspace described in
more detail below. One of several other alternative Krylov subspace methods is
discussed by Gear and Saad [38] and Brown and Hindmarsh [3].

In this subsection, we briefly outline POR(k) and the related Preconditioned
Generalized Conjugate Residual (PGCR) method from which it is derived; a more
detailed discussion of these methods can be found in [21], [25].

Like PCR, the effectiveness of POR (k) can often be improved dramatically by
an appropriate choice of preconditioning. However, since POR (k) is applicable to
nonsymmetric systems, there is more flexibility in the choice of preconditioning for
POR (k) than there is for PCR. More specifically, the preconditioned system associated
with (3.1.1) may be of the form

(3.2.1) , =/

where = Q-IAQ;I, .= Q2x, Q-lb, Q and Q2 are substantially less "expensive"
to invert than A, and the preconditioning matrix Q Q1Q2 is "close" to A (in a sense
to be made more precise below). In this formulation, the preconditioning (3.1.2) used
with PCG or PCR is equivalent to a symmetric positive-definite split preconditioning
having Q Qty. Two other particular forms of preconditioning (3.2.1) are worth noting:
preconditioning on the left only with Q I and preconditioning on the right only with
QI=L

The prototype of the PGCR family of methods from which POR (k) is derived is
shown in Fig. 3.2.1. The expression for ai used there is mathematically equivalent to
the expression given in Fig. 3.1.1, but Elman [25] believes that the former is less
sensitive to roundoff error for nonsymmetric problems.

Choose x0.

Set b Axo.

Compute o Q-(lro.
Compute Po Qfl o.
FOR i- 0 STEP UNTIL convergence DO

ai =(, Q-(Ap,)/(Q-(Ap,, Q-(Ap),

Xi+l Xi " a.tpi,

r+, , aiQ-’Ap,.

Compute p+.

END FOR

FIG. 3.2.1. Theprototype ofthe Preconditioned Generalized Conjugate Residual (PGCR)family ofmethods.
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The two-term recurrence

(3.2.2) Pi+l r’/+l -t- bipi, bi
([i+1, A[+,)

used in PCR generates an/]’-orthogonal sequence of search directions {Pi},, provided
is symmetric positive-definite. However, to obtain such a sequence for A nonsym-

metric, it appears to be necessary to explicitly orthogonalize pi+ against all previous
search directions pj in general. The recurrence recommended by Elman [21], [25] for
PGCR is

(3.2.3) p+,=Q’" + ibp, bri+
:o Q- Apj, Q- Ap

PGCR consists of the prototype method given in Fig. 3.2.1 together with these last
two equations to compute p+l.

The recurrence (3.2.3) requires the storage of all past search directions p as well
as far more computation than (3.2.2). This may be prohibitively expensive for large
problems. In POR (k), the truncated recurrence

(3.2.4) p,+, 0-1 ri+ n bp, j max (0, i- k + 1),
-=Ji

is used instead, where bj is computed as in (3.2.3). That is, p+ is orthogonalized
against the past k search directions only. Hence, POR (k) requires the storage of at
most k past search directions and the recurrence (3.2.4) is significantly cheaper to

computethan (3.2.3).
and b=0 forj<i [21] [25].If A is symmetric positive-definite, then b b

Consequently, both PGCR and POR (k), k => 1, are mathematically equivalent to PCR
in general. Consequently,in this case. However, if . is not symmetric, then b b

PCR and POR (1) generate different search directions p and different solution vectors

x in general.
The work per iteration for these preconditioned Krylov subspace methods is the

same as for the unpreconditioned versions except that Q-(AQ ri+ must be computed
in place of Ar+. In computing the former product, the intermediate result Q/
can be used to compute p+, and Q-IAp+ can be computed without any additional
matrix-vector multiples provided that Q-Apj is saved instead of p. Moreover, for
SSOR and several of the incomplete factorizations [42], [65], Q-AQ1^

ri+ can be
computed very efficiently using Eisenstat’s technique [20].

If Ax b is preconditioned on the left only (Qz I), then each of the PGCR
family ofmethods requires the same amount of storage as its corresponding unprecondi-
tioned version. Otherwise, each preconditioned method requires one more vector of
storage than its corresponding unpreconditioned version. However, the residual
calculated in this implementation of the PGCR family of methods is the residual
associated with the preconditioned system (3.2.1). If the residual b-Axi= r=Q
associated with (3.1.1) is required, then the storage advantage of preconditioning on
the left only is lost" in this case, each preconditioned method requires one more vector
of stora;e than its corresonding unpreconditioned version.

If A is positive-real, then both PGCR and POR (k), k >- 0, are convergent descent
methods in the sense that [[?,[I 0 as ioe and IIr,+,ll < Ilr,ll for 0 [21], [25]. More
specifically, PGCR, like PCR, minimizes Ilrill over the translated Krylov subspace



ITERATIVE LINEAR-EQUATION SOLVERS IN STIFF-ODE CODES 393

(3.1.4). Hence, in this case also, the residual r at the ith PGCR iteration satisfies

(3.2.5)

where II is the set of polynomials of degree or less satisfying R(0) 1. Using (3.2.5),
one can prove [21], [25] that

(3.2.6) II,ll 1 /min(St) 7 i/2

Amax(m A)_I

where 1/2(/] +/t), the symmetric part of/, is positive-definite since , is positive-real
by assumption,e This bound, though, is not nearly as strong as (3.1.8) even though
PGCR and PCR compute identical iterates xi if A is symmetric positive-definite. If A
has a complete set of eigenvectors, then

(3.2.7) , [I-<- g(f), o11,
where K(’)
(3.2.8) //i min max IR(X)I,

RIJ

and {j} are the eigenvalues of ,. Note, if , is normal, then K()= 1.
For i> k, the ith iterate x computed by POR (k) minimizes I1,11 over the affine

space

Xi_k+l Af_ (Pi-k+l, ", Pi-1)

rather than the full translated Krylov subspace (3.1.4). However, in this case also,
(3.2.6) holds for any k.

In all of the bounds listed above, may be replaced by Q-r, since these two
vectors are equal. Thus, one advantage of preconditioning on the right only (Q- I)
is that, in this case, the PGCR family of methods minimizes the residual r associated
with the unpreconditioned problem Ax b at each iteration, since ri. As explained
in the previous subsection, this seems to be the most appropriate measure of the error
to be minimized by an iterative method embedded in an inexact Newton iteration.

Provided that the associated chord-Newton iteration matrix Wk is positive-real,
these bounds indicate that, like CR, the (unpreconditioned) GCR family of methods
is very effective for mildly-stiff IVPs and for stiff IVPs for which the eigenvalues of
the associated Jacobian form a few clusters. On the other hand, if the eigenvalues of
wk, are spread throughout a large domain, then, as is demonstrated in the next two
sections, the effectiveness of POR (k) may be improved dramatically by an appropriate
choice of preconditioning. Also, like PCR, an important advantage of using either
OR (k) or POR (k) together with an inexact Newton iteration is that the transition
from an inexpensive method using only a few (P)OR (k) iterations during the nonstiff
and mildly-stiff phases of an IVP to a more expensive method using many (P)OR (k)
iterations during the stiff phases takes place automatically and "continuously" as the
stiffness of the problem varies.

However, care must be taken in choosing a preconditioning since, for the more
general preconditionings considered in this subsection, A may fail to be positive-real
even though A is. One advantage of using the symmetric positive-definite split precon-
ditioning (Q2 Qtl) is that/ is positive-real if and only if A is. Furthermore, if A is

0< (x, ,x) (x, x) for all real nonzero vectors x, since , +/Q is positive-real and (x, x) =0 for
all real x because /Q =1/2(,-/]’) is skew-symmetric.
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"nearly" symmetric, then so is Q-(AQ-t, and, for symmetric problems, the iterates xi
computed by POR (k), k _>- 1, are identical to the iterates computed by PCR and PGCR.
Intuitively, if Q-IAQ-’ is "nearly" symmetric, then we expect the convergence rate
of POR (k) to be close to that of PGCR. On the other hand, even if A and Q Q1 Q2
are both "nearly" symmetric, Q-AQ need not be, and the convergence rate of
POR (k) may be significantly slower than that of PGCR.

Some popular preconditionings for nonsymmetric systems are SSOR [43], [88],
the Incomplete LU (ILU) factorization [65], and the Modified Incomplete LU
(MILU) factorization [42]. Each of these preconditionings can be written in the form

Q=LU=A+E,

where L and U, respectively, are lower and upper triangular matrices having the same
sparsity pattern as A. With these factorizations, it is possible to precondition on the
left or right or to use a split preconditioning with Q L and Q. U.

POR (k) with these preconditionings has proven to be very effective for solving
the systems of linear algebraic equations associated with discretized nonself-adjoint
elliptic PDEs. Obviously, the smaller k is the more efficient these methods are in terms
of storage required. Elman [25] also found that these methods are most efficient in
terms of computational work for k-< 5, with k-- 1 often requiring the least amount of
work.

As mentioned in 2.1, Wk is positive-real with respect to a given inner-product
for any hn > 0 for a large class of stiff IVPs, including all problems that are dissipative
with respect to that inner-product. But, for any given inner-product, there are stiff
IVPs for which Wk is not positive-real with respect to that inner-product for a reasonable
choice of stepsize, h,. In the latter case, any member of the PGCR family of methods
based upon that inner-product may either compute an acceptable numerical solution
or may "break-down" during the computation.

On the other hand, if all the eigenvalues of the Jacobian f(t, y) lie either in the
left-half complex plane or on the imaginary axis, then, without any restriction on the
stepsize hn, all the eigenvalues of W,k lie strictly in the right-half complex plane.
Moreover, as discussed in 2.1, even if some of the eigenvalues of f(t, y) lie in the
right-half complex plane, it is reasonable to expect the stepsize h, to be constrained
by the accuracy requirements to the extent that all the eigenvalues of wk, will lie strictly
in the right-half complex plane. In either case, it follows from (2.1.9) that there exists
a real inner-product with respect to which wk, is positive-real. We hope to find a
computationally effective way to utilize this result to dynamically choose an appropriate
inner-product whenever wk, is not positive-real with respect to the usual Euclidian
inner-product.

3.3. Jacolian-free stiff-ODE solvers. As several authors have noted, it is possible
to avoid explicitly computing and storing the Newton iteration matrix wk, when solving
nonlinear equations by an inexact Newton method coupled with a Krylov subspace
method. To implement such a Newton-Krylov method, it is only necessary to be able
to compute Jv for any given vector v, where J is an approximation to the Jacobian
fy(tn, yk). In many stilt-ODE solvers, divided differences are used to form J. But, since
J is not needed explicitly the directional difference

If( t,,, ykk, + 6V) f( t,,, yk)]/

can be used to calculate an approximation to fy(t,, yk,)v directly, where 6 is a scalar
constant.
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Garg and Tapia [33] and O’Leary [68] recently investigated a similar idea for the
application of CG to minimization problems. O’Leary shows that, in addition to saving
storage, the Newton-CG method employing directional differences requires less com-
putational work than the traditional discrete-Newton method for large problems.

Furthermore, the test results of Brown and Hindmarsh [3] based on the code
developed by Gear and Saad [38] demonstrate that the use of directional derivatives
to approximate matrix-vector products in a Newton-Krylov iteration is very effective
for the spatially-discretized nonlinear parabolic problems that they considered.

All of the preconditionings referenced in the preceding two subsections require
an explicit representation of the matrix J. Polynomial preconditionings [56], [73],
though, using directional derivative approximations to matrix-vector products, could
be implemented without the explicit computation or storage of the matrix J. However,
as Saad notes [73], the effectiveness of polynomial preconditionings for CR, GCR,
and OR (k) for in-core computations on serial machines is questionable, since these
Krylov subspace methods are, in a sense, optimal polynomial methods. Alternatively,
Chan and Jackson [8] recently developed a class of nonlinear preconditionings,
including a variant of SSOR, that does not require J explicitly and so can be used
effectively with Newton-Krylov methods employing directional differences. Moreover,
for their test problems, the nonlinear SSOR preconditioning was as efficient as the
standard explicit SSOR preconditioning.

Since computing and storing Jacobians is a major source of expense in solving
large stiff IVPs, the possibility of avoiding this computation seems very attractive,
particularly for those problems for which we can expect a Krylov subspace method
to converge very rapidly, such as those IVPs for which the eigenvalues of the associated
Jacobian form a few clusters.

4. Theoretical results for the heat equation. The theoretical results in the last
section can be adapted easily to show that the use of Krylov subspace methods in
stiff-ODE solvers is very effective for a large class of IVPs. As a particular example,
in this section, we compare the computational-work and storage required to solve the
spatially-discretized Heat Equation by five stiff-ODE solvers each based upon the
BDFs but using one of the following methods to solve the systems of linear algebraic
equations that arise at each step in the numerical integration: (1) full Gaussian
Elimination (GE), (2) bandGE, (3) sparse GE, (4) the Conjugate Residual (CR)
method, or (5) the Preconditioned Conjugate Residual (PCR) method with either the
SSOR [43], [88] or MILU [42] preconditioning. Although we do not advocate using
these methods to solve the Heat Equation in practice, the spatially-discretized Heat
Equation is a good test problem from a theoretical point-of-view because it is representa-
tive of a class of large stiff IVPs with sparse Jacobians and it can be analyzed thoroughly.

Consider the Heat Equation in one dimension (I-D) with homogeneous Dirichlet
boundary conditions:

ut(t, x) u)c),(t, x) for (t, x) (to, ty] x (0, 1),

(4.1) u(t, O)= u(t, 1)=0 for (to, t),
U(to, x) Uo(X) for x [0, 1].

Applying the method of lines with the usual centered-difference approximation with
stepsize A 1/(rn + 1) to the spatial derivative of (4.1) gives the linear system of M m
ODEs 3 Aly for (t0, ty] with initial conditions yi(to) U(to, iA) for 1,. , m,
where Yi(t) is an approximation to u( t, iA) and A A-2 diag (1, -2, 1). It is well-known
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that the eigenvalues of A1 are

(4.2) {2A-2[cos (iATr)- 1]: i-- 1," , m}.

All the eigenvalues are negative and are distributed throughout an interval from
approximately -Tr

2 to approximately -4A-2. As the spatial discretization becomes
finer, the resulting system of ODEs becomes both larger and stiffer, but the eigenvalues
of the associated matrix A1 do not cluster.

Also consider a similar spatial discretization of the Heat Equation in two
dimensions (2-D) and three dimensions (3-D), each with homogeneous Dirichlet
boundary conditions. For the 2-D problem, the matrix A2 associated with the resulting
linear system of M m2 ODEs A2y is A2 A-2 diag (I1, T1, I1), where 11 is the
rn x rn identity matrix and T1 diag (1,-4, 1). Hence, the eigenvalues of A are

{h, + hj: i= 1,..., rn, j= 1,..., rn},

where hi and )tj are eigenvalues (4.2) of the 1-D problem. Similarly, for the 3-D
problem, the matrix A associated with the resulting linear system of M m ODEs
f= A3y is A3--A-2 diag (I2, B2, 12), where 12 is the m2X m2 identity matrix, B2
diag (11, T2, I1), and T2 diag (1, -6, 1). Hence, the eigenvalues of A are

{)i+,+,,:i=l,’’’,m,j=l,’’’,m, k--1,...,rn},

where ,i, ,, and hk are eigenvalues (4.2) of the 1-D problem.
We compare the computational-work per step required by each ofthe five stiff-ODE

solvers considered above to integrate the spatially-discretized l-D, 2-D, and 3oD Heat
Problems. The numerical results presented in the next section show that, for any given
problem in this class, each solver requires essentially the same number of steps
throughout the numerical integration. Thus, for each solver, the computational-work
per step is representative of the total computational-work required. Moreover, implicit
in our comparison is the assumption that each stiff-ODE solver requires the same
number of Newton iterations .per step. The validity of this assumption is supported
by the numerical results also.

The computational-work per step can be divided into three components: (1) the
work to factor W, for the GE variants or to compute a preconditioning for PCR (if
W, is refactored or the preconditioning is recomputed on that step), (2) the work to
solve (2.2.1) using either the LU factorization for the GE variants or the (P)CR method,
and (3) all the remaining work per step, which is termed the computational-work
overhead. We measure the computational-work for each operation in terms of the
number of arithmetic operations required to perform it.

Similarly, the storage required by each solver can be divided into two components:
(1) the storage required to solve the system of linear algebraic equations and (2) all
the remaining storage, which is termed the storage overhead.

The computational-work and storage required for each ofthe five stiff-ODE solvers
is summarized in Table 4.1. For each of the five stiff-ODE solvers considered, both
the computational-work and storage overheads are proportional to M, the size of the
system of ODEs solved. Moreover, in both cases, the overhead is identical for each
solver. For full GE, we assume that no advantage is made of the sparsity of the matrices
A1, A2, and A3.

In determining the computational-work and storage required for sparse GE, we
assume that the asymptotically optimal ordering of the variables is used, although,
frequently, this is not the case in practice for the 2-D and 3-D problems (cf. [23], [24]).
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TABLE 4.1
The principal asymptotic termfor the storagefor and the computational

work per step required to factor and solve the linear algebraic systems that
arise during the numerical integration of the spatially-discretized Heat Prob-
lem, as well as the overhead ofall the remaining storage and computational-

work per step required by the stiff-ODE solver.

full GE band GE sparse GE

factor m m m

solve m m m
I-D

storage m m m

overhead m m m

factor m m m

solve m m m log m
2-D

storage m4 m m log m

overhead m m m

factor m m m

solve m m m
3-D

storage m m m

overhead m m m

CR PCR

m

m ml
m m

m m

m

m m2
m m

m m

m

m4 m3
m m

m m

As stated in 2.3, to compute a sufficiently accurate solution for the inexact
chord-Newton method, it is generally necessary to reduce the initial residual associated
with (2.3.3) by a constant factor r/only, where r/is typically about .1. From (4.2), the
spectral condition-number of the Newton iteration matrix I- h,fl,,Ai, 1, 2, 3,
increases with hn from 1 at h, =0 to 4r-2A-2 as h,-. Hence, from (3.1.8), the
number of CR iterations required to reduce the initial residual by a factor of r/ is at
most [log (2/r/)Tr-lA-1]. In addition, because of the sparsity of A1, A2, and A3, the
number of arithmetic operations required for each CR iteration is proportional to M,
the dimension of the matrix. Thus, for each of these matrices, the computational-work
required to compute a sufficiently accurate solution to (2.3.3) is at most asymptotically
proportional to m2, m3, and m4, respectively, and the storage required is asymptotically
proportional to m, m2, and m3, respectively.

For either the SSOR [43], [88] or MILU [42] preconditioning (with the appropriate
choice of scalar parameters), the spectral condition-number of the preconditioned
Newton iteration matrix increases with h, from 1 at h, 0 to cA-1 (for some constant
c) as hn- o [11]. Hence, the number of PCR iterations required to reduce the initial
residual by a factor of r/ is at most asymptotically proportional to A-1/2. In addition,
because of the sparsity of each Newton iteration matrix and its associated precondition-
ing, the number of arithmetic operations required for each PCR iteration is proportional
to M, the dimension of the system. Thus, in each case, the computational-work required
by PCR to compute a sufficiently accurate solution to (2.3.3) is at most proportional
to m 11/2, m21/2, and m 1/2, respectively, and the storage required remains proportional
to m, mE, and m3, respectively. Moreover, in each case, the work required to compute
the MILU factorization is proportional to the number of nonzeros in the matrix, m,
m-, and m3, respectively, while no work at all is required to "compute" the traditional
form of the SSOR "factorization".

For the 1-D problem, PCR preconditioned by MILU (with the associated MILU parameter c 0)
converges in one iteration with computational-work proportional to m, since, in this case, the MILU
factorization is actually the exact LU factorization of I h,,fl,A. This result holds for several other incomplete
factorizations as well.
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The computational-work estimates given in Table 4.1 are biased in favour of the
GE variants. During the initial transient for each problem, the stepsize h, is "small",
and the problem is either nonstiff or mildly-stiff. During these phases, the condition
number ofthe Newton iteration matrix I- h,,,,Ai, 1, 2, 3, orthe associated precondi-
tioned matrix is not large, and, as a result, the computational work per step for CR
and PCR is much smaller than the estimates given above indicate: these estimates are
accurate for hn "large" only. On the other hand, the computational-work required by
the GE variants to factor and solve the Newton systems is independent of the stepsize
h,. Although a cheaper fixed-point iteration may be used in the nonstiff phase of the
IVP, it is hard to avoid the more expensive Newton iteration in the mildly-stiff phase.

In addition, even for h, "large", the computational-work estimates for PCR do
not appear to be optimal, whereas the estimates for the three GE variants discussed
above are optimal. For example, Chan, Jackson, and Zhu 10] show that there is strong
evidence that, if the "AD-DKR" preconditioning is used for the 2-D problem, then
the condition number of the preconditioned Newton iteration matrix is asymptotically
proportional to A-2/3 and that the number of PCR iterations required to reduce the
initial residual by a constant factor of 7 is asymptotically proportional to A-1/3. Again,
because of the sparsity of A2 and the associated AD-DKR preconditioning, the number
of arithmetic operations required for each PCR iteration is proportional to M, the
dimension of the system. Thus, there is strong evidence that, for the 2-D problem, the
computational-work required by PCR to compute a sufficiently accurate solution to
(2.3.3) is at most asymptotically proportional to m21/3, rather than m21/2. Moreover,
both the storage required for PCR and the computational-work needed to compute
the AD-DKR incomplete factorization remain asymptotically proportional to m2.

Table 4.1 shows that, for the 1-D problem, band (sparse) GE is the most effective
method. On the other hand, for the 2-D problem, both CR and PCR require asymptoti-
cally less storage than any of the GE variants and are asymptotically faster than either
full or band GE. However, it is not clear which of PCR or sparse GE is asymptotically
faster. The answer to this question depends on how frequently the linear systems must
be refactored as the stepsize increases during the course of the numerical integration
when sparse GE is used as well as the proportion of steps taken during the mildly-stiff
phase of the IVP, where hn is "small" and PCR requires less computational-work per
step than the estimates in Table 4.1 indicate. Numerical results concerning these two
questions are given in the next section. For the 3-D problem, though, PCR is asymptoti-
cally faster than any of the other methods and requires significantly less storage than
any of the GE variants.

5. Numerical results. We have replaced the direct linear-equation solvers in
LSODE [49] by PCGPACK, a collection of preconditioned Krylov subspace methods
implemented by Elman [22], [26]. We refer to the resulting experimental code as
LSODCG. In this section, we report some preliminary numerical experiments with
LSODCG to test the effectiveness of iterative linear-equation solvers in codes for large
systems of stiff IVPs for ODEs. In particular, we compare the performance of LSODCG
and LSODES4 [50] on two pairs of spatially-discretized two- and three-dimensional
linear parabolic problems as well as the performance of LSODCG and LSODE on
the thirty Stiff Detest Problems [28], [30]. Although most of the Stiff Detest Problems
are not large, they do test the robustness of the inexact chord-Newton method and

4 LSODES is a variant of LSODE incorporating the Yale Sparse Matrix Package [23], [24] to solve the
systems of linear algebraic equations by a sparse direct method.
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the associated iterative linear-equation solvers used in LSODCG. These preliminary
test results look quite promising.

5.1. LSODE, LSODES, and LSODCG. We developed two variants of LSODCG;
LSODCG.V1 and LSODCG.V2. In the former, we did not make any modifications to
the formulas, strategies, or heuristics used in LSODE other than those modifications
that were necessary to interface LSODE and PCGPACK, such as changing the data
structure for storing matrices in LSODCG to the sparse "IA-JA-A" representation
used in PCGPACK and many other sparse linear-equation solvers. In LSODCG.V2,
we made one additional modification to LSODE in hope of reducing the number of
inexact chord-Newton iterations and associated function evaluations throughout the
course of the numerical integration: each time h,/3, is changed in LSODCG.V2, this
scalar factor is updated in the Newton iteration matrix I- h,,,,J without re-evaluating
J, and, if a preconditioner is being used in PCGPACK, it is recomputed. Since the
Jacobian approximation J is not re-evaluated, these updates are relatively cheap
compared to solving the associated linear algebraic equations. In LSODE, LSODES,
and LSODCG.V1, on the other hand, the Newton iteration matrix is updated only
when the magnitude of the relative change in hn/3n is greater than CCMAX, a constant
set to 3. Whenever the Newton iteration matrix is updated, either it is refactored in
LSODES, or, if a preconditioner is being used in PCGPACK, the preconditioner is
recomputed in LSODCG.V1. In LSODE and LSODCG.V1, the Jacobian approximation
J is re-evaluated whenever the Newton iteration matrix is updated; in LSODES, the
Jacobian is re-evaluated only when it is estimated to be a poor approximation to the
current Jacobian.

In all four codes, the acceptance criterion for the Newton iteration is of the form
(2.1.1) with cl =CONIT=.5/(NQ+2), where NQ is the order of the BDF in use. In
both variants of LSODCG, we use a stopping criterion for the iterative linear-equation
solver in the inexact chord-Newton method of the form (2.3.3). Our numerical experi-
ments show that any r in the range [.1, .5] is quite satisfactory: smaller values of r in
this range lead to more PCGPACK iterations per inexact chord-Newton iteration, but
frequently lead to fewer inexact chord-Newton iterations resulting in fewer function
evaluations. Some numerical results along this line are reported in the third subsection.
Also, as mentioned in 2.3, we take --F(yk), rather than 0, as an initial guess for
yk,/l_yk,, in (2.3.3) for both variants of LSODCG.

5.2. Spatially-discretized linear parabolic problems. Consider the Heat Equation
in two dimensions (2-D)

(5.2.1) u, Uxx + Uyy

and three dimensions (3-D)

(5.2.2) ut Uxx + Uyy + l.lzz

and the Convection-Dittusion Equation in 2-D

(5.2.3) ut u,,, + u,, + Uyy + Uy

and 3-D

(5.2.4) u, Uxx + U "Jr- Uyy -" Uy -{- Uzz + U

Updating the Newton iteration matrix would be even cheaper if LSODCG.V2 stored (1/h,,a,,)I-J
rather than I- h.,,J. This change is easy to implement.
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each with homogeneous Dirichlet boundary-conditions either on the unit square
[0, 1 [0, 1 for the 2-D problems or on the unit cube [0, 1 x [0, 1 x [0, 1 for the 3-D
problems and initial conditions for [0, 10.24]

u(0, x, y)= 16x(1- x)y(1-y)

for the 2-D problems and

u(0, x, y, z) 64x(1 x)y(1 y)z(1 z)

for the 3-D problems. As described in 4, applying the method of lines to the Heat
Equation with m + 1 evenly spaced grid points in each dimension ordered in the usual
left-to-right bottom-to-top manner and using the usual three-point second-order cen-
tered-difference approximation to the second-order spatial derivatives with stepsize
A 1/(m + 1) yields a system of stiff ODEs of the form

(5.2.5) y(t):Ay(t),

where A is a constant symmetric negative-definite matrix with A A2 of dimension
M m2 for the 2-D problem and A A of dimension M m for the 3-D problem.
Applying the method of lines to the Convection-Diffusion Equation in a similar way,
but with the addition of the two-point second-order centered-difference approximation
to the first-order spatial derivatives, also yields a system of stiff ODEs of the form
(5.2.5), where again A is a constant matrix of dimension M m2 for the 2-D problem
and ofdimension M m for the 3-D problem. In this case, though, A is a nonsymmetric
negative-real matrix for both the 2-D and 3-D problems.

The eigenvalues and eigenvectors of the matrix A associated with the spatially-
discretized Heat Equation (5.2.5) are well known. Therefore, the exact solution of the
associated IVP can be calculated easily for any t. For the Convection-Diffusion Problem,
we used EISPACK [32], [81] in double precision on an IBM 3033 to calculate the
eigenvalues and eigenvectors of the matrix A associated with the spatially-discretized
1-D problem of the form (5.2.5). Since the solution of the spatially-discretized 2-D
and 3-D problems can be written as the tensor product of solutions of the associated
1-D problems, the exact solution of the spatially-discretized 2-D and 3-D Convection-
Diffusion Problems can be computed easily for any also.

We used LSODES, LSODCG.V1, and LSODCG.V2 on an IBM 3033 computer
in double precision to compute numerical solutions of the 2-D problems for m--5,
10, 15, 20, 25, 30 and the 3-D problems for rn 3, 5, 7, 9. In each case, we used the
BDFs with exact Jacobians (MF 21) and an absolute local error tolerance of ATOL
10-3 (ITOL 1 and RTOL 0). We integrated from the initial point 0 to the output
points T 2i/100, for i= 0, 1, 2, ., 10, using the continuation option (ISTATE 2)
to integrate from one intermediate output point to the next. Because we did not require
the output points to be hit exactly (ITASK--1), the solution vector is computed by
interpolation and, on occasion, more than one solution vector is computed per integra-
tion step, as can be seen in some of the numerical results presented below. No optional
input (IOPT=0) was used.

We used the PCGPACK implementation of the Preconditioned Conjugate
Residual (PCR) method [26] and the Preconditioned Orthomin (k) (POR (k)) method
[22], [26] for k-- 1, 3, 5 to solve the linear algebraic equations in LSODCG. For each
of these methods, we used one of the three PCGPACK preconditionings:
1. NOPRE--no preconditioning,
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2. TCSSOR the two-cyclic implementation [20] of the SSOR preconditioning, or
3. TCDKR---the two-cyclic implementation [20] of the DKR 19] incomplete factoriz-

ation, more generally referred to as the Modified Incomplete LU (MILU) factoriz-
ation [42].

For the TCSSOR preconditioning, we used o 2/[1 +sin (rA/2)], where A 1/(m + 1)
is the spatial stepsize. This value of w is "near optimal" [88] for the spatially-discretized
2-D and 3-D Heat Equations. Although this value of w may not be "near optimal"
for the spatially-discretized Convection-Diffusion Equation, it is appropriate in this
case as well, since, in practice, an optimal value of o for the problem to be solved is
typically not known. For the TCDKR preconditioning, we used a 0 for all problems,
as recommended by Chandra 11]. In Orthomin (k), the preconditioning was applied
on the right as described in 3.2. In both variants of LSODCG, we used a stopping
criterion of the form (2.3.3) with r=.5 for each iterative linear-equation solver.
However, we also set the maximum PCGPACK iterations permitted to solve any one
linear system to max (100, 10m).

5.2.1. Detailed numerical results for one problem. Detailed results for the numerical
solution of the spatially-discretized 2-D Convection-Diffusion Problem with m 30
using LSODES, LSODCG.V1, and LSODCG.V2, respectively, are given in Tables
5.2.1.1, 5.2.1.2, and 5.2.1.3. The linear-equation solver used in LSODCG is POR(1)
preconditioned by TCDKR. These numerical results are representative of the perform-
ance of these three codes on the problems considered in this subsection.

In each table,
--T is the output point,
--ERROR is the root-mean-square norm6 of the difference between the numerical and

exact solutions to the problem at T,
--HU and NQU, respectively, are the stepsize and order used by the BDF in the last

step taken to reach T, and
mNST, NFE, and NJE, respectively, are the total number of steps, function evaluations,

and Jacobian evaluations used from the initial point =0 to the current output
point T.

Note also that NFE- 1 is the number of Newton iterations used from the initial point
0 to the current output point T, since all but the first function evaluation is associated

with a Newton iteration. For LSODES, NLU, MLTFAC, and MLTSLV, respectively,

TABLE 5.2.1.1
LSODES solution of the spatially-discretized 2-D Convection-Diffusion Problem on an m rn grid with

m= 30.

T ERROR HU NQU NST NFE NJE NLU MLTFAC MLTSLV MLTTOT
0.010 0.826D-03 0.278D-02 11 611382 203220 814602
0.020 0.570D-03 0.482D-02 11 15 815176 284508 1099684
0.040 0.454D-03 0.738D-02 14 18 1018970 345474 1364444
0.080 0.413D-03 0.137D-01 19 24 1222764 467406 1690170
0.160 0.I01D-03 0.186D-01 24 29 1222764 569016 1791780
0.320 0.166D-03 0.301D-01 30 36 1426558 711270 2137828
0.640 0.483D-05 0.131D+00 35 41 1834146 812880 2647026
1.280 0.127D-05 0.123D+01 36 42 10 2037940 833202 2871142
2.560 0.455D-O7 0.123D+01 37 43 10 2037940 853524 2891464
5.120 0.280D-08 0.123D+02 38 44 11 2241734 873846 3115580
10.240 0.143D-08 0.123D+02 38 44 11 2241734 873846 3115580

Storage required by YSMP: STRMAT 4380, STRFAC 20322, STRTOT 59306.

6The root-mean-square norm on an n-vector x is Ilxll--((/n) E,__ x,)
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TABLE 5.2.1.2
LSODCG.V1 solution of the spatially-discretized 2-D Convection-Diffusion Problem on an m x m grid

with m 30.

T ERROR HU NQU NST NFE NJE NPRE ITSTOT ITSMAX MLTTOT
0.010 0.830D-03 0.279D-02 11 16 257483
0.020 0.568D-03 0.482D-02 11 15 24 381455
0.040 0.463D-03 0.742D-02 14 19 33 519649
0.080 0.414D-03 0.137D-01 19 25 52 803421
0.160 0.I06D-03 0.188D-01 24 30 71 1082034
0.320 0.115D-03 0.275D-01 30 37 115 10 1723035
0.640 0.462D-05 0.120D+00 35 42 157 10 2335714
1.280 0.139D-05 0.I08D+01 36 43 10 10 175 18 2596869
2.560 0.418D-07 0.I08D+01 37 44 10 10 188 18 2783434
5.120 0.113D-07 0.I08D+02 38 45 11 11 211 23 3115699
10.240 0.509D-08 0.I08D+02 38 45 11 11 211 23 3115699

Storage required by PCGPACK: STRMAT 4380, STRPRE 900, STRTOT 15963.

TABLE 5.2.1.3
LSODCG.V2 solution of the spatially-discretized 2-D Convection-Diffusion Problem on an m x m grid

with m 30.

T ERROR HU NQU NST NFE NJE NPRE ITSTOT" ITSMAX MLTTOT
0.010 0.835D-03 0.277D-02 10 15 245062
0.020 0.575D-03 0.488D-02 11 13 20 324689
0.040 0.467D-03 0.738D-02 14 16 28 446982
0.080 0.414D-03 0.138D-01 19 21 44 686409
0.160 0.872D-04 0.187D-01 24 27 67 1030549
0.320 0.177D-03 0.304D-01 30 33 10 97 1470763
0.640 0.402D-05 0.134D+00 35 38 12 135 11 2026554
1.280 0.110D-05 0.134D+01 36 39 13 155 20 2316153
2.560 0.483D-07 0.134D+01 37 40 13 169 20 2516940
5.120 0.342D-07 0.134D+02 38 41 14 194 25 2877649
10.240 0.188D-07 0.134D+02 38 41 14 194 25 2877649

Sforage required by PCGPACK: STRMAT 4380, STRPRE 900, STRTOT 15963.

are the total number of
--LU factorizations used,
--multiplies used in the LU factorizations, and
--multiplies used in forward and backward substitutions
by the Yale Sparse Matrix Package to solve the linear equations that arise in the
numerical integration from the initial point 0 to the output point T. For LSODCG,
NPRE and ITSTOT, respectively, are the total number of
--preconditionings computed, and
--iterations used by the linear-equation solvers
to integrate from the initial point 0 to the output point T. ITSMAX is the maximum
number of iterations used to solve any one system of linear equations in integrating
from the initial point 0 to the output point T. For each ODE solver, MLTTOT is
the total number of multiplies used to solve the linear equations from the initial point

0 to the output point T; for LSODES, MLTTOT MLTFAC+ MLTSLV.
Also shown in these tables is the storage required by each of the three ODE

solvers. In each case, STRMAT is the number of nonzeros in the matrix A associated
with the ODE (5.2.5). For LSODES, STRFAC is the number of nonzeros in the LU
factorization computed by YSMP. For LSODCG, STRPRE and STRMTH, respectively,
are the number of nonzeros required to store the preconditioning (M for TCSSOR or
TCDKR and 1 for NOPRE) and the additional storage used in the iterative method
([4+ 2k]M + 2k for POR (k) and 4M for PCR). For both LSODES and LSODCG,
STRTOT is the total number of storage locations required for the linear equation
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solvers. For LSODES, STRTOT= 2"STRMAT+2"STRFAC+ ll’M +2, while, for
LSODCG, STRTOT 2"STRMAT+ STRMTH+ STRPRE+ M + 1.

The values of ERROR, HU, NQU, and NST are very similar for all three codes.
From this we deduce that, for this class of problem at least, the error-control, stepsize-
selection, and order-selection strategies in LSODE are not significantly affected by the
use of an iterative linear-equation solver. Although NFE also is similar for all three
codes, it is 7-10% smaller for LSODCG.V2 than for either of the other two codes
indicating that the use of the current value of hn/3n in the Newton iteration matrix
I-h,,,J reduces slightly the total number of Newton iterations required throughout
the integration.

The difference in NJE for LSODES and LSODCG.V1 demonstrates the superiority,
for this class of problem at least, of the strategy used in LSODES over the one used
in LSODCG.V1 (taken without modification from LSODE) for determining when a
Jacobian re-evaluation is required. LSODCG.V2 uses two, rather than one, Jacobian
evaluations because we did not alter LSODEs strategy that forces a Jacobian re-
evaluation every MSBP (=20) steps. If this requirement were removed from
LSODCG.V2, then it too would use only one Jacobian evaluation throughout the
course of the integration, as it should for this class of problem.

The sequence of values of NLU for LSODES and both NJE and NPRE for
LSODCG.V1 are identical indicating that both codes had the same number of "sig-
nificant" changes in hn/3, between each pair of output points, where by a "significant"
change we mean that the magnitude of the relative change in h,/3, is greater than
CCMAX (= 3). The values of NPRE for LSODCG.V2 are slightly larger than those
for LSODCG.V1. Thus, assuming that the stepsize sequences in all three codes were
similar, there were some changes of h,/3, in LSODES and LSODCG.V1 that were not
"significant". Consequently, on some steps in LSODES and LSODCG.V1, the factor
h,/3, in the Newton iteration matrix I- h,,,.,J was not equal to the value of h,/3, used
in the BDF on that step. On the other hand, LSODCG.V2 updates the factor h,/3, in
the Newton iteration matrix whenever hn/3, changes. This may explain why
LSODCG.V2 used fewer Newton iterations (NFE-1) than either of the other two
codes. As a result, MLTTOT is smaller for LSODCG.V2 than LSODCG.V1 at each
output point even though LSODCG.V2 re-computed the TCDKR preconditioner more
frequently than LSODCG.V1 did; the reduction in the number of Newton iterations
and associated linear-system solves more than offset the additional preconditioner
computations.

The final value ofMLTTOT is approximately the same for all three codes. However,
during the initial nonstitt and mildly-stiff phases of the integration, which last until
approximately T 0.160 and require more than half of the steps used throughout the
integration, MLTTOT for the two variants of LSODCG is significantly less than for
LSODES. For these steps, hn is relatively small and, consequently, only a few POR
iterations (ITSMAX) are required to solve each linear system. However, as the integra-
tion proceeds and h, grows, the spectrum of I- h,,J expands and more iterations
are required to solve each linear system. However, for h, > 1, ITSMAX does not grow
significantly with hn, since, as a rule of thumb, it is the relative size of the eigenvalues

We count each double precision and integer variable as one storage location although, on the IBM
3033, each double precision variable requires two words of storage whereas each integer variable requires
only one. However, this makes little difference in the comparison of the storage required by iterative and
direct linear-equation solvers since, for a given problem, both techniques use approximately the same
proportion of integer to double precision variables.
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to one another, rather than the absolute size of the eigenvalues, that determines the
rate of convergence of most Krylov subspace methods, and the relative size of the
eigenvalues does not change significantly with hn for h, > 1. For LSODES, MLTFAC
is approximately two-thirds of MLTTOT, and this factor grows as the grids become finer.

Although, for this problem, each code requires approximately the same amount
ofcomputational-work, STRTOT for LSODES is about four times the value ofSTRTOT
for either variant of LSODCG. Moreover, this factor grows as the grids become finer.
In addition, note that, for LSODES, STRFAC is about five times as large as STRMAT.
On the other hand, for LSODCG with POR(1) preconditioned by TCDKR (or
TCSSOR), STRPRE is about one eighteenth of STRTOT, since the TCDKR (or
TCSSOR) preconditioner requires only one M-vector of storage.

5.2.2. A summary of the numerical results for all the test problems. We present
below a summary of the numerical results for LSODES and LSODCG.V2 using the
PCGPACK linear-equation solvers PCR and POR (k), k 1, 3, 5, preconditioned by
NOPRE, TCSSOR, and TCDKR for the four spatially-discretized parabolic problems
on m m grids, m 5, 10, 15, , 30, for the 2-D problems, and m m m grids,
m 3, 5, 7, 9, for the 3-D problems. Somewhat more detailed numerical results are
presented in [9]. Since the numerical results for LSODCG.V2 are similar to, but
generally better than, those for LSODCG.V1, we have not included a summary of the
numerical results for the latter code in either paper.

The computational-work required by LSODES and LSODCG.V2 to solve the
linear algebraic systems throughout the integration is presented in Tables 5.2.2.1 and
5.2.2.2. In these tables, we actually list the total number of multiplies, MLTTOT, divided
by 1,000 and rounded to the nearest integer for a subrange of m-values: m 10, 20,
30 for the 2-D problems and m 5, 7, 9 for the 3-D problems. Graphs of m against
MLTTOT on a log-log scale for LSODES and LSODCG.V2 with POR (1) precondi-
tioned by NOPRE and TCDKR are given in Plots 5.2.2.1 to 5.2.2.4 for all four problems
for their full range of m-values.

The total storage, STRTOT, required by the linear-equation solvers in LSODES
and LSODCG.V2 for the 2-D and 3-D problems is given in Table 5.2.2.3 for the same
subrange of m-values. (Each linear equation solver requires the same amount of storage
for both of the 2-D problems as well as the same amount of storage for both of the
3-D problems.) Graphs of m against STRTOT on a log-log scale for LSODES and
LSODCG.V2 with POR (1) preconditioned by NOPRE and TCDKR (or TCSSOR)
are given in Plots 5.2.2.5 and 5.2.2.6 for the 2-D and 3-D problems for their full range
of m-values.

An entry of "*" in place of a number in these tables indicates that, during the
course of the integration, the associated iterative linear-equation solver failed to
converge in the maximum number of iterations allowed, max (100, 10m). Only PCR
with no preconditioning failed to converge, and it failed on the spatially-discretized
2-D Convection-Diffusion Problem with m 10 and 15 only. It is in fact surprising
that PCR did not fail on more of the Convection-Diffusion Problems, since the linear
systems associated with these problems are nonsymmetric and PCR is not (in theory
at least) applicable to such systems.

Consider the results for LSODCG.V2 first. For these test problems, POR (1) is
the most effective of the four basic PCGPACK methods considered. For a given
problem and preconditioning, MLTTOT for POR (k), k 1, 3, 5, generally increases
with k even though the total number of PCGPACK iterations required often decreases
with k: the reduction in the number of iterations is more than offset by the additional
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work required per iteration as k increases. As mentioned above, PCR failed on two
problems and is not guaranteed to converge for any nonsymmetric linear system.
Furthermore, for the symmetric Heat Problems, PCR is not significantly more efficient
than POR (1). On the contrary, when preconditioned, PCR frequently requires more
multiplies than POR (1) since, even though PCR may require fewer iterations, fewer
multiplies are required per iteration to precondition POR (1) on the right than to
precondition PCR symmetrically, as is required for the latter method.

Of the three preconditionings, TCDKR is nearly always the most effective in terms
of both multiplies and iterations required. The effectiveness of preconditioning is much
more pronounced for the nonsymmetric Convection-Diffusion Problems than for the
symmetric Heat Problems. In fact, for the latter class of problems, MLTTOT for
TCSSOR is frequently larger than for NOPRE for the same basic PCGPACK method,
since the additional work required to precondition is not offset by a sufficient reduction
in the number of PCGPACK iterations used throughout the integration.

This is not the case for TCDKR. Although NOPRE required fewer multiplies than
TCDKR on some coarse grid problems, the difference is never significant. On the other
hand, TCDKR is frequently substantially more effective than NOPRE in terms of both
multiplies and iterations required by PCGPACK, and, moreover, Plots 5.2.2.1 and
5.2.2.2 show that this difference grows with m.

Although the maximum number of PCGPACK iterations required for any one
linear-system solver during the course of the integration by TCDKR and TCSSOR are
frequently close, the total number of PCGPACK iterations required by TCDKR is
usually significantly less than that required by TCSSOR, indicating that TCDKR is
substantially more efficient than TCSSOR on the large number of linear algebraic
systems for which h, is small and the spectrum of I-h,,,J is clustered around 1.

Now compare LSODES and LSODCG.V2 with POR(1) preconditioned by
TCDKR. Tables 5.2.2.1 and 5.2.2.2 and Plots 5.2.2.1 to 5.2.2.4 reveal that LSODES
requires fewer multiplies than LSODCG.V2 for the 2-D problems, except on the finest

TABLE 5.2.2.1
The computational-work required by LSODES and LSODCG.V2 to

solve the linear algebraic systems throughout the numerical integration of
the spatially-discretized 2-D and 3-D Heat Problem on a m m and
m x m x m grid, respectively, measured in terms of the total number of
multiplies, MLTTOT, divided by 1,000 and rounded to the nearest integer.

Method
2-D Problem

m
3-D Problem

m

POR K=5 TCSSOR
POR K=5 TCDKR

238 1412 4367
329 1999 7035
190 1619 5200
153 958 3091
430 2719 10004

177’ 1102 3624
498 3308 12559
246 2119 7419
183 1148 3885

255 1072 2764
206 795 1951
151 639 2009
154 672 1717

174 781 2545
170 742 1927
141 541

143

335 2355 7609

777 2026
563 1418

POR K=3 NOPRE
POR K=3 TCSSOR
POR K=3 TCDKR
POR I=5 NOPRE

POR K=I NOPRE
POR K=I TCSSOR
POR K=I TCDKR

PCR TCSSOR
PCR TCDKR

10 20 30 5 7 9

LSODES i05 865 3116 271 2413 14236

PCR NOPRE 303 1849 6486 144 60 1190
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TABLE 5.2.2.2
The computational-work required by LSODES and LSODCG.V2 to

solve the linear algebraic systems throughout the numerical integration of
the spatially-discretized 2-D and 3-D Convection-Diffusion Problem on a

m m and m x m x m grid, respectively, measured in terms of the total
number ofmultiplies, MLTTOT, divided by 1,000 and rounded to the nearest

integer.

Method

LSODES
PCR NOPRE
PCR TCSSOR
PCR TCDKR
POR K=I NOPRE
POR K=I TCSSOR
POR K=I TCDKR
POR K=3 NOTRE
POR K=3 TCSSOR
POR K=3 TCDKR
POR K=5 NOPRE
POR K=5 TCSSOR
POR K=5 TCDKR

2-D Problem 3-D Problem
m m

10 20 30 5 7 9

105 865 3116 255 240i’
2433 8475

325 2559 7772
234 1508 4265
348 2656 10573
223 1670 5143
155 924 2878

14.236
213 839 2141
242 1063 2539
205 756 1971
209 797 2427
154 649 1746
129 474 1206
237 m 27
165

448 3768 13349
229 1982 7308
164 1044 3679

75 x6
238 2449 7675
167 1100 3979

730 1739
513 1304

255 935 3523
169 754 1796
136 531 1368

TABLE 5.2.2.3
Total storage, STRTOT, required by the linear-equation solvers in

LSODES and LSODCG.V2 for the 2-D and 3-D problems on a m x m
and m x m x m grid, respectively.

Method

LSODES
PCR NOPRE
PCR TCDKR
POR K=I NOPRE
POR K=I TCDKR
POR K=3 NOPRE
POR K=3 TCDKR
"POR K=5 NOPRE
POR K=5 TCDKR

2-D Problem 3-D Problem
m In

10 20 30

..,,22 5s42 3ni2
1521 6241 14161
1624 6644 15064
1723 7043 15963
2028 8248 18668
2127 8647 19567
2432 9852 22272
2531 1O251 23171

5 7 9

7909 32415 97425
2077 5931 12881
2201 6273 13609
2329 6619 14341
2453 6961 15069
2833 7995 17261
2957 8337 17989
3337 9371 20181
3461 9713 2O909

grid (m 30). However, the ditterence decreases with m and an extrapolation of the
graphs in Plots 5.2.2.1 and 5.2.2.3 suggests that LSODCG.V2 with POR (1) precondi-
tioned by TCDKR would become increasingly more efficient than LSODES for these
two 2-D problems on finer grids. For the two 3-D problems with rn =9, LSODES
requires more than ten times as many multiplies as LSODCG.V2 to solve the linear
algebraic equations throughout the integration. Moreover, from Plots 5.2.2.2 and 5.2.2.4,
it is clear that this factor grows with m.

This supports and extends our earlier observation based on theoretical estimates
of the computational-work in 4 that iterative methods are significantly more efficient
than direct methods for solving the spatially-discretized 3-D Heat Problem.
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o

0. oo o. 50 1. 1.5

log(m)

PLOT 5.2.2.1. Graphs of m against MLTTOT for (1) LSODES and for LSODCG.V2 with POR (1)
preconditioned by (2) NOPRE and by (3) TCDKR for the spatially-discretized 2-D Heat Problem.

Table 5.2.2.3 and Plots 5.2.2.5 and 5.2.2.6 show that, for both the 2-D and 3-D
problems, STRTOT is significantly larger for LSODES than LSODCG.V2: for the 2-D
problems with m 30, LSODES requires approximately 3.7 times as much storage as
LSODCG.V2 and, for the 3-D problems with m 9, LSODES requires approximately
6.4 times as much storage as LSODCG.V2. Moreover, for both the 2-D and 3-D
problems, this factor grows with m.

5.3. Stiff" Detest Problems. We used LSODE, LSODES, LSODCG.V1, and
LSODCG.V2 on an IBM 3033 computer in double precision to solve the 30 Stiff Detest
Problems [28], [30]. Although these problems are not large, they do test the robustness

F--(R)
O(R)

o

2

0. 130 0.40 0.80 1.20

1o9(m)
PLOT 5.2.2.2. Graphs of m against MLTTOT for (1) LSODES and for LSODCG.V2 with POR (1)

preconditioned by (2) NOPRE and by (3) TCDKR for the spatially-discretized 3-D Heat Problem.
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F-(R)
O

o

0.00 0. 5121 1. 0 1.50

loci(m)
PLOT 5.2.2.3. Graphs of m against MLTTOT for (1) LSODES and for LSODCG.V2 with POR (1)

preconditioned by (2) NOPRE and by (3) TCDKR for the spatially-discretized 2-D Convection-Diffusion
Problem.

ofthe inexact chord-Newton method and the associated iterative linear-equation solvers
in the two variants of LSODCG.

For each of the four codes, we solved the Stiff Detest Problems using the BDFs
with exact Jacobians (MF 21) to an absolute local error tolerance of ATOL= 10-2,
10-4, 10-6, and 10-8 (RTOL 0 and ITOL 1).

For LSODCG.V1 and LSODCG.V2, we used POR (5), the PCGPACK [22], [26]
implementation of Orthomin (5) [21], [25], to solve the linear algebraic systems of
equations that arise in the inexact chord-Newton method. We did not precondition

F-(R)
O

o

/2

]o! (m)

PLOT 5.2.2.4. Graphs of m against MLTTOT for (1) LSODES and for LSODCG.V2 with POR (1)
preconditioned by (2) NOPRE and by (3) TCDKR for the spatially-discretized 3-D Convection-Diffusion
Problem.
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oc0

113 0. 513 1.130 1 51

log(m)
PLOT 5.2.2.5. Graphs of m against STRTOT for (1) LSODES and for LSODCG.V2 with POR (1)

preconditioned by (2) NOPRE and by (3) TCDKR (or TCSSOR) for the two spatially-discretized 2-D problems.

POR (5) because, for many of the Stiff Detest Problems, an incomplete factorization
would actually yield the exact factorization of the associated Newton iteration matrix
and, consequently, POR (5) would generate the exact solution to the linear algebraic
equations in one iteration.

We used a stopping criterion of the form (2.3.3) with r =.1, .25, and .5 for the
solution of the linear algebraic systems arising in the inexact chord-Newton method.
Since the Stiff Detest Problems are small and the tolerance for the linear algebraic
systems is lax, we allowed a maximum of 50 POR (5) iterations to solve each linear
algebraic system.

F--(R)
O

o(R)

. lzl . 41 1. 8 1.21zl

log(m)
PLOT 5.2.2.6. Graphs of m against STRTOT for (1) LSODES and for LSODCG.V2 with POR (1)

preconditioned by (2) NOPRE and by (3) TCDKR (or TCSSOR) for the two spatially-discretized 3-D problems.
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TABLE 5.3.1
Normalized function evaluations for the Stiff Detest Problems.

AI
A2
A3

33

35

Tol 1.0D-2 T01’ 1.0b- ’I.0D6
LSODE LSODC’G LOD’CG LODCG [SODCG LSODCG

r:.25 r:.5 r:.25 r:.1 r:.25 r:.5
53 44 59 71 115 jill211 129 14ii 218 23i 289
64 150 148 145 276 290
86 98 94 108 194 207 206 243 372 464
90 77 89 106 192 182 234 356 392 453

544’ 651 1417 1691

5O 52
C3 48 47

513
C5 361 1270
DI 97 98
D2 85 93
D3 77 *x

22
D5 57 60
D6 18 25
Ei 138

325 335
E3 84

248 *x
E5
FI 305 364
F2 24 35
F3

F5

49 49 53 59
53 49 62 65
84 80 82 99
24 1933 327 314
8 ’0" 6’’’ 69

61 83
50 71

623 777
1368 1541
1110 1’16

49 133
352 404
92 99
*x *x

*x
793 4119
32

1017 2151 2533
106

117 128
190 173 201

2878 1802 584
18’9 141 157
126 139 144
132 124 143
362 813 1061
639 1564 1769
-i 197 2i8

30?
399
374

2747
133 191
156 228
218 582
666 3502
168 271
178 265
155 254

1343 635
2552
’237 481

186 204
176 194 348

41
123 138 241
54 60
181’ ’i8’ 112
660 704
196 205 49
530 660 977

*x 29
730 1050 ’i156
8o 76 145

69 83 113

177
180 160
17 3O

120 125
46 56

1’20

575,
5O8
14

611

595

433

702
66 83

72 54

250
225 267 304
608 441 495

3439 1430 1489
271 284 418
247 267
242 298 378

1524

375 380 447
341 347 356
317 350 378
48 39 50

247 250 283
106 98
156 1 529

342 365 352
890
30 33 35

1347 I1289 I291

1 161 156
36 37

117 119 135

We present our results for LSODE and LSODCG.V2 only. As in the previous
section, the results for LSODCG.V2 are generally better than those for LSODCG.V1,
and the strategies used in LSODCG.V2 are closer to those in LSODE than those in
LSODES.

In Tables 5.3.1 and 5.3.2, respectively, we present the "normalized" number of
function evaluations and Jacobian evaluations required by LSODE and LSODCG.V2
with r=.l, .25, and 5 to solve each of the 30 Stiff Detest Problems to an absolute
global error tolerance of Tol 10-z, 10-4, and 10-6 at the end-point of the integration;
in Table 5.3.3, we present the "normalized" total number of POR (5) iterations required
by LSODCG.V2 throughout the integration. These normalized statistics were calculated
by a new version of the Stiff Detest Program which, as described in [27], first performs

A2
A3

%i#
B2

B5

C4
C5

D2
D3

D5
D6

"El"
E2
E3
E4
E5

F3
F4
F5

TABLE 5.3.2
Normalized Jacobian evaluations for the Stiff Detest Problems.

Tol 1.0D-2 T01’: 1.0D-’4 Toi 1.0D-6
LSODCG L’0D’CG ’’SODCG

LSODE
SODCG LSODCG

LSODE
LSODCG L’SODCG’

r=.25 r=.5 ,r:.2, r=.,
13 25 13
14 32 13
16 40 17 17
20 ,37 16 18
’4"’ ’108 178

136

12

26

13
18

14

-’"I

r:.25 r=.5
17
22
25
28

65 "’’159 "187 72’
15

19
87 146

19

41 74 35
124 153 178 56

29

*x *x *x

15 lO 20
12 13 15

*x *x, x,. *x
19 24 68

208

83 27 27

35
133

8O
152

84
155

29
28

19

38 25
30
52 19

25 6
27 29

23 27
*x

18
21 13
36 27 20

180 156 65 66
26 13 18
30 18

13 16
43 87

15 15 18
15

40 15 17
10
30
16
15 19 28

55 14 16 15
72 40

115 54 5’2 84-
17
10

22
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TABLE 5.3.3
Normalized PCGPACK iterations for the Stiff Detest Problems.

Tol OD-2 Tol OD-4 Tol OD-6
Problem LsoDcG LSODCG LSODCG LSOICG LSODCG’" LSODCG LSODCG LSODCG L’o’DcG

r=.1 r=.25 r=.5 r=.1 r=.25 r=.5 r=.1 r=.25 r=.5
AI
A2
A3
A4

’BI"’#
B2

CI
C2
C3
C4
C5
91
D2
D3
D4
D5
D6
E1
E2
E3
E4
E5
FI
F2
F3
F4
F5

70 60 56

139 117 122
307 318 322

1196 1521 1588
6O 57 5O
82 74 67

133 99 87
2954 316 181
100 8"5 7O
90 83 103
84 78 81

569 602 737
1199 1194 1197
142 14" 139
88 83 69
x *x *x
29 11 11
54 49 42
34 37 29

179
111
99
*x

77
64
80
*x

111 103 103
322 307
148 216 222
607 609 632

2214 2340 2281
101 79 73
134 107 98
217 151 145

2309 318 271
172 145 139
173 143 148
162 147 154
747 892 868
1346 1266 1044

243 240 239

175 160 178
511 491
398 382 366

1019 1043 1104

133
184
723

3817
257
248
257

386
232
123
41

161
113

139
41
76

*x
875 905 949
23 18 18

131 126 135
97 90 84
37 17 17
90 75 75
66 56 62
108 194 173
90 35 22

166 142 135
589 544 595

1658 1633 2050
39 29 27

92 114 119

110

253
1009

47
2990

66
83

153

107
161
291
577
231
234
252
1025

355
208
123
33

143
101

143

2761
48
85

148

101
137
223
5OO
240
237
266

368
217
125
4O

144
101

181

227

39
3852

44
83

158

a least squares fit to

NTOL

i=1

[log(global errori) log (C) E. log (ATOLi)]2

for C and E, where, in this case, ATOLi 10-2, 10-4, 10-6, and 10-8 and NTOL 4.
The Stiff Detest Program then performs a piecewise linear interpolation on the actual
recorded values of the costs to solve the IVP at ATOLi versus the corresponding
expected global accuracy Tol C. ATOLz to arrive at the normalized costs for an
absolute global error tolerance of Tol. (A consequence of this procedure is that the
normalized function and Jacobian evaluations are negative for one problem.)

or x may occur as an entry in place of a number in these tables.
A "--" indicates that Stiff Detest could not calculate the normalized statistics for this
problem and tolerance based upon the actual global errors incurred. A "*" indicates
that the method being tested (LSODE or LSODCG.V2) could not solve the problem
at that tolerance, and a "x" indicates that Stiff Detest could not solve the problem at
that tolerance. In addition, the 12 problems marked with a ":" have a Jacobian that
is not negative-real over some subinterval of the range of integration.

From the tables, we see that the number of function and Jacobian evaluations
typically increases with r. For the Jacobian evaluations, the increase is generally not
significant, but, for the function evaluations, the increase is frequently 10% or more
from one value of r to the next. On the other hand, the number of POR (5) iterations
typically decreases with r by a factor of 10% or more from one value of r to the next.
Hence, if a POR (5) iteration is less expensive than a function evaluation, then, based
upon these results, r-.1 would usually be the most cost effective of the three values
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considered. On the other hand, if a POR (5) iteration is substantially more expensive
than a function evaluation (as is the case for the problems in the previous subsection),
then, based upon these results, r 5 would usually be the most cost effective of the
three values considered. Thus, the choice of r is dependent upon the class of IVPs solved.

Except for problem C5, which has a Jacobian that is not negative-real,
LSODCG.V2, with each of the values of r considered, used fewer Jacobian evaluations
than LSODE on all problems that were solved successfully by both codes. Moreover,
for those IVPs having a negative-real Jacobian, the number of Jacobian evaluations
required differs by a factor of 2 to 5. This superiority of LSODCG.V2 over LSODE is
a result of the strategy used in LSODCG.V2 described above that permits it to update
the scalar factor h,fl, in the Newton iteration matrix I- h,fl,J whenever h,fl, changes
without re-evaluating the Jacobian, J. If we had also removed from LSODCG.V2 the
requirement inherited from LSODE that the Jacobian be re-evaluated at least once
every MSBP (= 20) steps, then LSODCG.V2 would have used even fewer Jacobian
evaluations.

Now consider the function evaluations required by LSODE and LSODCG.V2
with r .1 to solve the Stiff Detest Problems.

LSODCG.V2 failed to solve four of the Stiff Detest Problems (A2, D3, E4, FS)
at Tol 10-2. Each of these problems has a Jacobian that is not negative-real over
some subinterval of the range of integration. However, except for problem F5 at
Tol 10-6, LSODCG.V2 required fewer function evaluations than LSODE for these
problems at Tol 10-4 and 10-6.

Of the remaining problems, LSODCG.V2 with r=.l used substantially fewer
function evaluations than LSODE for seven of the Stiff Detest Problems (A1, A4, C1,
C3, D1, D2, E3). Again, this may be due to LSODCG.V2’s updating the scalar factor
hn/3, in the Newton iteration matrix whenever h,fl, changes resulting in a more accurate
Newton iteration matrix and a more rapid convergence of the Newton iteration.

LSODE and LSODCG.V2 used approximately the same number of function
evaluations on 11 of the Stiff Detest Problems (A3, B2, B3, B4, BS, C2, DS, D6, F2,
F3, FS). It is worth noting that the class B problems are of the form ); Ay, where A
is a constant matrix with complex eigenvalues and, consequently, A is far from being
symmetric.

LSODE used substantially fewer function evaluations than LSODCG.V2 on seven
problems (B1, C4, C5, D4, El, F1, F2) each of which has a Jacobian that is not
negative-real over some subinterval of the range of integration.

Therefore, except for those problems having a Jacobian that is not negative-real,
the use of an iterative linear-equation solver did not cause the performance of
LSODCG.V2 to deteriorate relative to the unmodified code LSODE which incorporates
a direct linear-equation solver. In fact, LSODCG.V2 performs as well as or better than
LSODE on all the Stiff Detest Problems for which LSODCG.V2 is applicable.

One final point is worth noting. From Tables 5.3.1 and 5.3.3, we see that, for many
of the Stiff Detest Problems, particularly at the more stringent tolerances, an average
of less than one PCGPACK iteration is required per inexact chord-Newton iteration.
That is, for many of the inexact chord-Newton iterations, the initial guess --F(yk,) for
ykn+l--ykn satisfies (2.3.3) and no further PCGPACK iterations are required. Hence,
when using an iterative linear-equation solver in a stiff-ODE code in this way, we
automatically obtain the benefit of the use of an inexpensive predictor-corrector
iteration when a more expensive Newton iteration is not required. Moreover, this
appears to have no deleterious effect upon the overall performance of the stiff-ODE
solver.
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6. Conclusions. Both the theoretical and numerical results presented in the preced-
ing two sections show that the use of iterative linear-equation solvers in stiff-ODE
codes has the potential to improve the efficiency--in terms of both computational-work
and storage--with which a significant class of stiff IVPs having large sparse Jacobians
can be solved. Moreover, these results demonstrate the importance of preconditioning
for Krylov subspace methods used in stiff-ODE solvers.

The numerical results for both the linear and nonlinear IVPs show that the stopping
criterion (2.3.3) for the inexact chord-Newton iteration works well in practice for
re [.1, .5]. This supports the claim that the linear equations that arise in stiff-ODE
solvers need not be solved very accurately. Moreover, the initial guess --F(yk) for the
solution yk+l--yknn of the linear system proved to be quite effective in practice, par-
ticularly during the initial transient where the IVP is at most mildly-stiff.

Updating the scalar factor h,fl, in the Newton iteration matrix I hnfl,J whenever
h,fl, changes without re-evaluating J, the approximation to the Jacobian, reduces the
number of Newton iterations and associated function evaluations required throughout
the course of the numerical integration with little added cost in a stiff-ODE code
incorporating an iterative linear-equation solver. Furthermore, this strategy of updating
h,fln whenever it changes facilitates the decision when to re-evaluate the Jacobian and,
thus, helps to avoid wasted computational-work. More generally, as mentioned in 2.2,
the removal of the constraint imposed by the necessity to avoid refactoring I-h,fl,J
in a stiff-ODE code employing a direct linear-equation solver may lead to other benefits
in the choice of formulas, strategies, and heuristics for a stiff-ODE code incorporating
an iterative linear-equation solver.

Most importantly, the numerical results demonstrate that stiff-ODE codes incor-
porating iterative linear-equation solvers do not suffer a loss of robustness on those
IVPs for which the Newton iteration matrix W,k is positive-real throughout the course
of the numerical integration. Note, though, that this restriction on wk, is imposed by
the iterative technique we chose to solve the linear systems: the restriction is not
characteristic of all stiff-ODE codes incorporating iterative linear-equation solvers. In
particular, as mentioned earlier, there exist iterative linear-equation solvers that are
guaranteed to converge to the solution ofthe Newton system (2.2.1) if all the eigenvalues
of Wk lie in the right-half complex plane. As we argued in 2.1, if Wk does not satisfy
this last restriction, then the stepsize is almost surely too large and should be reduced
until this last restriction is satisfied to ensure a reliable numerical integration.

Hence, it appears possible to develop a stiff-ODE code iricorporating an iterative
linear-equation solver that, for a broad class of IVPs, is as robust as a similar stiff-ODE
code incorporating a direct linear-equation solver, but more efficient than the latter
code for a significant subclass of problems having large sparse Jacobians. We plan to
continue to pursue this investigation in the future.

Acknowledgment. We thank the editor, Dianne O’Leary, for several helpful sugges-
tions particularly with respect to the presentation of our numerical results.
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SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS*
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Abstract. An algorithm based on multiple shooting is given for the numerical solution of singularly
perturbed boundary value problems for the system y’=f(x, y) with possible boundary layers at the endpoints.
The algorithm does not require any explicit a priori identification of any small parameters such as those
that typically multiply derivatives in problems of singular perturbation type. The algorithm is shown to

enjoy a certain robustness as illustrated by various examples including several nontrivial problems from the
physical theory of semiconducting devices. One sees that the algorithm is both efficient and accurate for all
examples considered.

Key words, shooting methods, two point boundary value problems, singular perturbations, boundary
layers, semiconductor devices

1. Introduction. A singular perturbation problem is a problem that depends on a
parameter (or parameters) in such a way that the solutions of the problem behave
nonuniformly as the parameter tends towards some limiting value of interest. Generally
the solutions have a multiscale character, i.e. there are thin boundary layer regions
where the solution varies rapidly, while outside these boundary layers the solution
behaves regularly. There is a large literature on the theoretical study of singularly
perturbed boundary value problems, of which only O’Malley [22], Howes [16], and
Smith [30] are mentioned here. The solutions of such problems depend quite sensitively
on perturbations in the data including numerical perturbations due to roundoff errors,
and for this reason the numerical solution of such problems has presented severe
difficulties. From the large numerical literature, mention is made here only of the works
of Miranker [20] and Flaherty, O’Malley [15] based on singular perturbation theory,
the works of Abrahamson, Keller, Kreiss [2], Kreiss [18], and Pearson [24], [25] based
on finite difference methods, and the work of Flaherty, Mathon 14] based on colloca-
tion methods.

Multiple shooting is an efficient and accurate method for solving boundary value
problems (cf. Stoer and Bulirsch [31]). In the present paper an algorithm based on
multiple shooting is given for the numerical solution of singularly perturbed boundary
value problems for the system y’=f(x, y) on an interval [a, b]. The algorithm automati-
cally decomposes the interval into an outer interval where the solution behaves regularly,
and one or two boundary layer intervals, each adjoining an endpoint a or b, where the
solution may undergo rapid variation. Interior layers are not considered by the
algorithm in its present form, although turning points are permitted within a boundary
layer, as illustrated by several of the examples in 4. Multiple shooting replaces the
given boundary value problem with a certain collection of initial value problems, one
of which lives within the outer interval, while the others live within a boundary layer
interval. The multiscale character of solutions of such problems is a reflection of the
fact that the Jacobian matrix of the right side of the differential equation has some
eigenvalues with absolute real parts that are large compared with other eigenvalues.
The automatic decomposition of the given interval [a, b] into the outer and boundary
layer subintervals is based on a certain numerically computed measure of the sizes of
such eigenvalues of large absolute real parts.

* Received by the editors February 14, 1984, and in revised form November 13, 1984.
f Mathematisches Institut der Technischen Universitit Miinchen, Postfach 20 2420, D-8000 Munchen,

West Germany.
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The eigenvalues with large absolute real parts produce very small stepsizes during
the numerical solution of the initial value problems in multiple shooting, and this is
ordinarily the case here also for the initial value problem living within the outer interval
where the exact solution is regular and where one should wish to be permitted to use
large stepsizes. To overcome this difficulty, the initial value problem living in the outer
interval is solved with a special (implicit) Runge-Kutta method possessing a suitable
stability property which permits large stepsizes. The remaining initial value problems
that live within a boundary layer interval are solved with a different, high order explicit
Runge-Kutta method. Multiple shooting connects the various initial value problems
in a suitable manner, yielding a certain nonlinear algebraic system which is solved in
the present algorithm using a modified Newton method in conjunction with House-
holder transformations. (Householder transformations are used in a different way in
O’Malley, Flaherty [23] in the study of certain singularly perturbed initial value
problems.) The entire algorithm is iterative, and nodes (subintervals) are removed
and/or inserted automatically as needed, before each new (global) iterative cycle.
Hence the subdivision of [a, b] into outer and boundary layer intervals is generally
modified somewhat during the course of the calculation until a convergence criterion
has been achieved.

The multiple shooting procedure is introduced in 2, where the subdivision of
[a, b] into the outer and boundary layer intervals is also discussed along with the
general method of selection of nodes throughout [a, b]. Also discussed in 2 is the
solution method for the nonlinear algebraic system appearing in the multiple shooting.
The nonlinear system is particularly troublesome for the singularly perturbed problems
considered here. The successful application of multiple shooting for singularly per-
turbed boundary value problems is critically dependent on the use in the outer interval
of an initial value integrator that is suitably stable so that one is not restricted there
to unnecessarily small stepsizes. This point is discussed in 3 where an appropriate
outer initial value integrator is described.

The performance of the entire algorithm is illustrated in 4 with several examples
including certain nontrivial problems arising in the physical theory of semiconducting
devices. Several of these examples would perhaps seem not to be ideally suited for
the algorithm. Specifically, the bipolar transistor of 4.3 has "large" eigenvalues that
are actually rather small, whereas the problem of 4.4 on the electrical properties of
electron-irradiated silicon involves a turning point inside a boundary layer, as does
the problem of 4.5. It is seen that the algorithm has a certain robustness in the sense
that it proves to be accurate and efficient for all examples considered.

2. Multiple shooting for singularly perturbed boundary value problems. Multiple
shooting is a widely used method for the accurate and efficient numerical solution of
two-point boundary value problems of the form

(2.1)
y’(x)=f(x,y(x)),

r(y(a),y(b))=O

x[a,b],

with a, beN, Y=(Yl, Y2,’’’,Y,)t, y,: [a, b] -> N, f=(fl,’",f)t, f: [a, b] x R" -> R,
r=(rl,’’ ",r,,) t, ri:lR"xltn->lI. The method is described e.g. in Bulirsch [6] and
Bulirsch, Stoer and Deuflhard [7]. The solution of (2.1) is computed by solving a
sequence of initial value problems.

The interval a, b] is first subdivided into m 1 subintervals as described near the
end of this section, where in the present case this subdivision involves a greater number
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of nodes in the boundary layers where the solution varies rapidly, as illustrated in
Fig. 2.2.

At the nodes xj, n-dimensional starting values sj are prescribed, for j- 1,. ., m.
If y(x, xj, sj) denotes the solution of the following initial value problem

y’= f(x, y) for x E [x, x+I),
(2.3)

y(xj)-sj for j-l,. ., m-l,

then sj must be determined so that the piecewise composed function

y(x) y(x, xj, sj) forxE[xj, xj+), j l, m -1,
(2.4)

y(b)=sm

is continuous and satisfies the boundary conditions. This yields the generally nonlinear
system

Fl(Sl, s2)
F,( s,, s)

(2.5) F(s) =-
Fm-(Sm_,s,,,-,)
F=-I(S,S,,_,)

where s (s,,. ., s=_,)’.

y(x2, X1, S,)- S2

y(x3, X2: S2)- S3
:= =0

y(Xm-l, Xm-2,$m-2)--Sm-1
r(sl, y(Xm, Xm-l, Sm-1))

The initial value problem (2.3) is solved numerically with an integration method
that depends on whether the subinterval [xj, X+l) lies in a boundary layer or not. The
specially chosen, stable integrator of 3 is used if this subinterval is in the outer
interval, whereas a high-order method is used if this subinterval is in a boundary layer.

The nonlinear system (2.5) is solved iteratively with a modified Newton method
as (cf. Stoer and Bulirsch [31])

(2.6) s(k+)= s(k)--AkDF(s{k})-F(s(k), k-0, 1,2,..-

where as usual this linear system (2.6) is solved in the form

(2.7) DF(s(k)) As --hkF(s(k)).
In the present case the correction As:= s(k+I)--S(k) is written as As (As, As2, .-.,
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ASaL, ASL+I, "’’, ASm-2, Asm_) t, and similarly the vector F= F(s(k)) is written as
F (F1, F2, , FL, F+I, , F_2, F_)’, where the index "’BL" is used to label
components associated with the particular node xa which separates the left boundary
layer interval from the outer interval in the current iteration. (If, as is sometimes the
case, the multiple shooting is done instead from right to left, then one chooses xa in
relation to the right boundary layer.) The matrix of the linear system (2.7) has the
block form

(2.8) DF(s)

-I

G2 -I

GBL -I

GBL+ -I

A BG,._I

where Gj:=OF(sj, sj+)/Osj (for j=l,2,...,m-1) and A:=OF,,,_(s,s,,_)/Os,
B:=OFm-l(S1, Sm-1)/OSm--. The matrices Gj, A, and B are computed by numerical
differentiation. The evaluation of DF(s) is not necessary in every iteration step. The
amount of work is reduced substantially by updating the matrices G, A, B in certain
special steps by rank matrices as in Broyden [5]. The relaxation factor Ak in (2.6) is
determined as in Deuflhard [9], [10], where the rank-1 approximation technique is
also described.

The linear system (2.7) is customarily solved by reducing it to an n x n-system for
the first component ASl:

EAs u with

(2.9) E := A+ BG_ G2GI and

u := -(Fm_ + BG,_F,.._2+" "+ BGm_’" G3G2F1),

followed by a recursive computation of the other components of the correction As as

(2.10) As+, GjAs + F for j 1,. ., m- 2.

Here one ordinarily computes two measures of the matrix E, denoted as "norm (E)"
and "cond (E)", which measure the sensitivity of the problem to the initial value s.
For a singularly perturbed problem as considered here, the solution depends quite
sensitively on this initial value due to the large Lipschitz constant. The equation for
As in (2.9) corresponds to the equation for simple shooting, and the particular node
distribution does not affect the condition number. For very sensitive problems, (2.9)
is ill-conditioned, and an error in ASl is strongly amplified by (2.10). Hence, for such
problems as considered here, it is better to compute the corrections by solving the
original system (2.7) which provides information about the node distribution and
whose condition number can be influenced by changing the nodes. The following
example illustrates the situation.

Example. Consider the boundary value problem

(2.11) ey"-y=O, y(-1)=l, y(1)=1

with the relatively "large" parameter ehoices e- 10-3 and e- 10-4. For the system
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(2.7)-(2.8) one obtains the following estimates for the norm and condition:

8 10-3 -- 10-4

(2.12) norm (DF)= 8.8.103 2.4- 101 (computed for (2.7)-(2.8)).
cond (DF) 5.8 107 2.7 10TM

By way of comparison, if the exact solution of (2.11) is used as starting values with
(2.9), one gets the estimates:

e 10-3 e-- 10-4

(2.13) (computed for (2.9)).
norm (E) 2.6 1026 5.2.1085

The matrix E is singular and so there are no estimates for cond (E). Since the starting
values are exact in this case, one expects that the, resulting correction vector As
computed from (2.9)-(2.10) with the pseudo-inverse should be small with [[Asll < TOL;
instead one finds:

6.7 10 if e 10-3,
(2.14) IIAsll== 5.4 10115 if e 10-4, (Computed from (2.9)-(2.10)).

Hence it is not possible to solve (2.7) using the reduction (2.9)-(2.10) in terms of As1.
The matrix G in (2.8) measures the sensitivity of the solution of (2.3)j to the

initial value sj, for j 1,. , m- 1. In particular, GeL reflects the dependency of the
outer solution on the initial value snL. The outer solution is not influenced by the large
eigenvalues (cf. 3), and therefore not every change of a component of the initial
value s causes a change in y(xm+l,x, s). For the example (2.11), the outer
solution is 37 0, and GeL 0. Ordinarily G and hence also the matrix (2.8) is not

offull rank. The solution of (2.7)-(2.8) can be computed directly by the pseudo-inverse,
but it is very expensive to do this. Hence the present algorithm uses the following
approach for the solution of (2.7)-(2.8). First the (block) column of the matrix (2.8)
containing Gn/ is taken out and placed as the last column. Taking into account the
sparse structure of DF(s), the resulting equivalent system is then transformed by
Housholder transformations so that the matrix of the transformed system is upper
triangular with the exception of an n x n matrix R occurring at the bottom of the last
column, corresponding to the correction Asn/ which occurs as the last component of
the transformed column vector of corrections. In this way one finds an n x n system
of the form RAsn. Known Vector, which is solved for AsL using the pseudo-inverse
obtained with the singular-value decomposition of Wilkinson and Reinsch [35]. The
other corrections are then determined by back-substitution.

The rank of R is not known a priori and must be determined with the singular
values. For this purpose an estimate (ratio of largest to smallest absolute diagonal
element of the transformed matrix) of the condition number of (2.8) is computed
during the elimination process. Together with the largest singular value of R, the rank
is so determined that the estimate of the condition number does not exceed a machine-
dependent limit or does not increase the previous estimate by more than a factor 100
respectively. In all examples tested, the rank decision was not critical, because the
singular values were well separated.

The node distribution indicated in Fig. (2.2), where many nodes are placed densely
in the boundary layers and none are placed in the outer interval, requires information
on the boundary layer thicknesses and on the solution components which grow rapidly
and limit the distances between adjacent nodes. This information is provided by an
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examination of those eigenvalues EV of the functional matrix Dyf of (2.1) which have
large absolute real parts, where such eigenvalues can be effectively characterized by a
condition of the type

(2.15) IRe EVI> 100. Ib-a1-1.
The precise value of the multiplicative factor on the right side, taken here to be 100,
is not critical if the eigenvalues are well separated, as occurs in the examples of 4.
The listed value 100 in (2.15) corresponds to the choice h -Ib-a in (3.7) below.

It is convenient in the following to use the abbreviations EVmax, EVmin, and EV/
respectively to denote the eigenvalues with largest absolute, smallest absolute, and
largest positive (depending on the direction of integration) real part, among all
eigenvalues satisfying (2.15). The algorithm then uses the following estimates for the
boundary layer thickness BL and the largest distance D between adjacent nodes in
the boundary layer:

(2.16) BL=

and

20

max (IRe EVminl, 0.25" IRe EVmaxl)

(2.17) D
10

Re EV+
Note that (2.17) guarantees, in the linear case, that the growing solution components
cannot exceed e. The ratio of BL to D determines the number of nodes to be placed
inside the boundary layers at the endpoints, where, for convergence purposes, each
boundary layer is initially required to have at least five nodes. The initial node
distribution in the boundary layer intervals is taken to be uniform with equidistant
nodes, and then this initial node distribution is generally modified during the Newton
iterations (2.6) due to the changing of the eigenvalues of Dyf which depend on the
variables x and y. Hence the algorithm removes or inserts nodes as described in the
following paragraphs. The removal of nodes is necessary ifthe boundary layer thickness
is initially estimated too large or especially if there is no boundary layer at one or
both endpoints. Additional nodes must be inserted if either of the boundary layers is
estimated too thin or if an increasing value of Re EV/ in (2.17) requires a smaller
distance D between the nodes.

After each iterative cycle, the boundary layer thicknesses are tested as follows.
The algorithm checks whether the computed solution satisfies the "reduced system"
(small parameter 0) at the endpoints of the outer subinterval, where the identification
of the reduced system is described in 3 and does not require any a priori knowledge
of the small parameter (or parameters). If this test is not valid at an endpoint of the
previous outer subinterval, then the adjacent boundary layer interval is enlarged by
inserting one or more additional nodes (the number depending on the error) beyond
the previous boundary layer, with the spacing D between nodes computed by (2.17).
In the same way the boundary layer thickness is reduced if the test is fulfilled at an
endpoint ofthe previous outer interval. Several nodes are removed from the appropriate
boundary layer interval if the test is fulfilled both for an endpoint of the outer interval
along with several adjacent nodes beyond the outer interval. In the case that the
computed solution satisfies the reduced system at all nodes in a previous boundary
layer, then all nodes are removed from that layer and the outer interval is redefined
to extend up to that boundary point.
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The absolute real part of the eigenvalue EV/ can increase quite rapidly inside a
boundary layer, which requires a smaller value of D in accordance with (2.17) along
with a consequent refinement of the previous node distribution. However, every such
refinement requires a new start of the Newton iteration (2.6), and so it is desirable to
find very early a node distribution which enables convergence without further reduction
in the value of D. This can be done by linearization. One first computes EV/ EV/(x, y),
and then, after one iteration in (2.6), one computes EV+(x, y+ A. Ay). If the real part
of this latter eigenvalue is greater than the previous value before the iteration, and if
the relaxation factor satisfies A < 1, then a first order approximation EV+ can be given
as

(2.18) EV/= 1 EV/(x, y)+- EV/(x, y+ X Ay).

In this case, the largest distance D is computed using this result (2.18) in (2.17). At
the endpoints (x a, or x b), new nodes are placed logarithmically (doubling interval
length with minimal distance Dmin (EV+)-I). Away from the endpoints, additional
nodes are placed equidistantly until (2.17) is satisfied.

The boundary values Sl, s,, are used for the computation of the eigenvalues in
the boundary layers. In many cases it is possible to compute the outer solution of the
problem initially, and in such a case this outer solution can be used to provide good
starting values for the sj. One can also use techniques such as those of Biller [4] and
Watkins [34] to choose or improve the starting values.

3. A stable initial value integrator for the outer solution. The distribution of nodes
in the multiple shooting, as illustrated in Fig. (2.2), uses for the outer solution a single
subinterval [xn, xn+) along with the corresponding initial value problem (2.3)n.
The outer solution for singularly perturbed problems is insensitive to the large eigen-
values EV of the functional matrix Dyf discussed in 2, and so the large eigenvalues
can be disregarded in the multiple shooting during the integration of the initial value
problem over the outer interval [xn, xn+). For this purpose a suitably stable integra-
tion routine is required. The stability function R(z) must fulfill the following condition

(3.1) IR(z)l< 1

for all z with large absolute real part. In particular this condition must be valid also
for large positive z. Here a second subdiagonal Pad approximation of the exponential
function is taken, and in order to obtain a fourth order method, one has the following
stability function:

l+z/4(3.2) R(z)
1-- 3z/4 + z2/,-- z3/24"

The corresponding stability region for (3.2) is indicated in Fig. 3.3.
The stability function (3.2) corresponds to an implicit Runge-Kutta method with

coefficients as given in Chipman [8]. One must solve a nonlinear system for the
computation of the increment functions in the resulting initial value integrator. The
method of successive approximation is customarily used for the nonlinear system in
such cases, but this method is not used here because of the large Lipschitz constant
of the singularly perturbed differential equation. Indeed, this large Lipschitz constant
permits only very small integration steps for a successful computation by successive
approximation. Hence a modified Newton method is used instead here to solve the
nonlinear system. The resulting increased overhead is more than balanced by the large
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-2i

-4i

FIG. 3.3. Stability region for (3.2).

IR(z)l <

stepsizes permitted in the integration. The special structure of the differential equations
in a singularly perturbed system (some differential equations contain small parameters,
others not) requires scaling of the nonlinear equations. For this purpose the sums of
the rows of the Jacobian matrix Dyf of the outer system (2.3)BL divided by the number
of differential equations are taken for the scaling factors. This scaling permits the
solution of the nonlinear system without knowledge of the value(s) of the small
parameter(s) or even in which differential equations the parameter appears.

In order to obtain a reliable integration method for the outer initial value problem
(2.3)BL, a stepsize control is required. For this purpose a second approximation of
different order is computed, because this is much cheaper than estimating the error
by using the earlier order-4 method and halving the stepsize. The chosen method for
this second approximation must satisfy the stability condition (3.1) and should also
be easy to compute. Therefore an implicit Runge-Kutta method of order two is used.
The stability function for this latter method is

1
(3.4) R(z)

1- z + z:/2

and its stability region contains that of (3.2). The coefficients for this implicit method
are also found in [8].

Based on these two Runge-Kutta methods, one finds the following estimate for
an optimal stepsize h (cf. Stoer and Bulirsch [31]):

(3.5)

(TOL ’/3

hnew 2- hold
\ EsT]

TOL: relative error

EST: error estimate

EST max [Y4i-

0.5 hold <- hne < 2.0 hold,

Y2, Y4 approximations of orders
two and four respectively.

The factor 2 in the estimate for h,ew in (3.5) has been determined by solving the test
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examples in Enright, Bedet, Farkas and Hull [11] and Enright, Hull and Lindberg
12], and takes into account the fact that the value of EST overestimates the real error.

It is necessary that the stepsizes are large enough so that the eigenvalues with
large absolute real parts are damped out during integration. If one takes the following
value of z in (3.2),

z A. h with A" eigenvalue of large real part,
(3.6)

h" stepsize,

then for a linear system of differential equations, condition (3.1) is satisfied for all
stepsizes h with:

5
(3.7) h > IRe A----- (see Fig. 3.3).

This inequality always holds for large Re A, and since A is typically inversely propor-
tional to some positive power of a small parameter in the singularly perturbed problems
considered here, it follows that the method works in the desired way. If the large
eigenvalues have been computed (see 2), one can determine a smallest stepsize h
from (3.7), and then the integration can be terminated if the stepsize is underestimated.
This can happen if the initial value SBL in (2.3)BL does not satisfy the reduced system
for the outer solution.

4. Numerical illustrations. The following computations were performed in
FORTRAN IV with single precision (48 bit mantissa) on the CDC CYBER 175 of the
Leibniz Rechenzentrum der Bayerischen Akademie der Wissenschaften. The solutions
were computed with tolerance EPS 10-4. The Runge-Kutta-Fehlberg method RKF7
(see Fehlberg [13]) with the modifications of Seydel [27] was used for the solution of
the initial value problems in the boundary layers. The abbreviations CT, IT, NFC
denote respectively computer time in seconds, the number of iterations of Newton’s
method, and the number of function calls of the right side of (2.1).

4.1. Test problem with two parameters. This example from O’Malley [21] provides
a useful test because the solution behaves differently in the boundary layers depending
on the ratio of the two small parameters. The problem is the following, where the three
cases e =/x, /./,2 2.5

/X are considered:

(4.1.1) ey"+ txy’-y =0, y(O)= 1, y(1)=0.5 (e /, /./,2, /./,2,5).
In every case the outer solution is given as

(4.1.2) 37=0.

For the eigenvalues of the Jacobian functional matrix of (the equivalent first order
system for) (4.1.1) there holds

(1 )(4.1.3) EV12=0.5 _/x:_. [/z2+4 ell/2
E E

from which one has the following approximations for the exact solution in the boundary
layers:

exp (EV1x) near x=0,
(4.1.4) y(x)

0.5 exp (EV2(x- 1)) near x- 1.
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From (4.1.3)-(4.1.4) one gets for the boundary layer thicknesses BLo(x=O) and
BLI(X 1),

(4.1.5)

BLo
0(-)
0()
O(t, ’)

0(#-)
0(#)
0(#)

BL1 BLo
BL1 2.6BLo

IT
CT
NFC

(4.1.7)

(4.1.6) IT
CT
NFC

10-4_10-11 10-12

4
0.19-0.66

4,328-23,578

5
1.0

37,954

In the case e =/x
2 the eigenvalue EV2 of (4.1.3) determines the estimate of the

boundary layer thickness in (2.16) at both endpoints. Together with (2.17) one obtains
a node distribution with seven equidistant nodes in each layer. After three iterations
the algorithm reduces the thickness of the boundary layer at x 0 and removes three
nodes there while leaving the earlier node distribution unchanged at x 1. Hence the
algorithm automatically models correctly the situation which obtains for the exact
solution where, as indicated by (4.1.4)-(4.1.5), the boundary layer thickness at x =0
is only about half that at x 1. The computational results are given in (4.1.7) for the
indicated range of values of

10-2 10-3 10-4 10-5 10-6

4 10 4 5 5
0.33 1.7 0.63 1.0 1.3
9,193 59,230 21,955 37,480 47,013

In the case e =/z25, the magnitudes of the eigenvalues (4.1.3) differ considerably
for small /x. The rule (2.16) automatically uses EV1 in obtaining the initial estimate
for the boundary layer thickness BL at each endpoint, and then (2.16) and (2.17) yield
an initial node distribution of ten equidistant nodes, in each layer. After three iterations,
the algorithm reduces the thickness of the layer at x 0 and removes six nodes there,
while at the same time the algorithm enlarges the layer at x 1 and inserts additional
nodes there in accordance with (2.17). The algorithm inserts one additional node near
x 1 in the case /x 10-2, while two additional nodes are inserted for both cases
/z 10-3 and/x 10-4, and four additional nodes are inserted for/z 10-5. In all cases
the computed boundary layer thicknesses are correct. The computational results are

(e=).

indicated in (4.1.8).

(4.1.8) IT
CT
NFC

10-2 10-3 10-4 10-5

6 6 6 7
0.88 2.3 6.6 24

29,058 86,667 266,649 1,000,923

(e

(e ,2).

The numerical calculations for (4.1.1) were started with the two nodes xl =0, X2 1
with corresponding sj taken from the exact outer solution, sl s2 0:

In the case e =/x where both eigenvalues have asymptotically the same value,
(2.16)-(2.17) yields a new distribution of five equidistant nodes in each boundary layer
interval, and in this case this node distribution remains unchanged during the remaining
iterations. The table in (4.1.6) indicates the amount of computation"
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The increasing expense for smaller/z is explained by the stiff behavior of the solution
in the right boundary layer. The boundary layer thickness there is determined by EV2
(cf. (4.1.4)) while the negative eigenvalue EV1 of (4.1.3) influences the stepsize of the
Runge-Kutta method RKF7. As/z becomes smaller and smaller, the eigenvalues differ
more and more in their magnitudes, and the resulting stepsizes in RKF7 become very
small compared to the boundary layer width at x--1 (cf. (4.1.5)). The use of a stiff
integrator for the initial value problems in the boundary layers leads to the results of
(4.1.9), where the stiff integrator used here is GRK4T from Kaps and Rentrop [17].

(4.1.9) IT
CT
NFC

10-2 10-3 10-4 10-5

6 6 6 7
3.8 7.4 10.8 12.6

19,475 37,610 54,957 64,166

(e =/z’5)

NFC is reduced dramatically, but the amount of computer time is reduced only for
/z 10-5.

In all three cases the numerical results are everywhere within the required accuracy.
One or two decimals only are lost at the two nodes which serve as the endpoints of
the outer interval where the algorithm connects the outer solution to the boundary layers.

4.2. Semiconductor diode model. This simplified model of a semiconductor device
consists of the equations (see Vasil’eva and Stel’makh [33])

(4.2.1)

txZE’=p-n+ N,

p’=pE -J,

n’= -nE + J

where E, p, n, N 1, J- 1 denote field strength, hole and electron concentration, and
doping and current densities respectively. The quantity/z 2 corresponds to the Debye
length which is a measure of the physical thickness of the boundary layer between the
p-doped and n-doped regions. Here the n-region of a symmetric diode is considered,
which results in the boundary conditions"

(4.2.2) p(0) n(0), p(1) p, n(1) n + N.

These conditions are more general than those given in [33]. An existence and local
uniqueness proof for (4.2.1)-(4.2.2) for small/x (and for variable doping and current)
is given in Smith [29] (see also [30]) along with an analysis of the behavior of the
solution functions for small/x. In Maier and Smith [19] numerical solutions based on
the results of [29] are computed for different boundary conditions. The outer solution
functions (/x--0) for (4.2.1)-(4.2.2), denoted as E,/3 and a, are given as

(4.2.3)

2J u-N u+N
E=m, /_ if- with

u 2 2

u=[N2+4p (N+ n)+4NJ. (l-x)]’/2.

There are boundary layer effects for all solution components E, p, n at the left endpoint
x 0 which corresponds to the diode junction. However, the situation is different at
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the right endpoint where the boundary layer structure depends on the particular
boundary values p, n used in (4.2.2). The situation can be summarized as follows
(see [29])"

(4.2.4)

a) n--pl=0 no boundary layers atx=l;

b) n>0=pl E and n, butnotp,
have boundary layers at x 1;

c) nl p > 0 all solution components E, n, p
have boundary layers at x 1.

Here numerical solutions are computed for the cases

(4.2.5a) nl =p =0,

(4.2.5b) n 0, Pl 1.

For the calculations in both cases the starting data consist of the two nodes x- 1,
x_=0 along with the corresponding values from the outer solution (4.2.3) at these
points. The amount of computation required is shown in (4.2.6) for the indicated range
of values for/x2 between 10-6 and 10-1-:

(4.2.6)

2

10-6

10-7

10-8

10-9

10-o
10-11

10-2

nl --Pl =0

IT CT NFC
5 0.65 11,649
5 0.85 15,808
5 0.9 18,069
5 1.4 29,689
5 1.4 29,256
5 1.9 39,885
5 2.6 54,760

n O,/91 1

IT CT NFC
8 1.2 24,503
8 1.3 26,426
8 1.6 34,798
8 2.4 54,872
8 3.3 81,175
8 4.0 96,396
9 5.1 123,934

In every case the algorithm initially distributes five equidistant nodes in each boundary
layer subinterval. This node distribution remains unchanged until convergence for
(4.2.5b), whereas all ofthe nodes near x I are removed for (4.2.5a) after two iterations.
Hence the algorithm agrees with (4.2.4) in both cases. One obtains the following
estimates for the boundary layer thicknesses at convergence, where the values in
parentheses are the values used in [19].

(4.2.7) x =0
x=l

nl =Pl --0

BL:13.5 p, (15.

r/1 0, p 1

BL: 13.5 /x (15.
BL: 11.5 /z (10.

The solution values computed here agree within the required accuracy with the
values given in Ascher [3] for E(0), p(0), n(0) in the case (4.2.5a) and with the values
for E, p, n at the endpoints for different boundary conditions obtained in 19] using
a different algorithm more closely tied to the asymptotic analysis of [29]. The graphs
of the computed solution functions are indicated in Figs. 4.2.8 and 4.2.9.
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Field Strength E for (4.2.5a)
Hole and Electron Densities p, n for (4.2.5a)

Io$

.S

. . .o .e .e

FIG. 4.2.8. /x z= 10-3 (---), /./,2 10-4 ().

4.3. Bipolar transistor. The model of a bipolar transistor is discussed in Van Driel
[32] and in Rentrop [26]"

V"(x) =q (p(x) + Pq(x) + Pt2(x)- n(x)- No),
E

1 ( )P’(X)=-p tXpp(X)" V’(x)-!"
1

(4.3.1a) n’(x)
D,, (p,.n(x). V’(x) -1. J,,(x)),q

J’p(x) q. (J- Rl(X R2(X))

.t’,,(x)
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-11.8

Field Strngth for (4.2.5b)
Hole and Electron Densities p, n for (4.2.5b)

with

(4.3.1b)

st,. v,p(x) +
Pti(x) 1, 2,

y,p(x) + in(x) + cei + ti

R,(x)
p(x) n(x)- r/ntr

"r.,(p(x)+p,)+’rp,(n(x)+ n,)’
i=1,2

and with constants

q 1.6. 10-19, e 10-12, J 5 1015, ND 107,
/Xp 1 O, /z,, 1, Dp 0.26, D, 0.026,
al =0.1, a2 0.058, 1 10-9, f12 10-5,

(4.3.1c) 3’1 =5" 10-7, 3’2 10-5, 31 =4.1" 10-3, 2 1.4" 103,
Ntl 1016, Nt2-- 1013, 7"p 2" 10-1, "/’P2 10--8’
7",, 10-7, r,, 10-8, PC 2 105, PC2 5.8 103,
nc =4.1 106, nc2 1.4" 108, ni2ntr nl’pL 8.2. 1011.
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The problem is considered on the interval 0 _-< x _-< L with L 2 10-4 and with boundary
conditions"

V(0) 0, V(L) 10,

(4.3.2) p(0) 4.8 1012, p(L)=pL= 107,
n(0) 0.17, n(L)= nL= 8.2 10a.

The problem is scaled as in [26], as follows:

V(x) V(x),

(4.3.3) (x)=q.p(x),

n(x)=q.n(x),

1
#(x)=. J(x),

1

In the sense of singular perturbation theory, no small parameter is given explicitly
for (4.3.1). It might be expected, by analogy with the related system (4.2.1), that a
small parameter might occur implicitly in the first equation of (4.3.1a). However, the
results in [26] suggest instead that a small parameter enters here into the equations
for p’ and n’, and this suggestion is confirmed by the present numerical solution.
Another feature of this example is that the large eigenvalues are actually rather small
as compared with those in many other singularly perturbed problems. Moreover, the
large eigenvalues here change their magnitudes rapidly during the interval of integra-
tion, as indicated in Fig. 4.3.4 which gives the graph of the absolute value of the largest
absolute eigenvalue for 0 - x<_-L (scaled to L= 1).

1200

800

600

400

200

0.2 0.4 0.6 0.8

FIG. 4.3.4. Graph of largest absolute eigenvalue.
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The subdivision of the interval into outer and boundary layer intervals cannot be
done in the same way as in the other examples since the large eigenvalues influence
the solution for x [0, 0.5 L] and cannot be neglected in that subinterval. Moreover,
these eigenvalues can be neglected only by using large stepsizes in accordance with
(3.7), and this is not allowed here by the stepsize control. Hence the interval [0, 0.6 L]
is taken as the left boundary layer. The right boundary layer is taken to be determined
by (2.16), which gives BL 0.02 L for the thickness of the right boundary layer. Hence
the outer interval is taken initially to be [0.6 L, 0.98 L], and the initial node distribu-
tion uses 25 nodes. The initial choices for the shooting initial values sj are computed
as in [26] using a homotopy chain with the successive values (/zp,/xn) {0.01, 0.001},
{0.1, 0.01}, {1, 0.1}, {3, 0.3}, {5, 0.5}, {10, 1}. The solution is easy to compute with the
initial choice {/zp,/xn} {0.01, 0.001}, and then the resulting computed solution values
are used as starting values for the next parameter choice {/Xp,/xn} {0.1, 0.01}, etc. With
this homotopy trajectory one gets the computed solution for the original problem with
{/Zp,/x,}={10, 1} after 12 iterations of the Newton method, using 68.5 seconds of
computer time, and 641,115 calls of the right-hand side of (4.3.1). The graphs of the
computed solution functions are indicated in Figs. 4.3.5-4.3.7.

.6 .8 .O 1.0

FIG. 4.3.5. Potential V(x).

.| .e .o

FIG. 4.3.6. Hole and electron densities p(x), n(x).
.! .!
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O. . .0 .O .0

FIG. 4.3.7. Hole and electron current densities Jp(x), Jn(x).

4.4. Electrical properties of electron-irradiated silicon. This boundary value prob-
lem is described in Sigfridsson and LindstrSm [28] and is solved by a direct discretiz-
ation (difference method) in Abrahamsson [1]. One has the problem:

I. y’= F(x, y, z), y(0) 1,
(4.4.1a)

I. z’= G(x, y, z), z(1) =0

where y, z, and I are the normalized electron, hole, and current densities respectively.
The right sides of the differential equations are given as

F(x, y, z) (y + flz) Alyf fi-
(4.4.1b)

( 1 N" 17)G(x, y, z)= (y+ z) A1z?+- i=, +- fj

where

and

(4.4.1d)
f

yz KaniKapi

y + It, "+" Ola, Kap "Jt- Z )’

f a4Aa,,ya x
.yz KdnjKdp

y + Kdn + Odj (Kdp + Z)

and where the constants are given as

fl , Kap, 1.854.10-4,

NA 2, ra-t 21.47,

No 1, r-p2 0.1021,

=0.05162,

tzd 1
for all i,
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y,,(x) 15,

y,(x) 10,

3.899 10-2,
2.902 103,

Aa,,, Ad,,j 2.222 10-3

for all i, j,

ya(x) =400, d,, 1.371 10-6, I [10-12, 1].

This boundary value problem is interesting in two ways" first, the eigenvalues are
O(1/I) which yields very narrow boundary layers which are physically interesting for
small I, and second, the solution behaves quite differently in the two boundary layers,
as indicated in Fig. 4.4.2. At x 0 the solution is governed by an absolute increasing
negative eigenvalue, while at x 1 one eigenvalue changes its sign and causes a turning
point inside the boundary layer.

FIG. 4.4.2. Normalized hole density z for I 10-4 (---), I 10-5().

The outer solution )7, is computed by solving the reduced system

(4.4.3) F(x, , )=0, G(x, , )=0.

It is shown in [1] that (4.4.3) has a unique solution satisfying the conditions 97>0,
> 0, and the resulting solution functions are given as

(4.4.4) )7= 7.4161 10-3, =0.53667.

For the calculation here the starting values are taken to consist of these outer
values at the two nodes Xl 1, x2 0. The initial estimates for the eigenvalues are

(4.4.5) EV1 1.75.10-2/I, EV2 -3.86.10:-3/I.
Then (2.16) and (2.17) produce an initial node distribution of ten equidistant nodes
at each endpoint.

In the left boundary layer at x 0 the solution is determined by an absolute
increasing eigenvalue. One obtains for the computed solution at x 0 the results

(4.4.6) EV1 7.66.10-2/I, EV2 -0.418/I.

Consequently the initial grid is refined by the stepsize control (2.18). After the first
iteration, nine additional nodes are distributed logarithmically in the previous first
subinterval adjoining x 0 within the left boundary layer, while one additional node
is placed in the middle of the previous second subinterval within the boundary layer
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near x =0. After three iterations, the left boundary layer thickness is reduced by
removing the rightmost node of this layer.

In the right boundary layer at x-- 1 the solution is influenced by the changing of
sign of the eigenvalue EV1 which causes a turning point. One obtains for the computed
solution at x 1 the results

(4.4.7) EV1 1.27.10-3//, EV2 -6.69.10-4/L
No additional nodes are inserted by the algorithm, but the boundary layer thickness
is reduced by taking out three nodes.

The amount of computation is shown in (4.4.8) for the indicated values of I
between 10-5 and 10-12

(4.4.8)

10-5

10-6

10-7

10-8

10-9

10-1o
10-1

10-12

IT CT NFC

13 2.1 33,667
13 2.1 34,774
13 2.3 37,020
13 2.2 34,175
13 2.3 35,516
13 2.4 37,731
13 2.1 33,512
12 2.1 33,643

The computed solution values agree in all five decimal places with the numerical values
computed in Abrahamsson [1] for the case I 10-12.

4.5. Test problem with failure of existence and/or uniqueness. This example pro-
vides a useful test because the problem has either no solution of boundary layer type,
one solution of boundary layer type, or two such solutions, depending on the precise
numerical value of the specified boundary value/3,

(4.5.1) e2u"= (uz- 1)(u2-4), u’(O) =0, u(O) =/3.

Specifically, let fll and 2 be the real roots of the respective cubics Pl(fl) and P2(fl)
given as

(4.5.2)
Pl(fl) := 3fla-6fl2- 16fl + 38,

p2(fl) 333+ 12fl2+ llfl -4,
with

(4.5.3) ill-" -2.40569 and 2--" +0.275279.
Then it is shown in [30, Chap. 10] that, as e 0+, (4.5.1) has a solution ul of boundary
layer type satisfying

(4.5.4) limit Ul(X, e)=-1
e-0+

Fixed 0<x<l

for any fixed fl > ill, but no such solution exists for fl < ill, and similarly (4.5.1) has
a solution u2 of boundary layer type satisfying

(4.5.5) limit !UE(X, e)- +2
e-0+

Fixed 0<x<l

for any fixed > 32, but no such solution exists for/3 < 32, as indicated in Fig. 4.5.6.
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t-+-t-+ + + /3
-3 -2 -1 0 1 2

No stable B.L. One stable B.L. Two such
solutions solution solutions

u exists

FIG. 4.5.6

u2 exists

For example the case/3 0.5 leads to two stable solutions of boundary layer type, as
indicated in Fig. 4.5.7.

U 0
at x=O 2

-l
U 0

at x=O

u

u u2(x,e)

5 at x=

x

u u (x,e)

FIG. 4.5.7. Lack of uniqueness.

The following different choices are used in the calculations for the boundary
value/3,

(4.5.8) -3.0,-2.41,-2.4,-1.0, +0.27, +0.28, +0.5,

so that all three regimes of (4.5.6) are included. The calculation is performed twice for
each choice of/3 in (4.5.8) and for each of several choices for e, with one calculation
corresponding to the (potential, stable) outer solution l =-1 of (4.5.4), and with the
other calculation corresponding to the outer solution t2 +2 of (4.5.5). In every case
the calculation is started with the two nodes xl 0 and x2 1, with corresponding sj
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taken from one of the exact outer solutions fil or fi2, as:

(4.5.9) Sl 52 =-1 for the solution ul,

or

(4.5.10) Sl 52 +2 for the solution u2.

The numerical results provided by the algorithm are summarized in the table in
(4.5.11) for the values of/3 given in (4.5.8). In each case the calculation is performed
for the different values e2= 10-3, 10-4, "’’, 10-11, 10-12. The algorithm produces
accurate solution values for ul in the cases /3 =-2.4, -1.0, +0.27, +0.28, and +0.5,
but the algorithm fails to converge for Ul in the cases/3 =-3.0 and -2.41. For u2 the
algorithm produces accurate solution values in the cases/3 +0.28 and +0.5, but the
algorithm fails to converge for the other values of/3 listed in the table in (4.5.11).

(4.5.11)

/3 -3.0 -2.41 -2.4 -1.0 -0.27 +0.28 +0.5

U + + + + +
u2 + +

+- Accurate solution values given by numerical computation.

Numerical computation indicates solution fails to exist.

For example, in the case (4.5.9) with /3 =-2.4 and with e- 10-5 (e2= 10-1 in
(4.5.1)), the algorithm produces accurate solution values in less than 2 seconds of
computer time using six nodes in a boundary layer adjoining the right endpoint x 1,
with about 70,000 function calls of the right side of the differential equation. On the
other hand, in the case (4.5.10) with/3--2.4 and with e 10-5, the algorithm fails to
converge, which is in agreement with the nonexistence of an exact solution satisfying
(4.5.5).

When an exact solution ul and/or u2 exists for (4.5.1), the algorithm produces
accurate approximate solution values efficiently, and the accuracy is good throughout
the interval including within the boundary layer. On the other hand, in each case when
an exact solution Ul and/or u2 fails to exist, then the algorithm automatically gives
an indication that a corresponding solution fails to exist. In every case listed in (4.5.11),
the computed results are in agreement with the theoretical results of [30].

Summary. An algorithm based on multiple shooting is given for the numerical
solution of singularly perturbed boundary value problems with possible boundary
layers at the endpoints. The algorithm includes an automatic control and distribution
of nodes. A stable initial value solver is used in the outer interval so that one is not
restricted to unnecessarily small stepsizes there, while a high-order initial value solver
(which in some cases is replaced by a stiff integrator) is used within the boundary
layers. The algorithm is tested on several nontrivial problems, including certain prob-
lems which might seem not to be well suited for the method. One sees that the algorithm
enjoys a certain robustness" for all test problems considered, the algorithm performs
successfully as regards both accuracy and efficiency. In particular, the algorithm
provides accurate solution values throughout the entire interval, including throughout
the boundary layers, which is crucial in certain applications in the physical theory of
semiconducting devices.
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SOLVING EIGENVALUE AND SINGULAR VALUE PROBLEMS
ON AN UNDERSIZED SYSTOLIC ARRAY*

ROBERT SCHREIBERf

Abstract. Systolic architectures due to Brent, Luk and Van Loan are today the most promising method
for computing the symmetric eigenvalue and singular value decompositions in real time. These systolic
arrays, however, are only able to decompose matrices of a given fixed size. Here we present two modified
algorithms and a modified array that do not have this disadvantage. The results of a numerical experiment
show that a combination of one of our new algorithms and the modified array can decompose matrices of
arbitrary size with little or no loss of efficiency.

Key words, eigenvalue problems, singular value decomposition, systolic computation, parallel
computation

1. Introduction. Systolic arrays are of significant and growing importance in
numerical computing [12], especially in matrix computation and its applications in
digital signal processing 13 ]. There is now considerable interest in systolic computation
of the singular value decomposition [2], [4], [6], [10] and the symmetric eigenvalue
problem 1 ], [8].

To date, the most powerful systolic array for the eigenvalues of a symmetric n x n
matrix is a square n/2 x n/2 array due to Brent and Luk. This array implements a
certain cyclic Jacobi method. It takes O(n) time to perform a sweep of the method,
and O(log n) sweeps for the method to converge [1].

Brent and Luk have also invented a closely related (n/2)-processor linear array
for computing the singular value decomposition (SVD) of an m n matrix A. An SVD
of A is a factorization A UE Vr, where V is orthogonal, E is nonnegative and
diagonal, and U is rn x n with orthonormal columns. This array implements a cyclic
Hestenes algorithm that, in real arithmetic, is an exact analogue of their Jacobi method
applied to the eigenproblem for ATA. The array requires O(mn) time for a sweep, and
O(log n) sweeps for convergence [2].

A new array, much like the eigenvalue array, is reported by Brent, Luk and Van
Loan to be capable of finding the SVD in time O(m + n log n) [3].

The purpose of this paper is to consider an important, indeed an essential problem
concerning the practical use of these arrays. How, with an array of a given fixed size,
can we decompose matrices of arbitrarily large size?

2. Systolic arrays for the Jacobi and Hestenes methods. We shall concentrate on
Hestenes’ method for the SVD. Starting with the given matrix A, we build an orthogonal
matrix V such that AV has orthogonal columns. Thus

AV UE,

where U has orthonormal columns and E is nonnegative and diagonal. An SVD is
given by A UE Vr.

To construct V, we take A()= A, and iterate

A(i+1) A(i)((i) =0, 1,

* Received by the editors June 14, 1983, and in final revised form November 12, 1984. A preliminary
version of this paper appeared in Real-Time Signal Processing VI, SPIE vol. 431 (1983), pp. 72-77. This
research was partially supported by the U.S. Office of Naval Research under contract N00014-82-K-0703.

" Guiltech Research Company, 255 San Geronimo Way, Sunnyvale, California 94086.
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with Q(i) orthogonal, until some matrix A(i) has orthogonal columns. Q() is chosen
to be a product of n(n-1)/2 plane rotations

n(n--1)/2

Q(i) I-I QJ i).
j=l

Every possible pair (r, s), 1 < r (s < n, is associated with one of the rotations !i) (the:j

association is independent of i) in this way: the rotation Q) is chosen to make columns
r and s of

A(i)(k(I=I Q(ki))
orthogonal. The process of going from a(i) to A(+1) is called a "sweep." Every
permutation of the set of pairs corresponds to a different cyclic Hestenes method.

The correspondence with the Jacobi method is this. The sequence A(i)’A(

converges to the diagonal matrix E2 of eigenvalues of ATA. Moreover,

A(,+I)A(i+)= Q(i)’(A(,)’A())Q(,)

where Q() is the product of n(n-1)/2 of Jacobi rotations that zero, in some cyclic
order, the off-diagonal elements of A(i)TA().

The permutation chosen by Brent and Luk allows the rotations to be applied in
parallel in groups of n/2. Their permutation consists of n- 1 groups of n/2 pairs such
that, in each group, every column occurs once. Thus, the n/2 rotations corresponding
to a pair-group commute. They can be applied in any order or, in fact, in parallel.

The SVD array is shown in Fig. 1. There are n/2 processors. Each processor holds
two matrix columns. Initially processor holds column 2i- 1 in its "left memory" and
column 2i in its "right memory."

FIG. 1. The SVD array" n 8.

In each cycle, each processor computes and applies to its two columns a plane
rotation that makes them orthogonal. Next, using the connections shown in Fig. 1,
columns move to neighboring processors. This produces a new set of n/2 column-pairs.

After n-1 cycles, n(n-1)/2 pairs of columns have been orthogonalized. It can
be shown (by a parity argument) that no pair occurs twice during this time. Thus,
every pair is orthogonalized exactly once. We call the process of orthogonalizing all
pairs, in this parallel order, an A-sweep.

A diagram (given in [2] originally) showing the movement of columns through
the array, very important in the considerations to follow, is given in Fig. 2.

3. Solving larger problems. We now consider the problem of finding an SVD when
A has n columns, the array has p processors, and n > 2p.

The usual approach to this problem is to imagine that a "virtual" array, large
enough to solve the problem (having In/2] or more processors), is to be simulated
by the given small physical array. Moreover, the simulation must be efficient. The array
should not spend a large amount of time loading and unloading data.
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step 0

step

step 2

step 3

step 4

step 5

step 6

FIG. 2. Flow of data in the SVD array; n 8.

For some arrays, this simulation is trivial. One finds a subarray of the virtual
array, of the same size as the physical array, for which all the input streams are known.
Clearly the action of such a subarray can be carried out and its outputs stored. These
outputs then become the inputs to other subarrays. This process continues until,
subarray by subarray, the computation of the entire virtual array has been performed.
If this technique is possible, we say that the array is "decomposable." The various
matrix multiply arrays [7], the array of Gentleman and Kung for QR factorization [5]
and the array of Schreiber and Kuekes for solving triangular systems [9] are good
examples of decomposable arrays.

Some arrays are indecomposable: the Kung-Leiserson band-matrix LU factoriz-
ation array, for example [7].

Consider the 4 x 4 matrix multiplication array shown in Fig. 3. It computes C + AB
where C and B are 4 x rn and A is 4 x 4. Suppose we have a 2 x 2 array of the same
type. With it, C + AB can be computed using a block algorithm. Partition A, B and
C so that

A21 A22J’ B2 C2
where the blocks are 2 x 2 or 2 x m. We use the array to carry out these operations:

1. C1 := AllB1;
2. C2 := A_IB1;
3. C1 := C1 + Ai_B2;
4. C2 := C2+ A22B2.

An equivalent viewpoint is that we use the array to emulate (that is, perform the work
of) four 2 x 2 sections of the 4 x 4 array; the sections are shown in dotted outline in
Fig. 3. Note that the input data for each section is known at the time the section is
emulated by the 2 x 2 array, either because that data is input data or because it is
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c41 c32

c31

c23 c14

c22 c13

c21 c12

Cll

bll b12 b13 b14

FIG. 3. A matrix multiplication array" C C + AB.

b21 b22 b23

b b
31 32

b41

output from another part of the array whose action has already been emulated. This
sort of decomposition of an array can work only when there are no cycles in the flow
of data in the array. This is true of the decomposable arrays mentioned above.

The SVD array of 2 is indecomposable. Consider Fig. 2. Suppose a two-processor
array is available. It cannot efficiently simulate the four-processor array because there
does not exist a two-processor segment of Fig. 2 for which only known data enters. If
this diagram is cut by a vertical line, data flows across the line in both directions, every
cycle. The data cannot be known if only the computations on one side of the line have
been performed.

Here we shall present a solution to this problem. The idea is to have a given
p-processor array simulate a pq-processor "superarray" which is not of the Brent-Luk
type. Moreover, the superarray is decomposable. In its space-time dataflow graph, the
processors occur in groups of p. For long periods of either p or 2p- 1 cycles, no data
flows between groups. Thus, the physical array can efficiently carry out the computation
of the superarray, group-by-group.

We give two such superarrays. The first implements a Hestenes method in which
a "sweep" corresponds to a permutation of a multiset of off-diagonal pairs. There is
some redundancy: some pairs are generated and orthogonalized several times. The
second implements a cyclic Hestenes method with a permutation different from the
one used in an A-sweep. For this method, a minor change must be made to the array.
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We have compared these new sweeps to the A-sweep. These experiments indicate
that the first superarray is about 20-60% less efficient than the Brent-Luk array, while
the second superarray is virtually equal to the Brent-Luk array in efficiency.

3.1. Method A. This method is easiest to explain in terms of an example. Suppose
we have a 4 processor array. Suppose there are 16 columns in A. We proceed as follows:

1. Load columns 1-8 and perform an A-sweep;
2. Load columns 9-16 and perform an A-sweep;
3. Load columns 1-4, 13-16; perform an A-sweep;
4. Load columns 5-8, 9-12; perform an A-sweep;
5. Load columns 1-4, 9-12; perform an A-sweep;
6. Load columns 13-16, 5-8; perform an A-sweep.

Steps 1-6 together constitute an A-supersweep. During an A-supersweep, every column
pair is orthogonalized. Some are orthogonalized more than once.

To describe the general case, suppose there is a p-processor array, and n 2pq
(pad A with zero columns, if necessary, so that 2p divides n). Imagine that the matrix
A consists of 2q supercolumns: supercolumn Ai consists of columns

p(i-1)+l,... ,pi.

Now consider a q-superprocessor virtual superarray. Each superprocessor holds two
supercolumns (one in each of its left and right memories). In one supercycle the
superprocessors each perform a single A-sweep over the 2p columns in their memory.

(Obviously we can simulate a supercycle of a superprocessor using one p-processor
Brent-Luk array and 2p-1 cycles of time. Moreover, we can be loading the data for
the next supercycle and unloading the data from the preceding supercycle at the same
time as we process the data for the current supercycle.)

Initially, supercolumns A and A2 are in superprocessor 1, A and A4 in super-
processor 2, etc.

Between supercycles, the supercolumns move to neighboring superprocessors. The
scheme for moving supercolumns is precisely the same as the scheme for moving
ordinary columns in a q-processor Brent-Luk array.

After 2q- 1 supercycles, we have performed an A-sweep on every pair of super-
columns exactly once. Together these 2q- 1 supercycles constitute an A-supersweep.
During an A-supersweep, every pair of columns of A is orthogonalized. If two columns
are in different supercolumns, then they are orthogonalized once, during the supercycle
in which their containing supercolumns occupy the same superprocessor. If they are
in the same supercolumn, then they are orthogonalized 2q-1 times.

In units of cycles, the time for an A-supersweep, TAS, is

TAS (2q- 1) supercycles (2p- 1) cycles/supercycle

(2q- 1)(2p- 1).

(Of course, the simulation by a p-processor array takes q times this time.) The time
for an A-sweep over n columns, TA, is

TA n 1 2pq- 1.

Thus, the A-supersweep takes longer; the ratio of times satisfies

9 Tas-_<--<2.
7 Ta

(The lower bound arises in the simplest nontrivial case p =q 2.)
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There is little theoretical basis for comparing the effectiveness of A-supersweeps
and A-sweeps in reducing the nonorthogonality of the columns of A. We have therefore
performed an experiment. A set of square matrices A whose elements were random
and uniformly distributed in [-1, 1 was generated. Both A-supersweeps and A-sweeps
were used until the sum-of-squares of the off-diagonal elements of ATA was reduced
to 10-12 times its initial value. We show the results in Table 1. The number of test
matrices, the average number of sweeps, the largest number for any test matrix, and
the relative time

p =--- TAS * average-sweeps (AS)/TA * average-sweeps (A)
are shown.

Evidently one A-supersweep is more effective in reducing nonorthogonality than
one A-sweep. This is not surprising, since more orthogonalizations are performed.
Their cost-effectiveness, however, is roughly 20-60% less.

TABLE
Comparison of A-sweeps and A-supersweeps.

Average Maximum

p q n Trials A super A A super A p

2 2 8 320 3.98 4.33 5 5 1.18
2 4 16 160 5.10 5.38 6 7 1.33
2 8 32 80 6.18 6.29 7 7 1.43
4 2 16 160 4.80 5.40 5 6 1.24
4 4 32 80 5.99 6.31 7 7 1.50
4 8 64 20 7.05 7.55 8 8 1.57
8 2 32 80 5.25 6.28 6 7 1.21
8 4 64 10 6.60 7.60 7 8 1.45
16 2 64 20 6.00 7.30 6 8 1.21

In order to gauge the reliability of the statistics generated by this experiment, we
also measured the standard deviations of the sampled data. In all cases, the standard
deviations were less than 0.5. For the samples of size 80 or more, the standard errors
of the means are no more than 0.06, so these statistics are quite reliable. For the samples
of sizes 20 and 10, these data may be in error by as much as 10%.

3.2. Method B. Method A suffers some loss of speed, because in an A-supersweep
some column-pairs are orthogonalized many times. By making a small modification
to the Brent-Luk array and using the new array as our basic tool, we can simulate a
new supersweep, called an AB-supersweep, during which every column-pair is
orthogonalized exactly once.

Figure 3 shows the modified array. The connection from processor 1 to processor
p is new. Note that a ring connected set of processors can easily simulate this structure.
This array is still able to perform A-sweeps over sets of 2p columns. But it can also
perform a second type of sweep, which we call an "AB-sweep," and which we now
describe.

In an AB-sweep, a pair (A, B) of supercolumns, each consisting of p columns, is
loaded into the array. During the sweep, all pairs (a, b) a A, b B are orthogonalized
exactly once. But no pairs from A x A or B x B are orthogonalized.

To implement an AB-sweep, place the columns of A in the p left memories and
the columns of B in the p right memories of the processors. (The set of left (respectively
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right) processor memories is the superprocessor’s left (respectively right) memory,
rather than the memories of the leftmost (respectively rightmost) p/2 processors.)
Processors do precisely what they did before: orthogonalize their two columns. Between
cycles, A remains stationary while B rotates one position, using the connections shown
as solid lines in Fig. 4.

FIG. 4. The modified SVD array" n 8.

An AB-supersweep is as follows. Again we work with 2q supercolumns of p
columns each. The initial configuration is as for an A-supersweep. During the first
supercycle, which takes 2p-1 cycles, every superprocessor performs an A-sweep on
the 2p columns in its memory. On subsequent supercycles, all superprocessors perform
AB-sweeps, where the sets A and B are the two supercolumns in its memory. Between
supercycles, supercolumns move as before.

It is easy to see that in an AB-supersweep, every column pair is orthogonalized
once. Thus this scheme implements a true cyclic Hestenes method. The permutation
differs, nevertheless, from the permutation used in an A-sweep.

Again, we have compared the new scheme to the A-sweep by an experiment. The
experiment setup was precisely the same as for the previous experiment. The results
are shown in Table 2.

TABLE 2
Comparison of A-sweeps and AB-supersweeps.

Averages Maxima

p q n Trials AB super A AB super A

2 2 8 320 4.32 4.33 5 5
2 4 16 160 5.35 5.38 6 7
2 8 32 80 6.36 6.29 7 7
4 2 16 160 5.36 5.40 6 6
4 4 32 80 6.18 6.31 7 7
4 8 64 20 7.50 7.55 8 8
8 2 32 80 6.13 6.28 7 7
8 4 64 10 7.10 7.60 8 8
16 2 64 20 7.00 7.30 7 8

Evidently, AB-supersweeps are as effective as A-sweeps. The standard deviations
of the number of AB-supersweeps needed were also all less than 0.5.

3.3. Earlier work. Another scheme for solving problems with an undersized array
was proposed in [3], a paper that deals with a square SVD array. The proposal is to
use a block method, in which the SVDs of diagonal blocks are computed in the given
array.

Applied to the linear SVD array, this idea is much like our A-supersweep scheme,
except that a superprocessor iterates to convergence instead of performing only one
A-sweep.
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TABLE 3
Comparison of block-Jacobi A-sweeps and A-supersweeps.

p q n Trials Ratio

2 2 8 40 2.4
2 4 16 40 2.7
2 8 32 10 3.1
4 2 16 40 2.9
4 4 32 10 4.2
4 8 64 5 4.3
8 2 32 10 3.7
8 4 64 5 5.2
16 2 64 5 3.7

The extra time needed for this convergence leads to inefficiency in this scheme.
The data in Table 3 show this. These give the result of a numerical experiment; the
setup was the same as for previous experiments. For several values of p and q we
show the ratio of the number of operations used by the block method to the number
used by the AB-supersweep method discussed earlier. For this experiment, we stopped
a superprocessor, which was working on the n x 2p matrix B, from further iteration
when the sum of the squares of the off-diagonal elements of B T"B was less than 10-:

times the sum of the squares of the diagonal elements of BTB.
Thus, the present schemes require fewer computations than the block method of

[3]. On the other hand, they may require more input/output from the array. The choice
between them will turn on factors such as the relative speed of computation and
input/output that depend on how the array is implemented.

Clearly there is a family of methods of this type parameterized by the number of
sweeps over each block. Our experiments illuminate two extreme cases.

4. The eigenvalue array. In this section we show how the two ideas for problem
decomposition in 3 can be used to solve large eigenvalue problems on the square
array of [1]. This array solves the symmetric eigenvalue problem in time O(n log n)
and is the fastest array known for that problem. The same ideas also apply, in exactly
the same way, to the SVD array of [3].

The eigenvalue array is a p p array that holds a 2p 2p symmetric matrix. Each
processor P0 holds a 2 2 submatrix bo: initially,

bj [a:,-1,:- a2i-,2j].
a2 i,2j t712 i,2

At each cycle, each diagonal processor p, generates a plane rotation ri such that rb,r
is diagonal. The rotations are then sent from the diagonal processor to all processors
in the same row and the same column. The off-diagonal processor Po (if i<j) on
receiving rotations r and rj, computes a new block b rbjr. After the rotations have
been applied by the off-diagonal processors, columns and rows are interchanged.
Adjacent processors exchange data with their neighbors to the right and left to permute
the matrix columns as in the SVD array (Fig. 1). Then processors exchange data with
the processors above and below to permute the matrix rows in the same way. After
2p- 1 cycles, all off-diagonal elements have been annihilated once: this is one sweep.

It is not necessary to broadcast rotations to an entire row or column of the array.
Instead, rotations move through one processor per cycle. Thus, if rotations are generated
at time 0, they are applied at time by the processors P,i+, in diagonal t. Likewise,
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the process of exchanging data occurs in a wave. It begins with exchanges between
the diagonal processors and those in diagonals + 1 at time 2. At time + 1, 0 < < p 1,
processors of diagonals + and +(t + 1) exchange data. The second set of rotations is
generated at the diagonal at time 3, the next at time 6, etc. Thus, the last rotations are
generated at time 6p-6, and the whole sweep is finished at time 7p- 7.

The decomposition of this array works as follows. Partition the given n x n matrix
A as

All At2 A1,2q
A2I A_2 A2,2q

A2q,1 A2q,2 m2q,2q

We imagine a virtual q x q superarray with superprocessors Po that hold a 2 x 2 block
matrix Bij having p x p blocks" initially,

A2i-1,2j-1 A2i-l,2j]Bj =. A2i,2j-1 A2i,2j 3"

At each supercycle, each diagonal superprocessor P generates an orthogonal product
of plane rotations Ri by performing one sweep of the Jacobi method with the parallel
order as described in the last paragraph. The rotations are then sent from the diagonal

rl, rl, 0

r2, 3 r2, 0

r3,3

5,7

r3,0
6,7

2,9 2,10

sl,O
s2,0

3,10

4,10

5,10

6,10

s2,3

FG. 5. Operation of an off-diagonal superprocessor.
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<
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superprocessor to all superprocessors in the same row and the same column. The
off-diagonal superprocessor Po (if i<j), on receiving rotation-products Ri and Rj,
computes a new block Bij RiBiR. After the rotations have been applied by the
off-diagonal processors, block columns and rows are interchanged. Adjacent superpro-
cessors exchange data with their neighbors to the right and left to permute the block
columns as in the SVD (Fig. 1). Then superprocessors exchange data with the super-
processors above and below to permute the block rows in the same way.

A single square p p eigenvalue array can emulate this superarray efficiently.
Indeed, the diagonal superprocessor is a p p eigenvalue array. We assume that the
rotations generated by this array flow out at the edges and can be stored for later use.
We need only show that the off-diagonal superprocessors can be emulated. For this
to work, the p diagonal processors must change their roles, becoming ordinary of[-

diagonal processors. We assume an off-diagonal block Bj is loaded into the array. The
rotations that make up Ri and R are sent into the array at its left and bottom edges.
The individual plane rotations are sent into the array at the same relative places and
times as when they left the array after being generated. They flow through the array
and are applied to the matrix elements as in the eigenvalue array. Interchange of rows
and columns begins at the lower left corner of the array and moves in a wave toward
the upper right corner.

Figure 5 illustrates this. The orthogonal matrix R is a product of plane rotations
that we denote by rk,,, where rk,, is the rotation generated by processor Pkk at time 3t
while the array was emulating the diagonal superprocessor P,. We denote by Sk, the
constituent rotation of R that was generated by Pkk at time 3t while the array was
emulating the diagonal superprocessor Pj. Thus, 1 _-< k =< p and 0 <_- _-< 2p 2.
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Abstract. A parallel method for computing the QR-decomposition of an n n matrix is proposed. It
requires O(n2) processors and O(n) units of time. The method can be extended to handle an m x n matrix
(m-> n). The requirements then become O(n2) processors and O(m) time.
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1. Introduction. Let A R and

(1.1) A=QR

(Q orthogonal, R upper triangular) be its QR-decomposition (QRD). The sequential
computation of this decomposition requires time O(n3). Often, the QRD of A
(m >_- n) is desired; the required time becomes O(mn2). For real-time signal processing
(cf. Bromley and Speiser [6]) fast parallel algorithms are needed and various methods
[1], [2], [8], [9], [10], [12] (most of which are applicable only to square matrices)
have been proposed in the literature. Ahmed, Delosme and Morf 1], Bojanczyk, Brent
and Kung [2] and Gentleman and Kung [8] all use Givens rotations and a triangular
array of O(n) processors. Both [1] and [2] store Q (in product form) in the array
and propagate R, whereas [8] stores R and propagates Q. The decomposition is
computable in time O(n). The technique in [8] can be applied to an m n matrix,
and it will use time O(m). Heller-Ipsen [9] and Johnsson [10] both consider a banded
matrix A, say with bandwidth w. Based on the Givens rotations, the technique of Heller
and Ipsen requires time O(n) and a rectangular array of wq processors, where q equals
the number of subdiagonals of A. Johnsson discusses a parallel implementation of the
Householder transformations. He uses w processors and O(nw) units of time. Sameh
[12] considers an m n matrix and a ring of p processors. He describes procedures
based on the Givens and the Householder transformations; his algorithms require time
O(mn2/p).

The parallel algorithms of Brent, Luk and Van Loan [4], [5] for computing the
ordinary and the generalized singular value decompositions may require a preliminary
QRD step. However, the mesh-connected multiprocessor arrays in [4], [5] are very
different from the QR-arrays in [1], [2], [8], [9], [10], [12] and the interfacing of
different arrays can be a serious problem. In this paper we present a rotation method
that computes the QRD using a mesh-connected processor array. Our idea is to
determine the QRD of an n n matrix by computing in parallel [n/2J two-by-two
QRDs. This strategy of decomposing an n-by-n problem into [n/2J two-by-two
subproblems has been used successfully by Brent and Luk [3] for the symmetric
eigenvalue decomposition, by Brent, Luk and Van Loan [4] for the singular value
decomposition, and by Stewart [13] for the Schur decomposition. The strategy in [3],
[4] is to divide an n n matrix into blocks of 22 submatrices and to assign one

* Received by the editors June 11, 1984, and in final form March 8, 1985. This work was supported in
part by the National Science Foundation under grant MCS-8213718 and by the Office of Naval Research
under contract N00014-85-K-0074.

" School of Electrical Engineering, Cornell University, Ithaca, New York 14853.
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processor to each block, resulting in a mesh-connected grid of (In2 processors.
The Schur decomposition array in [13] consists of two computational networks, each
one quite similar to the multiprocessor array in [3], [4]. A total of approximately n2/2
processors are needed (see 2 for a precise count). However, if we assign two nodes
(one from each network) to a processor, we can simulate this complex array using a
mesh-connected grid of processors (cf. O’Leary-Stewart [11]). Our QRD algorithm
requires the Schur decomposition array, hence O(n2) processors.

In 2 we present our new algorithm and prove that it always converges after 2n
time steps. The algorithm is extended to handle an m x n (m->_ n) matrix in 3. The
requirements become O(n2) processors and O(m) time.

2. The algorithm. We parallelize the computations by simultaneously triangulariz-
ing [n/2J two-by-two submatrices of A Rnn. Consider the basic transformation: a
QRD with column pivoting is computed of the 2 x 2 matrix

We get

where

aii aijB=
aji

:) (1J and II

The rotation parameters are calculated using the formulae:

aij+ass, c=ais/h, s=asj/h.

The full transformation on A is defined by

(2.1) Tj A

where Jo denotes a plane rotation and H0 a permutation, both in the i, j) -plane. The
transformation j will annihilate the (j, /)-element.

Our new algorithm uses an "odd-even" ordering of Stewa [13]. His ordering is
amply illustrated by the n 8 case:

(i,j) (1, 2), (3, 4), (5, 6), (7, 8), (2, 3), (4, 5), (6, 7).

Many results in this section come from [13] and an interested reader should consult
that fine paper. Besides a parallel implementation, the "odd-even" ordering preserves
the triangular structure of a given matrix (see Lemma 5). A bonus (unimpoant here)
of the ordering is that the sum of squares of the strictly lower triangular elements will
decrease. More precisely, define

(A) E lal=.
p>q

The transformation Z.g+ will produce a matrix A satisfying

() (A)- la,+,,I.
Our procedure thus shares with other Jacobi methods (cf. [3], [4], [13]) the propey
that it drives the matrix to the desired form. An impoant difference is that our
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algorithm is finite: it converges after 2n time steps (see Theorem 2), where one time
step is defined as the time required to do a transformation T/. The orthogonal matrix
Q is readily computable through accumulating the plane rotations. We present our
new algorithm.

ALGORITHM QRD.
QI;
for t=l,2,...,n do

for i= 1,3,-.. (i odd), 2,4,.-. (i even) do
begin
A - Ji, i+ AII i,i+

TQ QJ,,i+l
end.

The column pivotings are essential. For example, Algorithm QRD without pivoting
stagnates on a matrix with a zero subdiagonal"

x x x x
x x x
0 x x
x 0 x

Interestingly, the pivotings nullify one another after 2n steps.
LEMMA 1. All columns ofA return to their original positions after 2n time steps.
Proof A column vector moves forwards (backwards) after each time step until it

gets to the first (last) position, where it stays for one step. It then reverses direction
and moves again. The required number of steps for all columns to return to their initial
positions equals the sum of 2n- 2 (for moving) and 2 (for the rest periods at the two
ends).

Fig. 1 (cf. 13, Fig. 4.1]) exhibits these interchanges for the case n 6. The numbers
to the side are time steps, and the six numbers following them mark the positions of
the original columns. A dash between two elements indicates an interchange that will
take place at the next time step. We shall prove that the matrix is triangularized after
at most 2n 2 time steps. First, we introduce a notation and define a property indicating
that a column vector is in "upper triangular" form.

Notation. Let A() A and denote by A(’) the matrix A after time step t. Set also

a(,) _= (a’}, a(,,’)) (a]).

0. 1-23-45-6
1.21-43-65
2. 2-41-63-5
3.42-61-53
4.4-62-51-3
5. 64-52-31
6.6-54-32-1
7. 56-34-12
8.5-36-14-2
9.35-16-24
10.3-15-26-4
11.13-25-46
12. 1-23-45-6

FIG. 1. Positions of original columns after each time step.
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DEFINITION. We say a’) U (the ith column is in "upper-triangular" form) if
elements ,,(t) (t) all equal 0. l-!i+l,i n,i

Let us state and prove three lemmas.
LEMMA 2. If T-I,, is made at time step t, then .,,-1-i U, for i=0, 1,’.., n-2.
Proof. The transformation T._I.. annihilates the (n, n-1)-element. So a(.t_ U.

Now use induction. At time step t+j (j->0) we perform T.__j,._j so that column
(t+j)

a,__j U. At the next time step, the rotation in T,___,,__j will create a new zero in
the (n- 1 -j, n- 2-j)-position, and pivoting will bring zeros to the other subdiagonal

(t+j+l)positions of column n-2-j from column n-1-j. Hence a,__ U. [-1

LEMMA 3 If T,_,, is made at time step t, then u2i--1 Ufor i= 1, 2,. ., [n/2J.
Proof We perform the transformation T,_I,, at time steps t, + 2, + 4, . Hence

(t+2j)
a,-1 U, for j 0, 1,. . Apply Lemma 2 to each of these vectors.

LEMMA 4. If at), ", al t), a2 are all in U and T+,i+_ is made at time step + 1,
then u"

t+ ), ,+"
(t+) all belong to U.

Proof. We can check that our basic transformation (2.1) applied to any two
consecutive columns in {a’), a’} will not move the resulting pair out of U. The

,,(,+1) in U (see the proof of Lemma 2)transformation T+1,+2 will put column ,-+1

In words, after transformation T,_,, the (n- 1)-st column satisfies the "upper-
triangular" property. The column then moves left and picks up appropriate zero
elements along the way (Lemma 2). The same event recurs every two time steps.
Eventually all odd-numbered columns are in "upper-triangular" form (Lemma 3).
After that, the first two columns get in U, then the first three columns, and so on
(Lemma 4). We thus need only to determine when the transformation T,_,, first occurs
to compute the time at which the matrix becomes triangularized.

THEOREM 1. The matrix A(9-’-3)(A(2n-2)) is upper triangular for n even (n odd).
Proof. For n even (n odd), we do the transformation T,-1,n at time step 1 (step

2). After n- 2 additional time steps, all odd-numbered columns are in U (Lemma 3).
At the next time step, T23 is made. We need n -2 time steps for columns 2, 3, , n 1
to get in U (Lemma 4).

It is clear now why the pivot block has been restricted to contiguous elements.
LEMMA 5. Let A(t) be upper triangular. Then A(t+l) stays upper triangular.

(,+1) still belong to U.Proof Apply T,+I (1 _-< < n) to A(t). Columns at+l)
a+l

Since each column of A returns to its original position after 2n steps, we have
proved our principal result.

THEOREM 2. Algorithm QRD computes a QR-factorization ofA after 2n steps.
Figure 2 shows how a 6 x 6 matrix is triangularized after 9 steps. Steps 10 to 12

are necessary to return all columns to their original positions.
To implement the algorithm we associate a processor with each 2 x 2 block of four

contiguous elements. The architecture is the same as the Schur decomposition array
introduced in Stewart [13] and detailed in O’Leary-Stewart [11]. There are (n2+2n
6)/2 processors for n even and (nZ+2n-3)/2 processors for n odd. Only nearest
neighbor connections are required of the processors, since each needs only to receive
rotations from some of its neighbors, apply them and pass them on to other neighbors.
We do not assume broadcasting of the rotation parameters and so each cluster of
rotations requires (In/2]- 1) time steps to pass completely out of the matrix. Since
the clusters follow each other at intervals of two time steps and the last (2nth) cluster
begins at step 4n-1 our algorithm requires a total of ([9n/2]-2) time steps. The
rotations propagate through the matrix as shown in Fig. 3 [13].

As mentioned in 1 we look for a new QRD algorithm to eliminate array
interfacings in an SVD computation. All other quadratic QRD arrays [1], [2], [8] are
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|. X X X X X X

0 x x x x x
X X X X X X

X X 0 X X X

X X X X X X

X X X X 0 X

2. X X X X X

X X X X X X

X 0 X X X X

X X X X X X

X X X 0 X X

X X X 0 X X

3. x x x x x x
0 x x x x x
x x x x x x
x x 0 x x x
x x 0 x x x
x x 0 x 0 x

4. X X X X X X

X X X X X X

X 0 X X X X

X 0 X X X X

X 0 X 0 X X

X 0 X 0 X X

5. X X X X X X

0 x x x x x
0 x x x x x
0 x 0 x x x
0 x 0 x x x
0 x 0 x 0 x

6. x x x x x x
0 x x x x x
0 0 x x x x
0 0 x x x x
0 0 x 0 x x
0 0 x 0 x x

7. x x x x x x
0 x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 x x x
0 0 0 x 0 x

8. X X X X X X

0 X X X X X

0 0 X X X X

0 0 0 X X X

0 0 0 0 X X

0 0 0 0 X X

9. x x x x x x
0 x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x

10. x x x x x x 11. x x x x x x 12. x x x x x x
0 x x x x x 0 x x x x x 0 x x x x x
0 0 x x x x 0 0 x x x x 0 0 x x x x
0 0 0 x x x 0 0 0 x x x 0 0 0 x x x
0 0 0 0 x x 0 0 0 0 x x 0 0 0 0 x x
0 0 0 0 0 x 0 0 0 0 0 x 0 0 0 0 0 x

FIG. 2. The zero-nonzero structure after each time step.

1. x x x x x x
x x x x x x

x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

2. x x x x x x
x x x x x x

x x x x
x x x x

x x x x
x x x x
x x x x x x
x x x x x x

3. x x x x x x
x 2 2 x x x
x 2 2 x x x
x x x 2 2 x

x 2 2 x x x
x x x 2 2 x

x x x 2 2 x
x x x x x x

4. x 2 2 x x x
2 x x 2 2 x
2 x x 2 2 x x x
x 2 2 x x 2 2 x
x 2 2 x x 2 2 x
x x x 2 2 x x 2

x 2 2 x x 2
x x x 2 2 x

5. 3 3 x 2 2 x x x
3 3 x x x 2 2 x
x x 3 3 x 2 2 x
2 x 3 3 x x x 2
2 x x x 3 3 x 2
x 2 2 x 3 3 x x
x 2 2 x x x 3 3
x x x 2 2 x 3 3

6. x x 3 3 x 2 2 x
x x 3 3 x x x 2
3 3 x x 3 3 x 2
3 3 x x 3 3 x x
x x 3 3 x x 3 3
2 x 3 3 x x 3 3
2 x x x 3 3 x x
x 2 2 3 3 x

FIG. 3. Propagations of the rotations.
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triangular structures composed of n(n + 1)/2 processors (including the n delay registers
in [1], [2]) and they require 3n-2 time steps. Admittedly, Algorithm QRD needs a
little more time and the array structure is slightly more complex. But the possibility
of computing an SVD using just one programmable array of processors justifies the
additional costs.

It is of independent interest to compare the methods in 1], [2], [8] with Algorithm
QRD. The methods ofAhmed et al. 1 and of Gentleman-Kung [8] annihilate elements
of A from top down by chess knight moves, while the method of Bojanczyk et al. [2]
performs the Givens rotations from bottom up by "long" chess knight moves. These
methods all require 3n-5 stages, where one stage is defined to be a simultaneous
application of disjoint plane rotations. Algorithm QRD requires 2n stages and creates
zeros in a rather unusual manner. The precise way depends on whether n is even or
odd and will be omitted. Figure 4 illustrates the three different orderings for n 8.
Like other parallel Jacobi-type methods [3], [4], [13] Algorithm QRD cannot utilize
any banded structure of A.

We complete our analysis by examining roundoff errors. The following lemma
comes from Gentleman [7].

LEMMA 6. If a sequence ofplane rotations in a QRD scheme can be written as a

sequence ofs stages, then the final computed matrix obtained when this sequence ofplane
rotations is applied to a given matrix A will be the exact result of exact computations on
a matrix whose difference from A is bounded in norm by r/s(l+ rl)s-lllAIIF, where r

denotes a small multiple of the machine precision and I1" F the Frobenius matrix norm.

X X X X X X X X

x x x x x x x
2 4 x x x x x x
3 5 7 x x x x x
4 6 8 10 x x x x
5 7 9 11 13 x x x
6 8 10 12 14 16 x x
7 9 11 13 15 17 19 x

(a) Ahmed et al.[1] and Gentleman-Kung [8].

X X X X X

7 x x x x
6 9 x x x
5 8 11 x x
4 7 10 13 x
3 6 9 12 15
2 5 8 11 14

4 7 10 13

(b) Bojanczyk et

x x x
x x x
x x x
x x x
x x x
x x x
17 x x
16 19 x

al. [2].

X X X X X X X X

15 x x x x x x x
14 16 x x x x x x
13 15 11 x x x x x
12 14 10 16 x x x x
11 13 9 15 7 x x x
10 12 8 14 6 16 x x
9 11 7 13 5 15 3 x

(c) Algorithm QRD.

FIG. 4. Three different orders of annihilations.
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We thus obtain a better error bound for Algorithm QRD (s 2n) than for the
other three methods (s 3 n 5). This result comes as a surprise since redundant zeros
are created by our algorithm.

3. Rectangular matrices. In 2 we consider only square matrices. If the matrix A
has more rows than columns, i.e., A R with m >_-n, then we may adopt one of
two strategies. The first approach is to apply Algorithm QRD to the square matrix

(AI0) R"".

We get

where R R and so

The procedure requires O(m) time and O(m2) processors. Its advantage is that no
additional hardware is needed, assuming that our processor array can handle m rn
matrices. The problem is of course that this assumption may be wrong.

The second approach is appropriate for a very large m, particularly for m >> n.
For simplicity, assume that our array can handle 2n 2n matrices and that

is an integer. Partition the matrix in the form:

AI
A= A2

where each block ai is n n. We propose a procedure that eliminates the elements of
A one block at a time.

ALGORITHM Block QRD.
Set R1 := Ak
For i=l,2,.-.,k-1 do
Use Algorithm QRD to compute a 2n 2n QR-decomposition:

(Ak-iRi 00) Qi+l (R+I
where Qi+l R2nx2n and Ri+l R

We get the QR-decomposition of A from

0/t  -3 :tt00Q o Qz o o I 0

0 Qk_l 0
Q
o o)
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where/ denotes the jn jn identity matrix, and

Rk

R- i
The requirements are O(n:z) processors and O(m) time. Note that one may speed up
the algorithm by using two or more processor arrays. With [k/2J arrays we need but
[log2 k] steps. Thus, excluding the costs of data input and output, the required time
can be cut to O(n log k).
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ORTHOGONAL REDUCTION OF SPARSE MATRICES TO UPPER
TRIANGULAR FORM USING HOUSEHOLDER TRANSFORMATIONS*

ALAN GEORGE, AND ESMOND NG"

Abstract. In this paper we consider the problem of predicting where fill-in occurs in the orthogonal
decomposition of sparse matrices using Householder transformations. We show that a static data structure
can be used throughout the numerical computation, and that the Householder transformations can be saved
exialicitly in a compact format.

Key words, sparse matrices, orthogonal reduction, sparse least squares, sparse linear systems

1. Introduction. Let A be an n x n nonsingular matrix. In this paper we consider
the problem of reducing A to upper triangular form using orthogonal transformations,
where A is large and sparse. That is, we construct an n x n orthogonal matrix Q so that

A= QR,

where R is n n and upper triangular. Since it is well known that computing such a
decomposition is numerically stable, the QR-decomposition is useful in various numeri-
cal computations, such as the solution of nonsingular systems of linear equations.
However, very few implementations of the QR-decomposition exist for A when it is
large and sparse. This is apparently due to the general belief that the orthogonal matrix
Q and the intermediate matrices may be dense even though A is sparse, and also due
to the lack of efficient techniques for exploiting the sparsity of the orthogonal matrix
and the intermediate matrices.

One such implementation is due to George and Heath [4]. They make use of the
fact that the upper triangular matrix R is (mathematically) the Cholesky factor of the
symmetric positive definite matrix ATA (apart from possible sign differences in some
rows). Thus, assuming ATA and its Cholesky factor are sparse, one can easily determine
the structure of R and set up a data structure which exploits the sparsity of R using
techniques developed for solving sparse symmetric positive definite systems [5]. Then
R can be computed using the static data structure by applying Givens rotations to the
rows of A one at a time. The Givens rotations are not saved in their implementation.
However in some applications, it is desirable or necessary to have the orthogonal
matrix Q available. One such context is the solution of several problems that have the
same coefficient matrix A but different right-hand side vectors. In this paper, we show
that if we compute the decomposition using Householder transformations, then the
nonzeros in the transformations and in the intermediate matrices can be stored in a
static data structure allocated for the Cholesky factors L and LT of the matrix ArA,
provided that the diagonal elements of A are nonzero. We also extend the technique
to handle sparse rectangular matrices.

Similar results hold for the triangular factorization of sparse matrices using
Gaussian elimination with partial pivoting [6]. The authors have shown that, under
the assumption that the diagonal elements of a sparse matrix A are nonzero, the
structures of the triangular factors obtained in the triangular decomposition of A using

* Received by the editors February 24, 1984, and in revised form February 26, 1985. This research was
sponsored by the Canadian Natural Sciences and Engineering Research Council under grant A8111, and
was also sponsored by the Applied Mathematical Sciences Research Program, Office of Energy Research,
U.S. Department of Energy under contract DE-AC05-84OR21400 with the Martin Marietta Energy Systems
Inc., and by the U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-84-00056.

" Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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Gaussian elimination are contained in the structures of the Cholesky factors L and
LT of ATA, regardless of the choice of row interchanges. Experience has shown that
the structures provided by the Cholesky factors L and LT" of AT"A are often tighter for
the orthogonal decomposition of A than for the triangular factorization of A.

The success ofthe approach described in this paper relies heavily on the assumption
that both ArA and its Cholesky factor L are sparse. This is often true when A is sparse.
However, there are instances in which ArA and L are dense even if A is sparse. An
example and further discussions can be found at the end of 2.

An outline of this paper is as follows. In 2, we present the main results which
show that the structures of the transformations and the intermediate matrices obtained
in the orthogonal reduction of A are contained in the structures of the Cholesky factors
of ATA. The effect of permuting the columns of A in the orthogonal reduction is
considered in 3. In 4, the basic technique of the paper is extended to handle
rectangular matrices. Finally, some concluding remarks are provided in 5.

2. Basic results. Let A be an n n nonsingular matrix. The following notation
will be used throughout our discussion. The (i,j)-element of the matrix A is denoted
by a0. The set of indices of the nonzeros in A is denoted by Nonz (A); that is,

Nonz (A)= {(i, j)laj 0}.

The matrix A is said to have a zero-free diagonal if all its diagonal elements are nonzero.
LEMMA 2.1 [3]. LetA be an n x n nonsingular matrix. Then there exists a permutation

matrix P such that PA has a zero-free diagonal.
For convenience, we assume in the following discussion that the rows of A have

been permuted so that A has a zero-free diagonal. The next result is useful in deriving
the main results.

LEMMA 2.2. Suppose A is n x n and has a zero-free diagonal, and let B be an n x p
matrix. Then

Nonz (B) Nonz (AB).

We will also assume that accidental structural or numerical cancellation does not
occur; that is, we assume that Nonz (A+ B) Nonz (A) U Nonz (B), for any n x n
matrices A and B.

Now let Ao A and partition Ao into

Xl B1

where B1 is (n- 1)x (n- 1), and xl and Yl are vectors of appropriate dimensions. By
assumption, a #0 and B1 has a zero-free diagonal. Assume Xl #0 and consider
annihilating the nonzeros of xl using a Householder transformation HI. (If Xl =0,
then H1 I.) One way of constructing the Householder matrix H1 is as follows. Define
an n-vector wl by

W

where trl2= c2 + XXl. Let rl 1/2wrwl. Then it is easy to verify that

1
H1 I-wwl

,7"i"
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is orthogonal and

o

There are other ways of constructing H1 (see [9]) and they ditter essentially in the
way the vector () is scaled. Thus we can assume that in general the Householder
matrix H has the form

1 rHi= I-wwlwl,
71"

where

W1
Ul

for some appropriate 7rl,/31 and ul, with/31 0 and Nonz (ul) Nonz (xl). Note that
by storing the nonzeros of ul (and/31 and 7rl), one can save H1 in a compact format.

Consider applying H1 to Ao. Let

HAo 0 A

where

Thus,

and

1
Z1 Yl----l( ,Yl + BT Ul)

7/"

1
A,= B1---ttl(,y+uT B,).

97"

Since/31 0, and if exact structural cancellation does not occur,

Nonz (z) Nonz (y) t_J Nonz (Bu)
and

Nonz (A) Nonz (B1) t_J Nonz (uy) I,.J Nonz (UlUTIB1).

Furthermore, since Nonz (u)= Nonz (x), we obtain the following which we state as
a lemma for future reference.

LEMMA 2.3.
(1) Nonz (Z1) Nonz (Yl) LI Nonz (B1Tx1).
(2) Nonz (A1) Nonz (B) t_l Nonz (xly) t_J Nonz (xxB).
COROLLARY 2.4. A1 has a zero-free diagonal.
Note that similar results hold if Givens rotations are used to annihilate the nonzeros

in x. The effect of applying a Givens rotation to eliminate a nonzero, say akl, is to
replace the first and the kth rows of A by a linear combination of those two rows.
Consequently, after annihilating ak, the structures of rows 1 and k of A are the union

of the structures of the original rows. Thus, after all the nonzeros in xl have been
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annihilated, the structure of row 1 of A will be the union of the structures of the first
row of A and those rows that have a nonzero in column 1. That is, Nonz (zl) will be
given by

Nonz (zl) Nonz (y) 1,3 Nonz (BITx1).

Using similar arguments, it is easy to see that, in the worst case, the structure of the
remaining (n- 1)x (n- 1) matrix A will be given by

Nonz (A) Nonz (B1) t_J Nonz (x(yr+ xB)).

Thus Lemma 2.3 holds even if Givens rotations are used. Now for each nonzero in
xl, there will be one Givens rotation. In order to save these Givens rotations in the
space provided by the nonzeros in x, we need to represent each of them by a single
number using the scheme proposed by Stewart 10]. There is one disadvantage though;
extra time is needed to form this single number in the numerical computation phase.

We now show that the structures of u, z and A are related to the structures of
the matrices obtained after applying one step of Cholesky decomposition to the

Ao A0. Note thatsymmetric positive definite matrix T

aao (ol xT1 (0l y(]= ( OI-]-XX aly+xT1BI= (’1" I))el B(,] xl B1/ alYl+BXl BB+yyI ,] v E
Applying one step of Cholesky decomposition to AAo, we obtain

7"11/2 0 "/’11/2 /) 1T/"F/2’
I )

where

1 TF E---vv.
,’l-

The first observation is that

Nonz (vl) Nonz (y)U Nonz (BrlX),

assuming again exact structural cancellation does not occur and also because a 0.
Since B has a zero-free diagonal, it follows from Lemma 2.2 that

Nonz (xl)c_ Nonz (Bx),
and hence

Nonz (u)= Nonz (x)c_ Nonz (Bx) Nonz (y)U Nonz (Bx)= Nonz (v).

Moreover, from Lemma 2.3,

Nonz (z) Nonz (y) U Nonz (Bx) Nonz (v).

Consider the matrix F.

F1 E
1

---VlV=(BBI+yy) 1 (ly+BXl)(ay+xB1).
TI T

If exact structural cancellation does not occur, then

Nonz (F,) Nonz (BB,) Nonz (y,y)

non non 
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Recall from Lemma 2.3 that

Nonz (A1) Nonz (B1) I.J Nonz (x,yT) U Nonz (XlxTB1).
Since B has a zero-free diagonal, it follows from Lemma 2.2 that

Nonz (A,) Nonz (BB,) Nonz (B(x,y() Nonz (Bx,xB,) Nonz (F,).

Thus we have proved the following result.
THEOREM 2.5. Assume exact structural cancellation does not occur. Then
(1) Nonz (u)

_
Nonz (v).

(2) Nonz (Zl)_ Nonz (Vl).
(3) Nonz (A1)_ Nonz (F1).
That is, the structures of ul, z and A which are obtained when Xl is annihilated

by a Householder transformation are contained in those of the matrices obtained after
applying one step of Cholesky decomposition to AoAo The fact that A0 has a zero-free
diagonal plays an important role here. Some of the results above may not hold if Ao
does not have a zero-free diagonal. For example, it is easy to construct an example in
which Nonz(B) Nonz(B(B1), where B does not have a zero-free diagonal-It
should be emphasized that this "zero-free diagonal" property is essential only in
predicting the fill-in, but not in computing (numerically) the orthogonal decomposition
using Householder transformations.

Now partition A1 into

A=
x2 B2]’

and assume x2 0. Consider annihilating the nonzeros of x2 using a Householder
transformation H2. Let

1
H2 I---w2w,

77"2

where w2 () with Nonz (u2) Nonz (x2). As before, r2,/32 and u2 are chosen so that

where r a+ xx2. Suppose

H2A1 (-tr2 zf
0 A2]"

By Corollary 2.3, A1 has a zero-free diagonal and hence Theorem 2.5 applies again.
That is, the structures of u2, z2 and A2 must be contained in the structures of the
matrices obtained by applying one step of Cholesky decomposition to AAl.

Apparently the results obtained so far do not provide us with a mechanism to
implement the orthogonal reduction of sparse matrices efficiently using Householder
transformations since we now have to consider the Cholesky decomposition of AA1.
However, the next result takes care of this problem.

LEMMA 2.6. Assuming exact cancellation does not occur,

Nonz (AA)- Nonz (F).

Proof. Recall that

A, B-lu,(,y+ ur B).
7"1"
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It is then straightforward to verify that

AT1A1 BBI + fl2 UTl U 2

",t2
yly+ r rl BuluB1

(BUly+yluB).

Thus, assuming exact structural cancellation does not occur and assuming fl # 0,

Nonz (AA) Nonz (BB) U Nonz (ylyT1) U Nonz (BT ulyT U Nonz (yluT1B)

U Nonz (BTulUB1)
Nonz (B1TB1) CJ Nonz (yyT1) Nonz (BTxlyT1)U Nonz (y,xT1B1)

U Nonz (BTxlxT1B1),

since Nonz (u)= Nonz (xl). Hence

Nonz (A1TA1)= Nonz (F1).

COROLLARY 2.7. The Cholesky factors of AA1 and F1 have identical nonzero

structures, assuming exact structural cancellation does not occur.
Lemma 2.6 and Corollary 2.7 are important since they say that we do not have

to worry about the Cholesky decomposition of AA. We only have to consider the
Cholesky decomposition of F1. That is, suppose

Fl_(Z2 w_( z/- )(10v Ei vl’i
Then,

and

Nonz (u2)
_
Nonz (v2),

Nonz (z2) Nonz (v2),

Nonz (A2) Nonz (F2).

By applying the arguments above recursively to A2 and F2, one can obtain a result
which is a generalization of Theorem 2.5. Before stating the result, we introduce more
notation.

Let A be an n x n matrix with a zero-free diagonal and let Ao A. Consider the
sequence of matrices

{Ao, A, A2,. A,,-1}

generated as follows. For k 1, 2,..., n- 1, partition Ak_ into

(akAk-1
Xk Bk]

Assume Xk 0 and construct a Householder transformation Hk so that

HkAk-, (--O’k Z]
0 Ak]’
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where o- a+ XXk. Assume

1 THk In_k+l --WkWk
,l’l"k

where Wk=() with Nonz(uk)= Nonz (Xk). Here / denotes the identity matrix of
order j. It is easy to see that

where

A QQ2" Q,,-Q,,-,

al
Ol2 z

01.3. Z

*o

QR,

(I_ O)Qk=
0 Hk

fork=l,2,...,n-1,

and

Q Q1Q2"

Also consider the sequence of matrices

{Fo, F1, F2,""", F,_I},

which is defined as follows. Let Fo ATA. For k 1, 2,. , n- 1, partition Fk-1 into

Fk_ ( "l’k

v E]

Applying one step of Cholesky decomposition to Fk-1 yields

Fk-1 Vk/ 7" I,,-k 0 Fk 0 I,,-k

If we define Lk by

L =/Ii
and L,, by

then it is clear that

k= 1, 2,. ., n-l,

0 Fn_ 0 Tln/2

ATA Fo L1L2 L,,-1 T T T TLz L1 LLT,L,,L,, L,,_

where L LIL2’’’ L,,_IL,,. Moreover, because of the way Vk and Fk are constructed,
we have

Nonz (F) J Nonz (Lk + L) Nonz (L+ Lr).
k=l

The following result is a generalization of Theorem 2.5. Its proof is similar to that
of Theorem 2.5 and hence is omitted.
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THEOREM 2.8. Assume exact structural cancellation does not occur. Then for
k= 1,2,. ., n-l,

(1) Ak has a zero-free diagonal.
(2) Nonz (Uk)_ Nonz (Vk).
(3) Nonz (Zk)_ Nonz (Vk).
(4) Nonz (Ak)_ Nonz(Fk)

_
Nonz (L+

Theorem 2.8 has an important implication. If A is sparse, then it says that the
structures of the vectors Uk (which are the major components in the construction of
Q) and the upper triangular matrix R are all contained in the structures of the Cholesky
factors of AT"A. The crucial point is that if AT"A and its Cholesky factor are sparse,
then it is possible to determine the structure of the Cholesky factor L of ATA from
that of ATA efficiently. The reader is referred to [5] for details. Knowing the structure
of L, one can set up an efficient data structure that exploits the sparsity of L and L
Now Theorem 2.8 simply implies that one can compute the orthogonal decomposition
using Householder transformations in that static data structure. No dynamic storage
allocation is necessary. Furthermore, the orthogonal matrix Q (in factored form) can
be retained. This may be useful in some situations, for example, when the QR-
decomposition of A has to be used several times.

In deriving the results, we have made heavy use of Lemma 2.2. Note that even
though the structure of B is contained in that of AB when A has a zero-free diagonal,
and AB may be sparse, the structure of AB may still overestimate the structure of B.
Also, we usually have a relationship of the form

Nonz (X)
_
Nonz (MX) 1,3 Nonz (Y),

for some matrices M, X and Y, where M has a zero-free diagonal. Since Y has nothing
to do with X, it may appear that the way in which we bound the fill-in is too generous.
However, experience has shown that our approach is quite reasonable in most cases.

As we have mentioned in 1, the success of our approach relies on the assumption
that ArA and its Cholesky factor L are sparse if A is sparse. There are examples in
which this may not be true; the matrices ArA and L may be dense even if A is sparse.
The following small example illustrates the difficulty.

x x x
x

A=
x

x

x x x x x
x x x x x xA’A= and L=
X X X X X X X

X X X X X X X X

In this example, Q-I and the structure of R is identical to that of A. Thus, the
structures of the Cholesky factors (L and L) of ArA overestimate the structures of
the Householder transformations and the upper triangular matrix. Fortunately,
experience has shown that this situation arises usually because there are a relatively
small number of dense rows in A. Even though identifying these rows is a difficult
problem, there are schemes which can handle dense rows in an efficient manner [6],
[7]. Another instance in which an overestimate will occur is when the original matrix
is upper triangular or nearly so.
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3. Effect of permuting the columns. Let Pe be an nn permutation matrix and
denote the QR-decomposition of APe by

where 6k is an appropriate Householder transformation and / is an n xn upper
triangular matrix. Our results in the previous section indicate that the structures of
R and the vectors used in constructing Qk are contained in the structures of the
Cholesky factors T and /, of the symmetric positive definite matrix (APe)T(APe)=
PArAPe. If ATA is sparse, it is well known that the structure and the sparsity of/
depend not only on the structure of AA, but also on the choice of the permutation
matrix Pc. Thus it is desirable to choose Pe so that L is as sparse as possible.
Unfortunately, the problem of finding such a permutation has been shown to be an
NP-complete problem [11]. On the other hand, there are several reliable heuristic
algorithms for finding Pe that yield a reasonably sparse . Examples include the nested
dissection algorithm and the minimum degree algorithm. See [5] for a detailed dis-
cussion of the ordering problem in sparse Cholesky decomposition.

x x x 1 x x x
x x 1 x x

A= x x Pe 1 APe= x x
x 1 x

x x x 1 x x x

FIG. 3.1. An example illustrating the fact that APe may not have a zero-free diagonal even though A has one.

Note that post-multiplying A by Pe may change the zero-nonzero pattern of A.
In particular the matrix APe may no longer have a zero-free diagonal (assuming A
originally has one). This is illustrated by an example in Fig. 3.1. In order to preserve
the zero-free diagonal, we can apply Pe to A symmetrically. That is, instead of looking
at APe, we consider TPe APe. It is a simple exercise to verify that PAPe has a zero-free
diagonal for the matrix A given in Fig. 3.1. Also note that pre-multiplying APc by Pc
has no effect on the structure of L since

P[APe) T P[APe)= P[ATAPe=
Another approach which solves this problem is to find a column permutation Pe first.
Then we find a row permutation Pr tO make sure that Pr(APe) has a zero-free diagonal.
The main observation here is that the Cholesky factor of (P,APe) (P,APe) is mathemati-
cally the same as that of (APc)T(Ape).

4. Generalization to rectangular matrices. In some situations, such as the solution
of sparse linear least squares problems, it may be necessary to reduce a rectangular
matrix to upper trapezoidal form. The approach we described in 2 and 3 can be
modified to handle these cases. Let A be an m x n sparse matrix with m n. We assume
that A has full column rank. Partition A into

where B is n x n and C is (m-n)+n. For simplicity, we also assume B has a zero-free
diagonal.
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Denote the orthogonal decomposition of A by

where Ok is an mxm Householder matrix and R is an n xn upper triangular matrix.
Suppose

)H’
with

Hk- Im_k+l-- ik U).
"l’l"k IIk

Here Ilk is an (m-k)-vector. Note that the decomposition is equivalent to performing
the first n steps in the orthogonal reduction of the mxm matrix A:

Consider the matrix

) (B’B+C T"C
C

Applying the first n steps of the Cholesky decomposition to firfi yields

Lro ,
W

where

and

LLT=D=BTB+cTc=ATA=R TR,

w=ct,-.
Since A has a zero-free diagonal, the results in 2 apply. That is, the structure of
must be contained in the structure of the kth column of the matrix (w). Similarly, the
structure of R must be contained in the structure of Lr. Thus, one way to implement
the reduction of A is as follows"

(1) Determine the structure of
(2) Perform the first n steps of symbolic Cholesky factorization of M, and

determine the structures of L and W= CL-T. Set up a data structure that exploits the
sparsity of LT and (Lw).

(3) Reduce the matrix A to upper trapezoidal form using Householder transforma-
tions, storing R and Uk in the static data structure determined in Step 2.

Note that we only want to reduce (g) to upper trapezoidal form. Thus we do not
want to worry about the last (m-n) columns in A. In other words, if we want to

permute the columns of A so as to obtain a sparse Cholesky factorization, we should
only permute the first n columns of A.

5. Concluding remarks. We have shown in this paper that when a sparse matrix
A is reduced to upper triangular form using Householder transformations, the structures
of the transformations, the intermediate matrices and the final upper triangular matrix
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are contained in the structures of the Cholesky factors of ATA. These results have an
important practical implication. It is well-known that the structure of the Cholesky
factor of a sparse symmetric positive definite matrix B can be determined efficiently
from the structure of B. Thus, by analyzing the structure of ATA, we can determine
the structures of the Cholesky factors L and Lr of ArA, and can set up an appropriate
data structure for L and L. Then we can perform the orthogonal reduction of A using
this static data structure. By using techniques and software developed for solving sparse
symmetric positive definite systems, the implementation of sparse orthogonal decompo-
sition using Householder transformations is straightforward. The results have been
extended to handle the case in which A is rectangular.

Preliminary experiments have indicated that the approach described in this paper
is quite reasonable for some classes of problems, although there are situations in which
the structure of the Cholesky factor L of A’A may overestimate the structure of the
Householder transformations. Recently, the authors have developed a new technique
for predicting where fill-in in sparse orthogonal decomposition occurs [7]. Preliminary
experiments show that the data structure obtained is often tighter than that generated
by the approach described in this paper, especially for the Householder transformations.

In [2], Coleman, Edenbrandt and Gilbert considered the problem of characterizing
matrices for which the structure of the Cholesky factor Lr of A’A predicts exactly
the structure of R. They were concerned with the case where R is computed by applying
Givens rotations to the rows of A. Their basic result is as follows. Let A be an m xn
matrix, with m>-n. For each k= 1, 2, , n, if there are more than k non-null rows in
every m xk submatrix of A, then the structure of the Cholesky factor L" of AA
predicts the structure of R exactly. This property is referred to as the strong Hall
property. When the matrix A does not have the strong Hall property, they pointed out
that the rows and columns of A can be permuted symmetrically so that the permuted
matrix has a block triangular form and the diagonal blocks have the strong Hall
property. In this case, only the diagonal blocks have to be decomposed. Suppose A
has the strong Hall property. Since R is mathematically unique regardless of whether
Givens rotations or Householder transformations are used in computing it, the structure
of the Cholesky factor L7" of AT"A must predict accurately the structure of R even
when it is computed using Householder transformations. However, it is not necessarily
true that the structure of L (or (w) if A is rectangular) will also predict correctly the
structures of the Householder transformations. The following example illustrates this.

x x 0 x 0

0 x 0 x x
x 0 x 0 x

0 0 x x 0
x 0 x x x
x 0 0 x x

The matrix above has the strong Hall property and

X X X X X X

x x 0 x x x x
A’A x 0 x x x and L= x x x

X X X X X X X X X

X X X X X X X X X X
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Assuming exact numerical cancellation does not occur, it is then easy to verify that
the structure of the upper triangular matrix R obtained in the orthogonal reduction
of A using Householder transformations is given by

x x x x
x x x x

x x x
x x

x

Hence, the structure of R is the same as that of L. However, the structures of the
Householder transformations are given by

The structure of (Lw) is given by

x

x x x
0 0 x x
X X X X X

X X X X X

X

X X

X X

X X

X X

ix x

x
x x
x x
x x

it overestimates the structure of H. Note that the computation can be carried out using
Givens rotations as well. If we store each rotation by a single scalar using the technique
proposed by Stewart [10] (see 2), it is easy to see that these scalars will occupy the
nonzero positions in H.

Finally, the referee has kindly pointed out the work of BrOnlund and Johnsen on
generalized Householder transformations [1]. Suppose we have an mxk matrix A
partitioned into the form

where X is kxk and Y is (m-k)xk. Assume A has full rank. A generalized
Householder transformation of rank k has the form

H=I-ZD-Zr,
where

X+S) D=Sr(S+X) and SrS=ArA.Z=
Y

Then
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Suppose we choose S so that it is upper triangular and STS=ATA; that is, S is the
Cholesky factor of ATA. Then H reduces A to upper trapezoidal form and we only
have to store S, X, Y, (and perhaps D). Note that no fill-in occurs in Y. The "pivot"
matrix D=ST"(S+X), which has to be nonsingular, can be chosen easily, as the
following discussion shows. Assume for the moment that X is nonsingular. We first
reduce the kx k matrix X to upper triangular form U using orthogonal transformations.
Then we adjust the signs of the diagonal of S to be the same as those of U. Thus,
S+ U is nonsingular (and upper triangular), and we have a triangular decomposition
of D. Note that if k is small, the orthogonal decomposition of X can be computed
efficiently by treating X as dense.

If X is singular, we may incorporate column pivoting when U is computed, but
this causes no essential difficulties.

The idea described above can be used to reduce an mxn matrix to upper
trapezoidal form by partitioning the columns appropriately. While this generalization
may turn out to be effective in reducing fill-in, there are two complications in this
approach. First, the saving in storage depends on the choice of the column partitioning,
and it is not clear how the columns should be partitioned so as to minimize the storage
requirement. Second, the symbolic factorization process (for determining the structures
of the matrices) appears to be considerably more complicated. These are interesting
topics for future research.
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CONFIDENCE INTERVALS FOR INEQUALITY-CONSTRAINED
LEAST SQUARES PROBLEMS, WITH APPLICATIONS TO

ILL-POSED PROBLEMS*

DIANNE P. O’LEARY" AND BERT W. RUST

Abstract. Computing confidence intervals for functions b(x) wT"x, where Kx y + e and e is a normally
distributed error vector, is a standard problem in multivariate statistics. In this work, we develop an algorithm
for solving this problem if additional information, x-> 0, is given. Applications to estimating solutions to
integral equations of the first kind are given.

Key words, confidence intervals, ill-posed problems, integral equations, quadratic programming

1. Introduction. Consider the linear model

(1.1) Kx=y+e

where K is a known m n matrix, y is an m 1 vector of observations, x is the
unknown solution vector, and e is an unknown m 1 error vector. The usual case is
that rn >= n. In this paper, we develop techniques for obtaining confidence interval
estimates on functions w T"x when extra information such as x _>-0 is known.

When the model above arises from discretization of ill-posed problems, such as
integral equations of the first kind, the matrix K is highly ill-conditioned, and small
changes in the right-hand side can make large changes in the solution x. Many
approaches have been made to finding realistic solutions to this problem. Implicitly
or explicitly, all of them make use of some extra information or side conditions, not
included in (1.1), in order to eliminate unreasonable solutions. We summarize some
of these methods below. Varah [20] gives a more extensive survey of some of the
methods and the effects of ill-conditioning.

(a) Regularization techniques [8], [12], [17], [18] favor solutions that are smooth
in the sense of having a small value of IILxll, where L is a given matrix. Choosing L
as a kth difference operator matrix forces the solution to have a small kth derivative.
The solution is obtained by solving

min {11 gx- y = / n Lx I1=}

where r/ is a given parameter. Large values of r/ force increasing smoothness; small
values allow better fidelity to equation (1.1).

(b) Projection techniques [2], [16] restrict x to lie in some subspace"

x= Bu

where B is an n x p matrix of basis vectors, p < n. The objective is then to solve

min KBu y .
The columns of B are chosen to admit only those solutions which are smooth or have
some other desirable property. The truncated singular value decomposition is one way

* Received by the editor November 1, 1983, and in revised form October 4, 1984.
f Division 711: Mathematical Analysis, National Bureau of Standards, Gaithersburg, Maryland 20899,

and Computer Science Department, University of Maryland, College Park, Maryland 20742.
$ Division 713: Scientific Computing, National Bureau of Standards, Gaithersburg, Maryland 20899.
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to choose B in a data-dependent way in order to force the solution vector to be of
small norm.

(c) Side conditions [1], [7], [9], [13] may be used explicitly in order to eliminate
undesirable solutions. For instance, in many physical applications the solution is known
to be nonnegative, and may be estimated by

min Kx y .
x>__O

Confidence interval methods use statistical information on the distribution of e
in order to estimate the solution. In contrast to the methods above, these procedures
give not only an estimate of the true solution x*, but also a region which contains x*
with a given probability. That is, if a probability a is given and the experiment is
repeated many times, then the region will contain the true result 100c% of the time.
The vector e is assumed to be normally distributed with mean 0 and nonsingular
variance matrix S where S is symmetric. Then the best linear unbiased estimate of
the true solution is that vector which solves

min Kx y s,

where z z rS-z. For any linear function 4 wrx, the best linear unbiased estimate
w r)? is normally distributed about the true value 4*=wrx* with variance
wr(KrS-K)-w. For any given probability a, if is chosen so that

a= n(x; O, 1) dx,

where n(x; 0, 1) is the probability density function for the standard normal distribution,
then the interval 4LO, bUP] is a 100ce % confidence interval for b* when bLO and buP

are given by

wTy. + KwT(KTS-:ZK)-’W.
We can write 4LO and 4uP in another way, similar to the forms we will be using in
the next section. Using the technique of Lagrange multipliers, it can be shown that

tbLO min {wrx: IIK(x-)ll =},

4uP= max {wrx" IIg(x-)ll =t.

Note that a confidence interval can be given for any component x* of the solution
vector by choosing w equal to the ith unit vector.

In this paper we combine the techniques of confidence interval estimation and
the use ofinequality constraints as side conditions to develop a mathematical framework
and some numerical techniques for computing bLO and 4uP satisfying:

Prob {(LO < I) * < I) UP} O

when it is known a priori that

x*=>0.

This work can be considered an extension of the work of Cope and Rust [7] on
confidence interval estimation with inequality constraints. The case of linear equality
constraints has been rather well-studied; see, for example, Rao [13]. In this paper,
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some statistical background is discussed in 2, algorithms are presented in 3, and
computational results are given in 4.

2. Statistical framework. Throughout this work we make the following assump-
tions"

(a) Kx=y+e.
(b) e---N(0, $2), where S is nonsingular symmetric.
(c) It is known a priori that x is nonnegative.

See Bard [3, p. 180] for a discussion of the implication of (c) on the form of the
distribution.

In this section we present the results that define the computational task of
computing a confidence interval for b w Tx.

THEOREM 1. Under the assumptions above, the probability that qb is contained in
the interval [bLo, btJP] is greater than or equal to a, where

btP
max Tx: < > 0},LO=
min

{w IIKx-Ylls =, x-

rank (K) q,

foY2 Xq(p) dp ot,
2

r0 min II/(x y ,
2 2

/x =r0+7
2and Xq is the probability density function for the chi-squared distribution with q degrees

offreedom.
Proof. If /x

2 is chosen as stated above, then {x" IlKx-ylls_<-} is a 100a%
confidence region (ellipsoidal) for the true x* [15, 6.4]. (Note that this makes no
use of the information that x is nonnegative.) At the same time, the region {x" x->_ 0}
is a 100% confidence region. Intersecting the two, we find that {x" [[Kx-y[[s <- tz, x >- 0}
is a 100a% confidence region for x*. Thus, for b w x, a 100a% confidence interval
is given by [bLO, btP], where bLO and btP are, respectively, the maximum and
minimum of b over this set.

In some cases the procedure outlined by this theorem could fail to give useful
information. The set over which the maximum and minimum are taken could be null,
although a nonnull set always exists for y large enough. Further, unless w is orthogonal
to the null space of K (i.e., unless w satisfies an estimability condition), the interval
could be infinite for all a; however, the interval could have one or two finite endpoints
even if w does not satisfy this orthogonality condition, and this technique could give
information on b even in these cases where, without the side conditions, a minimum
variance unbiased estimator fails to exist.

Note that if several vectors w, v 1,. ., N are given, the procedure above gives
Tsimultaneous confidence intervals for all b wx,.since the region over which the

maximum and minimum are taken is a 100a% confidence region for x*; i.e., the
probability that all rwx are in the computed intervals is 100a%.

LEMMA 1. Let

L(b) min {llKx-ylls: x->0, w’x-4}.

Then L(qb is unimodal, piecewise quadratic, differentiable, and convex.



476 DIANNE P. O’LEARY AND BERT W. RUST

Proof. L(dp) is the objective function value for a convex parametric quadratic
programming problem. This is the essence of the argument proving the lemma. A more
detailed discussion follows, since this argument forms the basis for algorithms in the
next section.

Let I be a set of indices, let I be its complement in the set {1, 2,..., n}, and
hold xi at zero for i/. We partition the x vector as (x, x), and partition K and w
to conform to it. Then, using Lagrange multipliers, the solution to the problem

(2.1) L(b, I)=min (llgx-ylls: xr-O, wx
is determined by

If K is not full column rank, then the solution may be nonunique, but we will take
the solution x xf +x with the smallest null space component x needed to keep
x _-> 0. For a given index set I, xf is a linear function of 4, and L(4, I) is convex and
quadratic in 4. Furthermore, it is clear that

L(b nan {L(b, I)" x, >= 0}.

The vector x for which this minimum is achieved is a continuous function of 4, and
therefore L(b) is a continuous and differentiable function of b. Let minx
YlI: x >_-0) be attained at . (If the minimum is achieved at a set of points, let be
any,one for which w7 is minimal.) Let w’. Then L(b) has a global minimum
at th. A sketch of L() is given in Figs 1. In the following discussion we assume that
a designated point b is greater than b. The argument for < is analogous.

FIG. 1. The L( dp curve, showing various quadratic segments. The points LO and <buP

the dp axis.

are indicated on
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Let > be the first point where an index j needs to be dropped from the index
set I (because x has been driven to zero and would go negative if it were kept in the
set), or a variable needs to be added to the index set (because using it produces a
smaller function value without violating any constraint). Then the set of equations
defining x as a function of $ has one fewer or one extra degree of freedom, but L($)
over the next interval (i.e., until the index set changes again) is still convex^ and

quadratic. Let I denote the previous index set, and ! the index set for $ => $. Since
dL(ck, I)/dck dL(, I)/ dck and dL(, I)/dck >-_ O, then L(b, f) must be monotone
nondecreasing for b >- b.

This argument can be repeated on all intervals beyond this one,’thus establishing
the result.

THEOREM 2. The values UPLo are defined by the two extreme roots ofL(b [d,
2 O,

where L(b) minx {11Kx y : x >_- 0, wrx bt.
Proof. We sketch the proof for &LO; the discussion for buP is analogous.
Let 6LO minx {w TX" II/ y <-, x >_- 0t and let XLO be an x vector for which

the minimum is attained. Similarly, let bLO and LO be the corresponding minimal
root and x values for L(b)-/x2= 0. Then

L((LO) K:LO y 2, )LO > 0, and wTLO (LO-
Therefore,

tDLO min {w TX" Kx y =, x >- 0} - tLO,

since LO is one of the candidate points in the minimization.
On the other hand,

L(bLO =min {llKx-yll" x->0, wx o} <- II/o-yll--< =,
since XLO is one of the candidates in the minimization. Thus L(bLO) -<- /x 2, and, since
by Lemma 1, L(b) is unimodal and convex, this implies that bLO => bLO. Thus bLO
tLO-

3. Algorithms for constrained interval estimation. Two approaches to solving
L(&) =/z

2 are discussed in this section. Methods for finding &LO are discussed; methods
for computing &uP are analogous. The algorithms are written under the assumption
that K has full column rank. Modifications for the rank deficient case are possible but
tedious.

3.1. Tracing the L() curve. Conceptually, the simplest approach for finding LO
is to start from a known lower bound bo (or some other convenient point) and follow
the L(b) curve until it crosses/2. This is a parametric quadratic programming problem
as b varies:

(3.1) min {[[Kx-yl[: x_-> 0, wrx=}.

The optimal values of the objective function form a piecewise quadratic function of
b; the nodes occur where variables x change from zero to positive or vice versa. The
algorithm is as follows"

ALGORITHM TRACE
1. Solve (3.1) for b bo and set bNODE bNEW bo.

22. Until L(bNEW) </z
Let tNODE INEW.
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Find the next node, the minimum value )NEW> I)NODE such that a variable
xj changes from zero to positive or vice versa.

3. The value bLO is now known to satisfy (NODE tLO ( (NEW" It can be deter-
mined by solving a quadratic equation.

We now provide more details on each step.
Step 1. The problem (3.1) can be solved, for example, by the code WNNLS of

Haskell and Hanson 10], but Step 2 is done more efficiently using an algorithm from
which matrix factorizations are accessible. We will present such an algorithm in 3.2.

Step 2. By equation (2.2), the value of x over a particular quadratic segment can
be determined by

where

Thus

XI(NODEd-A)] [Xl(NODE)] q_AA-I [0]/ NODE -" At) ’ (NODE) 1

and it is easy to find the minimum positive Ab which drives a variable in xt to zero.
Similarly, the minimum positive A for which a variable in xr becomes positive can
also be determined. Note that the optimality conditions for (3.1) are

x 0, e I,

xf 0, xf 0,

0.

Thus a variable in I is released from zero when the corresponding value is driven
to zero, and the first equation block above can be used to calculate as a function
of .

Step 3. To find o, note that

(4 (( ylS-((-yl

and, from Step 2,

x( Xo+d
where d is a computable column vector. Thus,

g() g(o)+agS-(Kxo-y)+()gS-ga,

and solving L() just involves finding the root of the quadratic equation in the
inteal [o, w].
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Algorithm Trace is appealing in its simplicity, and is quite efficient and adequate
for well-conditioned problems. In practice, however, it does not work well on the
ill-conditioned problems of interest to us. Degeneracies are often encountered in which
the index set I makes several changes with no appreciable change in b. Computa-
tionally, this can cause an infinite loop, with variables entering and leaving the set I
without changing L or NODE" A more robust although somewhat more expensive
approach is given in the next section.

3.2. Rootfinding for L()=/.t. This approach amounts to applying a nonlinear
equation solver to L(b)=/2, solving a quadratic programming problem whenever a
function evaluation is needed. The simplest example is:

ALGORITHM BRENT-WNNLS
Brent’s program ZEROIN [5] is used as the rootfinder, and Haskell and
Hanson’s WNNLS [10] is used to evaluate L(b).

This algorithm has the advantage of being easy to program, but loses efficiency
in two ways: ZEROIN does not take advantage of the piecewise quadratic nature of
the function, and WNNLS solves each problem starting with the guess x 0, taking
no advantage of previous information. Efficiency can be gained by tailoring the
rootfinder and the quadratic program solver to this application. We discuss these two
alternate algorithms in turn.

Hanson and Haskell’s WNNLS, based on Lawson and Hanson’s NNLS [11],
solves the problem

by converting it to

min Kx Y , x >- O,

S_IK x- S_ly

where a is a large weight, related to the wordlength of the machine, so that the equation
wTx b is satisfied to within a very small tolerance. We modify the algorithm NNLS
to

1) Start from the solution to the previous problem rather than from x 0.
2) Compute and save the orthogonal factorization of the least squares matrix in

a form usable for side calculations in the rootfinder.
A description of the algorithm follows. The numbering of the steps parallels

Lawson and Hanson’s description in [11, p. 161].

ALGORITHM LS.
Saved from previous solution: the index set I of nonzero x variables and a
factorization

S-1K .]
QR,

1. Compute x from

such that QTQ I, and R upper triangular

XT=0.S-ly

If any xj < 0, drop such indices j from I and such columns j from the QR
factors and repeat this step.
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2. Compute the residual r and negative half gradient g:

r=
S_ly S_IK x, g=[aw, KrS-1]r.

3. If gr =< 0 or if I is null, then the optimal solution has been found.
4. Let gt maxj r gj.
5. I I U {t}. Add column to the QR factors.
6. Compute z from

Re, 07"[ z/=O.S-ly
7. If Z 0 then let x z and go to Step 2.

8-9. Otherwise, a variable needs to be dropped Find an index q I such that

,Xq min x
Xq Zq =o x- z

jl

10. Let x=x+(z-x).
11. Let I I\{j’x 0}. Drop column q (and any others for which the x com-

ponent is zero) from the QR factors. Go to 6.

The QR updating and downdating in LS can be performed using a modified Gram-
Schmidt algorithm.

Tailoring the rootfinder to the piecewise quadratic nature of the L(qb) curve also
enhances efficiency. We present an algorithm which keeps the root bracketed but bases
its new prediction on a quadratic extrapolation of the function.

ALGORITHM BRACKET
Given" an initial interval ba, bb] containing a single root, and two convergence
tolerances el and e2. Let A4 0 and let qb- (b if looking for bLO and 4)= ba if
looking for tk ta. Until I(b -bb)/tkl < el or I(L(tk)-/xE)//z21 < e2, perform steps
1 through 5.
1. Let ArnOLD A
2. Make a prediction of the root, b / A4, based on the current quadratic segment:

Find AckT- such that L(tk + AbT) =/x
2 assuming that no basis changes occur. This

involves solving a quadratic equation for AbT. Set Ark Ab.
3. If Abr is too small, increase it"

If IAthT-] < .9ellq] then

4. Reject the quadratic prediction if
a) convergence is linear (i.e., AboLD/Ab is close to 1), or
b) the new prediction 4 + A4r does not fall within the current interval, or
c) the change in 4) is small and both the new and the old b values are on

the same side of the root (i.e., AbAb and (L(b)-tz)
((+A)-)> 0).

In these cases, use the bisection algorithm (i.e., set b (b, + bb)/2). Otherwise,
b is set equal to the quadratic prediction b b + AbT.

5. Evaluate L(b). Shorten the interval known to contain the root: if
(L(dpa)-1,2)(L(dp)-tz2)>O then )a t; otherwise, bb b.

Algorithm Bracket-LS has been successful on many ill-conditioned test problems.
Examples are given in the next section.
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4. Numerical results. We present the results of numerical experiments on two
problems. The first is a standard test problem, and we use it to compare the performance
of several algorithms. The second is a problem in radiation physics, presented to
demonstrate the practical utility of the Bracket-LS algorithm.

Example 1. The Phillips equation [12] is as follows:

6

K(t, s)x(s) as y(t), Itl <_-6,
-6

where

and

1 +cos (Tr(s t)/3),
K(t, s)=

O, Is-tl>=3,

(6- Itl)[1 +.5 cos (rt/3)]+9/(27r) sin (Trlt[/3),
y(t)

0,

The solution is

1 + cos 7rs/ 3), =< 3,
x(s)- o, Isl>3.

We approximate this problem by

Kx=y+e

where yi y(h) and the t are midpoints of 78 intervals of equal length in the interval
[-6, 6], and the quadrature is performed by the trapezoidal rule with 48 intervals of
equal length on [-3, 3]. Then K is a matrix of dimension 78 x49 and ro=0. The
diagonal elements of the matrix S were taken to be s, 10.4 yi and /x was taken to
be 9.792, corresponding to a .9999. The a priori information is that the x vector is
nonnegative, and the vectors w are chosen to give nonoverlapping three point averages
of the x function using weights (1/4, 1/2, 1/4) for each triplet of adjacent components
of the x vector.

The initial interval was determined in two ways"
(1) The "naive interval" is

0<-xj <- min j=l,...,n.
<-i<-m

For matrices with nonnegative components, this defines a box containing the intersec-
tion of the ellipsoid {x: IIKx-ylls_<-z} with the positive orthant [7].

(2) The "FERDIT interval" is the interval determined by one iteration of the
algorithm described in [7]. This is a method for determining suboptimal confidence
intervals by minimizing or maximizing wrx for x-in an ellipsoidal region containing
the intersection of {x: [IKx-y[[s<= Ix} and the naive interval above.

We show the results of several experiments. Figure 2 shows the confidence intervals
obtained by standard methods, without the inequality constraints. The lengths are of
order 104, reflecting the 105 condition number of the rank 42 matrix K, although the
true solution is of order 1. Figure 3 shows confidence intervals obtained by requiring
that the solution be symmetric in its variable. This corresponds to adding equality
constraints and reduces the condition number to 10 The confidence intervals now
are of order 10 Even the naive bounds give more information than this: the solution
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I"

FIG. 2. Standard confidence intervals for the 78 49 Phillips problem. The dotted line plots sample values
of the true solution to the continuous problem.

FIG. 3. Standard confidence intervalsfor the 78 49 Phillipsproblem, using the constraint that x is symmetric
around the point s O. The true solution is represented by the dotted line.

is bounded by 0 and 35. Figure 4 gives the estimated 99.99% confidence bounds using
the inequality constraints. The intervals now have a maximum length of less than 2.
Figure 5 presents the bounds obtained using the inequality constraints and the symmetry
condition.
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,’b ,q, ,,," ",," q, ’b

FIG. 4. Confidence intervals for the 78 x 49 Phillips problem, using the constraint that x is nonnegative.
The true solution is represented by the dotted line.

FIG. 5. Confidence intervals for the 78 x 49 Phillips problem, using the constraints that x is nonnegative
and symmetric around the point O. The true solution is represented by the dotted line.

Table 1 gives the performance statistics for various algorithms used to compute
the results shown in Fig. 4. The runs were performed in FORTRAN single precision
on a UNIVAC 1100/82. The table indicates the number of digits accuracy requested
in the b bounds, the run time (including FERDIT, if used), and the "basis changes",
i.e., the number of changes of the index set I in Algorithm LS. The FERDIT iteration
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TABLE
Algorithm performance on example 1.

Algorithm Digits accuracy Time (min.) Basis changes

Brent-NNLS
naive interval 4 25.0 53,314

Brent-LS
naive interval 4 22.9 18,704
naive interval 3 13.9 10,993

Bracket-LS
naive interval 4 8.9 6,220
naive interval 3 8.8 6,194
FERDIT interval 4 4.8 2,081
FERDIT interval 3 4.6 1,982

took approximately .6 minutes on this problem and gave upper bounds within a factor
of 3.2 ofthe true three point averages, but most lower bounds were 0. The best algorithm,
Bracket-LS with FERDIT, was 5 times faster than Brent-NNLS. Most of the improve-
ment comes from the use of Bracket rather than Brent, and the use of initial interval
information from FERDIT.

On other test problems, FERDIT continued to prove useful. If the initial bounds
were close to optimal, FERDIT sometimes increased the cost of the algorithm, but on
problems where the initial bounds were crude, it often led to large savings.

Example 2. We now consider the spectrum unfolding problem which arises in
radiation physics. The integral equation is

Zup
K,(E)x(E) dE =y,+ e,, i= 1, 2," ", m,

ELO

where x(E) is an unknown energy spectrum, Yi is the number of particles or photons
counted in channel of a multi-channel analyzer, and Ki(E) is the spectrometer’s
energy response for channel i, (i.e. K(E) dE is the probability that a particle or photon
in the energy range E +1/2 dE will produce a pulse which gives a count in channel i).
Figures 6a and 6b show two views of the response function for an NE-213 neutron
spectrometer which has been described in detail by Verbinski et al. [21] and by Burrus
and Verbinski [6]. The figures show a piecewise linear discretization Ko to be used
with the finite approximation equations

Kjxj y + , 1, 2, , m,
j=l

where xj is the total number of neutrons in the jth energy interval (Ej + dE). The
values of m and n were taken to be 113 and 77 respectively, but in the interest of
graphical clarity, the figure shows only every 3rd ordinate in each of the two abscissa
directions. In order to show the structure for the higher energies, we have plotted the
base 10 logarithm of (1 + K) rather than the response function K itself. The mesh
spacings for both energy and pulse height vary over their entire ranges, with narrower
meshes being used for lower energies and pulse heights.

Ideally a response function should be a narrow, symmetric, sharply-peaked ridge
centered along some linear relation between energy and pulse height. It is clear from
the figures that the NE-213 spectrometer response function has none of these properties
and that the measured pulse height spectrum will be a poor representation of the actual
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Ca)

FIG. 6. The instrument response function which protides data for the matrix K for the second example.

energy spectrum. Figure 7 shows the plus and minus one standard deviation bounds
for the measured spectrum of monoenergetic neutrons produced by the nuclear reaction
T(d, n)4He, (i.e. tritium nuclei bombarded with deuterons to produce helium nuclei
and the neutrons whose spectrum was measured). It is assumed that there are no
correlations between the numbers counted in separate channels and that the number
in each channel is normally distributed. The variance matrix S is then an m x m
diagonal matrix whose diagonal elements are one-half the widths shown in the figure.
It is assumed that the standard deviations are known exactly so that chi-square statistics
can be used rather than F-distribution statistics. In reality the standard deviations are
not really known exactly but the estimates for most channels are very accurate because
they are based on large numbers of counts in each channel. The standard deviation
estimate for the number counted in each channel was the square root of the number
counted (see Trumpler and Weaver 19, pp. 166-169] except that in channels containing
only a few counts the estimates were chosen to be larger than this in order to assure
that they were conservative. Figure 7 shows not the actual raw counts but rather a
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OBSF__,RVgD COUNTS

PULSE HEISHT
FIG. 7. The instrument output, which provides data for the standard deviation matrix and the right-hand

side function y for the second example.

normalization which was required to correct for instrument gain effects that need not
concern us here.

Since it is hopeless to try to estimate x(E) at each energy E we seek instead to
estimate averages of x(E) over various energy ranges. A common practice is to estimate
weighted averages with Gaussian weighting functions. Accordingly we seek estimates
of the quantities

Cbk(E)=I;Wk(E)x(E)dE k=l,2,. -,p,

where

Wk E
I

crkv/- [ 1 ]
with the peak energies Ek chosen to cover the same energy range as the response
functions and each peak width rk chosen to give the energy resolution desired in the
neighborhood of Ek. The weighting functions wk(E) are called window functions and
are tabulated at the same energy mesh points as the instrument response functions.
The result is a set of window vectors

Wk=(Wkl, Wk2," Wk,)T, k= l,2, ,p,

and the "unfolded spectrum" is the set of p points (Ek, k) where

qbk WkjX WX, k: 1,2," ",p.
j=l

Note that this procedure, in effect, replaces the real instrument response functions
with the window functions so that the unfolded spectrum represents the measurements
that would have been obtained using an instrument whose response functions were
the latter rather than the former. The set of window vectors actually used is shown in



CONFIDENCE INTERVALS FOR LEAST SQUARES PROBLEMS 487

Fig. 8. The total number of window vectors was 105, with each vector being tabulated
at n 77 points. The windows widths irk were all chosen much smaller than the total
energy range (0-20 Mev) so that most of the 77 elements in each vector were negligible
and therefore set to zero. Note that the higher energy windows are wider than those
at lower energies. The widths chosen reflect the experimentalist’s estimate of the degree
of energy resolution obtainable at each energy. All of the windows are normalized so
that

dE 1.0, k= 1,2," ",p.

Note that we have again plotted loglo (1 + Wkj) rather than the Wkj themselves.
To obtain an estimate ofthe "unfolded spectrum" we first computed the confidence

intervals by the standard method. The results are shown in Fig. 9, which is a plot of

FIG. 8. The window vectors w for the second example.

F:.STIMRTED SPE:CTRU
:3.0

2.0

1.0

0.0

-I .0

-2.0

FIG. 9. Standard confidence intervals for the second example.

wlO’
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the bounds b and bJP as a function of Ek, k 1, 2,"., 105. The value of/x 2 was
chosen so that each of the intervals b, bP] was an a 99.99% confidence interval.
The value of ro minx I[Kx-ylls was 38.048, and we calculated 3,2 from the asymptotic
formula

3,2= 1/2[K +v/2S 1]2

where N is the number of degrees of freedom and K is the percentage point of the
cumulative normal distribution corresponding to confidence level a [4, p. 293]. For
the present problem, the value of N should ideally be the rank of the response matrix
but this is difficult to determine reliably, so we used the most conservative estimate
N= n =77. We used =4.0 which gives t =0.9999. The value of /x

2 was then
computed by tx2=ro+ 3,2. In Fig. 9 the computed bounds b and bkUP were joined
by straight line segments to form an estimated uncertainty band.

An experimentalist would expect a peak in the spectrum between 13 and 14 Mev,
but there is no evidence of this in the standard confidence interval estimates. We
applied Algorithm Bracket-LS to each of the window vectors, yielding the results
shown in Fig. 10. The spectrum in Fig. 10 is dominated by a single peak centered at
about 13.8 Mev and with a full width at half maximum of about 1.5 Mev. Part of this
width (about 0.6 Mev) can be attributed to the inherent resolution limit of the instru-
ment, but the remainder arises from the choice of the window function widths rk for
the windows centered in the neighborhood of 14 Mev. The width of the peak can be
reduced by choosing smaller window widths crk, but this procedure also produces wider
confidence intervals b, bJP]. Thus, in choosing window widths, it is necessary to
balance statistical uncertainty against energy resolution. If the windows are too wide,
details in the spectrum are smeared out and lost. If they are too small the widths of
the confidence intervals become excessively large. Three or four digit accuracy can be
achieved in 22.1 minutes using FERDIT and Bracket-LS, or in 26.7 minutes without
FERDIT.

Acknowledgments. We are grateful to Claire Wolfe for preparing the three
dimensional plots and to G. W. Stewart for providing Gram-Schmidt software.
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FIG. 10. Confidence intervals for the second example, using the constraint that x is nonnegative.
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IS SOR COLOR-BLIND?*

LOYCE M. ADAMSf AND HARRY F. JORDANt

Abstract. The work of Young in 1950, see Young [1950], [1971], showed that the Red/Black ordering
and the natural rowwise ordering of matrices with Property A, such as those arising from the 5-point
discretization of Poisson’s equation, lead to SOR iteration matrices with identical eigenvalues. With the
advent of parallel computers, multicolor point SOR schemes have been proposed for more complicated
stencils on 2-dimensional rectangular grids, see Adams and Ortega 1982] for example, but to our knowledge,
no theory has been provided for the rate of convergence of these methods relative to that of the natural
rowwise scheme.

New results show that certain matrices may be reordered so the resulting multicolor SOR matrix has
the same eigenvalues as that for the original ordering. In addition, for a wide range of stencils, we show
how to choose multicolor orderings so the multicolor SOR matrices have the same eigenvalues as the natural
rowwise SOR matrix. The strategy for obtaining these orderings is based on "data flow" concepts and can
be used to reach Young’s conclusions above for the 5-point stencil.

The importance of these results is threefold. Firstly, a constructive and easy means of finding these
multicolorings is a direct consequence of the theory; secondly, multicolor SOR methods can be found that
have the same rate of convergence as the natural rowwise SOR method for a wide range of stencils used
to discretize partial differential equations; and thirdly, these multicolor SOR methods can be efficiently
implemented on a wide class of parallel computers.

Keywords. multi-color ordering, SOR, data flow, parallel processing
AMS (MOS) subject classifications. 65, 68

1. Introduction. The successive overrelaxation (SOR) iterative method can be used
to solve a linear system of equations,

(1) Au=b

and is guaranteed to converge if the matrix A is symmetric and positive definite and
the relaxation factor, to, is in the interval 0 < to < 2. If we express A as,

(2) A=D-L-U

where D, L, and U are the diagonal, strictly lower and upper triangular parts of A
respectively, the SOR iteration matrix, o, is given by (3).

(3) ,, (D toL)-*(toU + (1 to)D).

If we reorder the equations in (1) to get the system , the resulting SOR matrix
,o is not guaranteed to have the same eigenvalues as ,, of (3) and hence the
convergence rates of the two SOR schemes may be different.

The matrix A frequently arises from the discretization of an elliptic partial
differential equation on a rectangular region by a local stencil and by numbering the
grid nodes in the natural rowwise fashion (left to right, bottom to top). For example,
for Poisson’s equation on a rectangle, we can use the 5-point stencil and number the
grid as shown in Fig. 1. Young [1950], [1971] showed that the Red/Black ordering of
the nodes as shown in Fig. 2 and the natural rowwise ordering of Fig. 1 led to SOR
iteration matrices with the same eigenvalues. IOaowing that these SOR matrices have
the same eigenvalues is important; since for parallel computers we can choose the
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R B R B
5 11 6 12

B R- B R
9 3 10 4

2 -3 o4

FIG. 1. 5-point stencil and natural rowwise ordering.

R B R B
7 2 8

FIG 2. 5-point stencil and red black ordering.

Red/Black ordering instead of the natural rowwise ordering without a degradation in
the asymptotic convergence rate. More parallelism is achieved with this ordering since
nodes of the same color are not neighbors, which implies all Red and then all Black
nodes may be updated simultaneously.

With the advent of parallel computers, multicolor point SOR schemes have been
proposed for more complicated stencils on 2-dimensional rectangular grids, see Adams
and Ortega [1982] for example, but to our knowledge no theory has been provided
for the rate of convergence of these methods relative to that of the natural rowwise
scheme. This paper will show that the geometry of the stencil can be used to derive a
coloring for the region such that the multicolor and natural rowwise SOR iteration
matrices have the same eigenvalues. The fact that this is true for a class of stencils
containing those of interest in partial differential equations means that highly parallel
iterative methods can be formulated which converge equally as well as their sequential
counterparts.

In 2, we describe how trying to implement natural rowwise SOR for a 9-point
stencil on the Denelcor HEP, Patel and Jordan [1984], led to a strategy based on data
flow ideas for finding orderings that are highly parallel and that produce the same
iterates as the natural rowwise iteration. The ideas in 2 are formalized in 3 where
we prove that the SOR iteration with the orderings generated by the data flow strategy
has the same asymptotic rate of convergence as the SOR iteration with particular
multicolor orderings. In 4 we show how to find these multicolor orderings for a wide
range of stencils. In 5, we describe some interesting implementation issues for
multicolor SOR on various parallel computers. Finally, in conclusion, we summarize
our results, mention generalizations of our ideas to block SOR and multiple equations
per grid point, and list unanswered questions.

2. Parallelizing the natural rowwise SOR algorithm. In the multiple instruction
stream, or MIMD, environment such as that of the Denelcor HEP, it is useful to
investigate speeding up the sequential rowwise SOR computation by using multiple
instruction streams called processes. If an arbitrary number of processes are available
in the computing environment, we want to investigate a MIMD algorithm that imple-
ments a parallel SOR iteration that is equivalent to the natural rowwise SOR algorithm.

The important ideas that this approach yields can best be seen by a specific
example. We consider the 9-point stencil shown in Fig. 3. The natural rowwise ordering
of a rectangular grid imposes the following update rule, or data flow dependencies,
for the unknown at the center of the stencil:

NR stencil rule. The value at the center of the stencil for iteration k+ 1 can be
calculated after the values to the left of and below center (backward neighbors) have
been calculated on iteration k + 1 and the values to the right and above center (forward
neighbors) have been calculated on iteration k.
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k+l k+l k+l

FIG. 3. 9-point stencil.

This rule is depicted in Fig. 3 for the 9-point stencil.
To formulate the NR stencil rule in the language of data flow (Ackerman 1982]),

we look at the set of n x rn x K updates implied by the rule for unknowns uk)(i,j) at
grid point (i, j) on iteration k, k= 1,-.., K,i= 1,..., n, and j= 1,..., rn. We will
use (i,j) to indicate the point in the ith row and jth column of the grid. These define
a computation in a value oriented, or single-assignment, computational model with
initial values u) and boundary values considered as constants. In this model all values
are viewed as having an independent existence with no concept of updating a storage
location, so that n x rn x K storage locations would be needed to store the n rn
unknowns on the K iterations. It is clear that a sequential rowwise sweep for iteration
1 followed by one for iteration 2, and so on, is not the only scheduling of equation
evaluations consistent with rule NR. For example, with the 9-point stencil, as soon as
u)(1, 1) and u)(1,2) have been evaluated, the computations for u)(1,3) and
u)(2, 1) can proceed simultaneously and when ul)(1, 2), ua)(2, 1) and u)(2, 2) have
been computed the iteration 2 value u2)(1, 1) can be produced. If we assume an
arbitrarily large number of processors and schedule each computation as early as
possible, then many computations, possibly associated with different iterations, will
occur simultaneously at points spanning the region.

In general, to cast this n x m K scheduling problem into the form of an iteration
on an n rn region, with only n m storage locations required, it is convenient to
require symmetry of the stencil as explained below. For a structurally symmetric stencil,
like our example in Fig. 3, a point (i, j) is a forward neighbor of all its backward
neighbors and a backward neighbor of all its forward neighbors. Thus, by the time it
is possible to compute u(k+l)( i, j), the value u(k)(i,j) has been used to compute U

(k+l)

for all backward neighbors and uk) for all forward neighbors and these are the only
computations which require it. Thus only the "current" iteration value is needed at a
specific point (i, j) and the re-use of an n x rn storage array is possible for all the
schedulings satisfying the NR rule. The "current" iteration number may be different
for different nodes of the region as a function of the specific schedule. We will assume
a structurally symmetric stencil henceforth and use rule NR to refer to the (k+ 1)st
update of the point at the center of the stencil.

For the 9-point stencil and for many others of interest in PDEs this data flow
scheme of scheduling updates as early as allowed by rule NR will be shown to lead
to multicolor iterative methods. If each computation takes one time unit then a subset
R of grid points will be associated with computations scheduled at time t. At + 1 a
new subset B of nodes will be computed. If these successively scheduled subsets are
disjoint, exhaust the region, and the time difference between subsequent iterations is
the same constant for all nodes, then we will show that the resulting time schedule
has the form of a multicolor iteration.

To continue our example, we consider the 6 by 5 grid of interior nodes that results
from discretizing an 8 by 7 grid with the 9-point stencil with boundary values assumed
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G O
11, 15, 19, 23 12, 16, 20, 24

R B G
13, 17, 21, 25 14, 18, 22, 26 15, 19, 23, 27

R B G O
9, 13, 17, 21 10, 14, 18, 22 11, 15, 19, 23 12, 16, 20, 24

R
13, 17, 21, 25

G O
7, 11, 15, 19 8, 12, 16, 20

R B G
9, 13, 17, 21 10, 14, 18, 22 11, 15, 19, 23

R B G O
5, 9, 13, 17 6, 10, 14, 18 7, 11, 15, 19 8, 12, 16, 20

R
9, 13, 17, 21

S3

G O
3, 7, 11, 15 4, 8, 12, 16

R B G
5, 9, 13, 17 6, 10, 14, 18 7, 11, 15, 19

R B G O
1, 5, 9, 13 2, 6, 10, 14 3, 7, 11, 15 4, 8, 12, 16

FIG. 4. Earliest times for the 9-point stencil.

S2

to be known. This grid is shown in Fig. 4 where the numbers below each node indicate
the earliest times that consecutive iterations can begin at the node according to the
NR stencil rule if the computation at a node requires one time unit. Notice that each
node updates every At 4 time units. The solid lines in Fig. 4 separate the nodes into
four disjoint sets, denoted S1, $2, S3, and S4 with set S containing nodes that update
for the first time during times 1 to At, $2 containing nodes with first update times in
the interval At + 1 to 2At, etc. These sets will be formally defined later. The following
statements can be made from Fig. 4 by observing these earliest update times. Note
that at times (1, 2, 3, 4) iteration 1 can be done on the nodes in $1, at times (5, 6, 7, 8)
iteration 1 can be done on the nodes in $2 and iteration 2 on the nodes in S1; at times
(9, 10, 11, 12) iteration 1 on set $3, iteration 2 on $2 and iteration 3 on S1 can be done;
at times (13, 14, 15, 16) iteration 1 on $4, iteration 2 on $3, iteration 3 on S, and
iteration 4 on S1 can be done; at times (17, 18, 19, 20) iteration 2 on $4, iteration 3 on
$3 and iteration 4 on S can be done; at times (21, 22, 23, 24) iteration 3 on $4, iteration
4 on $3 can be done; and finally at times (25, 26, 27) iteration 4 can be done on $4.

At this point, it is instructive to remark on the difference between a data flow
scheme of assigning times to the nodes and an ordering of the nodes as reflected by
the order of the equations of A in (1). For the 30 nodes (30 equations) in Fig. 4, the
scheme of assigning update times at a node to be the earliest times for which the data
for the node was available according to the NR Stencil Rule resulted in 15 unique
times being assigned to the nodes on the first iteration; whereas, an ordering must
assign the integers 1 to 30 to the nodes. However, there are orderings that are consistent
with the NR Stencil Rule that can be constructed by considering the update times for
the first iteration that resulted from the data flow scheme. We define these orderings
in Definition 1.

DEFINITION 1. An NR data flow ordering of the nodes of a grid is an ordering
by the first earliest update times according to the NR rule with ties being resolved
arbitrarily.

There are many orderings of the 30 equations of A in (1) that do not violate the
NR stencil rule, but do not have the same update times for the first iteration as shown
in Fig. 4. One such ordering is the natural rowwise, left to right, bottom to top ordering.
All orderings that do not violate the NR Stencil Rule are nonmigratory permutations
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of one another, as described in Young [1971], and will result in SOR matrices with
equal eigenvalues. However, it is the NR data flow orderings that are useful in proving
our theorems about particular multicolor SOR iterations.

A crucial observation is that at times (13, 14, 15, 16), nodes from all four sets are
being updated and that all nodes which can be updated at a particular time, say 13,
are not neighbors. Hence, if we color all nodes Red that are updated at time 13, all
nodes Black that are updated at time 14, all nodes Green that are updated at time 15,
and all nodes Orange that are updated at time 16 as shown in Fig. 4, it is clear that
the schedule of updates for four iterations of SOR consistent with the NR Stencil Rule
contains one iteration (times 13, 14, 15, 16) of a multicolor SOR iteration (R/B/G/O-
SOR) as defined by Adams and Ortega [1982]. If we order the colors R/B/G/O as
1/2/3/4, a closer examination of Fig. 4 also reveals that nodes of color in Si are
connected only to nodes of colors greater than in &-l and only to nodes of colors
less than in &+l. Also nodes in & are not connected to any nodes in sets greater
than + 1 or less than i- 1.

A strategy for proving that the SOR iteration matrix that results from ordering
the Red equations first, followed by the Black, Green, and then Orange equations will
have the same eigenvalues as the natural rowwise SOR iteration matrix has evolved
from this example. We now formalize this strategy.

3. Theory. The data flow example of the last section leads us to begin with the
following definitions.

DEFINIXON 2. A multicolor, or c-color, matrix is a c x c block matrix of the form

D1 X12 Xlc
X21 D2 X2c

Xcl Dc
where the D are diagonal matrices, each associated with a different color, and the X0
are arbitrary.

DEFIN’rON 3. A multicolor T matrix is a block tridiagonal matrix of the form,

M2 L2
T,= U,_

M-l
Us-1 MsJ

where M, 2 _<- <_- s 1, are multicolor matrices with c colors numbered 1, , c respec-
tively; M1 is a multicolor matrix with c-f+ 1 colors numbered f, ., c respectively;
Ms is a multicolor matrix with e < c colors numbered 1, , e respectively. In addition,
the matrices Li, 2 <= <_- s 2 are strictly lower c x c block triangular matrices; the matrix

L1 is a (c-f+ 1)x (c) block matrix with blocks B0=0 if j-> i+f-1; the matrix Ls-i
is a c x e block matrix with blocks Bis 0 if j => i; and the matrices Ui, 1,. , s- 1
have the transposed form of the matrices L, i= 1,.-., s-1 respectively.

It is easy to show that the matrix that results from permuting the rows and columns
of T4 to bring nodes of color j from all M together into the same block Ds is a
multicolor matrix with c colors ordered 1,. ., c respectively. Such a matrix is called
the multicolor matrix associated with T4.
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In relation to Fig. 4 with R/B/G/O representing colors 1/2/3/4, the blocks
Mi, 1,. , 4 correspond to the four sets Si, i= 1,. , 4, with the nodes in a given
block ordered by colors, the value of c 4, the value of f= 1 and the value of e 3.
The matrix TM has the following form where D0 indicates the nodes of color from
block M.

Dt x x x 0

X D31 X X 0

X X D41 X X X

0 X X X rD2 x x
/

0 X D32
0 X x

0

x x 0

D X X X 0

o x x x rD,3 x x x o
/o x

xtio 3x
x

x

x o
0 X X D33 x x

0 X X 943 X X

0 X X D24
0 X X

The associated 4-color matrix is

0

x

x

x

D34

M-’-

D12
D13

D14

21

D22
D23

D24

31

D32

D33

D34

ID41
D42 O431

We now prove our major theorem.
THEOREM 1. A multicolor T matrix and its associated multicolor matrix have SOR

iteration matrices with the same eigenvalues.
Proof. Let r,o be the SOR matrix for the multicolor T matrix; c,, be the SOR

matrix for the multicolor matrix and P be the permutation matrix that transforms the
multicolor T ordering to the multicolor ordering.
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Definition 3 guarantees that a multicolor T matrix is also a banded matrix with
semibandwidth equal to c- 1 with the blocks Dij on the diagonal being diagonal blocks.
This means that consecutive iterations of SOR can occur for every node every c time
units. Let Qk) represent the set of earliest times, t, that the nodes in blocks Dj in block
Mi can be updated on iteration k. Specifically,

Qk)= {t[(k- 1)c+ 1 <-_ t<= kc-f+ 1},

(4) Qk)={tl(k+i-2)c-f+2<=t<-_(k+i-1)c-f+l},2<-_i<-s-1
Qk) { tl (k + s 2)c -f+ 2 =< --<_ (k + s 2)c -f+ 1 + e},

and it follows that iterations s- 1, s- 2, , 1 can be done on the nodes in blocks M,
1, 2,..., s- 1 respectively before iteration 1 is started on the nodes in block Ms.

Also, we can conclude from (4) that at the c times (s + 2)c -f/ 2 to (s + 1)c -f+ 1
inclusively, a multicolor c,, iteration with colors numbered 1,..., c can be done.
This suggests that we consider the matrix 7-. in the factored form,

(5) e, e&_ e
where the N x N matrix w represents one SOR iteration on the nodes in block Mi of
the multicolor T matrix. In particular, let

(1) ni be the number of nodes in block M,
(2) I() be the N N matrix with a 1 in the diagonal position of the row associated

with the jth node of block Mi and zeros elsewhere;
(3) B(0 be the N x N matrix with the row associated with the jth node of block

Mi being equal to the row of the Jacobi iteration matrix, B D-I(L+ U),
associated with this node and all other rows being zero.

Then i can be written as

(6) , I-I (o)B(ij) / I (.OI(ij))
j=l

and has the form

(7) 5f
X X X

Ii+l

Now, k+s-1 iterations of multicolor T SOR can be expressed in terms of k
iterations of multicolor SOR as

(8) T k
r, RP c.,oPS

where

(9)

Since det(7-,,o)= (1- to)N where N is the size of r.,o, it follows that r.,o is non-
singular if to 1. Hence the factors in (5) and R in (8) are nonsingular whenever to 1.
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So, for to 1, it follows from (8) that

(10) T k -1
7-., RP -c,oPR RS.

Since the multicolor T matrix is block tridiagonal, the matrix i commutes with if
j 1, + 1 as is easily seen by (7). By applying this fact to the product RS in (10),
we get

(11) RS= ’T,to.S-1
Hence, for to 1,

(12) k k -1.r,,o Rp-Ic,o,PR
and it follows that r, and c.,o have the same eigenvalues.

Finally, the case to 1 follows because the eigenvalues of a matrix are continuous
functions of the coefficients of the matrix, and the theorem is proved.

Now, consider the five sets that would be formed in Fig. 4 by letting f 4. This
results in a grouping of nodes with the earliest first update times of 1, 2-5, 6-9, 10-13,
and 14-15 into sets 1 to 5 respectively. This corresponds to assigning the numbers
1/2/3/4 to the colors B/G/O/R respectively with the other values in Definition 2 being
c =4 and e 2. The resulting Tt matrix is the same as that for the assignment of
1/2/3/4 to the colors R/B/G/O in the previous example; however, the block structure
is different, indicating different associated multicolor matrices. Also, we could let f 3
and then f=2 and effectively describe G/O/R/B and O/R/B/G orderings of the
equations. This discussion leads to the following corollary.

COROLLARY 1. If the multicolor T matrix results from a NR data flow ordering of
the grid points, the c multicolor SOR matrices that arise by letting f in Definition 2 vary
from 1 to c have the same eigenvalues as the natural rowwise SOR matrix.

Proof. From Theorem 1 we conclude that the c multicolor SOR matrices have the
same eigenvalues as the multicolor T SOR matrix. However, the multicolor T ordering
is the NR data flow ordering which is just a nonmigratory permutation of the natural
rowwise Ordering and the corollary follows.

For our example, the R/B/G/O, B/G/O/R, G/O/R/B, and the O/R/B/G SOR
matrices have the same eigenvalues as the natural rowwise SOR matrix, and thus an
iteration done with any ofthese multicolor matrices will converge at the same asymptotic
rate as the iteration using the sequential rowwise matrix.

The question arises whether there are other four color orderings for the 9-point
stencil of Fig. 3 that lead to multicolor and natural rowwise SOR matrices that have
the same eigenvalues. We provide a partial answer to this question with Corollary 2.

COROLLARY 2. The multicolor SOR matrix associated with the matrix T4 in

Definition 3 and the multicolor SOR matrix that results from ordering the equations of
TM in reverse order have the same eigenvalues whenever TM is symmetric.

Proof. Let A, , and A2, o’2,,o be the respective multicolor T and multicolor
T SOR matrices for the forward and reverse orders respectively. Then by Theorem 1,
the multicolor SOR matrices have the same eigenvalues as ,o, and 2,, respectively.
It remains to show that ,o, and 2,0, have the same eigenvalues.

Now, let

A D-L- U
and

A2 D- L2 U2
where Di, Li, and U are defined by (2).
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If P is the permutation matrix from the forward to the reverse ordering, we have,

PT"DP- D2; PT"LP= U2, PT"UP L2
and

pT..,p (D2- to U2)-l(toL2+ (1 to)D2).

But since A2 is symmetric, U2 L and

pT..,p [toU2 + (1 to)D2)(D2 coL2)-1] T.
Since a square matrix has the same eigenvalues as its transpose, and the eigenvalues
of a product AB equals the eigenvalues of BA, it follows from (3) that ,o, and 2.0,
have the same eigenvalues and the corollary follows.

Therefore, for Fig. 4, the O/G/B/R, R/O/G/B, B/R/O/G, G/B/R/O, and the
natural rowwise orderings have SOR matrices with the same eigenvalues whenever the
matrix A of (1) is symmetric.

Obviously, there are other 4-color topologies of a rectangular grid that is discretized
with the 9-point stencil of Fig. 3. For example, consider the coloring shown in Fig. 5.

G

B 0

R G

B 0

R G

B 0

R G

B 0

R G

FG. 5. Columnwise coloring for the 9-point stencil.

With the sets indicated in Fig. 5, the R/B/G/O, B/G/O/R, G/O/R/B, O/R/B/G
orderings lead to SOR matrices with the same eigenvalues as the natural columnwise
(left to right, bottom to top) SOR matrix. Another example, that was given in Adams
1982] is shown in Fig. 6 along with the associated earliest update times for the first
two iterations. These update times were obtained by considering two different update
rules for the grid. The first rule applies to the R and G points and is identical to the
rule in Fig. 3 except the data used from the west neighbor is from iteration k instead
of k4-1. The second rule applies to the O and B points and is like Fig. 3 except the
data used from the east neighbor is from iteration k+ 1 instead of iteration k.

The sets indicated above show that f 1, and e 4. Also, the value of f can not
be changed and still maintain a multicolor T matrix since all colors must be present
in each set for the earliest times shown above. Theorem 1 can be applied to Fig. 6 to
prove that R/B/G/O SOR has the same eigenvalues as a multicolor T SOR matrix
that is natural rowwise-like in the sense that we update nodes in set 1 before those in
set 2, etc., but within sets the ordering is R/B/G/O and is not a nonmigratory
permutation of the natural rowwise ordering.

So far, we have shown that the 9-point stencil has multicolor orderings with SOR
matrices having eigenvalues identical to those ofthe SOR matrix for the natural rowwise
ordering, the natural columnwise ordering, and a rowwise-like ordering. Next, we turn
to the practical questions.
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G O G O
11, 15 12, 16 11, 15 12, 16

R B R B
9, 13 10, 14 9, 13 10, 14

G O G O
7, 11 8, 12 7, 11 8, 12

R B R B
5, 9 6, 10 5, 9 6, 10

G O G O
3, 7 4, 8 3, 7 4, 8

R B R B
1,5 2;6 1,5 2,6

FIG. 6. Rowwise-like coloring for the 9-point stencil.

(1) What stencils have multicolor and NR SOR matrices with the same eigen-
values?

(2) How do we find these multicolor orderings?

4. Special stencils and NR-equivalent multicolor orderings. In this section, we define
a class of stencils for which a discretized rectangular domain has multicolor orderings
with SOR matrices that have the same eigenvalues as the natural rowwise (NR) SOR
matrix. In addition, we show how to find these colorings and illustrate the procedure
for several well-known stencils. We begin with the following definitions.

DEFINITION 4. A stencil S is a pattern of neighbors for a given node (i, j). The
stencil has (0, 0) as its center node and is defined relative to i, j) as follows: (p, q)
is said to be a node in stencil S if for all (i,j) in the region, the node (i+p,j + q) is
a neighbor of (i, j) provided it is also in the region.

DEFINITION 5. A stencil that is structurally symmetric about node (0, 0) is a
SO-stencil. That is, if node (i,j) is in the stencil, then node (-i, -j) is also in the stencil.

We note that a symmetric stencil leads to a symmetric nonzero pattern in the
matrix A of (1), but does not necessarily lead to numerical symmetry of A.

Now, recall from the 9-point stencil example of the last section that every node
could be updated every c time units, where c was the number of colors. This fact was
reflected in the definition of a multicolor T matrix and was necessary to prove that
the R/B/G/O, B/G/O/R, G/O/R/B, and O/R/B/G SOR matrices for Fig. 4 had the
same eigenvalues as the NR SOR matrix. However, update rules based on other
orderings, as shown in Figs. 5 and 6, also lead to constant update intervals but may
not be equivalent to the NR ordering. We now seek a class of stencils for which a
constant updating increment is both necessary and sufficient to find multicolor orderings
that are equivalent to the NR scheme.

The first step in this direction is to consider stencils for which consecutive nodes
in a given row of the grid update one time unit apart. This is ensured by requiring
that a SO stencil contain node (0, 1), and likewise, node (0,- 1). Such a stencil is
called a (0, 1)-SO stencil, and the result is proven in Theorem 2.

THEOREM 2. If a rectangular grid is discretized with a (0, 1)-SO stencil and an
iteration is done at the earliest time according to rule NR and requires one time unit to
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complete, then iteration kfor node i, j + 1) begins one time unit later than iteration kfor
node i, j).

Proof. The proof is by induction on k. For each value of k we induct on and
for each value of we induct on j. The proof is given in its entirety in the Appendix.

We remark that we have been able to find multicolor orderings for SO stencils
with the properties that nodes update every c units of time and the SOR matrices have
the same eigenvalues as the NR scheme, but do not contain node (0, 1). However, this
requirement that a node have an "east" and "west" neighbor is not restrictive for
stencils that are commonly used for PDEs as will be illustrated later.

The next step is to further restrict the stencil so that a node updates every c time
units. The NR rule says that the time a node can update on iteration k + 1 is a function
of the times its backward neighbors were updated on iteration k / 1 and the times its
forward neighbors were updated on iteration k. However, the times the nodes update
on the first iteration are determined by the backward neighbor times only. Since stencils
of interest contain a node in row -1, it is convenient to consider stencils for which a
node in row -1 is the last backward node to be updated. This will be true for node
(- 1, a) if nodes strictly below the x-axis and strictly above line L in Fig. 7 are excluded
from the stencil as indicated by the darkened nodes in Fig. 7. Node (-1, a) is called
the "controlling" backward neighbor. Similarly, we require the last forward neighbor
to be updated to be above the x-axis in row y and column/3,/3 >-0. This will be true
for node (y,/3) if we do not allow nodes above line L2 to be in the stencil as shown
in Fig. 7. The nodes (-3, 0) and (-3, 1) are excluded by symmetry of the stencil since
(3,0) and (3,-1) are excluded as forward neighbors. Node (%/3) is called the
"controlling" forward neighbor. Again, this is not a real restriction for practical stencils.
Fig. 7 was the motivation for our major definition below.

DEFINITION 6. A SO-stencil that contains nodes (0, 1), (-1, a), and (%/3) with
a,/3 _-> 0 and y > 0 but does not contain nodes

{(y, x),y_-<-l[x>-(a + 1)y- 1}
or

{(y, x),y>--OIx>-(a +l)y+ y(a + 1)+

is an (a,/3, y)-SO Stencil.

Y

FIG. 7. Excluded backward andforward neighbors.
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(0,1) (0,1)0------ 0-------0

(0, 0, 1)-SO stencil (1, 1, 1)-SO stencil (1, 0, 2)-SO stencil

(1, 0, 1)-SO stencil "--o/io(_l,
o o "o

(2, 0, 2)-SO stencil

o (’ #)

0 0--"--- 0------0 0

o(-1,)

(0, 0, 2)-SO stencil

FIG. 8. The classification of some common stencils.

The classification of six commonly used stencils as (c,/3, y)-SO stencils is shown
in Fig. 8. Hence, we see that it is quite an easy task to find the values of a,/3, and y
for a given stencil that satisfy Definition 6. It is also easy to construct many stencils
for given values of a,/3, and %

In Theorem 3 below, we express the value of c in terms of a,/3, and y and describe
how to color the grid so that c equals the number of colors.

THEOREM 3. If a rectangular grid is discretized with an (a, fl, 3,)-SO stencil, the
matrix A of (1) that resultsfrom the NR data flow ordering is a multicolor T matrix with

c =’y(a +l)+(fl + 1)

colors. Furthermore, if the first node is colored f and node i, j) is color

[t(1)(i,j)+f-2] mod c+ 1

then the blocks M1, Mr, r--2,’’’, s-1, and Ms contain the nodes in set S], St, r=
2,. , s- 1, and Ss below"

S1 {(i,j)ll <-- t(1)( i, j) <= c--f+ 1},

Sr={(i,j)l(r-1)c-f+2<-t(])(i,j)<=rc-f+l}, 2<=r<=s,

S {(i,j)l(s- 1)c-f+ 2 <_- t(l)(i,j) <- (s- 1)c-f+ 1 + e}.

Proof It is sufficient to prove that all nodes can update every c time units, since
the above specifications for Mr, r 1 s, and the coloring rule follow from this fact.
The proof is an induction on k and for each k we induct on and use Theorem 2 to
replace the j induction. The proof is given in the Appendix.

Theorem 3 and Corollary 1 show that the c multicolor SOR matrices gotten by
letting f vary from 1 to c have the same eigenvalues as the SOR matrix associated
with the NR data flow ordering.
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5. Implementation of parallel SOR. The data flow view of rowwise sequential
SOR as a collection of computations to be scheduled as early as possible makes it
clear that a parallel SOR algorithm is possible for a shared memory MIMD machine.
It was the investigation of such an algorithm on the HEP computer which stimulated
this paper (Patel and Jordan [1984]). The fact that stencils of interest lead to the
multicolor scheme which updates fixed, disjoint and exhaustive subsets of the grid
points means that implementation on an SIMD or vector computer is also simple. The
degree of parallelism of the algorithm, number of processes in MIMD, or vector length
in SIMD is (n m)/c where c is the number of colors. Since the stencils of interest
are limited in extent, multicolor SOR is also suitable for MIMD machines in which
data communication costs are significant, such as the processor arrays discussed in
Adams 1982].

In implementing multicolor SOR on a vector computer, c vectors of length
(n rn)/c are updated cyclically. Since the vectors consist of subsets of region points
and are fixed throughout the iteration, it is appropriate to reorder the data structure
to bring all points of a given color into a single vector. If the n x m array is stored
rowwise in memory, the regularity of the coloring pattern for a given stencil on the
right sized grid may make it possible to form vectors with a constant stride between
elements without reordering the data structure. Some vector architectures will handle
constant stride vectors directly. The computation to update the vector of, say, red
nodes will be a linear combination of the vectors for nodes of other colors. Two or
more shifted versions of a vector may be used, since the stencil centered on a red point
may include more than one, say, black neighbor. Other comments on SOR in connection
with vector computers can be found in Buzbee et al. [1977] and Adams [1983].

In a shared memory MIMD implementation, the structuring ofdata is unimportant.
Instead, the main issue is that of sychronizing processes so that a scheduling consistent
with rule NR results. Potentially, the process updating point (i,j) for the kth time
would have to verify that all backward neighbors have been updated k times and all
forward neighbors k-1 times. However, for (a,/3, y)-SO stencils, it is sufficient to
verify that point(-1, a) has been updated k times and point (y,/3) updated k- 1 times.
Synchronization at one point in the forward direction and one point in the backward
direction is all that is needed. With shared memory, it is useful to think of the processes
moving across the array following a wave of computation. The HEP algorithm men-
tioned above started with order n parallelism by letting one process sweep each row
with the sweeps being as simultaneous as possible under the synchronization rules.
Observing that sweeps for subsequent iterations could be started before the current
one finished led to the multicolor algorithm with parallelism (n x m)/c. Synchronization
on the HEP was done by the producer/consumer mechanism with a computation
consuming values from neighbors (-1, a) and (y, fl) and producing two new values,
one for each of these neighbors.

On an MIMD machine where the processors are arranged in an array, it is no
longer appropriate to let the processes move through the array of processors. A single
processor would perform computations for a fixed subregion, preferably containing
an equal number of points of each color. Synchronization becomes a by-product of
the communications required to pass new iterates to other processors which require
them. The storage organization places a node into the local memory of the processor
responsible for updating it. This situation is thoroughly covered in Adams [1982].

6. Conclusions. The results of this paper give the practitioner in numerical partial
differential equations the assurance that one can use highly parallel multicolor SOR
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methods that have exactly the same convergence properties that are associated with
the rowwise sequential method, and that these particular multicolor orderings are easily
constructed. Thus, in this sense SOR is color-blind.

There are, however, colorings, like those in Figs. 5 and 6, which decouple the
stencil on the region which have SOR matrices with the same eigenvalues as columnwise
and other, less regular, orderings. The relationship of SOR with these orderings to the
natural rowwise SOR is still an open question in general. However, for the 5-point
stencil of Fig. 8 the Red/Black, Black/Red, natural rowwise, and natural columnwise
orderings all have SOR iteration matrices with equal eigenvalues which corroborates
Young’s results that were obtained by the use of consistently ordered matrices. In
addition, for symmetric matrices, our results show that for the 6-point (1, 0, 1)-SO
stencil of Fig. 8 all 6 orderings of the unique 3-color pattern which decouples the
stencil lead to NR equivalent SOR matrices. This means that columnwise and rowwise
SOR have the same asymptotic convergence rate for this stencil. For the 9-point
(1, 1, 1)-SO of Fig. 8, for symmetric matrices, we only exhibited 8 orderings using 4
colors that were equivalent to the rowwise natural ordering. These 8 are a small fraction
of the evaluation orderings on several 4-color topologies which decouple the stencil
on the grid.

The multicolor T matrix defined here does not appear to lead to the determination
of an optimal relaxation factor, to, for SOR by relating the eigenvalues to the Jacobi
iteration matrix as was the case for Young’s T matrices. Nevertheless, if the matrix A
in (1) is a Stieltjes matrix, a "good" estimate of to can be found so that any ordering
(and hence multicolor orderings) will yield a convergence rate which is at least one-half
the convergence rate associated with the optimal ordering. This result is due to Kahan
and can be found in Young [1971].

The development also makes clear some of the issues involved in implementing
multicolor SOR. Insensitivity to a cyclic permutation of the colors and the equivalence
of a reversed color cycle to a backwards rowwise sweep for symmetric matrices are
cases in point. A particularly nice correspondence is that of the points (-1, a) and
()’,/3) to the backward and forward synchronization points of the shared memory
MIMD implementation.

The technique of using data flow ideas to find orderings clearly extends to regions
of three or more dimensions as does the shared memory MIMD approach of engaging
multiple processes in simultaneous rowwise sweeps. The equivalence of a fast schedul-
ing of the data flow operations to a multicolor scheme will again depend somewhat
on stencil geometry so the idea of an (a,/3, )’)-SO stencil will need to be generalized.

The extension to block SOR can be done by defining a block multicolor T matrix
and by considering the (a,/3, ),)-SO stencil to represent connectivity between blocks
of nodes. The convergence rate of block SOR for certain block multicolor orderings
of mesh problems leading to irreducible Stieltjes matrices has been compared to a
2-line SOR scheme by O’Leary [1983]. Our results can be used to show that her
interesting p3 ordering leads to a block multicolor T matrix for which the associated
block multicolor SOR matrix has the same eigenvalues as a block columnwise SOR
matrix.

For point SOR with multiple equations per node a multicolor scheme can be
formulated in which equation 1 is evaluated for all points of one color, followed by
equation 2 for that color, etc., before moving to the next color. An argument equivalent
to the current one can be used to show the SOR matrix has the same eigenvalues as
that for a rowwise sequential sweep of the grid points with all equations being evaluated
at a point in the same order as for the color groups in the parallel method.



504 LOYCE M. ADAMS AND HARRY F. JORDAN

Appendix.
Proof of Theorem 2. Let S represent the stencil

t(k)(i,j)=the earliest time that iteration k can begin for node (i,j),

SR { il( i, l) S for some ->_ 0},

s (j < o1(o, j) s},

Aj max where (L l) S.
l=0

The proof is by induction on k.
The proof for k 1 is by induction on i. For 1, the (0, 1)-SO stencil guarantees

that t()(1,j+ 1)= t(1)(1,j) + 1. We assume that

t()(g,j+ 1)= t()(g,j)+ 1

for g < and prove that

(A.1)

Now,

(A.2) t)(i,j+ 1) max {

t(1)(i,j+ 1)= t(1)(i,j)+ 1.

max [t(a)(i,h)+l],
{h<-jlh--j--lSc}

max [t(’)(g,j+l)+Ag_l+l]}.
{g<i[g--iSR

If {g < ilg- SR} is empty, then (A.1) follows immediately from an induction on j;
otherwise, (A.2) can be written as

(n.3) t)(i,j+ 1)=max {

Since

t()(i, 1)

max t()(i, h),
{h<--jlh--j--lSc}

max [t(’)(g,j)+Ag_i+l]+l}.
{g<Zi[g--iSR}

max t(’)(g, 1) + Ag_, + 1 ],
{g<i]g--iSn}

(A.1) follows from an induction on j.
Secondly, we assume t(k)(i, j / 1) t()(i, j) + 1 and prove

(A.4)

Now,

(A.5)

t(+)(i,j+ 1)= t(+)(i,j)+ 1.

t(k+l)(i,j+ 1) max { max [t(k+l)(i, h)]+ 1
{h<=j h-j-lSc}

max [t(k+)(g,j+ 1) + Ag_, + 1],
{g<ilg--ieSR}

max t(k)(g, j + 1) + Ag-i + 1 ]}.
{g>ilg--iSR}

Since {g ->_ i[g- SR} is not empty for (0, 1)-SO stencils, the last term may be written
as

max t(k)(g, j) + Ag_i + 1 + 1.(A.6)
{g--ilg-ieS

Now, if {g < Jig- SR} is empty, (A.4) follows from an induction on j; otherwise
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the second term in (A.5) can be written as

(A.7) max [t(k+l)(g,j)+Ag_,+ 1]+ 1
{g<i[g--iSR}

and (A.4) follows from an induction on j and the theorem is proved.
Proofof Theorem 3. It is sufficient to prove that all nodes can update every c time

units, since the block definitions and the coloring rule given in the theorem trivially
follow this fact. Since an (a,/3, ),)-SO stencil is also a (0, 1)-SO stencil, Theorem 1
implies that we only need to prove that

(A.8) t(k+’)(i, 1)-- t(k)(i, 1) y(a + 1)+(/3 + 1)= C

for k_->l.

Let SR, Sc, and Aj be as defined in the proof of Theorem 2. Now, the first iteration
can begin at node (i, 1) at time,

(A.9) t(1)(i, 1) max [tl)(g, 1)+ Ag_l + 1].
{g<ilg-iSR}

By the definition of an (a,/3, y)-SO stencil,

(A.10) Ag_i<= { (i--g)(a + l)-- I
(y+ i--g)(a + l)+ fl

with equality when g- -1 and when g- y.
By using (A.10), (A.9) can be written as

(A.11)

if g- < 0,
if g- i-->0

t(1)(i, 1)=max{ max [t()(g, 1)+Ag_,+l],t()(i-l, 1)+(a+l)}
{g<i-llg-i+lSt}

and if we choose t()(1, 1)= 1, it follows from an induction on that

(A.12) t(1)(i, 1)-- 1 +(i-1)(a + 1).

Now,

max [t(2)(g, 1)-t(1)(i, 1)+Ag_i+l],t(2)( i, 1) t()( i, 1) max {{g<ilg_iSR}
(A.13)

max [t(1)(g, 1)-t(1)(i, 1)+Ag_,+l]}.
{g--ilg-iSR}

When 1,

t(2)(1, 1)-t()(1, 1)= max {[t((y+ 1, 1)+/3], max [t()(g, 1)+Ag_i]}

and t(2)(1, 1)- t()(1, 1) 1 + y(a + 1)+/3 from (A.10), (A.12), and from an induction
of in (A.13), (A.8) follows for k-1.

Next, assume (A.8) is true for k-1, and prove true for k.
Now,

t(g+l)(i, 1) t(g)(i, 1) max _{g max
<ilg--iSR}

(A.14)

When 1,

t(k+l)( 1, 1 t(k)(1, 1)

t(k+l)(g, 1) t(k-1)(i, 1) + Ag_ -[- 1 ],

max [t(k-1)(g, 1) t(k-1)( i, 1)+Ag_,+ 1]}.
{g>--i[g--iSR}

max [t(k-)(g, 1)-- t(k-1)(1, 1)+ Ag_ -[- 1]
{g>=l[g--laSR}
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and

tk+’)(1, 1)-- tCk)(1, 1)= tCk)(1, 1)-- tk-1)(1, 1)= C

from (A.10) and (A.12). Hence (A.14) is true for 1, and by induction on in equation
(A.14), the theorem is proven.
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A NOTE ON THE STABILITY OF SOLVING A RANK-p
MODIFICATION OF A LINEAR SYSTEM BY THE
SHERMAN-MORRISON-WOODBURY FORMULA*

E. L. YIP

Abstract. In this paper, we address the stability of the Sherman-Morrison-Woodbury formula. Our
main result states that if the original matrices, A and B, are well conditioned, then there exists matrices U
and V such that the Sherman-Morrison-Woodbury formula is stable when applied to A B- UV.

Key words, updating Sherman-Morrison-Woodbury updating formula, updating, condition number,
stability

1. Introduction. In this note, we address the stability of the Sherman-Morrison-
Woodbury updating formula as a method for solving (updated) systems of linear
equations Ax b where there exists a matrix B such that A-B contains only a few
nonzero rows (columns) and where By= b can be solved efficiently. Such systems
occur quite frequently in practice. For example, Yip [5] describes an out-of-core
subprogram designed for the solution of the difference equation for the 2-D transonic
flow equation with small disturbances; A is a banded matrix plus eight nonzero columns
and B is the banded matrix such that A-B is a matrix with eight nonzero columns.
The capacitance matrix methods described by Hockney [6], Buzbee et al. [7], and
Proskurowski et al. [8] are equivalent to updating rows of a finite element matrix
corresponding to the irregular mesh points. Also, Bunch and Rose 10] discuss a linear
equation solution technique known as "tearing" for systems of the form (B + VEWr)
where B and E are respectively n x n and rx r matrices, and V and W are n x r

matrices, with r much less than n.
The Sherman-Morrison-Woodbury updating formula is an efficient method for

a more general updating problem with A- B of low rank, and not necessarily consisting
of a few nonzero rows or columns. However, in this note, we mainly concentrate on
the case where A- B contains p linearly independent and (n -p) zero rows (columns),
where n is the order of the matrices A and B. We show that in this case we can easily
choose U and V such that A-B UVr and such that the Sherman-Morrison-
Woodbury formula is stable. We show that for the general case when A- B is of rank
p, such U and V also exist, but they may not be practical to compute.

For the sake of completeness, we first present the Sherman-Morrison-Woodbury
formula and the stability analysis done by Stewart [9] for the case p 1. We present
our main results in 2. In 3, we prove the lemma on which the proofs of our main
results are based. In 4, we present some numerical examples which confirm our
theoretical results.

If A and B are n x n matrices, and if A-B is a rank p matrix, there exist n x p
matrices U and V such that A B UV. The Sherman-Morrison-Woodbury updating
formula expresses A-1 in terms of B-1, U and V:

(1.1) A-1 B- + B- U(I- VB- U)-VB-.
There are many different implementations of the above equation for the solution of

* Received by the editors February 21, 1984, and in revised form January 3, 1985.
t Boeing Aerospace Company, Seattle, Washington 98124.
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Ax b. The capacitance matrix method in [6], [7], and [8] is an implementation
designed for the special case when B-A is a matrix with p nonzero rows and B is
such that systems of the form By b can be solved efficiently by Fast Poisson Solvers.
Algorithm 1 below is an implementation for the most general case, that is, when B A
is an arbitrary rank p matrix.

ALGORITHM 1
Step 1. Solve BZ U.
Step 2. Compute the matrix K -(I- V’Z), and its LU factorization.
Step 3. Solve By b.
Step 4. Compute w V.
Step 5. Solve Ks w.
Step 6. The solution x for Ax b can be computed as x =y + Zs.

If we postmultiply (1.1) by the vector b, we obtain:

(1.2) a-lb B-lb- B-1U(I- VTB-1 U)-1VTB-lb.

Substituting the matrices Z and K and the vectors y, w, and s, which are defined in
Algorithm 1, into (1.2), we see that, in the absence of numerical round-off, the vector
x defined in Step 6 of Algorithm 1 equals A-b.

If A and B are full matrices, and if B has already been factored, then the amount
of work in Algorithm 1 is of the order p(nE+p2/3); if p is small, this can be much
less costly than factoring A.

Assume the matrix B is well scaled and well-conditioned. The stability ofAlgorithm
1 depends on the scaling between the matrices B, U and V and the right-hand side
vector b. Any discussion of the condition of the matrix K in step 2 must include
consideration of the scaling of the matrices B, U and V. The following example
illustrates the problem relating to scaling:

Example O. A and B are n x n scalar matrices (e- 1)I and eI respectively, with
e of very small magnitude. Thus p n. We can choose U V I.

Note that in this example, both of the matrices A and B are well conditioned.
However, Algorithm 1 is unstable, because disastrous cancellation occurs in the
computation of the matrix K.

We say the method is stable if each step of Algorithm 1 is stable. Table 1 gives a
summary of the factors affecting the stability of each step.

TABLE

Step Factors affecting its stability

1. BZ=U
2. K I VTZ)
3. By=b
4. w=Vry
5. Ks=w
6. x=y+Zs

condition of B and scaling of B and U
scaling of V, B and U
condition of B and scaling of B and b
scaling of V, B and b
condition of K
accuracy of previous steps

In this paper, we examine the question of assessing the conditioning of
(I-VTB-1 U) in terms of the conditioning of A and B. Combined with standard
methods of monitoring conditioning and stability in the other steps, we would then
have a way of assessing the overall stability of the process.

Stewart [9] used Algorithm 1 for the modification of pivot elements in Gaussian
elimination and proved that when p 1, Algorithm 1 is stable provided the solution
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method for By c is stable. In this note, we show that when A-B has exactly p > 1
nonzero rows (columns), we can easily choose U and V such that Algorithm 1 is
stable. In the section on numerical examples, we also demonstrate (in Example 2) that
one can choose U and V such that Algorithm 1 is unstable in spite of A and B being
well-conditioned.

2. Main result. We define the condition numbers K(A) IIAII IIA-’II, with being
an arbitrary matrix norm, and Ka(A)= Ilmll_lla-ll where I1= is the spectral norm. We
also define ei to be the vector with 1 in its ith entry and zero everywhere else. Our
main results are as stated in Theorems 1 and 2, the proofs of which depend on the
following Lemma:

LEMMA. IfA and B are nonsingular n x n matrices, and U and V are n p matrices
such that A B- UV, with U and V offull column rank, then

(2)

where

with

(I- vTB-1 U)-<_ min (k,, k2} K(A)K(B),

k, (ll uII u/ll)2, k2 (11 vll I1(vT)+II)2

U+ (uTu)-1 uT (vT)+ V(vTv)-1.

We shall prove the lemma in 3.
THEOREM 1. Suppose A and B are n x n nonsingular matrices with B- A of rank

p. Then there exist n x p matrices U and V such that A B- UVT and the following
inequality holds:

(3) 2(I- VTB-1 U) <--_ t<2(A)K2(B).

Proof of Theorem 1. There exists a n x n orthonormal matrix P such that the first
p rows of pT(B- A) are nonzero and the last (n-p) rows are zero. Let U be the n x p
matrix whose columns are the first p columns of P, and let VT be the p x n marrix
whose rows are the nonzero rows of pT(B-A). Then (B-A) UVT. (For example,
as suggested by Lewis [2], one can form the singular value decomposition of B- A
P,Q, where P and Q are orthonormal, and E is a nonnegative diagonal matrix whose
last (n-p) diagonal entries are zeros. P,Q QSQ2, where S a p x p diagonal matrix
with positive diagonal entries and QQ Q2Q Ip. Let U Q1, and VT= SQ2; then
(B-A)= UV.) With such a choice of U, IIUIla 1. Thus k defined in the lemma
equals 1, and inequality (2) implies inequality (3).

The proof of Theorem 1 suggests that the application of the theorem depends on
finding an orthonormal matrix P such that pT(B--A) has p nonzero rows and (n-p)
zero rows or (B-A)PT has p nonzero columns and (n-p) zero columns. We have
proved that such P exists, but the actual computation of such matrices for arbitrary
(B- A) seems to be impractical. However, as cited in 1 of this paper, many practical
problems involving rank p modification are such that B- A are has (n- p) zero rows
(columns). That is, for these problems, the matrix P is just the identity matrix. We
summarize this special case in Theorem 2, which is actually a corollary to Theorem 1.

THEOREM 2. IfA and B are nonsingular n x n matrices such that B-A has (n-p)
zero rows (columns), and the remaining p nonzero rows (columns) are linearly indepen-
dent, then there exist n x p matrices U and V such that (B-A)= UV, and inequality
(4) is true.

(4) (I- VTB-"U) <= (A)K(B).
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ProofofTheorem 2. Suppose (B-A) has p nonzero rows with indices i, i2, , ip.
We choose U to be the matrix whose columns are ei,, ei2,’’ ", ep, and V to be the
matrix such that the rows of VT are nonzero rows of B- A. If B- A has p columns
of nonzeros with the same indices, we choose V to be the matrix whose columns are

e,, %,. ., %, and U to be the matrices whose columns are the nonzero columns of
B- A. Then kl defined in the lemma is unity when B- A has p nonzero rows, and k2
is unity when B-A has p nonzero columns. Thus in both cases min {kl, k2} 1, and
inequality (4) follows from inequality (2).

The proof of Theorem 2 suggests that the structure of (B-A) provides a ready
choice of U and V so that the application of the Sherman-Morrison-Woodbury
updating formula is stable.

3. Proof of lemma. We define the p x n matrix U/ and n x k matrix (VT)/ as
follows:

(5a) U+=(uTu)-U,
(5b) (vT)+ V(vTv)-1.

Notice that U/ U Vr)(Vr)+ Ip, the identity matrix of order p.
Postmultiplication of both sides of the equation A B- UVr by B- U gives

AB-’ U U- UVTB-’ U U(I- VTB-1U).

Applying U+ on the left yields

(6) (I- VTB-’ U)= U+AB-’ U,

SO

(7)

Thus

(I VTB- U)-1 U+BA- U.

(I- VTB-’ U)--II(I- VB-’ u)ll I1( - -’ U)-’II

(8)
U+AB- U U+BA-’ U

<= (11 u/ u II) =11 B U-’ll A A-’II
k,c(B)c(A).

Similarly, we can prove

(9) K(I-vTB-1U)<=kr,(B):(A).
Combining (8) and (9), we obtain (3).

4. Numerical examples. Our lemma provides a bound for the condition number
of (I-VTB-1U). Unfortunately, one can construct examples such that the bound
provided in our lemma is very large. Consider the following example"

Example 1. Let B be the 4 x 4 identity matrix. Let A be the diagonal matrix such
that A diag 1 + 10-5, 1 / 10-5, 1, 1 ). In other words, B A diag 10-5, 10-5, 0, 0). Let

lO 0 1 0

V=
0 10-5

U=
0 0 0

0 0 0
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Then kl k2 101, and (I- VT"B-1 U) =diag (1 + 10-5, 1 + 10-5). The lemma implies
that r,(I- V’B-1 U)<-101, but in reality, K(I- VTB-1 U) is close to unity!

There are infinitely many ways to choose the n x p matrices U and V so that
A- B UV since

UVT UXX-1 VT UX)(X-1 VT) UxV with Ux UX, and V X-1 V,
where X is a p p arbitrary nonsingular matrix. We want to emphasize the fact that
the inequalities (3) and (4) do not hold for all possible choices of U and V. Example
2 demonstrates this point. Let I1" be the lonorm, and consider the following example:

Example 2. Let B be the 4 x 4 identity matrix, let A be defined as

-2 -10-1 0 0

0

0 0

Suppose U and V are as follows:

Then

2 104 ] 1 10-4]
0

0

(I- VrB-1 U)
-2. 10-4

--104
10-5

We note that K(B)= 1, (A)=2 but r,(I-VT"B-1 U) is of the order of 108. In this
example, inequality (4) fails, but inequality (2) of our lemma provides a realistic bound
for (I- V’B-1 U) because min {kl, k2} k2 101.

If we choose U and V according to the proof of Theorem 2, then we have a much
better condition number for (I- VrB-1U). Consider the following example:

Example 3. Let A and B as defined for Example 2, but let

3 10-11
U--

10-9 10- o

0 0
V=

0 0

1 0

0 1
0 0

0 0

We see that (I-VTB-1 U)= (I-U1) where U1 is the two nonzero rows of U and
r,(I- VrB-1 U) has condition number of the order 2.

In the remainder of this section, we present the numerical resulrs of some medium
size rows (columns) updating matrix problems to demonstrate the relations between
(I- V’B- U), r,(A), r,(B), and the solution error. U and V are computed according
to Theorem 1. Problem 1 is due to Grimes in Erisman et al. [1]. It is a tridiagonal
system with a P5 ordering applied to it. This is used in [1] as a counterexample to
demonstrate that the P5 order is not always acceptable on numerical grounds. The
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reordered matrix is of the form:

(10) A=

1

-4 1

0 -4

-4

1

0

0

1 0

4 0_

Erisman et al. solved the linear system Ax b, where A is defined in equation (10) by
applying the Sherman-Morrison updating formula with a rank 1 update. In their
application, the matrix B is the lower triangular matrix:

0

0

1

-4 1

0 -4

1

-4 1

4

Then A-B is a rank 1 matrix with one nonzero column vector which has -4 and 1
in its first and second entries, and -x in its last entry. Systems of the form By b are
being solved by forward substitution. Problems 2-6 are full matrices generated by a
random number generator. In problem 6, we add 100 to the diagonals of both A and
B to obtain extremely well-conditioned matrices. We use LINPACK [3] subroutine
SGECO to compute the condition number of the matrices. All the problems are of
order 50. In problem 1, in order to duplicate the computational sequence of Erisman
et al., we input the transpose of A and B into SGECO so as to eliminate pivoting.
The experiment was done on the CRAY-1 which has 15 digit precision. Table 2
summarizes our results. (The symbols p-nzr and p-nzc mean p nonzero rows and p
nonzero columns respectively.)

TABLE 2

Solution
Problem B-A K(A) K(B) r,(l- VTB- U) error

1-nzr 2.96 E0 7.38 E28 1.00 E0 2.81 El4
2 38-nzc 3.80 E2 1.62 E3 4.98 E3 2.33 E- 12
3 5-nzc 1.12 E3 4,79 E2 2.03 E2 2.19 E- 12
4 25-nzr 1.30 E3 7.47 E2 1.31 E3 1.78 E- 11
5 9-nzr 6,68 E3 1.40 E3 1.56 E3 9.12 E- 12
6 15-nzc 1.30 E0 1.31 E0 1.08 E0 9.95 E- 14

Acknowledgment. The author wants to thank Dr. John G. Lewis for reviewing an
earlier draft of this paper and for his contribution in Theorem 1, and Dr. A1 Erisman
for Example 0 which illustrates the problem with scaling. Part of this work was done
under NASA contract NAS1-15128 (see [5] below).
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DELAUNAY TRIANGULAR MESHES IN CONVEX POLYGONS*

BARRY JOEf

Abstract. An algorithm for producing a triangular mesh in a convex polygon is presented. It is used
in a method for the finite element triangulation of a complex polygonal region of the plane in which the
region is decomposed into convex polygons. The interior vertices of the mesh are chosen to be on a

quasi-uniform grid, different mesh spacings are specified for the edges of the polygon, and the mesh is a

Delaunay triangulation. The correctness of the algorithm is proved and the expected time complexity is
shown to be linear in the number of triangles in the mesh.

Key words, mesh generation, finite element method, computational geometry, Delaunay triangulation

AMS (MOS) subject classifications. 65N50, 68Q20, 68Q25

1. Introduction. A common approach for generating triangular meshes in general
regions of the plane for the finite element method is to first decompose the region into
simpler subregions and then to triangulate each subregion (Cavendish (1974), Shaw
and Pitchen (1978), Bykat (1976), Bank (1982)). We have developed a method for the
finite element triangulation of a complex polygonal region of the plane in which the
region is decomposed into convex polygons such that small interior angles in the
polygons are avoided and then a triangular mesh is generated in each convex polygon
such that triangules with small angles are avoided (Joe and Simpson (1984), Joe (1984)).
Figure 1.1 illustrates a triangulation of a region produced by this method.

In this paper, we describe the algorithm used in this method for generating a
triangular mesh in a convex polygon P, and prove its correctness. The triangles of the
mesh satisfy an optimal angle criterion, i.e. the mesh is a Delaunay triangulation
(Lawson (1977)). Let el, e2,’- ", e,, be the m edges of P in counterclockwise order.
The input of the algorithm consists of the vertices of P in counterclockwise order,
triangle size parameter h for the interior of P, and triangle size parameters hi, h2, , h,
for the edges el, e2,..., e,, respectively. Vertices are generated in the interior of P
using a quasi-uniform grid of spacing h (cf. Shaw and Pitchen (1978)). Vertices are
generated on edge ei at an equal spacing of approximately hi. In the Delaunay
triangulation of these vertices, the triangles in the interior of P have constant area
h2/2. Different hi are specified on the ei so that triangles which are graded in size are
produced near 0P (the boundary of P).

In our finite element triangulation method, the triangle size parameters for the
interior of the convex polygons in the decomposition of a region are restricted to differ
by a factor of at most two in adjacent polygons so that a gradual change of triangle
sizes occurs between adjacent polygons. The triangle size parameter for an edge of the
decomposition is set to the geometric mean of the triangle size parameters for the
interior of the one or two convex polygons with this edge. Hence the parameters hi
for the edges of a convex polygon P in the decomposition satisfy

(1.1) h//- <- hi <- x/-h.
With this restriction, the triangles near OP have approximately constant area h/2 and
the number of triangles in P is approximately 2a/h where a is the area of P, so the

Received by the editors July 17, 1984, and in revised form December 14, 1984. This work was partially
supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

f Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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FIG. 1.1. Illustration oftriangulation ofa region; thicker lines indicate decomposition into convex polygons.

triangle size parameter h can be determined from a and the desired number of triangles
in the mesh.

In the standard triangulation problem of computational geometry, the vertices are
given as input and a (Delaunay) triangulation is constructed to cover the convex hull
of the vertices. The construction of a Delunay triangulation (or any triangulation) of
the vertices requires O(nt log n,) time where nt is the number of triangles in the
triangulation (Shamos and Hoey (1975), Lee and Schachter (1979)). However, in finite
element triangulation, the vertices are generated as well as the triangles. By using
information about the location of the vertices relative to each other, our algorithm
constructs a Delaunay triangulation of the vertices in an expected time of O(nt) when
the hi satisfy (1.1) and P contains no "small" interior angles.

In 2, we define a valid triangulation and a Delaunay triangulation. In 3, we
describe an algorithm for shrinking a convex polygon which we use to determine a
convex polygon, int(P), in the interior of P. In our triangulation algorithm, we construct
a preliminary triangulation, VT(P), by generating triangles in int(P) and in the strip
near OP, as described in 4 and 5, respectively. The validity of VT(P) is discussed
in 6. In 7, we describe how VT(P) is converted into a Delaunay triangulation,
DT(P). The time complexity of the triangulation algorithm is discussed in 8.

2. Valid and Delaunay triangulations. In this section we state conditions for a
valid triangulation in a region and state some properties of a Delaunay triangulation
of a set of vertices. We say that a collection of triangles is a valid triangulation of a
polygonal region of the plane if the triangles form a "tiling" of the region without
overlaps or gaps. Let wl, w2, w3 be distinct vertices. We define triangle Awl w2w to be
a counterclockwise (CCW) triangle if the interior of the triangle is to the left of the
three directed edges wl WE, W2W3, WaWl; otherwise Aww2w3 is a clockwise (CW) triangle.
If w, w, w3 are collinear, we consider AwWEW to be a CW triangle. Note that the
ordering of the vertices of a triangle determines whether it is a CCW or CW triangle.
Four conditions that ensure that a collection of triangles, A, Z2,’"" AN, is a valid
triangulation of a region have been established by Simpson (1981). They can be
described in geometric terms as follows"

(a) Ai is a CCW triangle for all i.
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(2.1)

(b) Each edge e of Ai is either the only edge joining its vertices or there is one
other triangle, Aj, having an edge joining these vertices. In the latter case,
the direction of e as an edge of Ai is opposite to its direction as an edge
of Aj. In the former case, e is a boundary edge and Ai is its boundary triangle.

(c) No interval of a boundary edge intersects a triangle other than its boundary
triangle.

(d) A vertex can have at most one boundary edge directed away from it.

Let V be a set of vertices in the plane such that they are not all collinear. A
Delaunay triangulation of V is a (valid) triangulation in the convex hull of V which
satisfies the max-min angle criterion: for any two triangles in the triangulation that
share a common edge, if the quadrilateral formed from the two triangles with the
common edge as its diagonal is strictly convex, the replacement of the diagonal by
the alternative one does not increase the minimum of the six angles in the two triangles
making up the quadrilateral (Sibson (1978)). In other words, the Delaunay triangulation
is the triangulation which maximizes the minimum angle in the triangles globally as
well as locally in any two adjacent triangles which form a strictly convex quadrilateral.

A Delaunay triangulation also satisfies the circle criterion" the circumcircle of any
triangle in the triangulation contains no vertex of V in its interior. The Delaunay
triangulation is unique if no four vertices are co-circular. An edge uv, where u and v
are vertices of V, is a Delaunay edge if it is an edge in a Delaunay triangulation of V.

LEMMA 2.1 (Lee and Schachter (1979)). An edge uv is a Delaunay edge if and
only if there exists a point c such that the circle centered at c and passing through u and
v does not contain any other vertex of V in its interior.

The following local optimization procedure (LOP) of Lawson (1977) can be used
to convert a triangulation of V into a Delaunay triangulation. Let e be an internal
edge (i.e. an edge not on the boundary of the convex hull) of a triangulation of V and
Q be the quadrilateral formed by the two triangles having e as a common edge. If the
circumcircle of one of the triangles contains the fourth vertex of Q in its interior, then
e is replaced by the other diagonal of Q (so that the minimum of the angles in the
two triangles is increased). Edge e is said to be locally optimal if an application of
LOP would not swap it. Note that e is locally optimal if Q is a nonconvex quadrilateral,
and that the validity conditions (2.1) are unaffected by the LOP.

THEOREM 2.1 (Lawson (1977)). All internal edges of a triangulation T of V are
locally optimal if and only if T is a Delaunay triangulation of V.

In our algorithm, we generate a preliminary valid triangulation, VT(P), in P
which satisfies the four conditions of (2.1). Then VT(P) is converted into a Delaunay
triangulation, DT(P), by applying LOP to the internal edges of VT(P). We have
constructed VT(P) so that LOP only has to be applied to a subset of the internal edges.

3. Shrinking a convex polygon. Let Po, Pl,""", Pm-1, Pm be the vertices of convex
polygon P in counterclockwise order, where p, Po and all interior angles are less
than 180. Let Q be obtained by shrinking P by a distance of r > 0, i.e. if u Q then
the distance from u to OP >- r. In this section, we present an algorithm for constructing
Q which uses the same approach as the algorithm of Lee and Preparata (1979) for
finding the kernel of a simple polygon. They exploit the ordering of the half-planes
corresponding to the polygon edges to obtain a linear time algorithm.

First we give some notation for representing Q and oQ. Let li be the directed line
from p to P+I, Li be the directed line parallel to li and at distance r to the left of li,
and Hi be the half-plane to the left of and including L. Let qLq’ denote the directed
line segment from q to q’ where q and q’ are two points on Li, and let qLio and oLiq
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denote the directed half-lines starting and ending at q, respectively, on Li. Q is the
intersection of the half-planes Ho, HI," ", H,_. If r is sufficiently small then Q is a
convex polygon; otherwise Q is degenerate, i.e. Q is either empty or a single point or
a line segment. In the degenerate case, we treat Q as empty. If Q is a convex polygon
then 0Q consists of line segments from n->_3 of the lines Li (if fqi#j Hi- Q then no
line segment of Lj is part of oQ). Using the above notation

oQ qoLkoq Lkl q2 qn-1Lkn_l qn, 0 <-- ko < kl kn-1 <= m 1,

where qn- qo is the intersection of Lko and Lkn_ and qi is the intersection of Lk,_ and
Lk, 1 --<_ --< n 1 (see Fig. 3.1).

FIG. 3.1. Illustration of convex polygon Q.

Our algorithm for constructing Q scans in order the edges PiPi/l of P and constructs
a sequence of convex polygons Q, Q2," ", Q,- such that Qi is the intersection of
half-planes Ho, H,..., Hi. Since P is a convex polygon, the polar angles, 0i, of the
vectors Pi/-Pi (or lines li) are ordered. Without loss of generality assume 0o-0, i.e.

lo is a horizontal line directed from left to right, so that 0 0o < 01 <" < 0,-1 < 360.
Let s be the smallest index such that 0s > 180 (note that 2-<_ s <_-m- 1). If 0s_- 180
then let s’- s- 2; otherwise let s’- s- 1. The following facts can be seen from elemen-
tary geometry:

(3.1)
(a) For 1 _-<i -< s’, Qi is an unbounded convex polygon.
(b) If 0_- 180, Q_ is either an unbounded convex polygon or degenerate.
(c) For s <-i<_-m- 1, Qi is either a bounded convex polygon or degenerate.

Now we describe our algorithm for constructing Q. Initially Q1 is the intersection
of Ho and HI and OQI-03LoqlL03 where q is the intersection of Lo and L. For
2_-< i<_-s’, Qi is the intersection of Qi-1 and Hi and oQi is obtained by modifying oQi-1.
Suppose

(3.2) oQi-1 qoLkoq q,Lk.qn+l, qo qn+l 03, O= ko<kl <’"-<k,, i-1.

Since Qi- is convex and 0 < 0i < 180 for j < i, oQi_ and Li intersect at exactly one
point, (see Fig. 3.2). Let j _-> 0 be the index such that is on the line segment qLkq/l
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Lo

Lk
L

FIG. 3.2. OQi-1 and Li intersect at point t.

and q;. j can be found by scanning backwards from n for the first q; to the left of
Li where qo is considered to be to the left of Li. The polygonal curve tLk;q/l q,/

is to the right of Li so it is not part of oQ. It is replaced by tLo to obtain oQ-
qo"" qLkjtL which can be expressed in the same form as (3.2). If 0s- 180 then
if all points of oQs__ (in particular q, q2,"" ", q, are to the right of or on L_) then
Q_ is degenerate and the algorithm terminates otherwise oQ_I is obtained by
modifying oQ-2 as above.

Suppose Qs_ is not degenerate. Qs is either a bounded convex polygon or
degenerate by (3.1c) and oQ is obtained by modifying oQ_. If all points of oQ_
are to the right of or on L then Qs is degenerate and the algorithm terminates. Otherwise

L intersects oQ_ at exactly two points, t and t2, since Qs- is convex and 0 > 180.
Suppose oQ_I is in the form of (3.2) with s and t occurs before t2 in the polygonal
curve (see Fig. 3.3). Suppose j and are the indices (j < 1) such that t is on line

/- L’:Lk 1*1

FIG. 3.3. oQs_ and L intersect at points t and 2.

segment CbLkjq+ and t # q+ and t is on line segment qlLktql+l and 2 ql. can be
found by scanning backwards from n for the first q to the left of Ls and j can be
found by scanning forward from 0 for the first q+ to the left of L. The polygonal
curves t2Lkql+’’" q.+ and qo’’" qLkt are to the right of L so they are not part of
oQ. They are replaced by tELstl to obtain oQ tLk;qj+’’’qtLk,t2Lstl which can be
expressed in the same form as (3.3) below.
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Suppose s + 1 -<_ -< m 1 and Qi- is not degenerate, oQi is obtained by modifying

(3.3) oQi-1 qoLkoq qnLk,qn+l, qo qn+l, 0 <- ko < k <" < k. <-_ i- 1.

Consider the position of Li with respect to Qi_. There are three cases (see Fig. 3.4):
(a) Qi- is to the right of or on
(b) Qi- is to the left of or on
(c) oQi_ and Li intersect at exactly two points, t and t2.

In case (a), qo, q,’’’, q, are to the right of or on L, Q is degenerate, and the
algorithm terminates. In case (b), Q Qi-1 and the condition that qo is to the left of
or on Li is sufficient to determine this case since 0ko -> 0 and Ok. < 0i, i.e. the slope of
Li lies between the slopes of Lk. and Lo. In case (c), oQi is determined in the same
way as oQs above. If Qi is not degenerate for s’+ 1-<_ i-<_ m-1, then the algorithm
terminates with oQ oQ,,,_.

qn

(b) /
(c)

(a)

FIG. 3.4. Three cases ofposition of L with respect to Qi-1.

The pseudo-code for our algorithm is given in procedure SHRINK.

Procedure SHRINK (P, m, r, Q, n);
# Input: convex polygon P PoPl "pm-p,, and shrinking distance
#Output: Q=b and n=0 or convex polygon Q=qoq’"q,-qn and 3<=n<=m
a := polar angle of p -Po;
q := intersection of Lo and L;
ko:= 0; k:= 1;
i:=2; n:=l;
0 := (polar angle of P3 P2) a;
Translate angle 0 to the interval [0, 360);
while 0 _-< 180 do
# polygonal boundary curve is CLkoql qnLk. and next line is Li
while n => and qn is to the right of or on Li do n := n-l;
if 0 180 and n 0 then return;
:= intersection of Lk. and L;
n:=n+l; qn:= t; k,:= i;
:= + 1; 0 := (polar angle of Pi+ -Pi) a;

Translate angle 0 to the interval [0, 360);
j:=0; qj:=, q+:=;
while -<_ m do
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# polygonal boundary curve is qjLkjqj+ q.Lk.q.+t and next line is L
if qj oo or q is to the right of L then

while n >_-j+ and q. is to the right of or on L do n := n- 1;
if n =j then n := 0; return;
t2 := intersection of Lkn and Li;
n:=n+l; qn :=t2; k.:=i;
while qj+t is to the right of or on L do j := j + 1;
tl := intersection of Lj and Li;
qj := tl; q.+l := tl;

i:= i+1;
for := 0 to n + -j do q := q+y;
n:= n+ l-j;
return;

We now derive the time complexity for the algorithm. For each i->2, oQi is
obtained from oQi_ by removing zero or more line segments from the beginning and
end of oQi_. Each line segment is parallel to an edge of 0P and when it is removed
from oQi_ it is not involved in any further computation. Therefore at most m line
segments are removed from the oQ, 1 -<_ -_< m 2. All other computations clearly require
O(m) time. Therefore we have shown the following.

THEOREM 3.1. Procedure SHRINK determines Q in O(m) time.

4. Triangulation of the interior of P. Let int(P) be obtained by shrinking P by a
distance of h/x/2, i.e.

(4.1) int(P)= {vlv P and distance from v to0P>_- h/,,/-}.

If h/x/ is sufficiently small then int(P) is a convex polygon, otherwise int(P) is
degenerate, i.e. it is empty, a point, or a line segment. In the degenerate case, no
interior triangulation is done, so we assume that int(P) is a convex polygon in this
section.

Let Vb and v, be the endpoints of a diameter of int(P). The algorithm of Shamos
(1975) is used to compute the diameter in linear time. We rotate the coordinate system
so that line segment VbV, is parallel to the y-axis with y(v,)> y(Vb), where y(v) denotes
the y-coordinate of vertex v. We introduce n + 1 horizontal lines, y y, through int(P),
evenly spaced h apart with n= [(y(v,)--y(vb))/hJ; dy=(y(v,)-y(vb)-nh)/2; and
y y(v,)-dy-ih, O<=i<-_ n. Let a and b be the x-coordinates of the left and right
endpoints of y= yi in int(P) and let m(i)= [(b-a)/h]; dx (bi-ai- m(i)h)/2; and
xi.j a + dx +jh, 0 <=j <= m( i). On each line, we introduce a sequence of mesh vertices
(xi.j, y) for 0<=j_<-re(i), spaced h apart. Note that at least one vertex is generated on
each line and that the vertex which is nearest to 0P is between h//- and hi2 + h/x/-
distance from 0P (see Fig. 4.1). These vertices do not lie on a uniform square grid of
spacing h because those on y y+l may be shifted horizontally with respect to those
on y y or y Y/2. Consequently we have referred to them as being on a quasi-uniform
grid.

A subset (possibly empty) of these vertices are then triangulated in a scan down
the strips y+ _-< y =< y (see Fig. 4.2). For each pair of lines, let a max (Xi.o, x/.o) and
b=min (x,,(), X+,m(i+)). (Note that it is possible that b< a. In this case a-b<= h
since on lines y y and y y/ there exists a vertex at distance <=hi2 from diameter
VbV,.) The vertices on the two lines for which the x-coordinate is in the interval
a h, b + hi are then connected up to form a sequence of similar triangles in which

the area is h/2 and the angles are between 45 and 90 inclusive. This process is
carried out for each pair of lines in which a <-_ b and m(i)+ m(i + 1)> 0. If b < a or
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x Generated mesh
vertex in mr(P)
vertex of P

FIG. 4.1. Generation of mesh vertices in int(

ai Xi,o Xi,l xi,2 xi,3 bi

ai+2 bi+i
Xi+l,0 i+1,4

ai+2 xi+2,o xi+2,1 xi+2,2 bi+2
FIG. 4.2. Triangulation of mesh vertices in int(P).

Y=Yi

Y Yi+t

Y Yi+2

m(i) m(i+ 1)=0, then no triangles are formed between y= yi and y yi+l. In this
case, the shortest edge joining a vertex on each line is introduced.

We need to identify a boundary of this set of vertices, so that we can triangulate
the strip between it and cgP. Let V be the set of vertices, and E1 be the following set
of edges:

(4.2)

(a) edges of triangles formed in the scans described above,
(b) additional edges joining consecutive vertices at the ends of lines y yi,

(c) the shortest edge joining a vertex on line y y to a vertex on line y Y+I,
in the case that no triangles are formed between these lines.

Then GI (VI, El) is a connected planar graph, and if it contains at least two

vertices, then a counterclockwise closed walk, C, can be formed to identify the boundary
of G by including an edge e of E k times in C if e occurs in 2- k triangles, 0_-< k <- 2.
If an edge e occurs twice in C, the direction is opposite in its two occurrences (see
Fig. 5.1). If Vt contains only one vertex then let C be this single vertex.
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C consists of a walk, CL, down the left side of G followed by the sequence of
edges on the line y y, from left to right, and a walk, CR, up the right side of G1
followed by the sequence of edges on the line y Yo from right to left. CL consists of
paths from (Xi,o, yi) to (xi/ ,o, Yi/l), 0, 1, , n 1, which are constructed as follows.
The leftmost edge between lines y y and y y+ is either part of the triangulation
or the edge formed in (4.2c). This edge joins vertices (x,j, y) and (Xi+l,k, y+l) with
either j =0 or k =0 (or both). If j =0 then the path formed by the vertices (X,o, y),
(Xi+,k, y+), (X+,k-, yi+),’’’, (X+I,0, Y+I) is a subwalk of CL, otherwise the path
formed by the vertices (xw, y), (xi,, y),. ., (x,j, y), (x+,o, y+l) is a subwalk of C/.
For example, (Xi,o, y), (x+,o, y+), (x+,l, yi+), (x+2,o, Y+2) is a subwalk of C in Fig.
4.2. Similarly CR consists of paths from (x+,,,(+l),yi/) to (x,,,(),y), i= n-l,
n 2, , 0. C/ and the reverse of CR are constructed during the scan of lines to form
the triangles of int(P).

The following lemma implies that the edges of Et (see (4.2)) are locally optimal
in any triangulation of the mesh vertices (including those on OP) which contains these
edges.

LEMMA 4.1. If e El, then e is a Delaunay edge.
Proof. E can be partitioned into two disjoint sets of edges E and E2 where E

contains the horizontal edges and E2 contains the edges which join vertices on two
consecutive lines y y and y Yi+l. First suppose e E. Let the vertices of edge e
be v (x,, y) and v2 (xi, + h, yi). Let S be the circle of radius h/2 with centre at

(x,j+ hi2, y) (see Fig. 4.3a). Clearly no_vertices of Vf can be in the interior of S.
Mesh vertices on OP lie a distance >=hi, from the centre of S by (4.1), so they are
not in the interior of S. By Lemma 2.1, e is a Delaunay edge.

Now suppose e 6 E2. Let the vertices of edge e be Vl (x,, y) and/)2 (Xi+l,k, Y+),
and let d IXi,j--X+I,k[. Let S be the circle whose diameter is e. It is apparent from
Fig. 4.3b that no vertices of V can be in the interior of S if d _-< h. To establish this,
we note that e may have been formed by either (4.2a) or (4.2c). In the first case, it is
clear that d <- h as a consequence of the triangulation process in int(P) (see Fig. 4.2).
In the second case, d a b =< h as discussed in the paragraph above (4.2). The radius
of S is x/h2+ d/2 <= h//-. As above, mesh vertices on OP are not in the interior of S.
By Lemma 2.1, e is a Delaunay edge. [3

The pseudo-code for the generation of mesh vertices, triangles, and closed walk
C in int(P) is given in procedure INTTRIANG. In this procedure, a triangle is
represented by a list of three vertex coordinates in counterclockwise order, the function

= Y=Yi

Y=Yi-1

FIG. 4.3a. Edge vv2 is in E.
Y=Yi+I
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Y Yi-1

Y=Yi

" Y Yi+l

Y Yi+2
FIG. 4.3b. Edge vlv2 is in E2.

append(listl, list2) appends the elements of the second list at the end of the first list,
and the function reverse(list) reverses the elements of the list.

Procedure INTTRIANG (int(P), h, TI, nt, C, nc);
# Input: convex polygon int(P) with diameter parallel to y-axis and triangle size parameter h
# Output: list of triangles TI, number of triangles nt, closed walk C, number of edges nc in C
# Generate mesh vertices in int(P)
ymax := maximum y-coordinate of vertices of int(P);
ymin := minimum y-coordinate of vertices of int(P);
n := trunc ((ymax ymin)/h);
dy := (ymax- ymin nh)/2;
for i:= 0 to n do y := ymax dy ih;
Scan down the left and right sides of Oint(P) to determine the points (a, y) and (b, y);
for i:=0 to n do

m(i) :-- trunc (( b ai)/ h );
dxi := bi- ai- m( i)h )/2;
for j := 0 to m(i) do xi,j := ai + dxi +jh;

nt:=0; TI:=[ ];
if n=0 then nc:=0; C:=[(Xo,o, Yo)]; return;
CL :-- [(Xo,o, Yo)]; Ce := [(Xo,o, Yo), (Xo,,, Yo), ", (Xo,,(o), Yo)];
for i:=0 to n-1 do

a := max (Xi,o, xi+,o);
b := min (Xi, m(i) Xi+l,m(i+l));
lO := smallest integer such that xi,o >--a- h;
ll := smallest integer such that x+, => a h;
rO:= largest integer such that xi,o<_-b + h;
rl := largest integer such that xi+,l =< b + h;
# Generate the triangles between y y and y Yi+t
if lO< rO or ll < rl then

j 10; k := 11;
whilej<r0and k<rl do

if Xi+,k --< x,j then
nt := nt + 1; TI(nt) := A[(xi+,k, Yi+), (xi+,+, Yi+), (xid, Yi)];
k:=k+l;

else
nt:= nt+ 1; TI(nt):= A[(xd+ y), (xd Yi), (Xi+,k, Yi+l)];
j:=j+l;

if j r0 then while k < rl do
nt := nt + 1; Tl(nt) := A[(xi+l,k, Yi+), (xi+t,k+, Yi+), (xid, Y)];
k:=k+l;
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else while j < r0 do
nt:= nt + 1; Tl(nt) := A[(xi.j+, Yi), (xi,j, Yi), (Xi+t,k, Yi+l)];
j:=j+l;

# Generate the subwalks of Cc and CR between y y and y y+
if x,o&= xi+,l then
Cc := append Ct, [(xi,, y,), (x,,2, Yi), ", (X,,lO, Yi), (xi+,o, yi+)])

else CL := append (C/, [(xi+.t, Yi+), (x+.tt-, Yi+I)," ", (xi+,o, y+)]);
if xi, ro -< x+,r then
CR := append (CR, [(x,+t,l, y,+l), (xi+.+, Yi+), ", (xi+,,.(i+, Y+)])

else CR := append (CR, [(xi,(_, y), (x,.<_z, Yi), ", (xi,o, Y), (xi+,.,i+, yi+)]);
CL := append (C, [(xn., yn), (x.,2, y.), , (x..,.._, y.)]);
C := append C, reverse CR ));
nc := number of edges in C;
return;

5. Triangulation near the boundary of P. Mesh vertices are generated on the edges
of OP as follows. Let e be an edge of OP with triangle size parameter h (see 1).
Mesh vertices are generated on e at an equal spacing of h, the nearest length to h
which is an integral submultiple of [e (the length of e). h is computed as follows"

k := trunc (le, I/h,);

r := [eil/hi- k;

if r> k/(2k+l) then k:= k+ 1;

h, := [e,[/k;
If h satisfies (1.1), then the restriction of h compared to h is

(5.2) min ([e,[, x/-h/ 3 <= g <- 4,,/-h / 3
from (5.1).

In this section we describe a procedure for triangulating the strip, A, between OP
and C in the case of at least one vertex in the interior of P. (The case in which int(P)
is degenerate and there are no vertices in the interior of P will be discussed later in
this section.) We believe that the spacing of mesh vertices on OP restricted by (5.2) is
small enough for the following procedure to generate a valid triangulation in A.
However, we have been unable to prove this. On the other hand, as Fig. 5.4 below
shows, if the spacing of vertices on OP is too large relative to h then an invalid
triangulation can be formed. We show how the procedure can be modified to produce
a valid triangulation in this case. In 7 we describe how to modify the triangulation
of A so that the total triangulation of P is a Delaunay triangulation.

If there are at least two vertices in int(P), then let the closed walk C determined
in the preceding section be represented by the list of vertices C =[Vo, v,..., v,]
where Vo v, (Xo,o, Yo) and nc _-> 2 is the number of edges vvj/ in C; otherwise let
C Vo] and nc 0. Let the counterclockwise cycle of edges on 0P be represented by
the list of mesh vertice B [Uo, u,..., U,b] where Uo= U,b, rib_>-3 is the number of
edges uu/ in B, and the numbering of the u is done as follows (see Fig. 5.1). If there
are at least two vertices in int(P) then we number the u so that Uo is closest to Vo
among the vertices on OP with y-coordinate greater than Yo (note that edge UoVo is
entirely in A). Otherwise we number the ui so that Uo is the vertex on OP which is
closest to Vo. In the former case the selection of Uo is a heuristic for finding a Delaunay
edge UoVo. In the latter case,

LEMMA 5.1. If there is only one vertex Vo in int(P) and Uo is the vertex on OP closest
to Vo then UoVo is a Delaunay edge.
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U13=W

Ull

Vl Ulo

U9

vieC
8

u v u. eB

U 6

FIG. 5.1. Illustration of closed walk C, cycle B, and strip A.

Proof Let S be the circle of radius lUoVol centred at Vo. S contains no vertices in
its interior since Uo is the closest vertex to Vo. Let S’ be the circle of radius [UoVol/2
whose diameter is UoVo. S’ is contained inside S, therefore S’ contains no vertices in
its interior. By Lemma 2.1, UoVo is a Delaunay edge. [3

We now describe how to generate edges of the type uivj and triangles of the types
Auiui/lvj and AV/lVjU in the strip A by "merging" B and C and "zigzagging"
counterclockwise around A starting and ending at edge UoVo. Note that A is to the left
of B and to the right of C so that for a valid triangulation of A (see 2), CCW triangles

Auu+lv and Av+lvju must be generated. Suppose uiv is the last edge generated and
i< nb or j < nc (initially i= 0 and j 0). The direction of edge uiv is from u to v in
the last triangle and its direction in the next triangle will be from v to ui. If i= nb
then the next edge and triangle generated are u,bvj+l and AV+lVU,b. If j nc then the
next edge and triangle generated are u+l V,c and Auu+lV,c. Otherwise either edge Uil.)j+
and triangle Avj+lvui or edge u/lvj and triangle Auu+iv are generated next based
on the following test.

Consider the quadrilateral Q uui+l v+lv, v and vj/l are to the left of the directed
line from ui to ui+l, but the positions of ui and u+ relative to the directed line, l(vv+),
from v to v/ may be one of the following four cases (see Fig. 5.2):

(a) U and Ui+ are both to the right of l(vjv+l),
(b) ui(Ui+l) is to the left of or on (right of)
(e) u(ui+l) is to the right of (left of or on)
(d) u and Ui+l are both to the left of or on l(jOj+l).

In case (a), Q is a strictly convex quadrilateral and if the circle through the vertices
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V. U U

(a) (b)

Ui+l

(c) (d)

FIG. 5.2. Four cases of quadrilateral Q.

Ui+

Ui, U/+l, /)j does not contain vertex vj+l in its interior then edge ui+Ivj and triangle
Auiui+v are chosen else edge uiv+ and triangle Av+vju are chosen. In case (b), Q
is a nonconvex quadrilateral and edge ui+vj and triangle Auiu+v are chosen. In case
(c), Q is a nonconvex quadrilateral and edge uv+ and triangle Av+vui are chosen.
In case (d), Q is a nonsimple quadrilateral and edge u+vj and triangle Auiu+v are
chosen; the other triangle Av+vu is oriented in the wrong (clockwise) direction (see
(2.1a)). In cases (a), (b), and (c), the chosen edge is locally optimal in Q (see 2).

Let T(P) be the collection of triangles formed in A and int(P) as described above
and in 4. T(P) is illustrated in Fig. 5.3. It is not clear that the triangles in T(P) do
not overlap, i.e. that they produce a valid triangulation. If luui+ is too large relative
to h for some i, then T(P) can be an invalid triangulation (e.g. see Fig. 5.4). After
discussing the case of no interior vertices, we indicate how this merge procedure can
be modified to generate a valid triangulation, VT(P), even if the luu+l are large
relative to h.

Now we consider the case of no vertices in the interior of P. Let Vb and v, be the
endpoints of a diameter of P and suppose the coordinate system is rotated so that line
segment VbV, is parallel to the y-axis with y(v,) > y(Vb) (as was done for int(P) in 4).
Let B- [Uo, u,..., Umb,’’’, U,b-I, U,b] be the counterclockwise cycle of vertices on
OP where Uo unb vt and U,b Vb. B can be split into two chains BL [Uo, u, , U,b]
and BR--[Unb, U,b-,’’’, Ub]--[V0, V,’’’, V,,c] on the left and right sides of 0P,
respectively, such that the y-coordinates of the vertices strictly decrease from y(vt) to
Y(Vb)- Note that mb and mc are both at least one. BL and BR can be merged to produce
a valid triangulation, VT(P), in P in a way similar to the procedure described above
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U5

U6

FIG. 5.3. Illustration of T(P) and DT(P); U6V is in T(P); usu is in DT(P).

go

Ul
u5

v8

u
4

u2 v6 v7

u3

boundary of P and edges
of interior triangulation

edges of triangulation
of A

FIG. 5.4. Illustration of invalid triangulation T(P); note overlap by triangles AV6V5U4 and AV9V8U0
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U0: U8 V

U

U5

U6

U4= Vb

FIG. 5.5. Illustration of chains BI, BR and VT(P) in the case of no interior vertices.

(see Fig. 5.5), and VT(P) can be converted into a Delaunay triangulation in a way
similar to that described in 7. The validity of VT(P) is discussed in 6.

The pseudo-code for the merge of B and C or B/ and BR to generate triangles
in the strip A or polygon P, respectively, is given in procedure MERGE. The list of
triangles, TM, produced by this procedure is modified by the procedure of 7 and
then, in the case of at least one vertex in the interior of P, appended to the list of
triangles, TI, produced by procedure INTTRIANG.

Procedure MERGE (inter, L, nl, M, nm, TM, EM);
# Input: if inter true then L B, nl nb, M C, nm nc
# else L BL, nl mb, M BR, nm mc
# Output: list of triangles TM and list of edges EM;
# if inter true then TM and EM each contain nb + nc elements
# else TM and EM each contain mb + mc-2 elements

nll := nl nmm := nm
nt := 0;
if not inter then

nt := nt+l;
TM(nt):= Auoulvi; EM(nt):= uivl;
if nl + nm 3 then return;
nl := nl 1; nm := nm 1;
i:= 1;j:= 1;

else := 0 j := 0;
while i< nl and j< nm do

if (ui and ui/ are both to the left of or on l(vjvj/)) or
(vj+ is not in the circle through ui, ui+l, vj) then
nt := nt + 1;
TM(nt) := Auiui+vj; EM(nt) := ui+vj;
i:= i+1;
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else
nt:= nt+l;
TM(nt) :-- Avj+lvjui; RM(nt) :- uivj+;
j:=j+l;

if < nl then
if not inter and j nm then nl := nl + 1;
while < nl do

nt := nt + 1;
TM(nt):= Auiui+vj; EM(nt):= ui+vj;
i:= i+1;

else # j < nm
if not inter and nl then nrn := nrn + 1;
while j < nm do

nt := nt+l;
TM(nt) := Avj+tvui; EM(nt) := uiv+t;
j:=j+l;

nl := nll; nm := nmm;
return;

As mentioned above, procedure MERGE can fail to produce a valid triangulation
of P in the case of at least one interior vertex if the spacing of the ui on OP is too
large relative to h. In 6, we examine procedure MERGE to see how it can be modified
to always produce a valid triangulation. We will show that an invalid triangulation
T(P) is due to an overlapping triangle Avjvj_ui in which vj/ is to the right of l(vj_v)
and ui is to the left of or on l(vv/a). Intuitively, we can think of this as resulting from
there being too few vertices in B for the number of vertices in C. The modification
consists of generating CCW triangle Avj+vvj_ instead of Avv_ui, replacing subwalk
vj-1 vjv+ of C with edge v_V+l, and restarting the merge of B and the new shortened
C from edge urvj_l where Avj_v_2ur is formed by the merge procedure. The pseudo-
code for the modification is given procedure MMERGE. Let VT(P) be the triangulation
produced by procedures INTTRIANG and MMERGE. Procedure MMERGE and the
validity of VT(P) will be discussed in 6. In procedure DELTRIANG of 8, procedure
MMERGE is used to produce a valid triangulation of A in the case of at least one
interior vertex, and procedure MERGE is used to produce a valid triangulation of P
in the case of no interior vertices.

Procedure MMERGE (B, nb, C, nc, TM, EM, ne);
# Input: boundary cycle B, closed walk C, number of edges nb and nc in B and C
# Output: list of triangles TM and edges EM in A, each containing nb + nc elements,
# and the number of edges ne of type vv+,,, m >-2, generated in A.
# The edges of type vjv+,, are stored at the end of EM in the reverse order
# that they are generated. The edges of type uiv are stored at the front of EM
# in the order that they are generated. The triangles are stored in a similar way.
# The working arrays s, p, r, and n are used as follows:
# vsj) and Vpj) are the successor and predecessor vertices of vj in C.
# s and p are updated when a vertex is removed from C.
# ur() is the vertex of B in the triangle AVs(j)Vjtlr(j) and
# n (j) is the index of this triangle in list TM.
# and n are used to determine how far to backtrack the merge of
# B and C when a vertex is removed from C.
forj:=0to nc-1 do

s(j):=j+ 1; p(j+ 1):=j; r(j):= 0; n(j):=0;
nt := 0; ne := 0;
i:=0; j:=0;
while i<=nb and j <- nc and i+j<nb+ncdo

if (j nc) or (u and u/ are both to the left of or on l(vvsi)))
or (v) is not in the circle through u, u+, vj) then
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nt := nt+l;
TM(nt) := Auiui+vj; EM(nt) := ui+vj;
i:= i+1;

else
if (s(j)= nc) or (vss)) is to the left of or on l(vvs)))

or (ui is to the right of or on l(vs)vj)))) then
nt := nt+l;
TM(nt) := Av)vui; EM(nt) := uv);
r(j) := i; n(j) := nt;
j := s(j);

else
flag := false;
repeat # remove v) from C
TM nb + nc ne :=
EM nb + nc ne :=
ne := ne + 1;
s(j) := s(s(j)); p(s(j)):=j;
ifj=Othen i:=O; nt:=O;

else i:= r(p(j)); nt:= n(p(j));
if (j>0) and (v<j) is to the right of l(vpy)vj))
and (u is to the left of or on l(vv))) then
j := p(j)

else flag := true;
until flag;

return;

6. Validity of triangulation VT(P). VT(P) is a valid triangulation of P if the
triangles form a "tiling" of P without overlaps or gaps. We will show that VT(P)
is valid for the three cases of (i) no interior vertices, (ii) one interior vertex, and
(iii) two or more interior vertices. In case (ii), VT(P) (or T(P)) is valid since the
triangles Auiui+lVo, 0<= <- nb- 1, are formed and they clearly tile P without overlaps
or gaps.

In case (i), each edge added to VT(P) in procedure MERGE subdivides an
untriangulated convex subregion of P into two convex subregionsua triangle and a
smaller untriangulated subregion. For example, in Fig. 5.5, edge ulu7 subdivides P
into triangle AUoUl u7 and convex subpolygon uu2u3u4usu6U7Ul. If all the untriangulated
convex subregions are nondegenerate (i.e. not a line segment) then the triangles of
VT(P) clearly tile P without overlaps or gaps so VT(P) is valid. An untriangulated
convex subregion can be degenerate if one side of OP contains only two vertices and
the other side contains three or more collinear vertices at the bottom. In this case
degenerate triangles (i.e. with three collinear vertices) are formed. For example, in
Fig. 6.1a, triangles AUoUlU3 and Au2u3u are formed by procedure MERGE and the
latter triangle is degenerate. If the collinear vertices at the bottom are perturbed slightly
so that no three vertices are collinear and the polygon remains convex then all the
untriangulated subregions are nondegenerate and the triangulation is valid (e.g. see
Fig. 6.1b). Therefore we still consider the triangulations with the degenerate triangles
to be "valid". The procedure described in the next section will convert these triangula-
tions into Delaunay triangulations.

In the rest of this section we will consider the case of two or more interior vertices.
We will show that VT(P) is valid by showing how T(P) (the triangulation produced
by procedures INTTRIANG and MERGE) can sometimes be invalid and how a
modification can be made to procedure MERGE to always produce a valid triangula-
tion. In 2, we mentioned that a triangulation of a region is valid if it satisfies the
four conditions of (2.1).
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FIG. 6.1. (a) Example where degenerate triangle Au2u3u isformed by procedure MERGE; (b) Perturba-
tion of chain ul u2u to obtain valid triangulation.

LEMMA 6.1.
(a) T(P) satisfies conditions (b), (c), and (d) of (2.1).
(b) If Avj+ vjui isproduced byprocedure MERGE and < nb, then AVj+l VjUi is CCW.
(c) Ifall triangles of type Avj+vjui produced by procedure MERGE are CCW, then

T(P) is a valid triangulation of P.
(d) T(P) is not a valid triangulation of P if and only if there is a CW triangle of

type A13j+l )jUnb produced by procedure MERGE.
Proof. The boundary edges of P are the edges uu+l of B. Conditions (c) and (d)

of (2.1) are clearly satisfied by T(P) since the triangles formed in A by procedure
MERGE are of the types Auiu,+lvj and Avj+vju,. We now show that condition (2.1b)
is satisfied by all edges of T(P). The edges of E (see (4.2)) which are not edges of
C clearly satisfy condition (2.1b) (see Fig. 4.2). An edge e vjvj/l of C occurs either
once or twice in C. In the latter case, vj =/)k/l and Vj+l =/-)k for some kj and e occurs
in opposite directions in the triangles Avj+ivjui and A1)k+ll)ktll formed in A. In the
former case, e occurs in opposite directions in the triangles Avj+vju, in A and Avjvj+ w
in int(P). A boundary edge u,u+l of B occurs only once in the triangle Auu+Ivj formed
in A. The other edges of T(P) are of the type u,vj, u, B and vj C, formed in A. One
of the triangles with edge uvj is either AU,_lU,Vj or Avjvj_ui; the other triangle with
edge u,vj is either Auu+lVj or AV+lVjU, where the indices of u and vj are taken modulo
nb and nc respectively. In all four possibilities, edge u,vj occurs in opposite directions
in the two triangles. Therefore condition (2.1b) is satisfied by all edges of T(P).

Now we determine when condition (2.1a) is satisfied or not satisfied. The triangles
generated by procedure INTTRIANG are all CCW. The triangles generated by pro-
cedure MERGE are of the types Atlitli+ll) or Al)j+ll)jui. AtliUi+lV is a CCW triangle
since vj is to the left of directed edge uu+l. Av+vu is a CCW triangle if it is formed
from case (a) or (c) of (5.3) (see Fig. 5.2). It cannot be formed from case (b) or (d)
of (5.3). So Av+vu may be a CW triangle only when there are no more quadrilaterals
uu+vj+v and nb. By condition (2.1a), T(P) is a valid triangulation if the triangles
of type Av+ VU,,b are all CCW.

If T(P) is not a valid triangulation then condition (2.1a) is not satisfied and there
is a CW triangle of the type Av+vju,b. To show that the converse is also true, suppose
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AVj+lVjUnb is a CW triangle produced by procedure MERGE. Edge vjvj+l occurs either
once or twice in C. In the former case, CCW triangle Avv+lw is formed by procedure
INTTRIANG, and Av+VUnb and Avv+w overlap. In the latter case, vj= vk+ and

v+ vk for some kj and AVk/lVkUl is formed by procedure MERGE; either AVk/VkUl
is CCW if < nb or AVk+VkUI=--AV+VU,b if l= nb; in both subcases Av+ivu,b and
AVk/aVkU overlap. Therefore T(P) is not a valid triangulation.

We now examine the triangles produced in A by procedure MERGE to see how
CW triangles AVj+VU,b can be formed and how the procedure can be modified to
produce a valid triangulation in this case. Since the triangles of type Auiui+v are
always CCW, we concentrate on the triangles of type AVj+ VjUi. Let A Vj+ VjUr(j) 0 <--__j <=
nc--1, be the triangles of type Av/vjui produced by procedure MERGE, where
0<_- r(0) <_- r(1) <_-. _<- r(nc- 1) _-< nb.

We first make some definitions which will be used in the following lemmas. We
define vj to be a reflex vertex of C if V/l is to the right of l(v_v) and define vj to
be a convex vertex of C otherwise. Note that Vo is a convex vertex of C since it is the
leftmost interior mesh vertex on the top line y Y0. Let V,,d be the rightmost interior
mesh vertex on the bottom line y y,. Vma is also a convex of C. Let CL be the subwalk
of C from v0 to V,,id and CR be the subwalk of C from V,,d to V,c. Let [w, z] denote
the "interval" of OP going counterclockwise from point w to point z inclusive. A
parenthesis will be used in place of the bracket if the endpoint w or z is not included,
e.g. (w, z), (w, z], [w, z). Let w and z be the intersections of line l(vjv+) with OP
where w is the intersection closer to v and zj is the intersection closer to v+. (w, z)
is the interval of OP to the right of I(VjVj+I). Define / (w,zj) if Uo is not in (wj, z),
I Uo, zj) if u0 is in wj, Zj) and vjvj/ E CL, and / (wj, u,b if Uo Unb is in (wj, zj)
and vjvj+ (YR. Recall that Ur(j) is a a vertex of the triangle Avj+vju(j) produced by
procedure MERGE.

LEMMA 6.2. If Ur(j) is not in I for some j, then T(P) is not a valid triangulation.
Proof. If Ur(j)is not in (Wj, Zj) then Av+VUr(j) is CW so r(j)= nb and T(P) is

not valid by Lemma 6.1. Suppose Uo is in (wj, zj) so that/ (w, z) and suppose
is in (w, z) but not in/. First suppose vv+ CL. Then Ur(j) is in (w, Un) and CCW
triangle Av+VjUr( must intersect the walk UoVoV’.’v (see Fig. 6.2). Now suppose
vv+ C. Then u(j) is in (uo, z) and CCW triangle AVj+Vjtlr(j) must intersect the
walk vj+vj+z.., v,cu,v. In both cases, Avj+VjUr(j) overlaps other triangles of T(P) so
T(P) is not valid.

LEMMA 6.3. If Vj is a reflex vertex of C and AVjVj_lUr(j_I) is CCW with u(j_) to
the left of or on l(vv+l), then Avvj_u,j_l) is an overlapping triangle and T(P) is not
a valid triangulation.

Proof. If u(_) is to the left of or on l(vjvj/) then part of edge vjvj/ lies in the
interior or on the boundary of Avjvj_Ur(j_) (see Fig. 6.3). Therefore Avvj_lu,(_) and
Avj/VUr() overlap and T(P) is not a valid triangulation.

LEMMA 6.4.
(a) If v is a reflex vertex of C and AVjVj_lUr(j_I) is CCW with Ur(j_l) in I_ and

to the right of l(vjv+l) then Av+vu() is CCWwith u() in I.
(b) If v is a convex vertex of C, O<j < nc, and AVjVj_lUr(j_I) is CCW with Ur(j-1)

in Ij_ then AVj+lVjUr(j) is CCW with Ur(j) in I.
(C) Ifj =0 then Avj+VUr() is CCW with Ur() in I.
Proof. Define u,(y) to be the vertex of largest index in/.
(a) Let u, r(j-1) < <- nb, be the vertex of largest index to the right of l(vv+)

such that ui, i= r(j-1),-.., l, are to the right of l(vvj+). If l> r(j-1) then quadri-
laterals uiu+v+ v, r(j 1), , 1, are case (a) of (5.3) and CCW triangle
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Unb
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wj

/I

//

Vj+l

FIG. 6.2. Avj+vju,.() intersects walk UoVoV vj.

vj

r(j-1)

FIG. 6.3. Avjv_lur(_) intersects edge vv+.

Avj+lvur(j) may be formed from one of these quadrilaterals. If not, then CCW triangle
Avj+ivuru) r(j)= 1, is formed because either nb or quadrilateral UUl+V+v is case
(c) of (5.3). vj is a reflex vertex and u(_l)is in/-1 and to the right of l(vv+l) imply
that u(_l)is in/ and r(j-1)_-< r(j)<-_ t(j)= 1. Therefore u(j)is in/.

(b) v is a convex vertex and Uo is chosen so that y(uo)>y(vo) imply that
t(j) >- t(j 1). u(_) is in/_ implies that r(j 1) <= t(j 1). Let Uk, r(j 1) <-- k <- t(j),
be the vertex of smallest index to the right of l(vjv/l) such that ui, k, , t(j), are
to the right of l(vvj+). If k> r(j- 1) then huiui+v, r(j- 1),. ., k- 1 are formed
from case (b) or (d) of (5.3). If k<t(j) then quadrilaterals uiui/V/lV, i=
k, ., t(j)- 1, are case (a) of (5.3) and CCW triangle Avj+vjur() may be formed from
one of these quadrilaterals. If not, then CCW triangle AV+lVU(), r(j)= t(j), is formed
because either t(j)= nb or quadrilateral ut(jut()+V+lV is case (c) of (5.3). u(_l) is
in /-1 and k<= r(j)<-_ t(j) imply that u()is in/.
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(c) Let Uk, 0_-<k_-< t(j), be the vertex of smallest index to the right of l(vjvj+l)
such that ui, i- k,..., t(j), are to the right of l(vjvj+l). The rest of the proof is the
same as (b) with r(j-1) replaced by 0 (also omit "ur(g_l) is in /._" from the last
sentence).

LEMMA 6.5. If all vertices of C are convex then T(P) is a valid triangulation.
Proof. By parts (c) and (b) of Lemma 6.4 and induction, A1)j+ll)jtlr(j) j=0,

1,’’., nc-1, are CCW triangles. By Lemma 6.1, T(P) is a valid triangulation, l-]

LEMMA 6.6. Iffor all reflex vertices v of C, ur(_ is to the right of l(vvj+), then
T(P) is a valid triangulation.

Proof.. We will show by induction that for all j, Av+vu( is CCW with u( in

/. By Lemma 6.4(c), AVVoUr(o is CCW with U(o in Io. Suppose O<j<nc and
AVjtj_Ur(j_l) is CCW with Ur(-) in /_. If vj is a convex vertex then Avj+IVjUr(j) is
CCW with u,() in/ by Lemma 6.4(b). If v is a reflex vertex then it is given that
is to the right of l(vjv+) so Avj+vju() is CCW with u,() in / by Lemma 6.4(a).
Therefore AV+lVUr(), j O, 1, ", nc 1, are CCW triangles. By Lemma 6.1, T(P) is
a valid triangulation.

CONJECTURE 6.1. If [UiU+[ is sufficiently small relative to h for all (e.g. as
produced by the spacing from (1.1), (5.1), (5.2)), then T(P) is a valid triangulation.

Rationale. If luu+ll is sufficiently small relative to h for all then for all reflex
vertices vj of C there exists a vertex Uk in /_ such that ug is to the right of l(vjv+);
in order for CCW triangle Avjv_Uk to be generated by procedure MERGE, either

Uk U,b or Uk+l must not be in the interior of the circle through the vertices v_, v,
Uk. It appears from the way that C is constructed from int(P) that such a vertex Uk
exists for all reflex vertices v and the hypothesis of Lemma 6.6 is satisfied, so T(P)
is a valid triangulation.

If luu+[ is too large relative to h for some i, then procedure MERGE can produce
an invalid triangulation T(P) (see Fig. 5.4). Lemmas 6.3, 6.4, 6.5, and 6.6 suggest how
procedure MERGE can be modified to produce a valid triangulation in this case. By
Lemma 6.6, if T(P) is not valid then there exists a reflex vertex v such that Ur(-) is
to the left of or on l(vjv+). Suppose v is the reflex vertex of smallest index such that
Ur(j_l) is to the left of or on I(DjDj+I) (e.g. in Fig. 5.4, /)j-’- /)6)" Then Al)k+ll)kUr(k)
k=0,-.-,j-l, are CCW with Ur(k) in Ik by Lemma 6.4 but Avv_Ur(j_) is an
overlapping triangle by Lemma 6.3. Therefore instead of generating Avvj_xu(_),
generate CCW triangle Av+ivv_ which does not overlap any triangles in C U (interior
of C), replace subwalk v_vjv+ of C with edge v_v+, and rerun procedure MERGE
with B and the new shortened C which still lies in int(P). If this process is repeated
enough times when overlapping triangles Avv_u(_) are detected, then the resulting
triangulation is valid because either the hypothesis of Lemma 6.6 is satisfied or
C U (interior of C) eventually becomes a convex set so the hypothesis of Lemma 6.5
is satisfied. Procedure MMERGE of 5 contains this modification to procedure
MERGE in which the merge is restarted from edge Ur(j_2)Dj_ instead of edge UoVo (if
j=>2) when it is determined that a CCW triangle Avj+vv_ must be added to the
triangulation, since the triangles in A between UoVo and u(j_z)v_ would remain the
same. We have shown in the above discussion the following.

THEOREM 6.1. The triangulation, VT(P), produced by procedures INTTRIANG
and MMERGE is a valid triangulation.

7. Converting VT(P) into a Delaunay triangulation. We describe a procedure for
converting VT(P) into a Delaunay triangulation, DT(P). We discuss only the case of
at least one interior vertex, since the case of no interior vertices is similar. From Lemma
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4.1, the edges of the interior triangulation and C (as defined in 4) are locally optimal
in any triangulation of the mesh vertices which contains these edges. From Theorem
2.1, VT(P) can be converted into a Delaunay triangulation by applying LOP to the
internal edges in the triangulation of A until they are all locally optimal.

Procedure MMERGE produces nt- nb+ nc triangles, TM(1), TM(2), ,
TM(nt), and nt edges, EM(1), EM(2), , EM(nt), in A, where ne >-_ 0 edges are of
the type vjvj+m, m_->2, and the triangles and edges are ordered as follows. Edges
EM(k), k-1,..., nt-he, are of the type uivj and are in the order that they are
generated. Edges EM(k), k- nt-he+ 1,..., nt, are of the type vv+m, m >_-2, and are
in the reverse order that they are generated (these edges are added to ensure the validity
of the triangulation of A). For k 1, , nt- ne- 1, EM(k) is the common edge of
TM(k) and TM(k+I). EM(nt-ne)=UoVo=unbvnc is the common edge of
TM(nt he) and TM(1). For k nt ne + 1, , nt, EM(k) is the common edge of
TM(k) and TM(l) for some < k. For 1 <-k <-_ nt, let Ak be the region formed by the
adjacent triangles TM(1),. , TM(k). We define an internal edge in a triangulation
of Ak to be an edge of the type uiv, uiui+,,, or viva+,,, m _-> 2, which is a common edge
of two triangles in Ak.

The following step is performed for k 1, 2,. , nt- 1 to obtain locally optimal
internal edges in the triangulation of A. Suppose the internal edges in the triangulation
of Ak are locally optimal (this is trivially true for k-1). Then the internal edges in
the triangulation of Ak+l are made locally optimal as follows (with the exception
mentioned in the next paragraph when k-nt-ne-1). The triangulation of Ak/
consists of the triangles in Ak plus the triangle TM(k/ 1). Let e-EM(k) if k<_-

nt-ne- 1 and e- EM(k+ 1) if k >-_ nt- he. Then e is the only internal edge in the
triangulation of Ak+ which may not be locally optimal. Therefore apply LOP to e. If
it is swapped for the other diagonal edge of the quadrilateral, Q, formed by the two
triangles having e as a common edge, then the edges of Q which are internal edges
of Ak+ may no longer be locally optimal so they are placed in a stack of edges for
which LOP must be applied. If the stack is not empty, then the top edge is popped
from the stack and LOP is applied to this edge. This may cause another swap and
more internal edges of Ak+ to be pushed onto the stack. This process of applying
LOP is repeated until the stack is empty which implies that the internal edges in the
triangulation of Ak/ are locally optimal. Lawson (1977) shows that this process must
always terminate. (There are only a finite number of possible triangulations of Ak+I;
a linear ordering of these triangulations can be defined using the sorted vector of the
smallest angle in each triangle; and each swap produced by LOP causes a strict advance
through this linear ordering of triangulations.)

The above step must be performed twice when k nt- ne- 1 (i.e. the triangulation
of A "closes") since EM(k) and EM(k/ 1)- UoVo may not be locally optimal in the
triangulation of Ak+I. First the above step is performed for e- EM(k) and then it is
performed for e EM(k/ 1). We have chosen Uo so that UoVo is likely to be a Delaunay
edge (see 5) so U0Vo is not likely to be swapped when LOP is applied to it. After the
above step is performed for k nt- 1, the internal edges in the triangulation of A Ant
and P are locally optimal and a Delaunay triangulation, DT(P), is obtained by Lemma
4.1 and Theorem 2.1. Figure 5.3 illustrates a Delaunay triangulation DT(P) obtained
from VT(P) by making one diagonal edge swap: UsU7 replaces U6V in the quadrilateral
U5 U6U7V3.

The pseudo-code for converting the triangles of VT(P) in A into Delaunay triangles
is given in procedure CONVERT. This procedure can also be used in the case of no
interior vertices.
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Procedure CONVERT (inter, TM, EM, nt, ne);
# Input: if inter true then TM, EM, and ne are output from procedure MMERGE
CA and nt=nb+nc
CA else TM and EM are output from procedure MERGE, nt mb / mc- 2,
CA and ne 0
CA Output: updated list of triangles TM such that all triangles are Delaunay
CA and updated list of edges EM such that all edges are Delaunay
fork:=lto nt do

if not inter and k- nt then return;
if k <- nt ne then kk := k + else kk := k;
top:= 1;
stack(top) := k;
while top => do

/:= stack(top);
top := top 1;
Search TM(kk), TM(kk 1), , TM(1) sequentially until the two

triangles TM(m) and TM(n) containing edge EM(I) are found;
Q:= quadrilateral w w2w3w4 where TM(m) Aw w2w3,

TM(n)=Aww3w4, and EM(I)= WlW3;
if w is in the circle through w, w2, w3 then
TM(m) := AwWEW4;
TM(n):= AW2WaW4;
EM(1):= WEW4;
W := W
forq:=l to4do

if <_-index (WqWq+l) k then
top := top + 1;
stack(top) := index (WqWq+l);

return;

In this procedure, the function index(ww’) is defined to be 0 if ww’ is an edge of
the type uiui+l or vjvj+; otherwise it is the index of edge ww’ in the list EM. The
function is used to determine whether an edge is an internal edge in the triangulation
of Ak+. For each triangle Awlw2w3 in the list TM, we store the values index(ww2),
index(w2w3), and index(w3wl) in addition to the vertices of the triangle, so that it is
easy to determine index(wqWq+) in the innermost for loop. When LOP is applied to
an internal edge e, the list TM must be searched for the two triangles containing e.
The reason for the sequential search starting backwards from TM(kk) will be discussed
below.

We now estimate the number of edge swaps required for converting VT(P) into
DT(P) since the efficiency of the procedure depends on the number of swaps. In
DT(P), strip A may contain edges of the types uivj, uivj+,, m => 2. In VT(P), A contains
mostly edges of type uiv and possibly some edges of type vv/,.. If uv is a Delaunay
edge then it is likely to be an edge of VT(P) since UoVo is likely to be a Delaunay edge
and in cases (a), (b), and (c) of (5.3) the next edge ui+Iv or uvj+ is chosen to be
locally optimal in the quadrilateral uu+v+v. So edge swaps are needed to obtain
Delaunay edges of types uu+, and vvj+m. The following theorem indicates when no
swaps are required.

THEOREM 7.1. If UoVo is a Delaunay edge and there are no Delaunay edges of types
UiUi/2 or vv+2 then VT(P)= T(P) is a Delaunay triangulation.

Proof. First we show that under the hypothesis of the theorem there are no
Delaunay edges of types uiui+, or vjvy+,, m _>-3. Suppose uu+,., m-> 3, is a Delaunay
edge. Then uu,+...u+,u must form a simple subpolygon of P which contains no
vertices in its interior. In a Delaunay triangulation of the mesh vertices, this subpolygon
contains m-1 triangles involving only the vertices u, u!/1,"" ", u+. Therefore that
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must be a Delaunay edge uil,li+2 where _<- -<_ + m 2. This contradicts the hypothesis,
therefore there are no Delaunay edges of type uiui+m, rn-> 3. Similarly there are no
Delaunay edges of type vjvj+m, rn _-> 3. Therefore the Delaunay edges in A are all of
the type uivj.

We show by induction that the edges produced by procedure MERGE (which
are the same as those produced by procedure MMERGE) are Delaunay edges. Suppose
uiv is a Delaunay edge (initially UoVo is a Delaunay edge). Then Auiui+lv or Av+lvui
must be a Delaunay triangle and ui+l vj or uiv+ must be a Delaunay edge, respectively.
If i= nb, then Av+vui is the only possible triangle, therefore uiv+ is a Delaunay
edge. Similarly if j--nc, then ui+vj is a Delaunay edge. Suppose < nb and j < nc.
Consider quadrilateral Q= uiui+v+iv in (5.3). In case (a), the circle test chooses the
next Delaunay edge. In cases (b), (c), and (d) the chosen triangle is a Delaunay triangle
since the other triangle is not a "valid" trianglemit is a CW or overlapping triangle
(see Fig. 5.2). Therefore procedure MERGE generates the next Delaunay edge, either

ui+v or uiv+. By induction, procedure MERGE produces Delaunay edges in A. The
edges generated by procedure INTTRIANG are Delaunay edges by Lemma 4.1.
Therefore VT(P)= T(P) is a Delaunay triangulation.

In general, DT(P) contains edges of types uiui/,, and vjv/,,, m >_-2. The location
of the mesh vertices and Lemma 2.1 can be used to determine where these Delaunay
edges are likely to occur. We first suppose that the parameters hi satisfy (1.1). An edge
vv/,, may be a Delaunay edge if it lies entirely in A and angle (v/,,vj/v) for some
l, 0 < < m, is smaller than approximately 120, e.g. the edge joining v (xi/,o,
and v/2 (xi/2,0, Yi/2) in Fig. 4.2. It is unlikely that m > 2 and the number of Delaunay
edges of type vvj+2 and the number of swaps to obtain these edges are expected to be
small relative to nc.

An edge uiui+,, may be a Delaunay edge if it is near a vertex of P or int(P) with
an interior angle smaller than approximately 90, e.g. usu7 in Fig. 5.3. If P does not
contain "small" interior angles (e.g. <=20), then m is likely small relative to nb and
the number of Delaunay edges of type uiui+,,, m_->2, and the number of swaps to
obtain these edges are expected to be small relative to nb. If P contains a small interior
angle (from elementary geometry it can be seen that at most two interior angles of a
convex polygon can be less than 60), then as this angle decreases, the maximal value
m of a Delaunay edge uiui+,, near this angle increases and the number of swaps
required to obtain the Delaunay edges in the subpolygon uiui+"’ui+,,ui increases.
Therefore if the hi satisfy (1.1) and P contains no small interior angles, then the number
of swaps needed to obtain DT(P) from VT(P) is expected to be small relative to nb + nc.

Now we suppose that the hi do not satisfy (1.1) for all i. As the ratios hi/h increase,
more Delaunay edges of type vjv/,,, m_->2, are likely to occur in DT(P) and be
produced in VT(P) by procedure MMERGE. As the ratios hi/h decrease, more
Delaunay edges of type uiui+,,, rn-> 2, are likely to occur in DT(P) and the number
of swaps needed to obtain DT(P) from VT(P) can be O(nb2) if P contains a small
interior angle.

When LOP is applied to edge EM(k) in Ak/ for k <= nt-ne-1, edge swaps, if
any, occur for triangles TM(n) near TM(k + 1) with indices n <_-k + 1. Therefore we
store the triangles of A in a linear list and when LOP is applied to an edge e in the
triangulation of Ak+, a search is made sequentially backwards in this list starting from
TM(k + 1) until the two triangles containing edge e are found. The number of triangles
searched is expected to be small constant if P does not contain small interior angles.
When LOP is applied to edge EM(nt-ne)= UoVo in A,t-,e, one of the triangles
containing edge UoVo is near the end of list TM and the other is near the front of TM.
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By using this information, few triangles are searched when LOP is applied to UoVo. If
VT(P) contains an edge of type vjvj+,,, m >= 2, then O(nt) triangles are expected to be
searched when LOP is applied to this edge since the two triangles containing this edge
may not be close together in TM. By Conjecture 6.1, ne is expected to be zero if the
hi satisfy (1.1). Therefore if P contains no small interior angles and the hi satisfy (1.1),
then the number of traingles searched in the applications of LOP is expected to be
0(nb + nc).

8. Summary and time complexity. The pseudo-code for our triangulation algorithm
is summarized in procedure DELTRIANG.

Procedure DELTRIANG P, m, hlist, T, nt);
# Input: convex polygon P with m vertices and list of
# triangle size parameters hlist [h, hx, h2,. hm]
# Output: list of triangles T and number of triangles nt
SHRINK (P, m, h/x/-, int(P), ni);
if ni > 0 then inter := true else inter := false;
if inter then

Rotate coordinate system so that diameter of int(P) is parallel to y-axis;
INTTRIANG (int(P), h, TI, nt, C, nc);

else
Rotate coordinate system so that diameter of P is parallel to y-axis;
TI:=[ ]; C:=[ ]; nt:=O; nc:=-2;

for := to rn do
Generate mesh vertices on edge ei at an equal spacing of/7i
as computed by (5.1);

if inter then
Determine B Uo, u, , U,b];
MMERGE (B, nb, C, nc, TM, EM, he);

else
Determine BL =[Uo, u,. ., u,b], BR [u,b, u,b_x,..., U,,b];
MERGE (inter, BL, rnb, BR, rib-mb, TM, EM);
ne := 0;

CONVERT (inter, TM, EM, nb+ nc, he);
T := append TI, TM);
nt := nt + nb + nc;
return;

We now discuss the time complexity for procedure DELTRIANG to construct
the Delaunay triangulation, DT(P), in P. Let nt and nv be the number of triangles
and mesh vertices, respectively, generated in P by procedure DELTRIANG. Let nb
be the number of mesh vertices on 0P and rn be the number of vertices of P. nt, nv,
nb, and rn are related by the formulas (Lawson (1977))

(8.1) n, 2n,, nb 2 and n, >= nb 2 >- m 2.

By Theorem 3.1, int(P) is determined from P in O(m) time by procedure SHRINK.
The diameter of int(P) or P is found in O(rn) time (Shamos (1975)). In procedure
INTTRIANG, the generation of mesh vertices in int(P) requires O(n) time and the
generation of triangles and closed walk C requires O(n) time. The generation of mesh
vertices on 0P requires O(nb) time. The generation of triangles in A by procedure
MMERGE requires O(n,) time if ne, the number of edges of type ViVa+k, k-->2, is zero
or bounded by a small constant (ne is expected to be zero by Conjecture 6.1 if the hi
satisfy (1.1)). We conjecture that the time complexity of procedure MMERGE is O(nt)
even if ne is large. In the case of no interior vertices, the generation of triangles in P
by procedure MERGE requires O(n,) time. From the discussion at the end of 7, the
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number of edge swaps and the number of triangle searches in the applications of LOP
in procedure CONVERT are expected to be O(nt) if P contains no small interior
angles and the hi satisfy (1.1). Therefore if P contains no small interior angles and
the hi satisfy (1.1), then the time complexity for constructing DT(P) by procedure
DELTRIANG is expected to be O(nt)= O(nv) using (8.1). Otherwise the time com-
plexity of procedure DELTRIANG may be nonlinear in nt since the number of swaps
in procedure CONVERT may be O(rlb2).

Procedure DELTRIANG has been implemented in PASCAL and used to generate
triangular meshes in over a thousand convex polygons created from the decomposition
of various regions by our finite element triangulation method (Joe (1984)). There are
few interior angles less than 20 in these polygons and the parameters hi satisfy (1.1).
We made the following observations about the performance of procedure DEL-
TRIANG. In the case of at least two interior vertices, the heuristic for selecting Uo so
that UoVo is a Delaunay edge (see 5) has not failed, and no edges of type VjVj+k, k >-- 2,
have been generated by procedure MMERGE, i.e. procedures INTTRIANG and
MERGE have not produced an invalid triangulation T(P). Also, the average .number
of edge swaps per polygon and the average number of triangle searches per application
of LOP are small constants. Therefore the empirical time complexity of procedure
DELTRIANG is O(n) for these polygons and triangle size parameters.
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FOR PARAMETERIZED NONLINEAR ELLIPTIC SYSTEMS*
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Abstract. PLTMGC is a program package for solving nonlinear elliptic systems that have explicit
dependence on a scalar parameter. In addition to being able to compute solutions for fixed parameter values,
it can be used to solve the linear eigenvalue problem, trace solution branches, locate singular points (simple
turning points and bifurcation points) and switch branch at simple bifurcation points. A multi-grid continu-
ation approach is employed in which a continuation procedure is used to follow the solution curve on the
coarsest grid and a multi-grid algorithm is used to refine the solution at selected points using an adaptive
mesh refinement strategy. Some numerical examples illustrating the performance of the package are given.

Key words, continuation methods, multi-grid algorithms, nonlinear elliptic systems, eigenvalue problems,
turning point, bifurcation, adaptive mesh refinement
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1. Introduction. PLTMGC is a program package for solving two-dimensional
nonlinear elliptic boundary value problems of the form:

-VdVu+f(x,y,u, Vu, A)=O inf,,

(1) u gl(x, y) on Oral,

(dVu) n gz(x, y, u, h) on 0--0"1.

The package is specifically designed to take into account the explicit dependence of
the system (1) on the scalar parameter A. In this paper, we shall denote the system (1)
by

(2)

where u B (a real Banach space), A R, and G is a continuously diiterentiable
operator mapping B x R into B.

There are at least three situations in which it is important to consider the parameter
A explicitly. The first case is when the system (1) is a mathematical model for a physical
problem, in which u may represent a physical field variable (e.g. flow field, structural
displacement) and A may be related to a physical parameter (e.g. Reynold’s number,
load on a structure) and one is interested in the dependence of u on A. The second
class of problems are linear and nonlinear eigenvalue problems [3] which can be cast
in the form of (1). The third situation arises in the application ofhomotopy continuation
methods for obtaining good initial guesses to highly nonlinear problems [24]. For
example, consider the following nonlinear elliptic system:

(3) Lu+ N(u) 0,

where L is a linear elliptic operator and N is a highly nonlinear operator. Simple
Picard-type iteration or even direct application of Newton’s method to (3) may fail
unless an extremely good initial guess is available. Assuming that the problem Lu 0
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is easier to solve, one may consider introducing an artificial parameter A in (3) to
obtain the following modified system:

G(u, A)--- Lu+AN(u)=O

and slowly increasing A from 0 to 1, using an old solution as initial guess for the next.
Thus, solving the system (2) may consist of determining the dependence of the

solution u(,X) on the parameter ,, i.e. in tracing the solution branches [u(A), A] of
(2), in addition to determining the solution u at some given value of , or Ilull (target
points). (Throughout this paper, Ilull denotes the usual L2 norm of u, namely,

u dx dy.) When the operator G is nonlinear in u and A, this can be accomplished
numerically by applying an approximate Newton method to (2) for a fixed value of
A, which makes use of the Jacobian matrix Gu(u, A). However, the solution branches
often display very interesting and complicated behavior, among which are existence
of multiple solutions and singular points (where Gu(u, A) is singular) known as turning
points (where the solution branch bends back on itself) and bifurcation points (where
two or more solution branches cross). Straightforward application of Newton’s method
to (2) encounters difficulties near these singular points. To overcome these difficulties,
a path following continuation method [2], [29], [34], [39] is usually employed. These
continuation methods are designed to trace past turning points and can be used to
switch branches at bifurcation points.

PLTMGC is a derivative of the program package PLTMG [7] which solves
nonlinear elliptic systems (with no parameter dependence) of a similar form to (1). It
employs a finite element discretization of (1) based on CO piecewise linear triangular
finite elements and uses a multi-grid approach which obtains the solution on the finest
grid by iterating through a hierarchy of coarser grids. The grids are obtained by adaptive
mesh refinement techniques which adaptively refine the mesh only in regions where
the solution error is large. In order to use PLTMGC, the user has to supply a coarse
grid on which the continuation procedures are applied. At selected points, the multi-grid
procedures are called on to adaptively refine the grid and obtain the solution on the
fine grids.

PLTMGC differs from other continuation program packages [31], [41], [43] in
that we treat directly partial differential equations and exploit the inherent structures
of the PDE in the continuation procedures through the use of multi-grid techniques.
We feel that this is crucial for the efficiency of the overall method. In some sense,
PLTMGC represents our attempt to cohesively integrate algorithms and ideas from
several divergent sources. While many of the algorithms in PLTMGC are taken directly
from the existing literature, we have also developed many new ones which are especially
suited to PLTMGC and which contribute to the efficiency and robustness of the
package. Among these are: a new pseudo-arclength parameterization that facilitates
computing target values in A and Ilull, a new robust predictor, multi-grid deflation
techniques for ensuring numerical stability near singular points and a new algorithm
for locating simple turning points and bifurcation points. Our goal in this paper is to
present only an overview of PLTMGC which summarizes our (current) view as to how
these various ideas should be synthesized. To remain true to this goal (and to keep
the paper of manageable size), we have purposely omitted many technical details which
are obviously very important to a successful implementation. Where possible, we
provide references to more complete explanations.

The remainder of the manuscript is organized as follows. In 2, we summarize
continuation algorithms, multi-level algorithms and adaptive mesh refinement tech-
niques. In 3, we describe how these ideas are merged in PLTMGC. Section 4 contains
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some numerical examples, illustrating the procedures of 3. Section 5 contains some
concluding remarks and possible extensions.

2. Continuation and multi-level algorithms. In this section, we first review the
major components of a basic continuation procedure. Next we summarize those aspects
ofthe multi-level iterative method which are most important to the continuation process.
Since much of the analysis of these methods appears elsewhere, (see for example [9],
[13], [15], [25], [27], [29], [38]), our exposition is mainly descriptive. This section is
divided into four subsections; in 2.1, we review continuation techniques and in 2.2,
we describe a Newton-multi-level procedure in the context of nested iteration [13],
[25]. In 2.3, we describe the j-level iterative method used to solve the sparse linear
systems which arise [8], [11]. Finally, in 2.4, we describe the use of local adaptive
mesh refinement.

2.1. Continuation algorithms. In this section, we review the essential features of
path-following continuation methods [20], [24], [29], [40]. The key idea is to parameter-
ize the solutions [u(cr), A(cr)] in terms of a new parameter cr that approximates the
arclength parameter s, instead of parameterizing u(A) in terms of the natural parameter
A. This is usually achieved by augmenting the equation (2) by an auxiliary equation
that approximates the arclength condition:

(4) I[ti(s)[[2+ [(s)l2= 1,

to give an inflated system with unknowns u(cr) and A(tr):

G(u(), x()) 0,

N(u(cr), A (tr), tr)=0.

Instead of solving for u(A) for a given value of A, we solve for u(cr) and A(tr) for a
given value of or. The auxiliary function N is constructed so that the target solution
(u,)t) is a regular solution of (5) [29], even at simple turning points. Thus, a regular
nonlinear iterative method can be applied to solve this inflated system.

Most continuation methods are of the predictor-corrector type, usually with a
predictor along the tangent:

(6) (Up,)tp) Uo+ apfio, )to + pXo)
with the predictor step (ap, tip), and where the unit tangent (rio, (o) at a known solution
(Uo,)to) is defined by:

(7)
G(Uo, Xo) ao+ G (Uo, x0)o 0,

aoll / IXol=-- 1.

The predictor (Up,)tp) is then used as an initial guess for a nonlinear iteration used to
solve the system (5). The predictor step (ap, tip) is usually chosen adaptively to ensure
convergence of the corrector. If the predictor fails to achieve convergence in the
corrector, then the parameterization N and tr are adjusted (e.g. the continuation step
can be reduced) and the process repeated.

In addition, certain points on the solution curve demand special attention. For
example, one may want to compute the solution at selected values of )t or Ilull (target
points). Moreover, one may want to be able to detect singular points and locate them
accurately. In case a bifurcation is detected, one may also want to switch to the
bifurcating branch.
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We summarize the essential features in the following general algorithm for one
step of the continuation procedure:

CONTINUATION PROCEDURE

1. Compute the unit tangent [rio, ,(o] at [Uo, Ao] by (7).
2. Determine the local parameterization N and
3. If close to a target point, adjust N and r so that [u(tr), A(r)] will be the target

point.
4. Compute a predicted solution [up,
5. Use [Up, Ap] as initial guess in a nonlinear iteration for solving the system (5)

to obtain [u(t), A(o’)]. If the iteration fails to converge, then adjust N and tr and go
to step 4.

6. If a limit point is detected, compute it accurately if desired.
7. If a bifurcation point is detected, compute it accurately and switch branch if

desired.

2.2. Nested iteration. For concreteness, we consider the nonlinear elliptic
equation:

(u)=-V.dVu+f(u, Vu, A)=0 inf,,
(8)

u =0 on

where, for simplicity, f is a closed, polygonal region in R. We assume d > 0 in ( and
d and f are smooth functions of their arguments. We will assume for the moment that
A R is fixed, and that for this value of A, (8) is well-posed, and has one or more
isolated solutions.

A weak form of (8) is" Find u Ho() such that

(9) a(u, v)=0 VvH(f),
where

(10) a(u, v)= Ja {dVuVv+f(u, Vu, h)v} dxdy.

H() will denote the usual Sobolev space equipped with the norm

u I1 [ {Iv ul= / u=} dx dy

and

H() {v

For u H(), we define the form b(u; v, w), linear in its last two arguments, by

(11) b(u; v, w)= f {dVvVw+e. Vvw+cvw} dxdy

where

ei (u, Vu, A),
OUx.

fc=(u, Vu, X).ou
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We assume that for u sufficiently close to an isolated solution of (9), the linear elliptic
problem:

Find z H(f) such that

(12) b(u; z, v)= g(v) Vv H(f)
has a unique solution, where g is a smooth linear functional [9].

Let -1 be a quasi uniform shape regular triangulation of . Let M1 c H be the

Nl-dimensional space of CO piecewise linear polynomials associated with -1. We
inductively define a sequence of triangulations {} with being a refinement of _1
(though not necessarily a uniform refinement), and corresponding N-dimensional
spaces Mc H. We assume N_->/3N_1 for /3> 2,j> 1;/324 is typical for elliptic
equations in R2. Because is a refinement of -1, M_I will be a subspace of M,j > 1.

The discrete form of (9) is: Find uj M such that

(13) a(uj, v)=0 Vv M.
We assume that for any isolated solution u of (9) there is a corresponding sequence
of isolated solutions {u} of (13), and that these solutions converge to u at a specific
rate, i.e.

(14) u u <- cN-fq,
where c c(u, -1) is a constant and q > 0.

These discrete problems can be solved by approximate Newton methods [13],
(o) Mj, we a uj[21]. Given u compute sequence () M, using

(15)
bj(x(‘), v)=-a(u), v) Vve M,

+l) tick) .+_ t(k)x(k)
(k). t(k)The case bj(.,.)= b(uj ,.,.), -1 is Newton’s method. Equations (15) describe an

approximate Newton method because the bilinear form bj(.,.) is chosen to approximate
the Jacobian (11). For example, b might correspond to the approximate solution of
the Newton equations using an iterative method as an inner iteration 13]. The damping
parameters tCk) (0, 1] can be chosen to guarantee convergence [12], [21].

The nested iteration strategy (also called full multi-grid by Brandt [15]) involves
sequentially solving the problems (13) for j 1, 2, using the approximate solution
of the (j- 1)-st problem as the initial guess for the jth.

ALGORITHM NI"
1. Solve (13) for j 1 using S iterations of (15) and an appropriate initial

guess u.
2. Solve (13) for j> 1 using S iterations of (15) and initial guess u /j--1

Under appropriate hypothesis 13] one can show Algorithm NI to be an extremely
effective procedure for solving (13). For each problem after the first, one must reduce
the initial error by only a fixed amount e < fl-q independent of j in order for the
computed solutions uJS to converge to the true olution u of (9) at the same rate as
the uj (see (14)). Because of this modest required error reduction, one can often show
S 1 for j sufficiently large is adequate [13]. Because the N increases geometrically,
asymptotically the cost of solving the nonlinear problem at level j is only a small
multiple (usually less than 2) of the cost of approximately solving one set of linear
equations of the form (15) for the grid . If this set of equations can be solved in
O(N) operations (as it frequently can using the j-level iterative method), then the
overall complexity will be of optimal order O(N) [13].
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2.3. The j-level iterative method. The j-level iterative method is designed to solve
linear systems of the form:

Find z Ms such that

(16) b(u; z, v)= g(v) Vv M

Here g: Ms--> R is a linear functional. In the special case u= u)k g(v)=-a(u)k’ v)
(16) becomes the Newton equation for (13), and z can be identified as x(g.

For j 1, equations (16) are solved directly, e.g., by sparse Gaussian elimination.
For j > 1, a single iteration of the j-level scheme takes an initial guess z( M to a
final guess z(m+l) Mj. The procedure is defined recursively as follows"

For 1 _-< k _-< m,

(17) z(k)= S(zk-1)), where S is a smoothing operator.

Set (v) g(v)- b(u; z’’), v) and solve the coarse grid problem: find Ms_l such that

(18) b(u; ,/))= g(/)) t) Mj_I,

using 2 iterations of the j- 1 level scheme and initial guess zero forj- 1 > 1 or directly
ifj- 1 1. In either case we obtain an (approximate) solution 6 Ms_l. Finally, we set

(19)

The operation S corresponds to the application of some iterative method (e.g.
symmetric Gauss-Seidel, damped Jacobi) to the set of equations (16). Typically, m is
quite small (_-<4). Equations (18) and (19) are now commonly called a "coarse grid
correction"; it is easy to see that 6 Ms_ is a Galerkin approximation to the error
z-z(’) ]VI. From (16) and (18) we have

b(u; Z--Z(m), /)) g(/)) V/) Mj_ 1.

Under suitable hypothesis on the triangulations Ws, subspaces M (and their bases),
and the smoothing iteration, one can prove that the work required to reduce the error
by any fixed amount is O(Ns), leading to the overall optimality of the j-level iterative
method when used in conjunction with nested iteration.

2.4. Adaptive mesh refinement. In the use of nested iteration and the j-level
iteration the triangulation 3-k+1 is not required until the approximate solution U(ksk has
been computed. This suggests the possibility of using the computed solution U(ksk in
the computation of -k/l by a local adaptive mesh refinement algorithm [4], [5], [6],
[7], [15], [44]. The basic goal is to construct a triangulation in which the error is
(approximately) uniformly distributed among the elements by refining those elements
in which the local error is largest. Suppose element ? 3-k has the largest error among
the elements of -k. Further, suppose that the errors in elements obtained by the
refinement of ? would have local errors of size e. Then a reasonable refinement criteria
is to refine those elements in 3-k whose error satisfies Ilell, > . This will hopefully
result in a new mesh in which all elements have errors bounded by e, and will tend
to equi-distribute the error among the elements. The threshold value e can be extrapo-
lated using the calculated elementwise error estimates from the previous two levels.
Since only a few elements may have errors larger than e, the procedure may have to
be iterated several times in order to compute a triangulation 3-k+1 whose corresponding
subspace Mk has Nk/l Nk. The scheme used in PLTMGC is described in detail in
[7], 14].
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3. Implementation in PLTMGC. In this section, we summarize our strategies for
combining the methods of 2 into an efficient and robust procedure for solving (1).
There are several possible interpretations of what constitutes the solution of (1). From
our present perspective, we desire a procedure which can yield a qualitatively accurate
description of all the solution curves, with approximate locations of limit points and
bifurcation points. At a few selected points, perhaps only one, we would like to compute
an accurate approximation of the solution u.

Thus our overall strategy involves two main components"
1. The use of the continuation process of 2.1 on the coarsest mesh 9-1 only.
2. The use of the multi-level procedure of 2.2-2.4 to produce accurate solutions

at a few selected points.
This view is in contrast to that of some other investigators, e.g. Mansfield [32],

who suggest schemes for carrying out the continuation process on the finest grid. When
a quantitatively accurate description of the solution curves is desired, such schemes
would seem more natural than ours because they make use of previously generated
solutions on the finer meshes to generate initial guesses for the solutions on the finer
meshes in the multi-level algorithm, as suggested by Hackbusch [27] for example.
However, we feel that neither the convergence nor the efficiency of the multi-level
algorithm is critically sensitive to the accuracy of these initial guesses, because initial
guesses interpolated from coarser grids are accurate enough to insure rapid conver-
gence. Also, because of our use of adaptive mesh refinement, in general our procedure
will not generate the same sequence of meshes at all points on the solution curves.
Finally, following the solution curves on all the finer meshes is far more costly, perhaps
by orders of magnitude if several levels are involved. Thus, following solution curves
on the coarsest mesh only is advantageous when the main goal of the computation is
to compute a particular solution for a particular value of h or u and if only a general
qualitative behavior of the solution curve is sufficient. This necessarily implies that the
coarsest grid has to be fine enough to represent the qualitative behavior of the solution
curves of interest. Brandt [ 15] has suggested using the frozen-tau technique to obtain
fine grid accuracy on the coarse grids.

With respect to coarse grid continuation, there are three main tasks which should
be handled by a general solver:

1. Continuation from a starting value to a target value.
2. Location of limit points and bifurcation points.
3. Branch switching at bifurcation points.
With respect to the adaptive refinement at a selected point, two cases must be

handled:
1. Refinement away from singular points.
2. Refinement near a singular point.

3.1. Computation of tangent field. A major component of a continuation method
is the computation of the unit tangent [ti(s), i(s)] to the solution curve at a point
u, A on the solution curve, which can be computed relatively inexpensively from its

definition by solving only one linear system with

(20) i:’= l/(llzll:’+ 1).

a=iz.

Equation (20) determines [ti, i] up to a directional orientation, which can be fixed by
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some convention. For example, the strategy we employ is to require that the new
tangent forms an acute angle with the previous tangent to insure that we are "following"
the solution curve.

Although the above procedure is not mathematically well defined when Gu is
exactly singular, in practice it behaves like inverse iteration and produces the right
results.

3.2. Local parameterizations. The most popular choices for the local parameteriz-
ation N are usually some approximations to the arclength condition (4) to ensure that
at least locally the solution curve is "followed". A few typical N’s that have been
used in the literature are:

1. N,(u, it, tr)= fioT(U--Uo)+,o(it--ito)--tr [29].
2. N(u, it, tr)= er(y--yo)--tr, where y= (u, ) T, e is the ith unit vector and the

index is chosen so that the Jacobian of (5) is as well-conditioned as possible [1],
[31 ], [39].

3. N3(u, Z, o’)= IIu-uol12+[X-Xol-,r[29].
4. No( u, ,, o-, O) O2[( U Uo) + (2 O),(o(X ,o) o- O, for O <= O <= 2129].
5. Nr(u, it, o-, 0)= Oi’o(r- ro)+(2-O)i(o(it -ito)- r, where r=

N1 is the usual pseudo arclength parameterization and defines a hyperplane
perpendicular to the tangent and at a distance r along the tangent from (Uo,)to).
corresponds to parameter switching. N3 is similar to N1 except a sphere is used instead
of a hyperplane. No is a modification of N1. Choosing 0 not equal to 1 corresponds
to rotating the tangent. This extra degree of freedom sometimes allows an increase in
the continuation step near points on the solution curve with high curvature. Note that
0 0 can be used to compute target points for given values of It. Nr seems to be a
new parameterization and is the one used in PLTMGC. It corresponds to No in the
space (llull, a), The motivation behind this is that for many PDE-type problems, there
are really only two parameters that affect the continuation procedure: some measure
of u and It. Note that with 0 0 and 0 2 both target points in It and Ilull can be
computed. Thus, this parameterization can be viewed as a hybrid between N1 and
adapted for PDE type problems. Note that since Jr= Tu, N is ill-defined when
rioTu0 =,(o=0. In such situations, which can arise at isolated points (e.g. symmetry
breaking bifurcation points), we switch (temporarily) to No.

3.3. Target points. In PLTMGC, the user can specify target values for both Ilull
and It. Depending on these values, 0 and r are determined for N, If only a value for
It, say It,, is given, then 0 is set to 0 and cr is set to 2o(It, Ito) so that N 0 corresponds
exactly to specifying It It, (assuming o 0). Similarly, if only Ilull r, is specified,
then 0 is set to 2 and r set to 2o(r,-ro). If both target values are specified, then
PLTMGC determines heuristically which is easier to reach. It does this by using an
approximate local model of the solution curve obtained by interpolating the two most
current solutions and their tangents. Points on this approximate solution curve which
achieve either of the specified target values are computed and the one which is "closest"
in arclength to (Uo,)to) determines which target value is to be attempted.

3.4. The predictor. Once 0 and r are determined, the predictor (Up, Itp) of (6) is
computed by finding scalars (ap, p) which satisfy

(21) Nr(up, Itv, o-, 0)=0,

(22) R(up, Itp)-O

where R(u, It)= uTG(u, It)/uWu. Our use of (21) is motivated by the pseudo-arclength
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method, in which one chooses a predictor with ap p and (21) is satisfied [29]. Our
use of the Rayleigh quotient (22) was motivated by the linear eigenvalue problem, and
by the success of a continuation procedure of Mittelmann and Weber [35] for a certain
class of nonlinear elliptic equations. The predictor equations are solved by several
iterations of an approximate Newton method. It is easy to insure that (21) is always
exactly satisfied after each iteration so that even if this iteration fails to converge (which
is rare), the resulting predictor still satisfies one of the two corrector equations.

Our view of (21)-(22) again reflects our view that PDE’s of the form (1) are
(locally) very low dimensional problems. In some respects, this is analogous to the
reduced basis approach of [23], [36], [37] and an approach of Jarausch and Mackens
[28]. We also remark that it is usually worthwhile, from a computational point of view,
to compute a more accurate predictor, which in this case involves solving two scalar
equations, rather than use more corrector iterations, which involve solving much larger
sets of equations. Such an investment can also allow much larger steps, if the goal of
the continuation procedure is merely to reach a target point.

This new predictor algorithm seems to be very robust and allows rather large
continuation steps to be taken (see 4).

3.5. The eorreetor iteration. The main task for the corrector iteration is to solve
for the solution of the coupled nonlinear system (5) starting with an initial guess
provided by the predictor. Since the solution we sought is a regular solution of (5), in
principle any regular nonlinear iterative method (e.g. Newton’s method, quasi-Newton
methods, etc.) can be applied. However, for large and sparse problems, such as
discretizations of partial differential equations that we treat here, it is important for
efficiency reasons to exploit the structures in G. For a survey of methods used in the
corrector iteration, the reader is referred to 16].

Most correctors used in continuation methods, especially for large and sparse
systems, are based on Newton’s method [16]. In PLTMGC, an approximate Newton
method similar to the iteration (15) is used. The damping step k) is chosen to force
the norm of the residual to decrease. At each corrector iteration, a linear system has
to be solved for Ou and cA involving some approximations to the Jacobian of (5). This
often constitutes the major pa of the overall computational cost. All the linear systems
that arise in the corrector iterations are of the form:

A

where (A, b, c, d) are approximations to (G, Ga, N,, Nx) respectively. For solving (23),
we use the following block-elimination algorithm:

ALGORVHM BE: [29]
1. Solve Av b,

Aw =y
2. Compute y=(g-crw)/(d-c%).
3. Compute x w yv.

Note that only a solver for A is needed. On the coarsest grid, a direct solver is used.
On the finer meshes, one can use the j-level multi-grid method described in 2.3.
However, as we have shown in [16], [19], Algorithm BE may be numerically unstable
when A is nearly singular, as is the case near singular points of the solution curves.
Moreover, the near-singularity of A may also retard the convergence of the multi-level
algorithm 8], [20].
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In [19], we proposed using implicit deflation techniques developed in [17], [42]
to compute numerically stable representations for the solutions v and w. These deflation
techniques can be viewed as working in subspaces orthogonal to approximate null
vectors b and of A and are implicit in the sense that they only involve solving
systems with A. These deflated decompositions [17] of v and w lead to a numerically
stable variant of the BE algorithm. (We assume a one-dimensional null space, although
our remarks could be modified to deal with the more general situation.)

ALGORITHM DBE" Deflated block-elimination algorithm [19].
1. Compute an approximate normalized left singular vector q of A.
2. Compute b= A-l, where
3. Compute Cb (d/rb) and cy (Tf).
4. Solve AVd b-Cbd/ for Yd. (V is represented as: v= va +(Cb/)4))
5. Solve Awd =f--cyd/ for Wd. (W is represented as: w= Wd +(Cy/8)ch)
6. Compute hl=g--CrWd, h2=d-cT"va, h3--hlCb-h2cf, h4--(cTt)cf-thl, D=

Cr6 Cb h:z.
7. Compute y h4/D and x wd -1

t- (h3) h419d)/D.
Note that only two solves with A is need, exactly the same as in Algorithm BE.

The only overhead involved for performing the deflation is the computation of approxi-
mate left and right singular vectors of A which can be accomplished with one or two
backsolves with A [16], [17]. Algorithm DBE can be proven to be numerically stable
[19] independent of the singularity of A.

To apply the deflation techniques on the fine grids, we need to compute the
deflated solutions Vd and Wd using a multi-level algorithm. To do this, we have developed
a multi-level deflation technique. Let tb(q) be the left (right) singular functions
corresponding to the near zero singular value of b. When solving for each of the
vectors Vd and we, all residuals are systematically purged of their q components. One
saves the decomposition coefficients Cb and cy on the finest grid only. This procedure
can be proven to be convergent and numerically stable independent of the singularity
of A [10], [26]. This strategy is similar in spirit, though not in detail, to that of Chan
and Keller [20]. We note that the singular functions can be computed with low cost
by using a multi-level inverse iteration algorithm [9], [20], [26] and can be reused for
several continuation steps. Because of their robustness and negligible overhead, these
deflation algorithms are used at all continuation steps and on all grids, without
necessitating a check on the singularity of A.

3.6. Failure control for the corrector iteration. An essential part of the corrector
algorithm is the failure control. Our philosophy is that when the corrector iteration is
having convergence difficulty, we abort the iteration and change the parameterization.
In our implementation, we declare that the corrector iteration has failed if either it
took too many iterations without convergence or if it took too many damping steps
in attempting to force descent of the residuals.

The corrector iteration usually fails only near points on the solution curve with
high curvature. When this happens, it means that either the continuation step tr is too
large or that no solution to (5) exists for the current values of 0 and tr. For example,
if a A target value is specified near a turning point, with a corresponding value of
0 0, a solution may not exist. When this occurs, PLTMGC does two things: it reduces
the value of tr (e.g. halves it) and it uses a value for 0( 1) forcing N to follow the
solution curve more closely and deferring the attempt to hit the specified target value
on the current step. This process is repeated until convergence is finally achieved which
is guaranteed for small enough
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3.7. Singular points. In many applications, in addition to tracing the solution
branches, one is also interested in locatihg the singular points themselves, because
they are often related to the stability of the solution. Due to their special physical
significance, many algorithms have been proposed for determining these singular points
accurately [18], [29], [33]. In this paper, we shall only deal with the determination of
simple turning points and simple bifurcation points which can be characterized as
points on the solution curve where

(24) Gu is singular, with a one-dimensional null space,
Gu is boundedly invertible on its range,

(25) and Gx Range (Gu) for a simple turning point,
and Gx Range (G) for a simple bifurcation point.

There are two basic issues: detection and accurate location. It can be shown that
the determinant of G changes sign across simple turning points and simple bifurcation
points and therefore it can be used as a detection device on the coarsest grid. In
addition, across a turning point, ( also changes sign and this serves to differentiate
between the two types of singular points. For accurate location, there are primarily
two classes of methods. The first consists of local iterative algorithms based on an
inflated system consisting of G(u, A)= 0 augmented by a characterization similar to
(24), constructed so that the singular point is a unique and isolated solution of the
inflated system. The other class of algorithms consists of methods based on a path
tracing continuation method by successively using it to compute points on the solution
curve that approach the singular point. We use the second approach in PLTMGC,
primarily because many parts of the procedure are already present in the continuation
program.

For turning points the method that we use is similar to one proposed by Chan
[18] and Keller [30]. It is based on applying the scalar secant method (combined with
bisection to ensure convergence) to ,(tr)=0 to determine the correct value of tr to
use in Nr so that the continuation procedure will hit the turning point.

For bifurcation points, we use a secant method (again combined with bisection
to ensure convergence) on the characterization 8(o-)= 0, where 6 is the approximation
to the smallest singular value computed in step (2) of Algorithm DBE. Since the
singular value 6 does not change sign across a singular point, we make a slight
modification in order to speed convergence. We scale the normalized singular functions

and b so that @Tb has the same sign on both sides of the singular point. Then we
define 6 to be ,TAb which has the same magnitude as the smallest singular value of
A but does change sign across the singular point. This method seems to be new and
is very robust and efficient.

3.8. Branch switching at bifurcation points. For a survey of branch switching
methods, we refer the reader to Keller [29]. The method that we use is exactly Method
I in [29]. Basically, the tangent (ti, A) corresponding to the bifurcated branch is
computed using the approximate singular functions , and b at the bifurcation point
and finite difference approximations to the second derivatives of G. This new tangent
is then used in the basic continuation procedure to march along the bifurcated branch.

3.9. Refinement strategies. The algorithms presented so far allow the solution
curves to be followed on the coarsest grid. However, at occasional points on the
solution curve, we may want to compute a solution with higher accuracy than that
provided by the discretization on the coarsest grid. PLTMGC allows three options for
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refinement onto finer grids, corresponding to different choices of 0 in the local
parameterization N. For all cases, the step length parameter tr is set to zero, and the
standard multi-level procedure with adaptive local mesh refinement is used. We have
found it adequate to use values of , i, Uo and Ao corresponding to the level 1 solution
in the parameterization Nr for all refined levels, although one could certainly update
these values as the refinement proceeds.

First, one can choose to refine with a fixed target value At by setting 0 =0.
Alternatively, one can use 0 2 to obtain solutions on all levels at a fixed target value
for Ilull. Third, one can refine on the perpendicular hyperplane passing through the
current coarse grid solution by choosing 0 1. Typical situations are illustrated in
Fig. 3.1.

In general, the appropriate choice of 0 depends on the particular applications
and requires user input. Away from singular points, all three strategies can usually be
used. Near singular points, however, the situation is quite different. For example,
although a solution on the coarsest grid may exist for a particular value At, solutions
on the refined grids may not. Here an appropriate strategy is to take 0- 1 (or 0- 2).
This is illustrated in Fig. 3.2. Another example is the linear eigenvalue problem, where
there are vertical solution branches in the (llull, A) projection and one should refine
with 0=2or 0=lbutnot 0=0(see 4).

fine grid

FIG. 3.1. Refinement away from singular points.

coarse grid

\
\ ! tangent

fine grid 11
coarse grid

FIG. 3.2. Refinement near singular points.

4. Examples of usage. In this section, we shall present a few sample runs with
PLTMGC. The goal is to demonstrate the capabilities of PLTMGC rather than to solve
complicated problems.

The first two runs are for the standard model problem (Bratu’s problem) Au + Ae
0 with the Dirichlet boundary condition u 0 on a unit square in R2. This problem
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has a simple turning point at A 6.8 and Ilull 0.7 (see Fig. 4.1). The level 1 (coarsest)
grid for multigrid is shown in Fig. 4.2 and has 25 vertices, only 9 ofwhich are unknowns.
The first run is for demonstrating the A-target and refinement capabilities of PLTMGC.

fine grid

coarse grid

4.1. Solution branches of Bratu’s problem" Au + he O.

Number of
vertices 25

/

FIG. 4.2. Coarsest grid for Bratu’s problem" Au + Ae" O.

Starting from the trivial solution (u 0, A 0), PLTMGC managed to get to the target
point A 6 in one step with 4 corrector iterations (see Table 4.1). Next we ask PLTMGC
to refine the solution to 3 multigrid levels with 0 2 (i.e. constant Ilu]] level). The two
extra grids are generated adaptively using the mesh refinement strategies discussed in
2.4 and are shown in Fig. 4.3. As part of the adaptive mesh refinement procedure,

the accuracy of the solutions is also generated. To demonstrate the different refinement
possibilities, refinements using 0=0 (i.e. constant A) and 0= 1 (i.e. perpendicular
hyperplane) are also generated from the same coarse grid solution. Notice that the
number of corrector iterations on each level is quite small--no more than 3 iterations
are needed.

The next run (see Table 4.2) demonstrates the I[ull target and turning point
capabilities. Starting from the A -6 solution generated from the first run, a target value
of Ilull- 3 is specified. Even though the target point is beyond the turning point on
the upper branch and quite far away from it (point A in Fig. 4.1), convergence is
achieved in only one step with 4 corrector iterations. This robustness is primarily due
to the extremely good predictor. Moreover, the turning point is detected and located
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TABLE 4.1
Bratu’s problem from A 0 to A 6 with refinement. Legend. L, level number of grid; NI, number of

corrector iterations" DIGITS, number of correct digits in the solution.

Continue to target point with A -6:

L NI h u ft det G /5

0.000 E + 00 0.000 E + 00 0.999 E + 00 0.000 E + 00 0.411 E9 0.117 E + 01
4 0.600 E+01 0.358 E.b00 0.994 E.b00 0.111E+00 0.504 E8 0.630 E+00

Refine to level 3 using 0 2 (constant Ilull):

2 3 0.567 E + 01 0.358 E + 00
3 3 0.557 E +01 0.358 E +00

0.993 E.b00 0.118 E-b00 0.595 E8 0.167 E+00
0.993 E+00 0.119 E+00 0.626 E8 0.513 E-01

Information about accuracy of the solutions:

NORM SOLN
H1 0.165 E+01
L2 0.357 E + 00
MAX 0.682 E + 00

ERROR DIGITS
0.176 E ,b 00 0.971
0.605 E 02 1.771
0.139 E-01 1.691

Refine using 0 0 (constant h )"

L NI h Ilull
2 3 0.600 E+ 01 0.400 E + 00
3 2 0.600 E+01 0.416 E+00

,( det (G.) 8
0.990 E+00 0.139 E+00 0.478 E8 0.148 E+00
0.988 E+00 0.152 E+00 0.468 E8 0.433 E-01

Refine using 0 (perpendicular hyperplane)"

2 3 0.600 E + 01 0.399 E + 00
3 2 0.599 E +01 0.415 E +00

0.990 E-b00 0.139 E.b00 0.480 E8 0.149 E-b00
0.989 E.b00 0.151 E,b00 0.470 E8 0.434 E-01

TABLE 4.2
Bratu’s problem near turning point.

From A 6 to target value u ll--3.
L NI A u X det (Gu)

4 0.600 E+01 0.358 E+00 0.994 E+00 0.111 E.b00 0.504 E8 0.630 E+00
4 0.319 E.b00 0.300 E.b01 -0.550 E.b00 0.832 E-b00 -0.688 E9 0.246 E.b01

Secant method for turning point:

4 0.199 E,b01 0.206 E.b01 -0.959 E,b00 0.281 E.b00 -0.136 E9 0.213 E-b01
4 0.596 E.b01 0.121 E.b01 -0.978 E.b00 0.205 E.b00 -0.195 E8 -0.118 E.b01
3 0.737 E.b01 0.783 E,b00 -0.744 E.b00 0.667 E.b00 -0.381 E7 -0.140 E-b00
3 0.722 E,b01 0.570 E,b00 0.944 E,b00 0.330 E,b00 0.115 E8 0.267 E-b00
3 0.740 E,b01 0.689 E-b00 0.381 E-b00 0.924 E.b00 0.148 E7 0.454 E-01
3 0.738 E.b01 0.770 E.b00 -0.675 E-b00 0.736 E.b00 -0.315 E7 -0.113 E-b00
3 0.741 E.b01 0.718 E-b00 -0.947 E-01 0.994 E.b00 -0.336 E6 -0.109 E-01
3 0.741 E,b01 0.710 E.b00 0.481 E-01 0.998 E.b00 0.171 E6 0.546 E-02
3 0.741 E,b01 0.713 E.b00 -0.412 E-03 0.999 E.b00 -0.145 E4 -0.469 E-04
3 0.741 E-b01 0.713 E.b00 0.979 E-06 0.999 E,b00 0.796 E1 0.112 E-06

accurately by the secant method on A as described in 3.7. Notice that convergence
is superlinear as the turning point is approached.

The third run (see Table 4.3) demonstrates the location of simple bifurcation
points and branch switching. The problem is the linear eigenvalue problem: -Au Au
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LEVEL 2
Number of

vertices 69

LEVEL 3
Number of

vertices 205

FIG. 4.3. Fine grids for Bratu’s problem: Au + Ae O.

with the Dirichlet boundary condition u 0 on the unit square in R2. The continuous
problem has bifurcation points at the eigenvalues of the Laplacian -A, i.e. (nTr)2+
(mTr)2 where n and m run through the natural numbers. Thus the first simple bifurcation
is near A =2r2 whereas the next simple bifurcation is near A =87r2. The second
eigenvalue of-A near 57r2 is a multiple one and does not correspond to a simple
bifurcation. We use PLTMGC to locate the second simple bifurcation point. The
coarsest grid used is illustrated in Fig. 4.4 which is fine enough to resolve this eigenvalue.
Starting from the trivial solution (u 0, A =0), the target value of A 25 is reached
in one step. Notice that the sign of the determinant has changed because we passed
the first bifurcation. Next we continue to the target value of A 80. This is past the
multiple eigenvalue near A 57r and notice that the determinant does not change
sign. At this point the bifurcation detection mechanism is switched on and the target
value of A 100 is specified, which is beyond the second simple bifurcation point.
Since the determinant changes sign this time, the bifurcation is detected and the secant
method for 8 described in 3.7 finds the bifurcation point in 4 steps. Then we switch
branches and continue to the target value of Ilull 1. The solution u here is the
normalized eigenfunction on the coarsest grid. To get better accuracy, we refine to 3
multigrid levels using 0 2 (constant Ilull), The grids generated are given in Fig. 4.5.
Notice that the eigenvalue A 79.7 on the finest grid is a rather good approximation
to the true value of A 87r2. A plot of the eigenfunction is given in Fig. 4.6.
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TABLE 4.3
Linear eigenvalue problem" -Au hu.

Continue from A 0 to A 25 then to A 80"

L NI A Ilull
0.000 E + 00 0.000 E + 00
0.250 E + 02 0.000 E + 00
0.800 E + 02 0.000 E + 00

,( det (Gu) 8
0.100 E+01 0.000 E+00 0.339 E35 0.304 E+00
0.100 E+01 0.000 E+00 -0.206 E32 -0.711 E-01
0.100 E+01 0.000 E+00 -0.329 E27 0.468 E+00

Continue to A 100, check sign of determinant:

0.100 E + 03 0.000 E+ 00 0.100 E + 01 0.000 E + 00 0.231 E25 0.174 E + 00

Determinant changes sign, find bifurcation point by secant method on 8

0.900 E +02 0.000 E +00 0.100 E +01 0.000 E +00
0.950 E+02 0.000 E+00 0.100 E+01 0.000 E+00
0.915 E+02 0.000 E+00 0.100 E+01 0.000 E+00
0.915 E +02 0.000 E +00 0.100 E +01 0.000 E +00

Switch branch"

0 0.915 E+02 0.000 E+00 0.000 E+00 0.100 E+01

Continue to target value u 1:

0.915 E+02 0.100 E+01

-0.599 E25 0.188 E-01
0.423 E25 -0.453 E- 01

-0.119 E21 0.884 E-06
0.124 E22 -0.591 E- 05

0.124 E22 -0.591 E- 05

0.348 E-04 0.100 E+01 -0.126 E21 0.446 E-06

Refine to 3 multigrid levels with 0--2 (constant Ilull):
2 3 0.813 E+02 0.100 E+01 0.196 E-03
3 3 0.797 E+02 0.100 E+01 0.248 E-03

0.100 E+01 -0.234 E27 0.402 E-06
0.100 E+01 -0.354 E27 0.263 E-06

A final example is for the problem:

-hu+10(u-heU)=0

on the unit square in R2 with homogeneous Neumann boundary conditions. This
problem has more complicated behaviour than the other examples and illustrates the
branch-switching capabilities of PLTMGC. There is a main branch of constant solutions
satisfying the scalar equation

u=he.

Number of
vertices 81

\\\\
\\\\
\\\\

\\\\
FIG. 4.4. Coarsest grid for -Au hu.
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LEVEL 2
Number of

vertices 425

LEVEL 3
Number of

vertices= 1105

FiG. 4.5. Find grids for -Au Au.

FIG. 4.6. 4th eigenfunction of-Au hu.
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0.10

FIG. 4.7. Bifurcation diagram for -Au + 10(u Ae u) --0.

On the upper part of this main branch, there is a symmetry breaking bifurcation point.
Moreover, on this secondary branch there is another symmetry breaking bifurcation
very close to the first bifurcation point. This part of the bifurcation diagram is shown
in Fig. 4.7 for the 5 by 5 grid shown in Fig. 4.2 where the continuation points used by
PLTMGC are also shown.

5. Extensions. Although the current version of PLTMGC is quite complete in
terms of its capabilities, we feel there are still some extensions that would enhance
the usability of the package.

First, it is possible that one may want to locate singular points accurately on the
finer meshes. This would appear to require a nontrivial computation on each level,
and could involve several strategies, e.g. varying 0 in Nr in an attempt to "hit" the
limit point, or perhaps the application of the bisection/secant method to )(cr)=0 or
6(tr) =0 directly on the finer meshes. This extension should be straightforward.

In our experience, the overall efficiency and robustness of the continuation pro-
cedure depends critically on the predictor. In fact, it is a little dissatisfying that the
current predictor, while surprisingly efficient and robust, is rather ad hoc. Our previous
attempts to provide a predictor/step picker with more theoretically justification [22]
did not seem to perform as well for PDE type problems.

Lastly, PLTMGC can only handle simple singular points. Extensions to higher
order singularities like multiple bifurcation, cusps and following paths of singular
points seem to be natural.
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NUMERICAL SOLUTIONS FOR FLOW IN A PARTIALLY FILLED,
ROTATING CYLINDER*

YIH-YIH LINer

Abstract. An efficient least-squares method with finite elements is used to simulate the viscous flow
with surface tension in a partially liquid-filled, horizontal, rotating cylinder. Mixed interpolations are used
for the method: the free boundary is interpolated by periodic cubic splines, the velocity by nine-node
isoparametric biquadratic elements, and the pressure by four-node isoparametric bilinear elements. The free
boundary is located by minimizing the sum of squares of the boundary residuals. Advantages of the method
over the often used collocation method are shown. Numerical solutions are validated to some extent by
comparing with results from perturbation methods and physical experiments.

Key words, free boundary, least squares, finite elements, periodic cubic splines
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1. Introduction. Flow in a partially filled, horizontal, rotating cylinder occurs in
various engineering applications, such as cream separators, liquid degassers, and
coating operation for pipes and tubes. The knowledge of the critical rotational speed
for stable flow, the shape of the interface, and the pressure and the velocity of the
liquid is a valuable aid to the designing engineer. In addition to its occurrence in
practical applications, this flow provides a simple, but nontrivial example in the study
of the complex flee-boundary flow phenomena.

Phillips [8], Karweit and Corrsin [5], Greenspan [2], and Whiting [10] made
observations and experiments on this flow. Phillips [8], Greenspan [2], Ruschak and
Scriven [9], and Gans 1 did theoretical investigations on this flow, using perturbation
analyses. It is clear from Whiting’s experiments [10] that accurate measurements on
this flow are difficult and expensive to obtain. The results of theoretical investigation
are valid only for the limiting cases in the perturbation analysis. Therefore, numerical
simulations provide a useful alternative to study this flow problem.

Orr and Scriven [7] made a first and successful attempt on the numerical simulation
of this flow. In their paper [7], same-order interpolations of cubic polynomials were
used for flow fields and the free boundary; the collocation method with residuals
computed from the normal-stress boundary condition, rather than the tangential-
velocity boundary condition, was used to locate the free boundary; the nodal points
were numbered in their natural order, and the arisen circulant finite-element matrix
was solved by the ordinary Gaussian elimination; and a mesh of 12 elements angularly
and 1 element radially was used with a CDC Cyber 74 main-flame computer. Although
the collocation method is convenient and often used for locating free boundaries, it
has some drawbacks: (1) The method cannot tell how to choose good sampling points
on the free boundary; the choice of Gaussian points as collocation points in Orr and
Scriven [7] was based on experience. (2) The method, requiring equal numbers of
unknowns and equations, necessarily forces an undertermined pressure constant in
the finite-element method to be associated with the constant-volume constraint, as in
Orr and Scriven [7]; such an association seems not to have a physical basis.

In this paper we present an efficient least-squares method with finite elements of
mixed-order interpolations to simulate the flow. We present computational experiments

* Received by the editors July 24, 1984, and in final form January 8, 1985. This work was partially
supported by the National Science Foundation under grant MCS 77-26732.

" Gearhart Industries, Inc., 2525 Wallingwood, Austin, Texas 78746.
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with Reynolds numbers as high as 1500 and with meshes as fine as 12 elements angularly
and 6 elements radially even though a minicomputer, the VAX 11/780, has been used.
We show that the choice of sampling points for locating the free boundary and the
determination of the pressure constant in the finite-element method follows naturally
from the least-squares method. We present numerical results that indicate the tangential-
velocity condition is as good as the normal-stress condition for locating the free
boundary. In addition, we compare our numerical solutions with solutions from both
physical experiments and a combined method of perturbation analysis and numerical
analysis to validate the numerical simulations.

2. Descriltion of the flow. The steady, two-dimensional, and incompressible flow
of a Newtonian liquid is considered. An infinitely long, hollow cylinder of radius Rc
partially filled with a liquid, of density p and viscosity/x, is spun about its axis with
constant rotational velocity, as shown in Fig. 1. The liquid is distributed over the solid
cylinder as a layer of thickness Re-F, whose free boundary F has a surface tension
tr. Inside the layer is a core of air at a uniform pressure Po. Under the action of gravity,
with acceleration constant G, the thickness of the layer varies around the cylinder.

The governing equations for the flow are the Navier-Stokes equations and the
continuity equation"

(1.1) V. (pVV+T)-pG 0, V. V=0,

where V is the velocity, and T is the stress tensor defined as

T PI-/x[VV+ (VV) r],

where P is the pressure, and I is the unit tensor. The flow domain is {(R, O)IF <= R <=
Rc, 0 <= 0 <-_ 27r}. On the solid boundary the no-slip boundary condition is satisfied; on
the free boundary the traction condition and the kinematic condition are satisfied. The
problem is nondimensionalized by

Po)/pto Rc, f F/Rc.r R/Rc, v V/toRc, p (P 2 2

The three dimensionless parameters are the Reynolds number Re, the Weber number
s, and the dimensionless gravity g defined as

2 2Re ptoR2c/ tz, s or Rc, g G/ to)-Rc.
The dimensionless stress "r is PI-IVy+ (Vv)T]/Re. Let be the downward vertical unit
vector, and n, t, and r be the unit normal, the unit tangent, and the curvature of the
free boundary, respectively. Also, let e and eo be the radial and the angular unit
vectors in the cylindrical polar coordinate system. The flow problem can then be put
in the following form:

Problem 1. Find f(O), v(r, 0) and p(r, O) such that

(1.2) V (w+z)+gj=0 inf(O)<=r<=l,

(1.3) V.v=0 in f(O) <- r<- l,

(1.4) v=e0 onr=l,

(1.5) n.v=0 onr=f(0),

(1.6) tn:,r=0 onr=f(0),

(1.7) nn:,r+tcs=0 onr=f(0),
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r dr dO Tr(1-f) O,

where fo is the average radius of the free boundary.
Equations (1.2) and (1.3) are the dimensionless governing equations. Condition

(1.4) is the no-slip boundary condition on the solid boundary. Condition (1.5) is the
kinematic condition, and conditions (1.6) and (1.7) are the traction conditions on the
free boundary. Equation (1.8) is the constant-volume constraint arising from the
incompressibility of the liquid.

3. The least-squares formulation for locating the free boundary. We will reformulate
Problem 1 as a least-squares problem. The residuals used in the least-squares formula-
tion can be computed from any of the three free boundary conditions (1.5), (1.6), and
(1.7). In order to simplify the study, we will use boundary conditions (1.5) and (1.7)
but not (1.6) to compute the residuals.

Let Rs(0; f, v, p) and H(f) denote the left-hand sides of (1.7) and (1.8) respectively.
Problem 1 can be restated as the following problem:

Problem 2. Find f, v, and p such that

Rs(O;f,v,p)=O

H(f) =0,

forO-< 0 =< 27r,

where v and p satisfy equations (1.2) and (1.3) and boundary conditions (1.4), (1.5),
and (1.6).

Clearly, Problem 2 is mathematically equivalent to the following problem"
Problem 3. Find f, v, and p such that

o"=R(O;f

v, p) dO=O for0<_-0<=2m

n(f) =0,

where v and p satisfy equations (1.2) and (1.3) and boundary conditions (1.4), (1.5),
and (1.6).

By a quadrature rule the integral in Problem 3 can be approximated by
M wiR](Oi; f, v, p). Let the free boundary be approximated by the n-parameter familyEi=l

of curves F(y), y= (Yl,’’’, Y,). Then, Problem 3 can be solved numerically as a
weighted least-squares problem with a constraint. Replacing the constraint by a penalty
function, we can approximate Problem 3 numerically by the following problem:

Problem 4. Find y such that the following sum of squares is minimized:
M

Is E wiR2s( O; y, v, p) + kH2(y),
i=1

where k is a positive number, and where v and p satisfy equations (1.2) and. (1.3) and
boundary conditions (1.4), (1.5), and (1.6).

Problem 1 has been approximated by Problem 4, which is a least-squares problem.
Similarly, let Rv(O;f, v, p) denote the left-hand sides of (1.5). Then, Problem 1 can
also be restated as the following problem:

Problem 5. Find y such that the following sum of squares is minimized:

M

Iv Z w,R2o(O; Y, v, p)+ kn2(y),
i=1
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where k is a positive number, and where v and p satisfy equations (1.2) and (1.3) and
boundary conditions (1.4), (1.6), and (1.7).

Problem 4 is the normal-stress-residual scheme, and Problem 5 is the tangential-
velocity-residual scheme. In the present computation, the 3-point Gaussian quadrature
rule was used to approximate the integral; the classical Gauss-Newton method was
used to solve the nonlinear least-squares Problems 4 and 5. This least-squares
formulation has some advantages over the previous collocation formulation of Orr
and Scriven [7]:

(1) The problem of deciding the pressure constant in the finite-element method
is readily solved. To solve Problem 4 or 5 numerically, a series of fixed-boundary-value
problems for the flow field must be solved. Because the essential boundary condition
(1.7) is deleted from the fixed-boundary-value problems in Problem 4, the pressure is
determined only up to a constant when these problems are solved. To be consistent
with the least-squares formulatation, we propose to determine the pressure constant
as the one that minimizes the sum of squares Is. Since the sum of squares Is is a
quadratic function of p, this pressure constant is easily computed.

(2) The choice ofgood sampling points, where residuals are computed, is apparent.
In the present formulation, the sampling points are naturally determined by the
quadrature rule used. Moreover, the better the quadrature approximates the integral,
the better the present formulation approximates Problem 1. Here the Gaussian points
are obviously a good choice as they lead to a good approximation of the integral.

4. Solutions to fixed-boundary-value problems and representation of the free boun-
dary. To solve Problem 4, one needs to solve a series of fixed-boundary-value problems
governed by the full steady-state Navier-Stokes equations. They can be solved by
either the finite-element method or the finite-difference method. The finite-element
method was used since it was easier to program the finite-element method than to
program the finite-difference method for a series ofsuch problems with varying domains.

The Galerkin finite-element method was used with the primitive velocity-pressure
formulation. The well-known mixed interpolation elements of Hood and Taylor [3]
for hydrodynamic problems was used. These elements are conforming isoparametric
quadrilaterals with nine-node biquadratic interpolation for the velocity and conforming
isoparametric quadrilaterals with four-node interpolation for the pressure. The weigh-
ted residual integrals resulting from the Galerkin formulation were evaluated numeri-
cally by the 3 by 3 Gaussian rule. The Newton-Raphson method was used to solve
the nonlinear equations arising from the weighted residual integrals. The continuity
of such elements is one-order higher than the required minimal CO continuity in the
weighted residual integrals.

Hood and Taylor [3] have shown that a mixed-order interpolation is at least as
good as a same-order interpolation. Orr and Scriven [7] used a same-order interpolation
with cubic Hermite functions to interpolate both the velocity and the pressure. By
doing so, they probably used more storage than the method used here without gaining
more accuracy in solving the fixed boundary problem.

Because of the circular structure of the flow domain, a straightforward method
of numbering the finite-element nodes, as in Orr and Scriven [7], generates a circulant
finite-element Jacobian matrix. The application of the ordinary Gaussian elimination
to invert such a circulant matrix requires full-matrix storage. One way to avoid such
full-matrix storage requirement is to use Iron’s [4] frontal solution. Instead, we made
the Jacobian matrix to be a true band matrix by dividing the domain uniformly in the
0 direction and numbering the nodes along the radius up and down as shown in
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8

22

FIG. 1. Flow in a horizontal rotating cylinder. A finite-element mesh is sketched.

Fig. 1. This numbering method allowed us to apply an ordinary band solver to efficiently
solve the finite-element matrix.

The weighted residual integrals involve both the governing equations and the
boundary conditions. Since the boundary condition (1.7) involves the curvature of the
free boundary, any valid free boundary representation must be continuous at least up
to the first derivative. For consistency with the elements which were used, whose
continuity is one-order higher than the minimal requirement, we used the periodic
cubic spline functions, whose continuity is one-order higher than the required C
continuity, to represent the free boundary. In analogy with Hood and Taylor’s [3]
reasoning, this consistency of orders of continuity among the elements and the free-
boundary representation should be a prerequisite for any efficient numerical scheme.

5. A combined method of perturbation analysis and numerical analysis. When the
gravity parameter is small and the Reynolds number is low, a combination of perturba-
tion analysis and numerical analysis can be used to generate numerical solutions for
Problem 1. Solutions from such a combined method can then be compared against
the solutions from the least-squares method. The combined method is described below.

When g is zero, Problem 1 admits a simple solution, known as the rigid-body
rotation solution:

f(O) =fo,

(5.1) v= reo,

p (r2-f)/2 s/fo.

Let the r and the 0 components of the velocity v be u and v. From (5.1) the solution
to Problem 1 with small gravity is

(5.2) u=ga+O(g:),

(5.3) v=r+g+O(g2),
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(5.4) p (r2-f)/2 s/fo + gff + O(g2),

(5.5) f fo+ gf+ O(g2),

where , 3,/, and f are to be determined.
Substituting the solution (5.2)-(5.5) into equations (1.2)-(1.3) and the boundary

conditions (1.4)-(1.7), and then setting the coefficients of g term to zero, we obtain
that for f =< r <_- 1,

(5.6) io+/5-25= Vi r 5] Re-sin0,

( )/(5.7) 2 t7 + 5o +/30/ r V23
v

2tT0 Re cos 0,
r2
+

(.8)

and on r=f,

(5.9)

(5.10)

(5.11)

(r)r+ o --0,

a-fo =0,

f)(fof+ if- 2tTr/Re) s(f+foo) O,

fo+o =0.

From (1.4) we obtain that on r 1,

(5.12) u=O, v=l.

It follows from (5.6)-(5.8) that we can represent a, 7, p, and f as

(5.13) a a(r) cos O+ b(r) sin O,

(5.14) 5= (rb(r))’ cos O-(ra(r))’ sin O,

(5.15) /= c(r) cos O+ d(r) sin O,

(5.16) f=f cos O+f2 sin 0,

where the prime indicates the derivative with respect to r, and where the functions
a(r), b(r), c(r), and d(r), and the constants f and f2 are to be determined.

Substituting (5.13)-(5.16) into equations (5.6)-(5.8), and then setting the
coefficients of the cos 0 and the sin 0 terms to zero, we obtain a system of ordinary
differential equations

a + 2ra’ + d’= (b"+ 3b’/r)/Re 1,

b + 2rb’- c’= -(a"+ 3a’/r)/Re,
(5.17)

a ra’+ d/r- (rb’" + 4b")/Re- 1,

b rb’- c/r -( ra’" + 4a")/Re.

From (5.13)-(5.16) and the boundary conditions (5.9)-(5.12), we obtain the following
conditions

a(1)=0, b(1)-0, a’(1)=0, b’(1)=0,

fob(fo) + 2a’(fo)/Re- c(fo) O,

(5.18) foa(fo)+Zb’(fo)/Re+d(fo)=O,

fob"(fo) + b’(fo) O,

foa"(fo)+a’(fo)=O,
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and

(5.19)
f2 a(f)’

A (fo).

The differential equations (5.17) can be transformed to a system of eight first-order
differential equations; this system of first-order differential equations together with the
eight boundary conditions of (5.18) can be solved by the standard shooting method.

6. Results. Numerical experiments for the least-square method and the combined
method of perturbation analysis and numerical analysis were carried on a VAX 11/780.
All computations reported here used single precision arithmetic, which is 32 bits on
the VAX 11/780.

Numerical experiments for the convergence behavior of the finite-element method
were performed for the case of zero gravity; the results were used to guide our choice
of meshes in the least-squares method. The results indicated that a radial refinement
of meshes was more effective than a circumferential refinement in reducing error in
the finite-element method; and that a mesh with its grid size radially proportional to
the r-coordinate was better than a uniform mesh or a mesh with the size proportional
to the square of the r-coordinate. Such convergence behavior was not unexpected since
for the rigid-body rotation solution dr e0 and dr 0. Consequently, meshes
with their radial sizes proportional to their r-coordinates and with uniform angular
sizes were used in the least-squares method. Meshes of 12 elements angularly and
either 4 or 6 elements radially were used.

The stopping criterion for the least-squares method was that the error between
two consecutive free surface iterates was less than a number between 10-4 and 10-2,
depending on the Reynolds number. The stopping criterion for the finite-element
method was that the errors between two consecutive velocity iterates and two consecu-
tive pressure iterates were less than 10-4 and 10-3, respectively. The routine DTPTB
of the IMSL library was used to solve the ordinary differential equations arising from
the combined method of numerical analysis and perturbation analysis.

6.1. Normal-stress-residual scheme vs. tangential-velocity-residual scheme. There is
some controversy over whether a normal-stress-residual scheme or a tangential-velocity-
residual scheme in a collocation method or a least-square method is better. Orr and
Scriven [7] thought that a scheme correcting on a less accurately known boundary
condition was better than a scheme correcting on a more accurately known boundary
condition. Since the normal-stress boundary condition depends on the curvature of
the surface, it is less accurately known than the kinematic boundary condition. Accord-
ingly, Orr and Scriven [7] used the normal-stress-residual scheme, which they thought
was better than the tangential-velocity-residual scheme. However, we argue for the
opposite by pointing out that correcting on a less accurately known quantity necessarily
gives greater error than does correcting on a more accurately known quantity. The two
schemes perhaps have the same order of accuracy. Numerical experiments for Re 1,
g 1, f0 0.5, and s 0.1, 1, and 10 showed that with a mesh of 12 elements angularly
and 4 elements radially, and an convergence criterion of 5 x 10-4 on the free-boundary
location, solutions from both schemes (Problems 4 and 5 in 3) agreed to the third
digit in the free-boundary location and the velocity. Moreover, they took almost the
same computational time. Thus the two methods seem to be equally good. The
velocity-tangential-residual scheme (Problem 4 in 3) was used as the primary computa-
tional scheme of the least-squares method.
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6.2. The least-squares method vs. the combined method. The combined method of
the perturbation analysis and numerical analysis is applicable when the gravity para-
meter is small. The least-squares method is, in principle, applicable to problems with
an arbitrary gravity parameter. Various numerical experiments were done to compare
solutions from the least-squares method and the combined method of perturbation
analysis and numerical analysis; for a detailed tabulation of these comparisons, see
Lin [6]. For a problem with small Reynolds number and gravity not greater than 0.1,
solutions from the two methods agreed to the fourth digit; they agreed to the third
digit if the Reynolds number was increased to 100. These results indicate that both
methods are correct. For Reynolds numbers as high as 1500, solutions from the two
methods agreed to the second digit in the free-boundary location; however, the velocity
and the pressure did not agree at all, with the greatest deviations occurring near the
free and the solid boundaries. This phenomenon can be attributed to the existence of
boundary layers there.

6.3. The present results vs. previous experimental results. Whiting [10] made
detailed measurements on the flow. After several observations, Whiting 10] made the
assumption that the free boundary was approximately an ellipse. He then measured
five quantities: the vertical and the horizontal displacements of the center of the air
core from the axis of the cylinder; the changes in the length of the two axes from the
radius f0; and the retrograde rotation, which is defined to be (to- tof)/to, where tof is
the average rotational velocity of particles on the free boundary.

The vertical displacements of the air core in solutions from the least-squares
method agreed well with those measured by Whiting [10] as shown in Fig. 2. The
directions of the horizontal displacement of the air core agreed although their magni-
tudes disagreed. The retrograde rotations were found in solutions from the least-squares
method with magnitudes much greater than Whiting’s.

One possible source of disagreement was that the mesh used in the least-squares
method was not fine enough. Flows used by Whiting [10] had high Reynolds numbers
and hence had boundary layers near the solid and the free boundaries. A finer mesh
for the least-squares method than the mesh used here is possibly needed to resolve
the boundary layers.

(I-fo
2

El2

’,, 1

F. 2. Vertical displacement of air core. Solid line: Phillips; V: Whiting; : The least-squares method.
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6.4. Present results vs. previous theoretical results. The vertical displacements of
the air core in solutions from the least-squares method agreed well with those predicted
by Phillips’ [8] perturbation analysis of inviscid liquids as shown in Fig. 2. Results
of numerical experiments with the least-squares method were consistent with Phillips’
[8] stability criterion, which was a critical rotational velocity below which the flow
became unstable and collapsed. For example, Phillips’ [8] stability criterion gave a
critical value of 28.9 rad/sec for a cylinder of radius 7.88 cm, filled to 0.447 of the total
volume with a liquid of viscosity 1.4 cm2/sec, surface tension 72 dynes/cm and density
0.998 g/cm3, which was used by Whiting [10]. For this flow the least-squares method
diverged when the rotational velocity was 28 rad/sec. Moreover, the stopping criterion
had to be increased and the accuracy of the method decreased as the rotational velocity
decreased from 45 to 29 rad/sec.

6.5. Present results vs. previous numerical results. For g 1, Re= 1, s 1, and

fo =0.5, solutions from the least-squares method and the collocation method of Orr
and Scriven [7] agreed to the third digit in the free-boundary condition, and to the
second digit in the velocity and the pressure.

6.6. Sample solutions. A series of solutions with the rotational velocity con-
tinuously changed was obtained from the least-squares method for the flow described
in 6.4, which was used by Whiting [10]. The solutions were represented vividly in
color pictures with red arrows representing the velocity and changing blue colors and
intensities representing the pressures; see Lin [6] for these color pictures. Table 1

TABLE
Numerical solution at the corner nodes of elements for theflow used by Whiting 10]

with a rotating speed of 40 tad sec.

0 u v p

0.00000 0.44564 -0.04336 0.36947 -0.00134
0.54543 -0.01341 0.50045 0.04004
0.66756 -0.01322 0.63548 0.09644
0.81704 0.00870 0.80690 0.19757
1.00000 0.00000 1.00000 0.34684

0.52360 0.42217 -0.01731 0.33054 -0.00456
0.52373 -0.00203 0.47341 0.02273
0.64974 -0.00905 0.61053 0.07470
0.80607 0.00469 0.77602 0.16260
1.00000 0.00000 1.00000 0.31612

1.04720 0.41414 -0.02171 0.32365 -0.00119
0.51625 -0.01505 0.42302 0.01952
0.64354 0.01037 0.58417 0.06425
0.80221 -0.00435 0.76761 0.14456
1.00000 0.00000 1.00000 0.291293

1.57080 0.40512 0.00436 0.27186 -0.00355
0.50779 -0.01188 0.41105 0.01411
0.63649 -0.00173 0.58294 0.05576
0.79780 -0.00541 0.76522 0.13413
1.00000 0.00000 1.00000 0.28077

2.09440 0.41574 0.01021 0.27767 -0.00329
0.51774 -0.00768 0.42568 0.02124
0.64478 0.00431 0.58961 0.06285
0.80298 -0.00493 0.77298 0.14665
1.00000 0.00000 1.00000 0.29018
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TABLE 1--(cont.)

0 r u v p

2.61799 0.43015 0.02358 0.31056 -0.00390
0.53115 0.00144 0.45557 0.02824
0.65586 0.00918 0.61074 0.07550
0.80985 -0.00546 0.78185 0.16818
1.00000 0.00000 1.00000 0.31368

3.14156 0.45156 0.02563 0.36175 -0.00370
0.55086 0.00381 0.48922 0.04180
0.67198 0.00864 0.63366 0.09606
0.81975 -0.00875 0.79580 0.20109
1.00000 0.00000 1.00000 0.34642

3.66519 0.46925 0.02269 0.40556 -0.00344
0.56696 0.00025 0.51777 0.05212
0.68502 0.00515 0.65863 0.11438
0.82766 -0.01145 0.81235 0.23077
1.00000 0.00000 1.00000 0.37570

4.18879 0.48171 0.01267 0.42112 -0.00382
0.57822 -0.00574 0.53964 0.06183
0.69406 -0.00066 0.67676 0.12841
0.83310 -0.00924 0.83007 0.25413
1.00000 0.00000 1.00000 0.39706

4.71239 0.48322 -0.00063 0.40673 -0.00426
0.57957 -0.01345 0.54790 0.06424
0.69514 -0.00232 0.69179 0.13256
0.83375 -0.00056 0.84228 0.26057
1.00000 0.00000 1.00000 0.40389

5.23599 0.47308 -0.00952 0.38440 -0.00510
0.57042 -0.00617 0.56520 0.06008
0.68780 -0.00335 0.67986 0.12488
0.82943 0.00671 0.83443 0.25030
1.00000 0.00000 1.00000 0.39900

5.75959 0.46303 -0.02120 0.41937 -0.00345
0.56131 -0.00581 0.53606 0.05129
0.68046 -0.01070 0.65879 0.11449
0.82490 0.00658 0.81910 0.22835
1.00000 0.00000 1.00000 0.37747

The c

FIG. 3. Simulatedfree surface locations of theflow used by Whiting 10] with rotating speed of 30 rad/ sec
(the solid curve) and 50 rad/ sec (the dash curve), respectively.
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shows the numerical solution at the corner nodes of elements for this flow with a
rotational velocity of 40 rad/sec. Figure 3 shows the computed free boundary locations
for this flow with rotational velocity of 30 and 50 rad/sec, respectively; that the air
core drops downward as the rotational velocity becomes slow is evident here.

6.7. Timing and storage. The computing time for the least-squares method depen-
ded on the closeness of the initial solution. Using a mesh of 12 elements angularly
and 4 elements radially and the rigid-body solution as the initial solution, for Re 1,
g 0.1, f 0.5, s 1, the least-squares method required 40 fixed-boundary-value prob-
lems to be computed, and each fixed-boundary-value problem required abgut 300 CPU
seconds on the VAX 11/780. For such a problem, 544,000 bytes were required.

7. Conclusion. In this paper we have demonstrated the capabilities of the least-
square method with finite elements of mixed-order interpolations for solving a free-
boundary problem governed by Navier-Stokes equations with a minicomputer. We
have established the correctness of this method to some degree by comparing its
solutions with solutions from perturbation methods and physical experiments. The
approach presented here can also be applied to other free-boundary problems to obtain
useful information about the complex free-boundary flow phenomena.
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APPLICATION OF THE LIMITING AMPLITUDE PRINCIPLE
TO ELASTODYNAMIC SCATFERING PROBLEMS*

C. L. SCANDRETTf, G. A. KRIEGSMANN’ AND J. D. ACHENBACH

Abstract. A technique for numerically solving the two-dimensional time harmonic equations of elastody-
namics on exterior domains is presented. The method is based on the numerical realization of the limiting
amplitude principle and on the construction of a modified boundary condition at "infinity". The technique
is tested on two model problems: the scattering of a plane wave off a circular void and a straight crack.
The results agree well with those obtained by other numerical methods.

Key words, elastodynamic waves, finite differences, numerical methods, nonreflecting boundary condi-
tions, limiting amplitude principle

1. Introduction. The scattering of time harmonic elastic waves off compact targets
is an important physical phenomenon in several branches of applied science. Examples
include geophysical applications in exploratory seismology and defect characterization
in nondestructive testing.

Historically, these problems have been solved by three classes of techniques. The
first is analytical in character and usually depends on special geometric properties of
the target. Modal expansions or transform methods are used to obtain the mathematical
solution [1]. The second class of techniques is asymptotic in nature. These include
Born or Rayleigh approximations, which are valid when the target is a slight perturba-
tion in a uniform elastic host or when the wavelength of the impinging wave is large
compared to the target, respectively. Also contained in this class are high frequency
[2], [3] methods which are extensions of geometrical optics. These are valid when the
wavelength of the incident radiation is small compared to the target’s size.

The third class is numerical in nature. It contains boundary integral equations
and their variants as well as the T-matrix method. It also includes those methods which
directly discretize the equations. These are the finite difference and finite element
methods. All of these methods require matrix inversions and become inefficient in
certain limits. The later two techniques require artificial boundary conditions to render
a finite numerical domain and a finite matrix problem.

The method for solving two-dimensional time harmonic scattering problems pres-
ented here is an extension of a relaxation scheme used to solve the Helmholz equation
[4]. The same methodology has also been used to solve scattering problems in acoustics,
electromagnetics [24], and hydrodynamics. (See I-5] for a bibliography.) The basic
technique is a numerical realization of the limiting amplitude principal [6]. This
principle asserts that a linear elastic medium which contains a localized target will,
upon excitation by a time harmonic force of frequency to, evolve to a time harmonic
state of the same frequency. This is physically evident as long as there are no bound
or trapped eigenstates where energy can be stored. This is the case for the problems
considered here. The method then is to numerically solve the time dependent equations
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of elastodynamics with the proper time harmonic input corresponding to a given
incident wave. This is done by an explicit finite difference scheme which marches the
solution forward in time until a time harmonic response is obtained.

As mentioned earlier, the use of finite difference schemes on infinite domains
necessitates the introduction of an artificial boundary. This makes the system of finite
difference equations bounded but requires special handling of the solution at the
artificial boundary. In some early work on pulse problems [7]-[ 12] the schemes halted
when spurious reflections from the artificial boundary begin to contaminate the numeri-
cal results at points under consideration. This method is not applicable when time
harmonic solutions are sought because the transients involved are not pulse like in
nature. Other techniques used to handle the artificial boundary for transient problems
include the addition of viscous damping at the boundary to reduce spurious reflections
[13] and the addition of the solutions of two nonphysical boundary value problems
which cancel any reflected waves 14]. The first method eliminates reflected compress-
ional waves well but is not so complete in its elimination of reflected shear waves.
The second method is inefficient as it requires the solution of at least six Cauchy
problems.

A sequence of artificial boundary conditions were developed by Engquist and
Majda to overcome many of these difficulties [15]. These conditions are local in
character, as they involve radial, tangential, and temporal derivatives of the displace-
ments, and are applied at a fixed finite boundary (r- Rb o3). The analysis used to
derive these conditions is based on operator splitting which finds its mathematical
justification in the theory ofpseudo-differential operators. In this paper a new derivation
of their second order boundary operator is given. It is based on the far field behaviors
of the scattered longitudinal and shear waves and is an extension of the development
given in references [4] and [16]. In addition, this approach gives a technique which
determines the differential scattering cross sections to O(R2). This result is an
extension ofthe one given by Kriegsmann and Morawetz [4] for the Helmholtz equation.

The viability of the numerical method is demonstrated in this paper by considering
two fundamental scattering problems. The first is the scattering of an incident plane
compressional wave off a circular void. The results are shown to compare quite well
with those of a normal mode analysis even for moderately high frequencies. The second
problem is the scattering of the same incident wave off a crack. The results are shown
to compare favorably with those obtained from a singular integral equation method.
These matters are carefully laid out in 5.

The remainder of the paper will now be outlined. Section 2 contains the statement
of the general two-dimensional scattering problem and a discussion of the limiting
amplitude principle. It also contains the time dependent problem which is to be solved
numerically. The artificial boundary condition and an asymptotic approximation of
the compressional and shear displacements at infinity are presented in 3. The finite
difference scheme, the differencing of the artificial boundary conditions, and the
discretizations of the traction free surface conditions on the target are defined and
discussed in 4. Relationships between the various physical and numerical parameters,
which insure stability, are described.

2. Formulation. The problem considered is that of two-dimensional (plane strain)
scattering from a compact target in an isotropic, homogeneous medium. The medium
is described by the Lam6 constants A and/x and the density p. The target is either a
void or a crack. A time harmonic incident wave with frequency to impinges upon the
target and scatters from it. (See Fig. 1.)-In the region exterior to the target the scattering
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FIG. 1. Geometry of the scattering problem.

process is described by the vector wave equation [17]

(2.1) Lu" V2u" + + VV. + u 0,

where

a=o.,a/c,, 13=a,a/cr, CL=[(A+21J,)/p] 1/2, CT=(tX/p) 1/:z,
ur is the total dimensionless displacement vector, and a is a characteristic length of
the scatterer. Equation (2.1) is dimensionless. The spatial variables and displacement
vector are all scaled with respect to a, while the time variable is scaled with respect
to co. Since the target is either a void or a crack, traction free boundary conditions are
imposed on its boundary S. That is,

(2.2) r
7"ij n =0

r is the total stress tensor and n is the outward pointing normal of S.where r
The total displacement vector ur is split into two parts

(2.3) ur=u +u

where u is the scattered displacement and u is the incident wave which is taken as

(2.4) u-= (1, 0, 0) e i’x.

This is a plane compressional wave which travels in the positive x direction. It gives
rise to an incident stress tensor with components

(2.5a) ’,,x= ia(h +2/x) _icx
e

=-- iaA ix(2.5b) ryy e

-0(2.5c) zxy

which for convenience are written in rectangular coordinates.
Inserting (2.3) and (2.4) into (2.1) it is evident that the scattered displacement

vector satisfies (2.1). That is,

(2.6a) Lu=0.
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Decomposing the total stress tensor into the sum of an incident r and scattered
component % and using (2.5), it is clear that

(2.6b) ’r n =- "r ij nj

on the surface S. Since the region D, which is exterior to S, is infinite in extent, u must
have the asymptotic representation [17]

e iotr e iflr

(2.6c) u aO-r+ bo

as r--/x+y->. The scattering problem is solved when the solution to (2.6) is
obtained.

The time dependent problem

(2.7a) (L- 1)U=

(2.7b) U U,-= 0, 0, (x, y) D

subject to the boundary conditions

(2.7c) Tn --n e-"
and the asymptotic representation

e i(ar-t e i(13r-t

(2.7d) U’--Ao /-+Bo /
r

will now be considered. The -/ in (2.7c) are defined in (2.5) and the time dependent
stress tensor To is related to U in the usual fashion [17]. The limiting amplitude
principle applied to (2.7) asserts that in certain situations U approaches the time
periodic state"

(2.8) U-> q(x, y) e-"
as becomes large [4]-[6]. It follows from inserting (2.8) into (2.7) and comparing
the resulting equations for (2.6) that u =-q, Ao ao, and Bo bo as long as the solution
of the scattering problem is unique.

The applicability of the limiting amplitude principle and the uniqueness of u are
equivalent facts when no trapped modes are present. These states are given by

(2.9) U= eVtt(x, y)

where y is positive and is a solution of

(2.10a) L (y2+ 1)0, (x,y)D

(2.10b) Ton 0 on S

and

(2.10c) - 0 (exponentially), r

In (2.10b) the stress tensor Tg is related to the displacement vector in the usual
manner. In 3 of this paper a differential statement of (2.7d) (and (2.6c)) will be
derived. It is similar in nature to the Sommerfeld radiation condition for scalar
Helmholtz equations. What is important here is the fact that the solution e’ will
automatically satisfy this radiation condition because of (2.10c). Clearly a solution of
this type would prove disastrous in any numerical solution of (2.7). Luckily, no such
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bound states are possible. This is proved in Appendix A. Thus, the solution of (2.7)
approaches the solution of (2.6). This fact is exploited in the numerical method
presented in 4.

3. Development of boundary conditions and scattering cross-sections. Since the
scattered displacement vector U behaves like the sum of two outgoing cylindrical waves
(one shear and the other compressional), polar coordinates (r, 0) will now be used.
In addition, it is analytically useful to express U in terms of its radial displacement U
and its angular displacement V. These displacements may be written in terms of two
potential functions as follows [17]:

(3.1a, b) U=--+-n01 0g V-1 0th 0g

Or r O0 r O0 Or’

where 4’ and , satisfy the two wave equations:

(3.2a, b) V: a20: V 20:g/
Or2, d/= fl Ot2

The time dependent Sommerfeld radiation conditions for b and q, are:

(3.3a)
04,

t- 4’ + a
04,

O(r-2) as r--> oo,
Or -r Ot

1 o,0+_’+ O(r-:) as r--> oo.(3.3b)
Or 2r fl-

As b and g are smoothly varying functions of r, as required by the wave equations
they satisfy, one may differentiate equations (3.3) with respect to r without affecting
the order of their accuracy. Then, equations (3.3) become

(3.4a) r -0; + + ct O(r-:)Or: Or Ot

1 O,+O:4,+fl 02, O(r_2)(3.4b) 2- 0---; Or2 Or Ot
as r--> .

The above equations for the potentials can be written in terms of the displacements
and combined to produce the following two conditions on the scattered displacements:

(3.5a)
1 u+OU OU fl-aOV+o+-- O(r-),
2r Or at fir O0

1 or+ aV fl-a aU
(3.5b) V+

Or --+ ar +--=00 O(r-2)"

The nonreflecting boundary conditions used in the numerical scheme described
in 4, are obtained from equations (3.5a) and (3.5b) by setting the right-hand side
equal to zero at r- Rb oo. The artificial boundary at r Rb yields a finite computa-
tional domain but causes a truncation error of O(R2). Conditions similar to (3.5) are
given in rectangular coordinates by Engquist and Majda [15]. An extension of their
calculation to cylindrical coordinates gives (3.5) when terms of O(r-2) are neglected.

Although the present paper contains the results for two-dimensional problems,
the previous analysis is easily extended to three dimensions. For completeness the
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results are

OU 1 OU
(3.6a) +-U+a+cot OVq

Or r O fir
fl-a OV fl-a OW
+ O(r-),

fir O0 flr sin O 0b

(3.6b)
OV 1

fl OV+fl-a OU O(r_2)+-V+
Or r Ot ar O0

OW 1 OW -o OU
(3.6c) +-w+/3 O(r-2),

Or r Ot r sin 0

where (U, V, W) are displacements in the r, 0 and b directions respectively and r is
x/x2 + y2 + z2.

The scattering cross section of an obstacle is taken here to mean the far field
amplitudes of the scattered shear and compressional displacements as functions of 0.
These will be found by using similar reasoning as above. Assuming a time harmonic
solution proportional to e-it the wave equations (3.2) become the reduced equations

(3.7a, b) V2b -" O2( 0, V21] ..2 0.

Taken individually, for a finite scatterer, the far field solutions to the above equations
resemble that of the fundamental solution for the Helmholtz equation. Considering
the two-dimensional case and writing the scattered potentials in an asymptotic form
we have

(3.8a)

(3.8b)

where

(3.9a)

p,wl(r, O) eiar-itl,v/,
,---w(r, O) e’’-"lU-,

AI(O)
w=Ao(O)+ +"

r

(0)+..(3.9b) w2=Bo(O)+
r

Substituting (3.8)-(3.9) into the relationships (3.1) between potentials and dis-
placements, the radial (compressional) displacement scattering cross section is found
to be iaAo(O) while the tangential (shear) displacement cross section is -iflBo(O). That
is,

(3.10a) U--- iaAo(O)

(3.10b) V.-- -iflBo( O) e"g//-
as r . Therefore it remains only to find expressions for Ao and Bo.

From equations (3.1) and (3.7) the potentials may be written in terms of the
displacements as follows:

(3.11a) l V)_l(Ot +l +(--- Ol2k Or r r -(3.11b) I(OV+I 1

O=B2\Or r
V--r-"

A derivation of the cross section for an acoustic wave is given in [4]. This result
is directly applicable to (3.8)-(3.9) andwill not be repeated here. The formulae using
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the present notation are

icer
(3.12a) v/ 1 +

8(1 + c2r2)

iflr(3.12b) x/ 1 +8(1+ f12r2)

i__ r__ 02 }2( 1 + a 2 r2) 0-= b Ao(0) + O(a -2r-2),

iflr 02 }2( 1 q[2r2) -2 I Bo(O) + O(fl --2 r-2).

Eliminating the potentials from equation (3.12) using (3.11) the scattering cross
sections are given by

1 t9 vl/] -2 r-2)U+l u+- + O(aiaAo(O)= L,(a) k--r r r -(3.13a)

[OV+ 1 V_I OU] _r_)flBo O L, fl L--r - - - + O fl(3.13b)

where the operator L.(c) is defined by

c 8(1+cr2) 2(12r2)
As mentioned in [4], for large values of the input frequency (consequently large

values of c and/3), problems with convergence arise. This is due to the approximation
used for the radiation boundary condition, which is in turn used in the derivation of
the above relationship for the scattering cross section.

The method for determining iaAo and -iflBo, used in the numerical scheme
described in 4, is now evident. Equations (3.13a, b) will be evaluated at r= Rb and
the O terms will be neglected. This will cause an error of O(R) which is consistent
with the error generated by the nonreflecting boundary conditions (3.Sa)-(3.Sb).

4. The numerical scheme. A finite difference scheme for solving the time dependent
scattering problem (2.7) is now presented. Equation (2.7a) is replaced by a system of
centered difference equations which are accurate to second order in spatial and temporal
step sizes. Prior to each iteration of the scheme, displacements at each grid point of
the numerical domain must be provided at two consecutive time steps. (These values
are initially zero because of (2.7b).) From these known displacements, the diplacements
at the succeeding time step are evaluated explicitly from the centered difference form
of (2.7a). The differenced form of (2.7a) in rectangular and polar coordinates may be
found in many references, see e.g. 18].

At the boundaries of the numerical grid the equation of motion either does not
suffice, or would be incorrectly applied to find displacements at a succeeding time
step. Therefore, the boundaries require special treatments.

The method used in this paper for differencing the free surface conditions (2.7c)
is similar to that developed by Ilan and Loewenthal [19]. This technique was used in
differencing the displacement component normal to the free surface while the "com-
posed" method of Ilan, Ungar, and Alterman [12] was employed for the tangential
component. For the problem studied here it was found that using Ilan and Loewenthal’s
method for both components of displacement produced more rapidly converging
solutions than a combination of the two methods.

Since the difference equations used at the free surface S are dependent upon the
shape of the target, only two cases will be listed here. These correspond to the bench
mark problems discussed in 5. The first target is a circular void of radius one. If U
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and V denote the radial and angular displacements respectively, then the equations are

l,j UI,j "+" a2Ar 1 + U2,

+ 2+ a2 -l+rr 1-4 -(Ar)2 ---2j U,j

(at)2
(4.1) + fl2(A0)( Ud+l + Uj_,)

+(2a2aO -1+ 1-4 +2a0 -1+ (Vd+,-VJ_,)

1 ((At)
2

2ArAO a
(A/)2 2(At)2(’rlrr132 / (V2j+,- Vj_,) + fl2Ar \/*

(4.2)

n-, (At)2 ( rr)1,; V1,; +/3Ar 1 + V,j

+ 2+ -1
/3 Ar (Ar)2 c2(A0)2j Vl,j

(At)2

-1t- V,j+ q" V,j-1a2(zXO)2

+(2aOc,2 --;r +2t2aO +rr
+2ara----- S /3- (u,+,- U,_,)-2(At)

/3azxr r=l

e_it

where the subscripts and superscripts of Ui"d mean that U is evaluated at r=
1 +(i-1)At, O=j AO, t= n At. The stress components rrr and zo are obtained from
(2.4)-(2.5). They are

(4.3a) + 1 + cos 20 e i" o,

1
(4.3b) rr[ ia sin 20e’cs

The second target is a crack located on the x-axis between +1. If Ux and Uy
denote the horizontal vertical displacements, then the difference equations modelling
this traction free surface are given by

n--1 (,,,j,r U,,j,r+ 2-
2(At)- 2(At): )ot2(Ax)2-:(Ay) U"xj,r+

2(At)2

fl2(Ay)2

(At)2

(ax) u,+,,+

(3(At) (__. t)+ \2Xx"y/3 2Ax Aya-] U,j+,,r
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(4.4a) + 2AxAyaZ-2AxAy]
2(At)2

-i,

2Ay/z rxy e

Uy,j_,r+)

(4.4b)

n--1 (y,j,L Uy,j,L + 2
2(At)2

/’-(Ax)
2(At)2

2(At)2

a2(Ay)2 Uj,r+,+
(At)2

2(Ax)2 U;,j+I,L 4;- U;,j_I,L)

+ \2a2 Ay Ax--2 Ax Ay] U+"L- U,_,)

+ \2a2 Ax Ay--2/3 2 Ax Ay] U,+,,r+- U,j_I,L+I)

2(At)2

andwhere "rxy "ryy are the resultant rectangular stress components due to the incident
wave.

At the edges of the crack (for example at x =-1) the value for a displacement
interior to the crack is approximated in order to properly center difference the
terms in the equations of motion. Its value was found in the following manner. The
stress free boundary conditions applied Ax from the crack edge are center differenced
on the upper and lower surfaces of the crack. The values of the displacements interior
to the crack are averaged and this value is inserted for the unknown value in the
equation of motion. The difference equations for the crack edge at x =-1 are:

n--1 (x,k,L- Ux,k,L’Ji 2-
2(At)2 2(At)2

Oc2(Ax)2 j"7i2) U,k.,L

(4.4c)

+ \4 Ax Ay 41 AxAy] U;,/,/- U,,/,_ + U,,_,I_- U,,_,,/),

U.+, _, r.+, ( 2(At) 2(At)Z

(4.4d)
xx h+2/x

( (At) .(.t)

_
+ 4ciTX-]y-4/32 Ax AyJ eqk+l’L+l- ec’k+l’L-’ " ec’k-l’L-’- ec’k-l’L+l)’
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where A Ux and A Uy represent horizontal and vertical crack opening displacements
respectively.

Since the radiation conditions (3.5) are given in terms of U and V, the displace-
ments Ux and Uy for the crack problem must be converted into polar displacements.
In practice U and Uy are computed using the rectangular difference equations
corresponding to (2.7a) on relatively few mesh points surrounding the crack. These
values are interpolated to give U and V on the circle r Re. (This will be discussed
in 5.) Then the cylindrical difference equations corresponding to (2.7a) are used to
march the solution out to r Rb, (i m). For either the circular void or crack problem
both the outgoing boundary conditions (3.5a), (3.5b) and the equations of motion
(2.7a) are used to eliminate the need for additional grid points required in the centered
difference calculation of radial derivatives. The expression for the radial displacement
at r Rb and (n + 1) At is

(4.5)

where

(4.6a)

C1 n-1
rn, Um,j -[- c2 U j "I- C Um,j -I- c4 Urn,j+ "1- Urn,j--l)

+ C5( V,j+I- Vn,j_l) -1- C6( Vn-l,j+l- Vn_l,j_l)

c=--q At 1+ --aAr

(4.6g) q - lot Ar+ At(1 + Ar/2r)]-1,
r Rb, and the index j runs from 0 to N.

Vn+lA similar equation for the tangential displacements _rn, is given by (4.5) and
(4.6) except the U’s and V’s are interchanged, a and fl are switched, and the constants
C and C6 change sign.

A stability criterion for initial value problems in elastodynamics has been derived
by Alterman and Karal [7], and Alterman and Loewenthal [8]. Following the work of
the first set of authors a limit on the size of the time increment for the numerical
scheme is:

(4.7) At_--<min {Ar, A0} ]- -.
When free surfaces or artificial boundaries are present, as is the case for the

problems considered here, other types of instabilities can occur. As discussed by
Trefethen [20], the finite difference equations are dispersive in character and possess
nonphysical solutions which travel with group velocities that are significantly different
from cr and cL. In fact, these parasitic waves may have negative group velocities. If
the discretized boundary conditions allow these spurious waves to propagate into the
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numerical domain, then an instability will occur. The analysis of this possibility is
contained in the stability theory of Gustafsson, Kreiss, and Sundstr6m [21] for initial,
boundary value problems. The application of this theory to the present problem is
difficult because of its abstract and complex nature. However, it was found experi-
mentally that no such instabilities occurred with the implementation of (4.5) and either
(4.1)-(4.2) or (4.4). The results of these numerical experiments are presented in {} 5.

As mentioned in {} 2, the limiting amplitude principle ensures the existence of a
steady state solution to the scattering problem shown schematically by (2.8) with q--u.
The numerical scheme is to be halted when the scattered displacements have reached
this steady state. To test for this condition, consider the set of vector displacements

(4.8) w= {uT(0), vT(0), u(0), v(0)}

which are respectively the surface radial and tangential displacements (or U"(x),
V(x) representing horizontal and vertical displacements), and the far field radial and
tangential displacements evaluated at time level n. If each term of the set satisfies the
criterion

(4.9) 1.0
IIg(

where the ]]. denotes the euclidean norm of a vector and I" denotes the absolute
value of a number, then the time harmonic scattered solution is numerically found, to
a certain degree of accuracy, and the computations are stopped.

When the steady-state solution is found, two further techniques are employed to
improve the values of the scattering cross section. The first is a local difference operator
which is the result of the analyses performed in 3. The second method utilizes the
displacements found at the free surface in an integral operator. An outline for the
setup of the integral is given in [2] and the integrals themselves may be found in
Appendix B. For the local difference method the equations (3.13) are differenced to yield

iaao Q,[( U",.. U_z./)/ZAr+ U",,,_,.// r+ V"m-,.+, V".._,._,)/2rAO]

+ Q2{( U,o+,- 2 U,, + U,,_,- U,-20+1 + 2 U",,,-2,.i- U-2,-I)/2Ar(AO)
(4.10a)

+( U_.+ 2 U.,_,. + U".,_,_)/r(AO)2

V,._ 2Vm V._+ v,._ 2 + )/2(AO)3r},

V,._ -(U,_.+-iOBo Q3{(VT., VT,,_,)/2Ar+ ,Jr -UT._._)/2rAO}
+ Q4{( V,.+,-2 V,. + V,._,- V,_z.+, + 2 V-2.- V_z._,)/2Ar(AO)

(4.10b)
+( ,,+, -,,j )/r(AO)V

-( U"_,.+-2 UT._,.+ + 2 U"_,_, U".._._)/2r(AO)3},
where

(4.10c) Q =-i 1 + 2r2a 8(l+a

(4.10d) Qz
2(1 + aZrZ)

iflr(4.10e) Q3 -i- 1 +8(1+ f12r2)
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(4.10f) Q4=2( 1 + flEr2),
and i=0, 1,..., N, r= Rb.

5. Numerical results. The numerical results presented in this section were com-
puted on a Cyber 170-730 running under a SYS/NUCC operating system. The graphical
results shown in Figs. 2-10 were made by a Tektronix flat bed plotter. The total running
time for the various numerical experiments was approximately one and a half minutes.

The first benchmark problem is that of a cii’cular cavity of radius one. The relevant
parameters are a =2, /3 =4, Ar= At =0.1, A0= r/30, Rb 2, and ,= where u is
Poisson’s ratio. The dashed curves shown in Fig. 2 are the magnitudes of the scattered
radial and tangential displacements, on the cavity’s surface, as given by the present
method. The solid curves in Fig. 2 are the results of a normal mode analysis performed
by Dr. J. E. Gubernatis at the Los Alamos National Laboratory. The results are in
good quantitative agreement considering the coarse mesh and relatively small numerical
domain (Rb 2) used in the calculations.

SURFACE DISPLACEMENTS(EXCL INCIDENT)

.76

.63

.60

.54.

.49

.a-

Z .27

.oo .oo
45 9o 55 so
ANGLE FROM POS X AXIS

45 90 135

ANGLE FROM POS X AXIS
180

FIG. 2. Magnitudes of the scattered radial, Ilu(O)ll, and tangential, Ilu(o)ll, surface displacements as

functions of 0for the problem ofa cylindrical cavity scatterer. Solid line" exact; dashed line: numerical solution,
where At= At .1, A0 r/30, t 2, /3 =4.

Figure 3 contains three approximations of the magnitudes of Ao and Bo. The solid
curves are again the result of a normal mode calculation. The dashed curves are the
result of applying (4.10) while the dotted curves are obtained from a trapezoidal
approximation to the far field integral operators listed in Appendix B. Excellent
agreement is found between the first and the last set of curves. As one would expect
for large values of Rb (holding all other parameters fixed), the local boundary operator
technique becomes increasingly more accurate. This is due to an increase in the accuracy
of the numerical values of the displacements at r Rb.
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TOTAL SURFACE DISPLACEMENTS

1.17-

.98

2.15

1.96

1.76

1.57

1.37

1.17

.98

.20

.00 --t-----------+---t- .00
4,5 90 135 180 "0
ANGLE FROM POS X AXIS

45 90 135 180

ANGLE FROM POS X AXIS

FIG. 3. Magnitudes of the scattered radial and tangential farfield displacements as functions of 0 for the
cylindrical cavity. Parameters same as in Fig. 2. Solid line: exact" dashed line: local boundary operator applied
at Rb" dotted line" integral operator method applied at cylindrical cavity surface.

FAR FIELD DISPLACEMENTS(EXCL INCIDENT)

45 135 180 45 90 135 180

ANGLE FROM POS X AXIS ANGLE FROM POS X AXIS

FIG. 4. Magnitudes of the total radial and tangential surface displacements as functions of 0 for the

cylindrical cavity. Parameters same as in Fig. 2.
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Figure 4 shows the magnitudes of the total radial and tangential surface displace-
ments as functions of 0. These are the results of the present numerical method. As one
would expect, the compressional displacement is largest at the point of impact of the
incident wave and drops sharply in the "shadow" region 0_-< 0 _-< 90. The tangential
component of surface displacement is zero along the line of symmetry for the problem,
and has a relative maximum in the "lit" region of the cylindrical surface.

Also considered is an incident wave with a higher frequency giving a 10 and

fl- 20. The changes in the relevant parameters are At- 0.03, A0- r/100, Rb --3.01.
The choices for Ar and A0 increments were made with the knowledge of work on grid
dispersion for numerical solutions of elastodynamic problems done by Boore [ 11] and
Alford, Kelly, and Boore [22]. The increments were picked to allow approximately 10
nodes per wavelength of the scattered (time harmonic) shear wave.

The results compare very favorably to those tabulated in [2]. The effect ofincreasing
the frequency of the incident displacement is to lower the relative amplitude of the
displacements on the shadow side, with the addition of several diffraction lobes as
seen in Fig. 5. Here the curves represent the magnitudes ofthe total radial and tangential
surface displacements.

TOTAL SURFACE DISPLACEMENTS

1.10-

92

.73

2.01

l
1.83 l
1.65-1.46_
1.o-

Z .92

.7

.55

.00
4,5 9o 8o 45 9o 35 so
ANGLE FROM POS X IS ANGLE FROM POS X AXIS

FIG. 5. Magnitudes of the total radial and tangential surface displacements as functions of 0 for the
cylindrical cavity. Parameters are taken as"

Ar .03, A0 r/100, R 3.01, tx 10,/ 20, At .1.

Figure 6 shows the magnitudes ofthe scattered radial and tangential displacements
in the far field. The dashed cuves are obtained from the numerical data using (4.10)
while the solid curves again come from a trapezoidal approximation to the integral
operators listed in Appendix B. Once again the integral method appears to be slightly
better than the local difference method in computing lAd[ and IBol. This is based on a
qualitative comparison of the exact results [2] and those shown in Fig. 6.

The second problem is that of a crack located on the x axis between x + 1. As
mentioned in 4, rectangular difference equations corresponding to (2.7a) are initially
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FIG. 6. Magnitudes of the scattered radial and tangential far field displacements as functions of 0 for the

cylindrical cavity. Parameters same as in Fig. 5, dashed line" local boundary operator applied at Rb" dotted
line: integral operator applied at the free surface of the cylindrical cavity.

used, in conjunction with the boundary conditions (4.4), to march the numerical
solution away from the crack. In practice a square grid of size 2.6 x 2.6 centered at the
origin is filled with rectangular displacement values at t,+l. These values are then used,
along with interpolation and geometric transforms, to obtain the radial and tangential
displacements on the circle r Rc-= 1.1. These displacements are then marched out to
the artificial boundary at r- Rb.

The relevant parameters used in the calculation are Ar =0.1, A0 7r/30, At =0.1,
Rb -2.5, ce 1.858961, /3 3.477798, and Ax Ay =0.1 for the square grid. Figure 7
shows the magnitudes of the crack opening displacements when the incident compress-
ional wave is given by

(5.1) u (0, 1, 0) e i’y.

There is no shear force acting on the crack so the horizontal crack opening displacement
Au-= 0. There are two curves representing the vertical crack opening displacement Av.
The solid graph is the result of the present method. The dashed curve is the solution
of a singular integral equation used by Keer, Lin and Achenbach [23] to study the
same problem. The answers compare well. The discrepancy is caused to some extent
by the coarseness of the numerical mesh and the modest size of Rb. The probable
cause of the deviation is due to the fact that the derivatives of the displacements
become singular at the crack tips. The coarseness of the mesh masks this problem.

The radial and tangential cross sections are shown in Fig. 8 for the present
calculation. They are obtained by again approximating the integral operators of
Appendix B by the trapezoidal method and using the numerically computed surface
displacements. The radial cross section, IAol, has a peak at 90 which corresponds to
the geometric shadow cast by the crack. The maximum at 270 is caused by the
specularly reflected plane wave.
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FIG. 7. Magnitudes of the crack opening displacements la.I and Idol. The parameters are; Ar:0.1,
A0= 7r/30, At =0.1, R 2.5, Re= 1.1, a 1.858961, and/3 3.47798. The solid curves are the results of the
present method. The dashed lines correspond to solutions obtainedfrom a singular integral equation formulation.
The incident wave impinges normally upon the crack.
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FIG. 8. Same problem and parameters as in Fig. 7. The curves represent the magnitudes of the far field
displacements Idol and IBol.
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FIG 9. Same as Fig. 7 except the incident wave makes an angle of 60 with the negative x-axis.

The final problem considered arises when an incident compressional pulse strikes
the crack under an angle of 120 Hence, the incident wave is taken as

(5.2) u’=( 1 J O) e(ia/2)(4y-x)
2’2’

The relevant parameters are unchanged. The crack opening displacements hu and Av
for this case are shown in Fig. 9. The solid curves are the results of the present
calculations while the dashed are the results of the singular integral equation approach
[22]. Except for an apparent phase shift in the Au curves, the results compare quite
well. The corresponding far field displacements [Ao[ and [Bo[ are shown in Fig. 10.

Appendix A. The nonexistence of bound states. It will now be demonstrated that
(2.10) has no solution when /> 0. Defining the strain and stress tensors corresponding
to q by

CA.1)

(A.2) To AekkSij -F 21d,eij

respectively, equation (2.10a) can be rewritten as

(A.3) T0, pT
2,.

Since the target is a void, the tractions Tun vanish on the surface S. Thus, it follows that

I’CA.4) Tun;, dl 0
s

where is the arc length along S and the bar denotes complex conjugation. By applying
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FIG. 10. Same as Fig. 8 except the incident wave makes an angle of 60 with the negative x-axis.

Green’s theorem two times, equation (A.4) becomes

(A.5) If.o (Tu)"idxdy=O
where D is the infinite region exterior to S. The integral in (A.5) exists because of the
decay condition (2.10c). Differentiating the integrand in (A.5) and using (A.3) yields

(A.6) Pv2 fl ’d/’i2dxdy=-fl Tud/"dxdy"
i=1 D D

The integrand on the right-hand side of (A.6) can be rewritten [17] as
Inseaing this into the integral and using (A.2), equation (A.6) becomes

(A.7, p=, ff ,,,2dxdy-f; [Aekk,+2,euu]dxdy.
i=1 D D

Equation (A.7) leads to a contradiction. The left-hand side is positive while the right
is negative. Thus 3’ is purely imaginary or 3"i--0. In either case a bound state is
nonexistent.

Appendix B. Far field integral operators. In references [2] and [3] integral
operators are obtained which relate the displacements on a target’s surface to the far
field displacements. For the circular cavity of radius one, they are

(B.1) IAo(,,)l ’ [Pl( 0, 6)u(1, O)+p2(O, b)v(1, 0)] e-’cs(-*) dO
0

’
[p3(0, b)u(1, O)-p4(O, b)v(1, 0)] e-’cs(-*) dO
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where

(B.3)

(B.4)

and

p 0, th) (1 K
-2 + r -2 cos 25) cos 0 + -2 sin 2th sin 0,

p2(0, ) -2 sin 25 cos 0 + (1 r-2 K-2 cos 2) sin 0,

p3(O, 0)--sin (25- 0); p4(0, $)--- cos (25- 0),

When the target is a crack on the x axis with Ix[ < 1, then the expressions are

(B.5) IAo()l--
a

[Au(x) -2 sin 2b
-1

+Av(x)(1-r-2- -2 cos2b)] e-ixs4" dx

[Au(x) cos 24,(B.6) IBo(O)[
-,

+ Av(x) sin 2b] e-ixcs dx

where Au and Av are the jumps in the horizontal and vertical displacements across
the crack.
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CONTROLLING PENETRATION*

J. C. LATTANZIOf, J. J. MONAGHANf, H. PONGRACIC" AND M. P. SCHWARZt

Abstract. When particle methods are used to simulate the high Mach number collision of gas clouds
particle streaming may occur because the particles can penetrate the interface between the clouds. We show
how this penetration can be prevented by using an appropriate artificial viscosity. Numerical experiments
in one and three dimensions are described.

Key words, hypersonic collision, particle methods, shock waves

1. Introduction. Elements of fluid do not stream through each other because
molecular collisions annihilate the component of the velocity normal to the interface
between the elements of fluid. This collision process takes place within a few molecular
mean free paths and this length is negligible compared with a characteristic length of
the system. If particle methods which take the velocity as a particle attribute, for
example GAP (Marder (1975)) and SPH (Gingold and Monaghan (1977)), are used
to model the collision between clouds of gas, streaming is generally negligible for low
Mach number relative velocities, but it degrades the calculation when the relative
velocities have a high Mach number. Hausman (1981) attempted to simulate the high
Mach number collision of two gas clouds using Larson’s (1978) particle method and
found that substantial streaming occurred. For relative velocities with Mach numbers
of---20 he found that two clouds in a head-on collision passed through each other
with minor hindrance. We found a similar result with the particle method SPH when
a viscosity similar to that discussed by Monaghan and Gingold (1983) was used.

In this paper we show that it is possible to prevent streaming by using an
appropriate artificial viscosity. The same viscosity also gives good results for shock
tube phenomena.

2. The artificial viscosity. We use the particle method SPH but our results should
be applicable to other particle methods. The inviscid equation of motion for particle
takes the form

(2.1)
dt m + V,W,

where subscripts denote the particle label, P is the pressure, p is the density, Wj
W(Ir,-rl) is the interpolating kernel, Vi denotes the gradient taken with respect to
the coordinates of particle and mj is the mass of particle j.

We begin by adding to (2.1) an artificial viscosity term similar to that used by
Gingold and Monaghan (1983). Define Ix(i,j) by

(2.2)
hvi, r

2 if v0 r -<_ 0,
tx(i,j) := c(rij+’O 2)

0 otherwise,

where v0 v-v, r0 r- r, h is the interpolating length used in W, c is the maximum
speed of sound and r/- O. 1 hE./x is a nondimensional quantity which, in one dimension,

* Received by the editors September 3, 1984, and in revised form February 19, 1985.
f Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia.
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is approximately (h/c)Ov/Ox. We now replace (2.1) by

dvi ( Pi + P)(2.3)
dt - m\p-7 - (1- atx(i,j))V,W,

where a is a nondimensional constant ---7.
It is not difficult to show that in one dimension, in the limit as N (the number

of particles)-> oo and h-> 0, equation (2.3) becomes

(2.4)
dv lOP th 0 (- pOV
dt p Ox cp Ox --x/"

The artificial viscosity is therefore equivalent, in one dimension, to a bulk viscosity.
The finite difference equivalent of (2.3) results in an artificial viscosity similar to that
devised by Landshott (see Roache (1975)), and equivalent to the case N=2 of the
artificial viscosity discussed by Van Leer (1969). The equation of motion (2.3) has
several nice features. Linear and angular momentum are conserved exactly, it is
invariant to translation and rotation of the coordinate system, and the viscosity is zero
when the fluid is rotating uniformly. Furthermore it gives good results for low Mach
number shock tube phenomena. However, as we remarked in the introduction, the
artificial viscosity fails to stop streaming in high Mach number collisions.

To stop streaming, we need a term which will increase the effective pressure from
---pc] to p(Av)2 where Cs is the sound speed and Av is the normal component of the
relative velocity. The artificial viscosity in (2.3) will only increase the effective pressure
to ---pcslAv[. A simple way of achieving this result is to replace (2.3) by

+ 1 a/., (i, j) + fl/2(--5 i,j)]V,W
dt mj

\P PJ
where fl is a nondimensional constant. The invariance properties of" (2.5) are identical
to those of" (2.3). When velocity gradients are small (2.5) reduces to (2.3). When the
velocity gradients are large the pressure terms are multiplied by (v,/)2 which has
the desired result of lifting the pressure to oppose the kinetic pressure p(A#)2 of" the
colliding gas clouds.

In the limit as N-> oo and h-> 0, equation (2.5) becomes in one dimension

Jr- pOD 2 0 01) 2

(2.6)
d p Ox cp Ox --x/ - P -x

which shows that the new viscosity has the effect of adding a von Neumann-Richtmyer
viscosity to the equation of motion. It is therefore similar to an artificial viscosity
suggested by Landshott (see Roache (1975)). Because of the extra term compared with
(2.3) the constant a, previously --7, can be taken as ---1 and/3--- 1. The optimum values
of these parameters depend on the interpolating kernel.

The numerical details involved in implementing (2.5) are the same as those
discussed by Monaghan and Lattanzio (1984) except in respect of the time step. When
the von Neumann-Richtmyer viscosity is used with standard Lagrangian finite
difference schemes the time step is given by (Potter (1973))

Ax
(2.7) At < Min

{grid} ’s Jr" blBvl’
where Ax is the cell width, 6v is the velocity difference between two grid points and
b is a constant. We also expect a time step criterion of this form but, since velocity
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gradients appear via /x0, 18v] will be replaced by a quantity related to /zij. We have
found the following to lead to a stable algorithm

(2.8) At =0.3h
1

Min

{particles}( Cs -[-__C2Sc ]Jbm )’
where ’>0.6 and/x,, is the maximum value of [ix(i,j)[ for any particle. When body
forces per unit mass A exist, we use the minimum of (2.8) and

0.3 Min (h/lA,[) ’/2.
{particles}

3. Numerical experiments. We have considered three sets of numerical experi-
ments: shock tube, one-dimensional cloud collisions and three-dimensional cloud
collisions. The shock tube experiments use the configuration employed by Monaghan
and Gingold (1983). The cloud collision experiments use an isothermal equation of
state since they are part of a larger experimental program designed to study the collision
of interstellar clouds for which the isothermal approximation is acceptable.

3.1. Shock tube experiments. We use the artificial viscosity discussed here with
the configuration used by Monaghan and Gingold (1983). This configuration results
in a rarefaction wave moving to the left, a contact discontinuity and a shock moving
to the right.

In Fig. 1, right frame, we show the density profile obtained using the super-gaussian
kernel

W(u)-e-=/h(3 112)hx/ - -with h =0.015, which is twice the initial particle separation (these calculations use
particles with different masses, those with x < 0 have mass four times those with x > 0
so that they can have equal separation while producing a density ratio 4: 1), and a 0.5
and/3 0.5. The results are in excellent agreement with analytical results. The shock
front is reasonably narrow (-3h) with no sign of post shock oscillations, and the
contact discontinuity is well defined (width ---1.5h). If we take a =/3 1 the differences
are minor. For example the shock width is -4h.

-0.4-.3-.2-d.1 o’.o o’.1 o’.2 0’.3 0.4

>-0’6-

O,

1.0

08-

>"0.6

30.

0’2

00
-0"4 -0’3 -0’2-0"1 0"0 0"1 02 0-3 0

X

FIG. 1. Left frame" Density profile for a shock tube problem with initial velocity zero, and initial density
ratio 4" 1. Initially P= Ap TM with A for x <0 and A 1.25 for x > O. The kernel is gaussian with h =0.015.
SPH results shown: Exact results shown" Right frame: As before except that a super-gaussian has
been used.
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In Fig. 1, left frame we show the same experiment using the ordinary gaussian
kernel

-u2/h

W(u)- hx/’

with h 0.015 and a =/3 1. The main features of the experiment are recovered but,
as expected, the accuracy is greatly inferior to that obtained using the super-gaussian.
If we choose a =/3 =0.5 there are post shock oscillations. With a 1, /3 2.0 the
results are very similar to those with a =/3 1. With a 2,/3 I the shock width is ---6h.

These results suggest that, for the super-gaussian kernel, a good choice is a =/3
0.5 while for the gaussian kernel a good choice is a =/3 1.0.

3.2. One-dimensional collisions. The configuration we consider consists of two
identical gas clouds with equal and opposite velocities. The equation of state is P 2.1 p
and the initial p 1.0. Two surfaces of discontinuity with opposite velocities propagate
away from the contact surface leaving a region with increased density and zero velocity.
In order to eliminate the consideration of edge effects we assume the clouds are infinite
in extent. Let the left moving discontinuity surface have speed D and let the initial
speed of the clouds be ft.

The mass flux and momentum flux across the left moving discontinuity are given
by

(3.1) /91/91 =p2V2

and
2__(3.2) P +pv P2+ p2v22,

where the subscript 1 denotes quantities to the left of the discontinuity and 2 to
quantities to the right of it. The velocities are in the rest frame of the discontinuity so
that

(3.3) ul=3+D and v2=D.

Denoting the isothermal sound speed by c we find, from (3.1)-(3.3), that

(3.4) and

D 0.5(- 7 + 4( 3:’ + 4c2) ),

p/pl 1 + /D,

when >> c, D,--. c2/ and tO2/tO1 /2/C2. The shock moves more slowly the larger the
incoming speed of the gas.

For this case (isothermal one-dimensional motion) it is possible to calculate the
viscous shock profile. The momentum flux (from (2.6)) is

ahdv h2

tdv)
2

(3.5) P + pv2 P-x + fl- B,

and the mass flux is

(3.6) pv =j,

where j and B are constants. Using the isothermal equation of state, and eliminating
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p from (3.5) and (3.6), we find

(3.7) c2 + v2- ahc + flh Fv,

where F is a constant. We can rewrite (3.7) in the form

(3.8, ahc(d-x) flh-(d-xx) (v v)(v v),

where v and v are the asymptotic velocities to the left and right of the shock.
Comparison of (3.7) and (3.8) shows that vv= c2 which, with (3.3), leads back to
the expression above for D.

From (3.8) we find

(3.9) h
dV l [c (v-v)(v-v)] ’/

c- 4g+
where the root of the quadratic for dv/dx has been chosen by recognizing that the
material moving into the shock from the left will slow down and therefore dv/dx < O.
Although (3.9) can be integrated analytically the resulting expression is cumbersome
and not very informative. However, when fl 0 it is easy to show that the shock has
a thickness ahc/. In this case the shock becomes sharper as fi is increased. When
a 0 the thickness of the shock is h which is independent of . This last result
is a well-known feature of the Von Neumann-chtmyer viscosity. When we wish to
compare profiles from our SPH simulation with exact viscous results we integrate (3.9)
numerically and calculate p from (3.6) in the form p pv/v.

In Fig. 2, we show the density and velocity profiles for an isothermal collision
with = 1.0. The SPH calculations use a super-gaussian kernel with h =0.04 and
a fl 0.5. The SPH results are in very good agreement with the discontinuous solution
and with the exact viscous solution. There is no penetration. The shock width is 4h.
In Fig. 3, we show the profiles obtained using a gaussian kernel with h 0.04 and
a 1.0. The shock front is broader, as expected, but otherwise there is little
difference between the super-gaussian and gaussian kernels for this problem. We have
experimented with a wide range of other combinations of a and for use with the
gaussian kernel. With a and given by (a, ) (0.2, 0.2), (0.2, 0.04) there were strong
post shock oscillations. With (a, )= (.5, 1), (.5, .5), (.5, .25) the shock was sharper
(5h) than with a 1 (the best for the shock tube). With (1, 0), (1, 1), (1, 2) the
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o0.o

-0’5
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FIG. 2. Isothermal collision P 2.1p, with initial velocity 1.0, tx =/3 0.5, and h 0.04. A super-gaussian

kernel has been used. Left frame density, right frame velocity. SPH results shown" Exact results shown:
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FIG. 3. Isothermal collision P 2. lp, with initial velocity 1.0, c =/3 1.0, and h .04. A gaussian kernel
has been used. Left frame density, right frame velocity.

results were similar to the (1, 1) result shown in Fig. 2. With (2, 4), (2, 2), (2, 1) the
shock was broadened over ---12h. These results are in good agreement with the exact
viscous profile from (3.9).

The gaussian kernel gave stable results for 1 < ,5 < 10.0. No tests were run outside
this range. In Fig. 4 we show the density and velocity profiles for a one-dimensional,
isothermal collision with ,5 7.0 using a super-gaussian kernel. The results are good,

2O

lO

o
-2.0 -1 .o o.o .o

x
1.o 20

FIG. 4. As in Fig. 2 except that initial velocity 7.0 and a =/3 1.

but there are oscillations on a scale not discernible in the figure. As increases the
oscillations increase and a run with 10.0 was unstable. One is immediately reminded
of the problems experienced with nonmonotonicity finite difference algorithms since
the super-gaussian kernel does not guarantee monotonicity. For example, in the case
of interpolation of a step discontinuity, it produces a dip on the low side and a bump
on the high side. We found a simple cure for the problem in our collision experiments.
Since the problem occurred at shocks we could clearly predict trouble from the value
of/ij. We therefore defined cro by

and replaced VW in (2.5) by
.(1)(1 ro)X7w + trX7

where W) is the super-guassian kernel and W is the gaussian. The result is that
when cri - 1 (i.e. near strong shocks) the gradient is calculated using the gaussian while
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elsewhere the super-gaussian is used. We confirmed that this change to the algorithm
had negligible effect on the shock tube results for the super-gaussian described in 3.1,
while giving the good collision profiles shown in Fig. 5. We are experimenting with
alternative forms for r0..

50
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2.5

0 00

-2.5

10
-5.0

-10.0.o -o-5 o-o o .o -.o -o-5 o-o 0.5 1.0

FIo. 5. Collision profilesfor initial velocity 10.0, a =/3 1, h .04 and the switchingprescription discussed
at the end of 3.2 has been used.

30

20

3.3. Three-dimensional cloud collisions. We show in Fig. 6 the velocity field for a
head on collision between two initially spherical clouds of equal mass and density.
The clouds each have mass 361 M(R), temperature 80 K, initial speed 6.75 km s-1, Mach
number 16.6, and initial radius 5 parsecs. Gravitational forces are included. The
particles are arranged initially on a uniform grid, and only those within a specified
radius are included in a given cloud. This results in a slightly nonspherical initial
configuration. To prevent lines of particles from one cloud running into similar lines
from the other cloud (thereby producing a series of largely independent one-
dimensional collisions) we rotated one cloud by 45 relative to the other. This preserves
left-right symmetry, but exact top-bottom symmetry is then lost. This shows up par-
ticularly at the high compression stage. The result of the calculation is that each cloud
behaves as if it has run into a virtually impenetrable wall (there is slight penetration
over a distance of- h). A wide variety of other collisions using different masses, and
nonzero impact parameters confirm the reliability of the SPH collision calculations
with the new viscosity.

FIG. 6. The velocity field in the x-z plane of a three-dimensional head-on collision along the z axis of two
isothermal clouds. Details are given in the text. 3544 particles have been used. Left frame: Velocity field in the
initial compression phase. Middle frame: Velocity field near maximum compression. Right frame: The re-

expansion phase. Similar results have been obtained with as few as 66 particles in each cloud.
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4. Discussion and conclusions. We can briefly summarize our results as follows.
The artificial viscosity included in the momentum equation (2.5) gives good results for
both shock tube and high Mach number isothermal cloud collisions. In the latter it
reduces penetration to < one resolution length. The viscosity vanishes for rigid rotation,
is galilean invariant and when (2.5) is used conserves linear momentum. Whether or
not it conserves angular momentum depends on the form of the interpolating kernel
Wj. The parameters a and fl in (2.5) depend on the interpolating kernel used, but for
a given kernel the qualitative features of the solution are not sensitive to their precise
values. Once a near optimal choice of c and fl has been made (a equal to/ is a good
rule ofthumb) from shock tube phenomena it can also be used for collision phenomena
at low Mach numbers (<5). For higher Mach numbers larger values of a and fl are
preferable. The reader is reminded that super-gaussian kernels show an instability for
high Mach number (- 10) collisions (see 3.2).

The particle methods we have described here can be applied effectively to a wide
class of problems in astrophysical hydrodynamics. This class includes collision prob-
lems in three dimensions which lead to long narrow features which are diffused out
by most finite difference schemes or are handled inefficiently because very large grids
are needed to resolve these features. Difficult multi-media impact problems of the kind
which are normally simulated by PIC can also be simulated (with greater accuracy
because there is no grid-particle interpolation) using our particle method. Good finite
difference methods (e.g. Harten (1984)) are, however, always preferable to particle
methods for one-dimensional problems and many two-dimensional problems.
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THE PSEUDO-SPECTRAL METHOD AND PATH FOLLOWING
IN REACTION-DIFFUSION BIFURCATION STUDIES*
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Abstract. In an earlier paper, the pseudo-spectral method was advocated as a fast and efficient method
for studying the time evolution of solutions of reaction-diffusion problems in certain cases. In this paper
we extend the method to follow steady-state solutions as a function of the problem parameters, using
path-following techniques. As a specific example the method is applied to a boundary value problem of the
form ut uxx + ag(u), where g(u) is a cubic polynomial.

Key words, pseudo-spectral method, reaction-diffusion equations, bifurcation diagrams, path-following
techniques, boundary value problem
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1. Introduction. In this paper we combine pseudo-spectral (collocation) methods
(Gottlieb and Orszag (1977), Eilbeck (1983)) with the path following techniques of
Keller et al. (cf. Keller (1979), Decker and Keller (1981)) and Kubicek (1976) to
provide a simple and efficient method to stu’dy bifurcation diagrams for steady-state
solutions of reaction-diffusion equations.

Consider a general set of reaction-diffusion equations in a finite region II

(1.1) ut(x, t)= dAu(x, t)+ F(u, a,, a2, ", a,).

Here x, n=1,2,3; u; d is a kk matrix of diffusion coefficients,
a, a,. , a, are reaction parameters, and F is a nonlinear function F: --> .
The methods we describe below can easily be extended to cover this general case (c.f.
Eilbeck (1983)), but for clarity and ease of exposition we shall confine ourselves to
the simple case n k m 1. More complicated systems in higher space dimensions
will be considered in later papers. We also assume a particularly simple dependence
on the single parameter a’= a, so that (1.1) becomes

(1.2) ut(x, t)=uxx(x, t)+a’F(u), x[-L,L].

Typical boundary conditions might be u Uo for x -L, L or Ou/Ox 0 for x -L, L.
We assume the former, and transform the dependent variable to v u Uo. If F(Uo) 0,
then v(x, t)= 0 is always one possible solution. It is also convenient to normalize the
space variable x so that I-L, L] is transformed into [0, 1]. With these scalings (1.2)
becomes

(1.3a) v,(x,t)=vxx(x,t)+ag(v), t>-O, x [0, 1],

(1.3b) v(0, t) v(1, t) 0.

Here g(v)= F(v+ Uo) and if g(0)=0, one solution of (1.3) is v(x, t)=0.
Our aim is to study the number and nature of the solutions of (1.3) as a varies.

A major tool for this study is the path following methods which have been developed
by Keller and co-workers over the last few years (Keller (1979), Decker and Keller
(1981)) and applied to a number of problems in fluid mechanics (Lentini and Keller
(1980), Mayer-Spasche and Keller (1980), Schreiber and Keller (1983)). The basic
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Permanent address, Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS,
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idea behind this method, that of using arc-length as a continuation parameter, was
also suggested independently by Kubicek (1976).

When applied to infinite-dimensional problems, these path-following techniques
require an (unspecified) numerical approximation to convert the original system into
a finite-dimensional one. In the fluid problems already studied, both finite difference
(Schreiber and Keller (1983)) and spectral methods (Meyer-Spasche and Keller (1980))
have been used. Kernevez et al. (1983) have applied these techniques to reaction-
diffusion systems using finite element and finite difference methods.

Spectral methods involve expanding the approximate solutions as a finite sum of
eigenfunctions of one of the operators in the problem, then imposing orthogonality
conditions (i.e. Galerkin’s method) to obtain sets of ordinary differential equations
for the coefficients of the spectral functions. When the nonlinearities involved in the
problem are relatively simple, this approach works well: however for more complicated
nonlinearities it may be more appropriate to use a pseudo-spectral method, i.e. spectral
functions plus the collocation method. This is the approach used in this paper, although
some comparisons with the pure spectral method are made.

The paper is laid out as follows" in 2 the pseudo-spectral method is briefly
reviewed, with especial emphasis on stationary solutions. The appropriate equations
for path following are introduced in 3, and in 4 we consider the stability of the
resulting solutions. In 5 we apply the method to a specific example which has already
been the subject of much study.

2. The pseudo-spectral method. We follow the same approach as Eilbeck (1983).
To derive the spectral or pseudo-spectral method, the solution v(x, t) to (1.3a) is
approximated by a function 6(x, t) which is a finite sum of eigenfunctions of the
operator A satisfying the boundary conditions (1.3b)

N

(2.1) v(x, t) (x, t) cj( t)dpj(x),
j=l

where the b(x) given by

are the eigenvalues of the Laplacian subject to the boundary conditions

b(0) b(1) 0.

In the one-dimensional case these eigenvalues and eigenfunctions are simply A -rj2

and bj(x)= sin 7rjx. The importance of this particular choice of basis functions for the
reaction diffusion equations (1.3) is that linear bifurcation theory is reproduced exactly
in the following sense. If g(v)= 0 so that v(x, t)=0 is a solution, and if we consider
bifurcations from the zero function, then the position of the first N primary bifurcation
points will be given exactly by the numerical approximation. Also any small perturba-
tion of the form

N

v(x, o)= X c(O)4,(x)
j=l

which evolves for small times according to

N

$v(x, t)= E cj(O)
j=l

will also be treated exactly by the numerical method (up to the accuracy of integration
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of the resulting ordinary differential equations, and up to such times as nonlinear
effects become important).

Since linear theory is reproduced exactly in this sense, the hope is that the nonlinear
theory will be approximated well also, even in cases where N is small. This question
is discussed further by Eilbeck (1983), and numerical experiments confirm this in many
cases. Note that other numerical schemes such as finite difference or finite element
methods do not reproduce linear theory exactly except in the limit N-> o (Beyn (1980),
Mittelman and Weber (1980)), so for small N we would not expect them to be so
accurate in the nonlinear case. The same comment applies to other choices of spectral
functions, such as Chebyshev polynomials.

Once the approximation (2.1) has been made, we insert this into (1.3a) to give

N N

(2.2) j(t)dpj(x)- , 7raj2cj(t)dp(x)+ ag()+ r(x, t).
j=l j--1

Here the residual function r(x, t) has been inserted to make (2.1) exact. In the pure
spectral method we make r(x, t) small by imposing the condition that r(x, t) be
orthogonal to the N basis functions bl(x),’’’, bN(x)

r(x, t)qbi(x)dx 0 6( t) 6i(x)6j(x) dx

(2.3) + r2 E J2c(t) b,(x)b(x) dx
j=l

c g()th,(x) dx.

If we define tii- 1o <h,(x)b(x) dx,/j- 7rEjEti, and

(2.4) t(c) a g c(t)ck(x) qb(x) dx, i= 1,..’, N,
j=l

with e(t) (c,(t), c2(t)," -, cv(t)) 7- (the superscript T denoting the transpose), then
we have a diagonal set of o.d.e.’s for the vector e(t).

(2.5) ,6(t) =/C(t) + (c(t)).
The problem is that, except in very simple cases, the integrals in (2.3) cannot be
evaluated analytically and must be performed numerically. (It should be pointed out
that the example considered in 4 is one such simple case.) For this reason we prefer
a more straight-forward method based on the collocation approach: we make r(x, t)
small by applying the condition that the residual function vanishes at a set of N
collocation points Xl, X2, X

N N

(2.6) r(x,, t) 0 Y ds(t)6j(xi) + 7r
2 E cj(t)j2j(xi) otg(F(xi)).

j=l j=l

If we define the matrices A= {a0}= {bs(x,)} and B= {bj} {r2j2as}, and the vector
re(t) ((xl, t), fi(x2, t),. , fi(xs, t)) r given by

(2.7) (t) Ae(t),

then (2.6) can be written as a set of implicit o.d.e.’s for the coefficients c(t).

(2.8) Ae(t) + Be(t) ag() 0
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where gi(r)= g((xi, t)). The fact that the matrix in the spectral method equations
(2.5) is diagonal whereas A in the pseudo-spectral equations (2.8) is nondiagonal is
not important in view of the fact that we will be considering only steady-state solutions
d(t)-0.

The optimal choice of collocation points for the pseudo-spectral method is still
an open problem (Eilbeck (1983)). However, in one space dimension, a result in
approximation theory (de Boor and Pinkus (1978)) suggests that the choice of equally
spaced points should be a good one, i.e. x= i/(N+l), i= 1,2,..., N. We have
followed this choice in the numerical example in 5. For time-independent solutions
the pseudo-spectral method gives us the N nonlinear simultaneous equations

(2.9) G(c, ) ,c- ag() 0.

(Recall that is given in terms of c by (2.7).) Solving (2.9) for a range of values of
the parameter a is the subject of the next section. Once a solution c(a) is known, (2.7)
gives the appropriate solution (xi) at the collocation points: however we can calculate
(x) for any x value using (2.1).

3. Path following methods. In this section we follow closely the work of Keller
(1979) and Decker and Keller (1981). The nonlinear equations (2.9) for the steady
state solutions using the pseudo-spectral method (or the corresponding equations from
the spectral method) are solved for a range of values of a. Assume a solution C(ao) is
known for some a0. Away from singular points (where the matrix OG/Ocj is singular),
we can solve for no+ Aa by a combined Euler predictor and a Newton iteration"

(3.1)

(a) Solve Gc(c(,o), ao)%(ao)=-G(C(ao), no) for %(no),

a ao + An,

C(a) C(o) +AC(o);

(b) (c(), )c+’()= -O(c, a), c+ =c + c+,
u 0, 1, 2,’’’ until 6cV+l(a)ll < .

Here Gc and G are the Frechet derivatives of G with respect to c and a, step (a) is
the Euler predictor, and step (b) is the Newton iteration. For the system of equations
(2.9), we can easily calculate the elements of G and G

(3.2) OGi_ bo a
Og Ov

b ag’(vi)ai, g(vi),
=, Oc

It is important to note that the matrix G OGlOc will be a full matrix for both
the spectral and pseudo-spectral methods, whereas for finite difference or finite element
methods the corresponding matrices will be sparse (banded). This suggests that for
very large N, the spectral methods may not be competitive with such methods. In the
spirit of the discussion following (2.1) we therefore advocate the spectral methods as
most appropriate in the case where moderate accuracy is required and N is small. As
we shall see in the next section, we can get useful results with these methods even in
the case N 1. As N increases, there is likely to be a break even point, where it may
be more economic to switch to finite difference or finite element methods.

Near singular points (det G =0), the continuation method (3.1) breaks down,
and it is necessary to adopt a pseudo-arclength procedure. Now a is considered to be
a function of a parameter s, and we adjoin to (2.9) an extra equation to determine the
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normalization of s.

G(c, a)=O,
(3.3)

N(c, a, s)=-iz’(So)(C(S)-C(So))+ d(So)[O(s)- a(So)]-[S- So] =O.

At s So, ao a(So) and C(So) c(a(So)) satisfy G(c, a) =0 and (So) and d(So) (Oc/Os
and Oa/Os) are calculated from

(3.4a) Gc(c(so), ao)(So)+ G(c(so), ao)&(So) 0,

(3.4b) II(So) 2 + d(So)2= 1.

The ambiguity in sign in solving (3.4b) reflects the choice of direction along the arc
length: once this has been fixed initially, the signs of (x) and d(x) further along the
path are chosen to satisfy

(So)%(s) + (So) (s) > 0.

Once (So) and d(So) are known, initial (Euler) predictions for c(s) and (s),
(s so + As), are calculated by

c(s) C(So) + Xs(so),
(3.5)

(s) (So) + Asa(So),

and then the inflated system (3.3) is solved by a Newton iteration analogous to (3.1b).
Even at points where Gc is singular, the Jacobian of the inflated system may be
nonsingular. This will occur at "normal limit points" where the solution becomes
double valued (see 5 for examples).

At bifurcation points the full Jacobian becomes singular: more detailed tests are
necessary to calculate the slopes of the bifurcating arcs at such points and to follow
the solution along either branch. However it is often possible to "shoot through" the
bifurcation point without further calculations, if it is not necessary to change branches
at this point. More details will be found in Decker and Keller (1981). One small
comment about this procedure is in order. If we are investigating bifurcations from
the zero solution v 0, then G 0 for our model problem. In this case the vector b0
defined in equation (2.9) in Decker and Keller (1981) is zero, and equations (2.13b),
(3.23b) in that paper should be replaced by

(3.6) :+ SOl 1

with corresponding changes in some other equations in that paper. It is perhaps better
to replace (3.6) for our simple system with the equation

(3.7) :(1 / IIoll) / ll,ll 1

which avoids the need to construct equivalent norms.
In practice, the occurrence of a normal limit point or bifurcation point can be

monitored by checking for changes of sign in the determinant of the Jacobian Go. The
stability of observed solutions can also be determined indirectly from the Jacobian,
as discussed in the next section.

4. Stability of solutions. The (linear) stability of the approximate solutions e(a)
(and hence (a)) can be examined as follows. Consider the full evolution equations
(2.8) for e( t, a), linearized about a steady-state solution c(0, a) found by the procedures
outlined in earlier sections

A Gc(c(O, a ), a )c( t, a ).
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Since A is nonsingular, we can write

/::-A-Gc(c(0, a), a)c(t, a).

Clearly c(0, a) will be linearly stable if all the eigenvalues of the matrix
-A-1 Go(c(0, a), a) are distinct and have real parts less than zero.

In practice the eigenvalues only need to be calculated once in between each
bifurcation point or normal limit point, since (in the absence of Hopf bifurcations)
these points are the only ones at which an eigenvalue passes through zero.

5. Numerical example. For our numerical example we consider an equation
studied by Smoller and Wasserman (1981) and more recently by Manorajan et al.
(1984) and Manoranjan (1984)

(5.1a) ut=Uxx+U(1-u)(u-a), 0<a<1/2,

With the boundary condition

(5.1b) u(-L,t)=u(L,t)=b.

A simple change of variables puts this into the standard form (1.3)

vt=vx,+ag(v),

g(v) =-v3+(l+a-3b)v2+(2ab-3b2+2b-a)v+b(1-b)(b-a),

(5.2c) v(O,t)=v(1, t)=O, v=u-b,

where a 4L2 is the bifurcation parameter. We examine first in some detail the case
a=b=0.25, since this case has been the most studied (Manoranjan (1984)). As
described above we calculate the steady-state solutions (vt 0). In all cases we plot
v(x) for x [0, 1] instead of u.

5.1. The case a=b=0.25. In this case. g(v) =0 so v(x) =0 is a solution for all
Linear stability analysis shows that solutions bifurcate from the zero solution at
a =j2Tr2/a(1- a) for j 1, 2,. . In the papers by Manoranjan et al., attention was
directed at the first bifurcation point (j 1) and the solution curves bifurcating from
this point. We have also included the second point (j 2) in our study.

In order to prove an "exact" solution for the nonlinear problem, we solved (2.9)
for a large value of N (401) using the methods of 3 to provide a base-line for our
error calculations. (Remember that we do not necessarily advocate the method as
particularly efficient for these large values of N, as discussed in 3.) The calculation
was then repeated for N 201,101, 51, 21, 11, 5 and 1. Odd values of N were chosen
to give a collocation point at x 0.5 where v often has an extremum value. The resulting
bifurcation curves for N 51 are shown in Fig. 1. In this figure, v* is calculated as
the ti such that Iti[->_ Itl for j 1,. , N. Plots of solutions v(x) corresponding to the
points (a)-(h) are shown in Fig. 2. In both figures, unstable solution curves or solutions
are shown by dashed lines. Point (c) corresponds to a Omin 39.8736, (L= 3.1573)
the normal limit point at which Ov*/Oa =0, and v* at this point has the value 0.2833.
Asymptotically the top curve - 0.75 as a , and both bottom curves - -0.25 as
These values correspond to the other zeros of g(v) for a =0.25. The top curve of
solutions from point (c) upwards are stable, as is the first lower curve from a a

zr2/a(1-a) 52.6779 downwards. Between these two points the solution is unstable.
The second branch, from a =a2=47r2/a(1-a)=210.5516 is unstable for all values
of a. This branch is double valued corresponding to the broken symmetry x 1- x.
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a= 0.25 b= 0.25
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(e)

100 150 200 250 300 ,350 4()0

FIG. 1. Solution curves bifurcating from the first two primary bifurcation points for the model problem
(5.2) with a b 0.25. Unstable solutions are represented by dashed lines.

a= 0.25 b= O.25

O-

0 0.2 0.4 0.6 0.8

X
FIG. 2. Solutions v(x) corresponding to the points (a)-(h) in Fig. 1.

In order to compare errors for various values of N, we examine the error in v*
at a =400 and a a, and the error in calculating Omin, taking the "exact" values to
be those given by the numerical approximation at N =401. The results are displayed
in Table 1.

We see that even with the moderately small value of N 21 it is possible to obtain
almost 6 figure accuracy in the calculated solution.

Some comparisons with other results are of interest, especially for low values of
N. The third order perturbation theory in Manoranjan (1984) gives Omin--’39.7755
(L=3.1534), with an error of 9.8E-2, better than the pseudo-spectral result with
N 1, but not as good as the case for N 5. However the pseudo-spectral result for
N 1 gives a simple approximation for the whole of the first curve:

1
v*

3 7r
2

(5.3) (v*)2+ +16- a"
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N

TABLE

Errors in
v*(400) V*(OI) Omi

201 1.0E- 10 4.0E- 10 1.3E- 8
101 9.0E- 10 6.4E-9 2.1E- 7
51 1.3E-8 9.4E-8 3.2E-6
21 9.7E-7 3.0E-6 1.0E-4
11 3.6E 5 3.4E 5 1.1E 3
5 2.0E 3 6.5E 4 1.9E 2

2.5E-2 6.1E-2 4.0E-

This gives Omi to within about 1% relative accuracy, and has the correct asymptotic
limits (0.25+0.5) a-oo. In addition the first bifurcation point c1 is given exactly, as
noted in 2.

Since g(v) in this case is a polynomial the integrals (2.3) in the spectral method
can be calculated exactly. It is straightforward to show that in this case the correspond-
ing approximation to the first curve for N--1 is given by

16 v. 1 47r2
(5.4) (v*)- +-’ +4- 3a"

For this case the approximation to Omi is 39.8704 (L 3.1572), with absolute (relative)
error 3.2E-3 .008%). Thus for N 1 the spectral method is much more accurate
at this point than the pseudo-spectral method. However in the limit a --> oo the spectral
method has the wrong asymptotic limits (.283 +.574). This reflects the fact that the
spectral method is trying to minimize an average error rather than a pointwise error
in these cases.

Apart from the anomalous asymptotic result, we would expect in general that for
fixed N, the spectral method will always be more accurate than the pseudo-spectral
method, in cases where the integrals in (2.3) can be calculated exactly. The pseudo-
spectral method is more useful as a general-purpose method since a change in g(v)
requires only a small modification of the code.

Finally a calculation using a simple finite difference method with h 1/2(N 1) gives
a much cruder approximation to the first bifurcation curve

Iv, 3 8
(5.5) +

2 16 a

This gives a 42.666, an absolute error of about 10 for a quantity given exactly by
the spectral and pseudo-spectral methods. The corresponding result for amin is 32,
with an error of about 8 units. However correct asymptotic limits in the case a- oo
are obtained again in this case.

Calculations of the slope of the first bifurcation curve at a a using the pseudo-
spectral method also show good agreement with the theoretical value calculated
according to the methods of Decker and Keller (1981).

5.2. Some examples with b a. In order to facilitate comparisons with other
numerical results, we consider various other values of a and b treated by Manoranjan
et al. (1984).

(i) b =0. Solution curves for the case a =0.25, b =0, and 0 -< a _-<400 (0 <- L=< 10)
are shown in Fig. 3. The zero solution and the upper curve for a -> 79.8543 (L_-> 4.4681)
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a= 0.25 b= 0.00

O-

0 50 100 150 200 250 500 550 400

FIG. 3. The case a 0.25, b 0.0. Note that curves of unstable solutions are denoted by dashed lines.

are stable. No bifurcations from the zero solution or from the upper curves were
observed for a =<400. Solutions for the points labeled (a)-(d) are shown in Fig. 4.

a: 0.25 b: 0.00

0 0.2 0.4 0.6 0.8

FIG. 4. Solutions v(x) corresponding to the points (a)-(d) in Fig. 3.

(ii) 0 < b < a. Calculations for the case a 0.25, b 0.1, are sumtnarized in Figs.
5 and 6. The curve v 0 is no longer a solution and has been replaced by a negative
solution with a minimum at x 0.5 (see curve (d) in Fig. 6). The upper branches are
similar to the previous case, except there is now a secondary bifurcation point at
a 264.4006 (L 8.1302) at which a solution with unsymmetric components branches
off. However this double solution curve has only unstable solutions. The top (stable
branch starts at a 63.7075 (L 3.9908).

(iii) b a. The case b a =0.25 has already been discussed above.
(iv) a < b < 1. For a- 0.25, b 0.5, we find only one solution curve in the range

0_-< c _-< 400. This curve is similar to the top curve in Fig. 7. If a is increased to 0.4, a
second group of solution curves enters the diagram, as shown in Fig. 7. The bottom
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a= 0.25 b= 0.10

(d)

100 150 200 250 300 350

O(

4OO

FIG. 5. The case a =0.25, b =0.1.

c= 0.25 b= 0.10

0 0.2 0.4 0.6 0.8

X

FIG. 6. Solutions v(x) corresponding to the points (a)-(e) in Fig. 5. Dashed lines show unstable solutions.

branch of the second group gives a second stable solution for a ->_ 98.2476 (L_-> 4.9560).
The unstable upper branch of this group has a secondary bifurcation point at a-
171.3209 (L 6.5445). Solutions for a =400 for each of these four curves are shown
in Fig. 8.

It is interesting to note that attempts to follow this second group of solutions for
decreasing a fails for values of a between 0.31 and 0.32, in good agreement with the
conjecture by Manoranjan et al. connected with their inequality (3.6). A more detailed
investigation of the variation of simple limit points and bifurcation points as functions
of a and b is planned.

(v) b 1. For a 0.25, b 1.0, only the constant solution v 0 (u 1) was found.
No bifurcations in the range 0-<_ a _-< 400 were found.
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a= 0.40 b= 0.50

O

0 50 100 150 200 250 300 350

FIG. 7. The case a 0.4, b 0.5.

(c)

()
400

a= 0.40 b= 0.50

i

0.2 0.4 0.6 0.8

FIG. 8. Solutions (a)-(d) for the points shown in Fig. 7.

(vi) b > 1. Investigations of the case a =0.25, b 1.5, produced only a single
solution curve, with the solution having a minimum at x=0, as described by
Manoranjan et al.

6. Conclusions. The numerically calculated bifurcation curves presented in the
previous section verify and illuminate the numerical calculations of Manoranjan et al.
[1984] on the number and behavior of stable steady-state solutions of the full p.d.e.
(5.1). In addition a number of interesting additional unstable solutions and solution
curves are generated. These unstable solutions could not have been found by the time
integration of the full equations. Finally, the high accuracy of the pseudo-spectral
method for a moderate number of basis functions and collocation points is clearly
demonstrated.

It should be emphasised that the test problem we have considered here has a
smooth solution, and the pseudo-spectral method with a small number of eigenfunctions
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will not give accurate results when the reaction-diffusion equation exhibits internal
and/or boundary layers. In some cases the use of Chebyshev basis functions rather
than eigenfunctions may give higher accuracy-this question is discussed in a recent
note by Eilbeck and Manoranjan (1984).
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THE SPECTRAL APPROXIMATION OF BICUBIC SPLINES
ON THE SPHERE*

P. DIERCKXf

Abstract. Formulas are given for the spherical harmonic coefficients of bicubic splines. These formulas
are useful for determining a spectral approximation to a discrete function which may be defined on a
latitude-longitude grid or at arbitrarily scattered points on the surface of the sphere.

Key words, spectral approximation, spherical harmonics, bicubic splines, B-splines, smoothing on the
sphere

1. Introduction. In numerical models ofmeteorological and geophysical processes,
spectral approximations of weather data and the earth’s topography are often used
(see e.g. [2] and [18]).

If f(O, qb) is continuous over the sphere (0 latitude, b longitude) and has
continuous derivatives up to second order, then it can be expanded in an absolute and
uniformly convergent series of surface spherical harmonics, i.e.

(1.1) f(O, b)= E E’ /5 (cos O)(a..m cos (mb)+ b.,,. sin (mb))
n=O m=O

0_<_ 0_-< r, 0_-< d <- 2r,

where the P’(x) denote the normalized associated Legendre functions [1] which can
be defined as

[(2n+l)(n-m)!\ 1/2 d"
(1.2) PT(x)

\
/ )2- + m)

(1- x2) "/2 dx----dP.(x)
with P.(x) the Legendre polynomial of degree n.

The coefficients a.,m and b.,.. called the spherical harmonic coefficients off(0, ),
are given by the formulas

1 fo’- fo(1.3a) a.,, f(O, 4,)P (cos 0) cos (m4,) sin 0 dO db,

(1.3b) bnm
1

f( 0, b)P (cos 0) sin (rnb) sin 0 dO d.
7/" Jo Jo

In 19], Swarztrauber gives a survey of methods for finding an approximation for these
coefficients when f(0, b) is given at a discrete set of data points on a latitude-longitude
grid (0i, bj), 0, 1,. , N; j 0, 1,. , M- 1, uniformly space in longitude (bj
2"n’j/M). An integer L and corresponding coefficients t$,,,, and b,,,, n 0, 1,..., L;
m 0, 1,. ., n are determined such that the truncated series

L

(1.4) P. (cosO,)(..,,,cos(m)+..,,,sin(mqb))-f(O,,cb)
n=O m=O

for i=0, 1,. , N, j=0,1,-..,M-1.

*Received by editors March 15, 1984, and in revised form February 11, 1985. This research was
supported by FKFO under grant 2.0021.75.

f Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3030
Heverlee, Belgium.
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All investigated methods begin by Fourier transform in longitude b, by computing

2 M-1

(1.5a) a,,,(O,) =--- Y’. f(O,, j) cos (mbj),
j=O

2 M-1

E f( 0,, bj) sin (mbj).(1.5b) b,, (0,) - =0

They differ in how the coefficients d,.,, and/,.,, are computed such that

L

(1.6a) Z n,mP’n (COS Oi) am(Oi),

L

(1.6b) E b,.,.P (cos 0,) b,,(0,).

In this paper we will expose a different approach with the advantage that it can
be applied without any restriction on the position of the data points. It is based on
spline smoothing. If s(O, ok) is a good spline approximation for f(O, ok), then the
following integrals

(1.7a)

(1.7b)

s(O, k)P" (cos 0) cos (mth) sin 0 dO ddA

s O, $)P (cos O) sin (mb) sin 0 dO dqb,
71"

will be good approximations for a,.,, and b..., as well.
In 2 we review a number of methods for finding an appropriate (bicubic) spline

approximation on the sphere. In 3 and 4 we recall the formulas for calculating the
Fourier coefficients of B-splines and derive a simple recurrence scheme for obtaining
the trigonometric expansion of cosk0 sinm0. These results are used in 5 where we
show how the integrals (1.7a) and (1.7b) can be analytically calculated in an efficient
way. Finally in 6 some numerical examples are given.

2. Bicubic spline approximations on the sphere. In fitting data on the sphere, a
rectangular approximation domain D [0, 7r] x [0, 27r] is concerned.

Consider the strictly increasing sequences of real numbers

(2.1) 0 AO < A < < Ag < Ag+ 71"

(2.2) 0-- /’0 < jill < < jl-/,h < /h+l 27r,

then the function s(0, b) is called a bicubic spline on D, with knots Ai, 1, 2, , g
in the 0-direction and/x, j 1, 2, , h in the b-direction if the following conditions
are satisfied:

(i) On any subrectangle Di,=[A,A+]x[/x,/z+], i=0, 1,. .,g; j=
O, 1,..., h, s(O, ok) is given by a polynomial of degree 3 in 0 and b.

(ii) All derivatives 0+ s(0, b)/00 0b for 0 <- -< 2 and 0 <=j -< 2 are continuous
in D.

If we introduce a number of additional knots satisfying

(2.3)
A_ < A_2< A_1 0,

7r hg+l Ag+2 hg+3
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and

(2.4)
27r _-</al,h+ jlal,h+2 h+3,

but which are further arbitrary (for some practical considerations, see [3] and [7]),
every such spline can uniquely be expressed (see for example [12]) as

g h

(2.5) s(O, b)= Y’. E c,aM,(O)N(ck)
i=--3 =--3

where Mi(O) and N(b) are normalized cubic B-splines, defined as

M,(0) (Xi+4 li)m4t(Xi,/i+1, /i+4)( t- 0)3+,

Nj(6) (/j+4 -//,j)At4(/j, j+l, j+4)(/- 6)3+,
(2.6)

(2.7)

with

(.8) x+ (max (0, x)) k

and where 4At (Xi, Xi+l, xi+4)H(t) stands for the 4th divided difference of the
function H(t) on the points x, Xi+l,""’, x+4.

In the literature several algorithms and computer programs are described for fitting
splines in the representation (2.5) to data fq given at a discrete set of data points
Oq, Ckq), q 1, 2,. , m. Hayes and Halliday [ 12] consider the least-squares problem
on the assumption that the knots (2.1)-(2.2) are given. In [5] an algorithm is described
for determining a smoothing spline with automatically chosen knots. Instead, the user
has then to provide a single parameter by which he can control the tradeoff between
closeness of fit and smoothness of fit. If the data are given at the points on a rectangular
grid, interpolating splines, least-squares splines and smoothing splines can be deter-
mined in a very fast way. This is demonstrated in [4] and [6] for example.

However, all these general surface fitting algorithms may give unsatisfactory results
when applied to our specific problem of approximating a function f(O, ok) on the
sphere. Indeed, f(0, b) is not only periodic in longitude but besides, the value off is
independent of 4 for 0=0 and 0= 7r. In [7] we have therefore considered the
determination of least-squares and smoothing splines which satisfy the following
additional constraints

(2.9)
Ois(O, O) O(0,2rr)

O<=O<=’rr, j=0,1,2,

(2.10) s(O,

(2.11) s(Tr, b)-= s(Tr, 0), 0

Os(O, qb) Os(O, O) Os(O, zr/2)
(2.12)

O0
=cos b O0

+sin b O0
0 < b <27r,

Os(r, ) Os(Tr, O) as(Tr, 7r/2)
(2.13) -=cosb+sin b 0<= b =<27r.

O0 O0

Condition (2.9) simply expresses that the bicubic spline must be periodic in the variable
b. The conditions (2.10)-(2.13) guarantee C continuity at the poles. Finally, such
constraints can also be implemented in the fast algorithms for approximating data on
a latitude-longitude grid (see [9] for example).



614 P. DIERCKX

Freeden [10] and Wahba [20] have recently described another approximation
method in which the notion of periodic splines on the circle and surface splines in
Euclidean spaces, is generalized to the sphere. The approximating functions, which
are called spherical spline functions, appear to have interesting smoothing properties.
A disadvantage however is that the number of coefficients in the representation of
these splines, equals (slightly exceeds) the number of data points. Therefore, if m is
large, the method seems less appropriate, also due to the lack of sparsity of the system
from which the coefficients must be calculated. With tensor product splines, the number
of coefficients is normally quite less than the number of data points. Besides, the system
to be solved is sparse due to the local support of the B-splines.

3. Integrals and Fourier coefficients of B-splines. Ready formulas for the following
integrals will be needed

(3.1) S(i,l)= Mi(O) sin(lO)dO, i=-3,... ,g,/= 1,2,...,

(3.2) C(i, l)= M,(O) cos (lO) dO, i=-3,..., g,/=0, 1,...,

(3.3) ;(j, m)= N((])) sin (mb) dqS,

(3.4) (j, m)= N(tk) cos (mth) db,

j--3,...,h,m=l,2...,

j =-3,. ., h, m =0, 1,. ..

2

(3.8) H(t) cos 1 +--
2

with

(3.7a)

(3.7b)

(3.7c)

and

(3.6) G(t) sin +--
6

i=g-2, g-l,g,

C( i, l) 61-4(A,+4- A,) Aat(A,, .,A,+4)H(lt+), =-3, -2, -1,

--61-4(Ai+4-Ai) A4t(Ai, Ai+4) COS (It), i=0,-’., g-3,

=cos (Tr/)6/-4(A,+4 A,) A4(A,, A,+4)H(I(r-t)+),

i=g-2, g-l, g,

The formulas for ;(j, m) and ((j, m) are immediately obtained from (3.5) and (3.7)

with

In the literature we find several papers devoted to the calculation of integrals 11] and
Fourier coefficients [8], [13]-[16] of B-splines. As an immediate result of the formulas
given in [8] for example, we find more specifically that

(3.5a) S(i, 1)=61-4(A,+4-A,) A4t(A,, Ai+4)G(lt+), i= -3,-2,-1,

(35b) 6/-4(Ai+4 Ai) 4At(A, ", Ai+4) sin (It), i=O,. ., g-3,

(3.5c) -cos (Trl)6l-4(Ai+4-Ai) A4(Ai, Ai+4)G(/(’n’- t)+),
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if we simply replace by j, by m, g by h, h by/z and r by 2r. The formula (3.7)
cannot be used if =0. By using (2.3), (2.6) and (2.8) and the properties of divided
differences we can derive for these integrals of B-splines that

(3.9a) C(i,O) 4-’(A,+4 A,) 4At (/i, /i+4) 4t+, -3, -2, -1,

(3.9b) 4-1(,i+4 Ai), 0, , g 3,

(3.9C) 4-1(A,+4-- h,) A4(A,, h,+4)(zr- t)4+, i= g-2, g- 1, g.

4. The trigonometric expansion of COS
k 19 sin 19. In this section we derive a simple

recursion formula for calculating the coefficients in the trigonometric expansion of
cosk 0 sin 0. Using the well-known identities

(4.1a)

(4.1b)

(4.1c)

2 COS
2 0 1 + cos 20,

2 sin2 0-= 1 -cos 20,

2 sin (2! + 1)0 cos 20-= sin (2! + 3)0 +sin (2!-1)0,

we can prove by induction that

k+m

(4.2) cos2k 0 sin2m+’ 0=-2-2k-2" , am(k, 1) sin (21+ 1)0
1=0

k=0,1,’.’,

if the coefficients am(k, 1) are recursively defined as follows"

(4.3a)

(4.3b)

am(k, l)=2am(k-1, l)+am(k-1, l-1)+am(k-1, l+ l),

k- 1,2, .,/-0, 1,. ., k/ m;

am(O,!) 2am_(0, I) am-l(0, 1-- 1) am-l(0, + 1),

m=1,2,’’’, l=0,1,’’’,m;

ao(O, 0)= 1.(4.3c)

Herewith it is assumed that

(4.4a) Cm(k, -1) -am(k, 0),

(4.4b) am(k, k+ m+ 1)= am(k, k+ m+2)=0.

Likewise, we can easily check that

k+m

cos2k+ 0 sin2m+1 0=2-2k--m-1 /3re(k, l) sin (2/+2)0,
(4.5) /=o

k=0,1,..-, m=0,1,...,

with the coefficients tim(k, l) satisfying the same relations (4.3) but now on the
understanding that

(4.6) flm(k, -1)= flm(k, k+ m+ l)= flm(k, k+ m+2)=O.

The identities (4.1a) and (4.1b) together with

(4.7) 2 cos (2/+ 1)0 cos 20 -= cos (2/+ 3)0 + cos (2/- 1)0
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are used to prove that the coefficients 3’,.(k, I) in the expansion

k+m

(4.8) Cos2k+lo sin2" 0=--2-2k-2" , ")lm(k l) COS (2/+ 1)0,
/=0

k-0, 1,...

also fulfill the relations (4.3) on the understanding that

(4.9a) y"(k,-1)=y"(k,O),

(4.9b) T"(k, k+m+ 1)= T,.(k, k+ m+2) O.

Finally, we can also prove that

k+m

(4.10) COS
2k 0 sin2" 0--2

-2k-2m+’

6"(k, 1) cos (210),
/=0

k=O, 1,..., m=O, 1,.-.,

where

(4.11a)

(4.11b)

(4.11c)

(4.11d)

(4.1 le)

6"(k, 1)= 26"(k-1, 1)+26,.(k-1, 0)+ i5,.(k- 1, 2),

6,.(k, l)= 26,.(k- 1, l)+ 6re(k- 1, 1-1)+ 6,.(k- 1, 1+ 1),

l-0, 2, 3,k--l,2,. .,
6,.(0, 1) 26,._1(0, 1) 26,._1(0, 0) 6,._1(0, 2),

6,.(0, l)= 26m_1(0 l) 6,.-1(0, l-1)-6,.-1(0, l+ 1),

re=l,2,...,

60(0,0) 1/2,

/=0,2,3,. .,

(5.2) F’ M(O) (cos 0) sin 0d0.

From (1.2) and the following explicit expression for the Legendre polynomials (see
1 for example)

r-/2] (2n -2k)!xn-2k
(5.3) P.(x)= Y’, (-1)k

k--O 2"k!(n-k)!(n-2k)!’

with

on the understanding that

(4.12) 6,.(k, -1)= 6,.(k, k+ m+ 1)= 6,.(k, k+ m +2) 0.

5. On calculating the spherical harmonic coefficients of bieubic Slflines. The for-
mulas given in 3 and 4 will now be used to find an analytical expression for the
coefficients ti,,,, and b,.,. with n 0, 1,. ., N; m- 0, 1,..., n. Substituting (2.5) into
(1.7) and by using (3.3) and (3.4) we get

g h

(5.1a) ,,,,. 1
c,.jF’,,.,.C(j,m),

"17" i=-3 j=-3

g h

(5.1b) b,,,.
1 y 2 ci, jF,,,,.S(j,i m),
"I1" i=-3 j=-3
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where [z stands for the greatest integer less than or equal to z, we find that

(5.4) P2n (cos 0)= d,,,m(k) sinTM 0 COS
2k 0

k=0

with

((4n + 1)(2n 2m) !) 1/2 (2n + 2m + 2k)!
(5.5) d.,,.(k)=\ -- (-1)"-"-k22,,(2k)!(n_m_k)!(n+m+k) !.

Consequently, substituting (5.4) into (5.2) and by using (3.1) and (4.2), we get

(5.6)
k+m

F_.,2., E 2-2k-Em d..,.(k) 2 a,.(k, l)S(i, 2/+ 1).
k =0 =0

We can easily verify that the coefficients d,,,, (k) can recursively be computed as follows

(n rn k + 1)(2n + 2m + 2k 1)
(5.7a) d.,,.(k)

k(2k- 1) d..,.(k- 1),

k- 1,2,...,n-m,

(5.7b) d,,(0)= ((4n+ 1)(2n-2m-1)(2n+2m-1)) 1/2

(4n-3)(2n-2m)(2n+2m) d,_l,, (0),

n m+ 1, m+2, ,
(5.7c) d,. ,.(O) ((4m + l )(4m -1)) 1/2

4m(4m-2) dm_l,m_l(O), m=l,2,...,

(5.7d) do,o(0) 1/x/.
Therefore, we can calculate the requested coefficients t72..2., and bEn,2 in an efficient
way through the following scheme

(5.8a) Set N= IN/2]

(5.8b) Compute (( 2m) and g( 2m), j =-3,. , h; m =0, 1,. ,/Q from for-
mulas similar to (3.5), (3.7) and (3.9)

(5.8c) Compute S(i, 21 + 1), -3,. , g; 0, 1,. ., N from (3.5)

(5.8d) Set ao(0, 0) and do,o(0) according to (4.3c) and (5.7d)

(5.8e) For m 0, 1, , N do:

(5.8el) Compute Otm(k,l), k=O, 1,...,N-m; l=O, 1,....k+m from (4.3b) if
k 0 and m > 0, and from (4.3a) if k > 0

(5.8e2) For n=m, m+l,...,Ndo:

(5.8e2i) Compute d,,,, (k), k 0, 1,. ., n m

from (5.7c) if n m and m > 0,
from (5.7b) if n > m and k 0,
from (5.7a) if n > m and k>0

(5.8e2ii) Compute ti2,,2,, and b2,,2,, by using (5.1) and (5.6).

The remaining coefficients can be calculated through similar schemes requiring the



618 P. DIERCKX

following formulas

(5.9)

with

(5.10)

(5.11)

k+m

F 2-2k-2m-1.+,,2. E e..,.(k) Y fl,.(k, l)S(i, 21+2)
k=O 1=0

enm(k)=((4n+3)(2n-2m+l)!) 1/2

)n -k

2(2n+2m+ 1)!
(-1

(2n+2m+2k+2)!
22"+1(2k + 1)!(n-m-k)!(n+ m+ k)!’

k+m+l

F.+.zm+l Y 2-k-Zm-lf....(k) 2
k=0 =0

6,.+(k,l)C(i, 21),

with

(5.12)

and finally

(5.13)

)1/2f.,m(k) (4n+3)(2n-2m)!, (-1
2(2n +2rn +2)!

(2n+2m+2k+2)!
22"+l(2k)!(n m-k)!(n+ m+k+ 1)!’

k+m

Fin,2m -2k-2m (k, l)C(i, 21+ 1)E 2 g.,,.(k) Y ’)/m
k =0 /=0

with

(5.14)
g,,. (k)=((4n+l)(2n-2m+l)!) 1/2

2(2n +2m- 1)!
(- 1)"-"-’

(2n+2m+2k)!
22"(2k + 1)!(n-m-k)!(n+m+k)!"

A Fortran program, called SURFCO, in which the spherical harmonic coefficients
of a given bicubic spline are calculated in this manner, can be obtained from the
author. As can be deduced from the scheme (5.8), this program needs an auxiliary
vector for storing the coefficients d,,,,.(k) (the same vector is used for storing e..,.(k),
f.,,.(k) and g..,.(k) resp.) and auxiliary arrays for storing the coefficients S(i, 21+ 1)
(or S(i, 21 + 2), C(i, 2/) and C(i, 21 + 1) resp.), (j, 2rn) (or (j, 2rn + 2)), (j, 2rn) (or
(j, 2m + 1)) and a.,(k, l) (or/3, 6 and 3’ resp.).

Finally, it must be noticed that, although the Fourier coefficients S, , C and
as well as the coefficients a, /3, y, 6 and d, e, f g, can be calculated very accurately
with the proposed schemes, there is a large loss in significant figures in evaluating the
expressions (5.6), (5.9), (5.11) and (5.13) if n rn is large (subtraction of large numbers
to get small ones). Experimentally we have found that the resulting loss in accuracy
for the coefficients i..., and b,..m can roughly be estimated at 2 + 0.04(n rn) 1.6 decimals.
Now, in the context of finding the spherical harmonic coefficients of functions given
as empirical data, these roundoff errors will normally be not larger than the approxima-
tion errors la..,.- ti..,.] and lb..,.-/...,I. The latter are indeed inevitable, considering
that we have only a finite number of data points, which in addition are most likely
subject to measurement errors. So, whichever method we use, we cannot expect then
to obtain still meaningful results for large values of n.



(a)

(b)

(c)

(d)

FIG. 1. Contour plot of spherical harmonic approximations for

f(0,)= [(sin0cs) (sin0sin) (csO)2] -t/2

(a) N=6, (b) N=8, (c) N= 10, (d) N= 12.
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(a)

(b)

x

xx

(c)

FIG. 2. Contour plot of (a) f(O, 4) 2(4.1 + 3 cos (24) + 0/4) sin 0+cos 30)-1, (b) a smoothing spline
approximation" c d spherical harmonic approximations with N 10 and N 11.
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(a)

(b)

(c)

(d)

FIG. 3. Contour plot of least-squares spherical harmonic approximations forf( O, dp 2(4.1 + 3 cos (2b +
0/4) sin 0+cos30)-1. (a) N=8; (b) N=9; (c) N= 10; (d) N= 11.
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6. Numerical examples.
Example 1. In a first example we tried to find an approximation for the spherical

harmonic coefficients of

[(sin 0 COS
f(0, th) + +

(6.1)
{AIi= 1,..., 5} ={5, 1, 2, 5, 1}.

By using subroutine SMOCYL [9], we first determined a bicubic spline s(0, b),
interpolating f at the points on a uniform latitude-longitude grid (0 ri/40, k-
2rj/40), i=0,1,...,40; j=0, 1,...,39. Herewith, we imposed the constraints
s(O, d)/O#=--Os(cr, 4)/00=0 and periodicity in @. Then, by using SURFCO, we
calculated the coefficients t,,, and b,, of this spline for n=0, 1,..., 15; m=
0, 1,. ., n. The total time for approximation and calculation of the coefficients was
about 1.4 sec on a IBM 3033. Figure 1 shows a contour map of the truncated series

(6.2) FN(0, b) -"P. (cos 0)(d,,,, cos (mb)+/, sin (mb))
=0 m=0

for different values of N (6, 8, 10, 12) illustrating the convergency. The contour map
of Fig. ld is yet hardly distinguishable from that of f(0, 4).

Example 2. In a second example we tried to find an approximation for the spherical
harmonic coefficients of

(6.3) f(O, b) 2(4.1 +3 cos (24 + 0/4) sin= 0 +cos 30)-’.

Using a random number generator, we generated:
(i) a set of 192 data points (0, 4) scattered uniformly over D;
(ii) a set of normally distributed stochastic variates % with expected value 0 and

standard deviation 0.02;
and considered the data (0q, ck,, fq) with fq f(Oq, cbq)+ %. Then, by using subroutine
SMOSPH [7], we determined a smoothing spline approximation for f(0, 4), satisfying
the constraints (2.9)-(2.13). Figure 2a shows a contour map of f(0, 4) corresponding
to function values 0.5, 1, 1.5,--., 3 and the position of the different data points. In
Fig. 2b the contour map of the smoothing spline is given. This spline has g 6 knots
in the 0-direction and h 13 in the b-direction. Figure 2c and Fig. 2d show the contour
maps of the corresponding series (6.2) with N 10 and N 11. Finally in Fig. 3 we
have plotted for different values of N(8, 9, 10, 11) the contour map of series of the
form (6.2) but now with the coefficients ,,, and b,,,, computed directly by means of
a least-squares criterion, i.e. such that

192

(6.4) trN (fq FN(Oq, bq))2 is minimal.
q=l

As N gets larger, these approximations become more and more influenced by the
errors eq, especially in those regions where there is a lack of data. On the contrary
with our spline method, as N gets larger, the approximations F(0, b) will converge
to the smoothing spline.
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CONVERSION OF FFI"S TO FAST HARTLEY TRANSFORMS*

OSCAR BUNEMAN"

Abstract. The complex Fourier transform of a real function and its real Hartley transform are expressed
in terms of each other, allowing translation of theorems and computer programs between the two versions.

Any FFT can thus be converted, by a few indexing changes, into a Fast Hartley Transform which is equally
efficient, in terms of floating point operations per real datum transformed. The FHT can therefore transform

one real array Of length N in half the time that it takes the FFT to process a complex array of length N.

Several tricks to speed up both FHT and FFT are presented and a Fortran version of the FHT is supplied

which delivers the result in .75N log2 N multiplications and 1.75N log2 N additions.

Key words, real Fourier transforms, Hartley transform theorems, decimation, bit reversal, transform

economies, tabulation of trigonometric functions

1. Introduction. Hartley’s purely real version of the Fourier transform has the
potential of overtaking in popularity the presently more familiar complex version
(Hartley 1 uses cos + sin rather than cos + sin as the kernel.) For the Hartley transform
to become competitive, its discrete form (DHT, see Bracewell [2]) must be made as
computationally economical as the well-established FFT. In this paper a Fast Hartley
Transform (FHT) is presented which fulfills this requirement: it transforms one row
of N real data using just half the number of operations and half the array space that
it takes to transform N complex data by an FFT.

The two types oftransform will be displayed side by side in a manner that highlights
their similarity. Essentially, the role played by the imaginary part in the complex
Fourier transform is taken on by the real Hartley transform recorded backwards. Such
a representation of the two transforms allows one to convert an FFT program into an

FHT program with only a few indexing changes. It also allows one to swap any "tricks"
between the two that accelerate the execution. Several such tricks will be presented,
and a Fortran/Basic version of an FHT is appended to this paper.

2. Fourier transforming real data. The incentive for converting to the Hartley
transform is provided by the many applications in which only real data arrays have

to be transformed. Such arrays have to be complemented by physically meaningless
zero imaginary parts to make up the complex array required by a conventional complex
Fourier transform. One knows that the resulting transformed array must be hermitian

and one feels that half the computing cycles are wasted on just somehow confirming
this feature. A purely real transform should get there in half the time.

This should not be taken to mean that a complex Fourier transform has no place
in our computer-oriented society. There are physical variables which are naturally
complex. The combination E+ iB is a classical example: omitting constants such as

eo, /Xo or 47r, and using the Fourier kernel e-ik’r for transforming from r-space to

k-space, Maxwell’s equations condense to"

(fft-kx)(E+ iB) -j with k.(E + iB) ip initially.

Obviously, recording and updating of fields as complex data in k-space is called for,
and transforming back to r-space by means of complex Fourier transforms [3]. But

* Received by the editors August 15, 1983, and in final form January 17, 1985.

" Electrical Engineering Department, Stanford University, Stanford, California 94305.
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only in a world which has magnetic monopoles will there be no waste over transforming
the source distributions and p by a complex FFT!

Hitherto, this author has used the ugly and tedious dodge of line-pairing in
multidimensional transforming, i.e. making up pseudo-complex data out of adjacent
lines, transforming and then unscrambling. This is a principle used in many packaged
FFT’s for N real data, such as Singleton’s [7] and those summarised in P. Swarztrauber’s
survey article [9]. The even- and odd-indexed data are paired into quasi-complex
numbers, transformed by a simple complex FFT over N/2 points, unscrambled and
subjected to a separately programmed final stage.

A more elegant, less make-shift method for getting complex transforms of real
data without computational wastage is based on Bergland’s [10] careful analysis of
where in a complex FFT the operations occur which become redundant for real data
input. He has devised an ingenious indexing scheme which allows one to by-pass these
redundant operations. The bit-representation of indices becomes important in this
scheme (or representation in bases other than 2 when N is not a power of 2). While
interesting in itself, this method requires considerable additional programming effort:
the basic simplicity of the complex FFT is lost.

In this paper an attempt is made to show that if one uses the Hartley Transform
on real data, one is led to programs quite similar to, and no more complicated than,
complex FFT’s, and with no wastage.

3. Correspondences between the Hartley and the complex Fourier transforms. The
one-dimensional Hartley- and complex Fourier transforms of some real function h(x)
will be defined as follows:

H(s) I [cos 27rsx +sin 27rsx]h(x) dx, F(s) I e-aisXh(x) dx.

To establish the connection between them, the identity

-ai=sx (1 + i) cos 27rsx + (1 i) sin 27rsx
(1) e

1+i

is useful" one finds

(2) F(s)

and

(3)

H(s)+iH(-s)
1+i

H(s)= Re (l + i)F(s) or H(-s)= Im (l + i)F(s).

Since F(s) is hermitian, these last two equations for H express the same relationship:
H Re F- Im F. After applying a packaged economical FFT to the real h-data, only
one addition per element is needed to generate H, but we are aiming here at a more
direct fast method for getting from h to H.

We observe from (3) that the imaginary part is associated with a sign reversal of
the argument in H. Also, the odd and even parts of H are the imaginary and real parts
of F, respectively, or the familiar sine and cosine transforms. Note, incidentally, that
Hartley transforming preserves the parity of a function.

Amplitudes are obtained from Fourier transforms by squaring real and imaginary
parts, and adding. From Hartley transforms one gets amplitudes by squaring H(s)
and H(-s) and adding. Phases are obtained by taking arctangents of Im F/Re F and
-H(-s)/H(s) respectively, but with a 45 degree offset in the latter case. A shift in
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the x domain by an amount Xo results in the Hartley transform

H(s) cos 2zrSXo+ H(-s) sin 2WSXo

as compared with the Fourier transform F(s)exp (-2risxo).
The identification of the two types of transform in terms of each other allows one

to translate familiar complex Fourier transform theorems to their Hartley version. For
instance one finds that the transform of the derivative of h(x) must be:

Re 2iTrs(1 + i)F(s)= Re 2iTrs[H(s)+ iH(-s)] =-27rsH(-s)

which shows, again, that the "i" in the complex version is replaced in the Hartley
version by the operation of changing the sign of the argument. The operator dZ/dx2

transforms to -(2zrs)2, as for Fourier transforms. Care must be taken in multidi-
mensional transforming. While the three-dimensional Laplacian transforms to

2 2+2-4rr2(s+ sy s), as for Fourier transforms, the three components of grad h(x,
become

-2rsxH(-sx, Sy, Sz) -2"trsyH(sx, --Sy, Sz) -2ZrszH(sx, sy, -Sz)

when one Hartley-transforms in x, y and z.
Other theorems can be similarly translated. In particular, one checks that

convolution becomes multiplication for Hartley transforms as for complex Fourier
transforms. In the common case of one of the convolutants possessing a specific parity
(strictly even or strictly odd), one real multiplication per real transform element suffices.
In the general, but practically rare case of neither convolutant having specific parity,
one has two multiplications (and a halving of scales, usually absorbed elsewhere in
one’s calculation) per real element. This is comparable to the effort in convolving
complex transforms where there are four real multiplications per pair of resulting real
elements in the most general case, while practically often fewer multiplications suffice.

The connection formulas (2, 3) above readily yield the inversion of the Hartley
transform:

h(x) I e2irsxH(S)+l + iiH(-s) ds

cos27rsx+sin2zrsx [H(s)+iH(-s)] ds
2 2

I cos 2’sx + sin 27rsx H(s) ds,

using the conjugate of (1) and the parities of sine and cosine. That the Hartley transform
is strictly self-reciprocal is one of its plusses. For the complex Fourier transform one
can achieve self-reciprocity only by taking the unconventional step of defining as
"transform" the conjugate of what is normally called the Fourier transform.

In the discrete versions of either the Hartley or the complex transforms a negative
index, by virtue of the periodicity, means an index running backwards through the
array. In a formula such as (2), with the variable s now discretised into an index, this
index need only be run through half the array length in order to cover all the information
contained in the array H(s). This shows how the Hartley transform has the potential
of eliminating the 2:1 wastage of the complex Fourier transform. The details are to be
presented in the next section.
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4. The radix-2 case as an example: recursion algorithm. As an illustration, and for
the purpose of producing a useful simple program, we demonstrate the translation
from a complex FFT to a real Fast Hartley Transform for the radix-2 case where N,
the number of real data, is a power 2. This should not be taken to mean that such a
translation could not be done for radix-3, radix-4, etc. In fact, the broad principle of
replacing all i’s by an instruction to run the array index backwards should accomplish
the translation on all cases. However, the details would become unnecessarily compli-
cated for a demonstration and a fast Hartley program has not yet been written for any
radix other than 2.

At the heart of the FFT lies the factoring or "decimation" principle which, for
radix 2, takes the form of a simple recursion statement, namely that a Discrete Fourier
Transform, "DFT", of length 2N can be decomposed into two DFT’s each of length
N by means of N complex multiplications and 2N complex additions [4]. Thus a
1024-point FFT becomes two 512-point FFT’s and then four 256-point FFT’s etc.,
down to 256 four-point FFT’s. The number of operations is of the order N 1og2 N,
and we shall be concerned with the factor in front of this "N log2 N". (A four-point
FFT is trivialmit requires only additions: see 7.) Throughout this paper, N will be
assumed to be a power of 2.

For the purposes of the ensuing derivations, it is convenient to define the discrete
Hartley and Fourier N-point transforms as follows:

H(m)= h(n) cos-
N

-+sin F(m)= h(n) e-2i’r’nm/N.

These transforms are unnormalised and hence not self-reciprocal. To achieve self-
reciprocity, we shall eventually introduce a factor N-/2: see 7. In the recursion
formula, we denote transforms over 2N points by a tilde and we break up the sum
into two separate sums, over the even and the odd-indexed data:

2N--1

(m) Y’. h(n’) e
n’--0

N--1 N--1

Y h(2n) e-2"/s +e-"/N y. h(2n+ 1) e-2i’nm/N.
=0 =0

We recognise the two sums to be the discrete N-point Fourier transforms over the
even and the odd data respectively, to be denoted F(m) and Fo(m)"

(4) /(m) G(m)+ e-"/SFo(m).
The Hartley version of this formula follows from substituting the identification (2)
and cancelling the denominators (1 + i):

(5) H(m)+ iH(-m)= H(m)+ iG(-rn)+ e-""/"[I-Io(m)+ iHo(-m)].

These recursion formulas prove that an N log2 N algorithm exists for both the complex
and the Hartley discrete transforms. Taking the real part of the Hartley recursion
formula gives:

m
(6) H(m)= He(m) +cos rHo(m)+sin ,,lr--- Ho(-m

and the imaginary part states the same relation, with "-m" in place of "m". In this
form the Hartley recursion formula was first documented by R. Bracewell [5] who
thereby established the existence of an N log2 N algorithm for Hartley transforms.
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The combination of a full complex 2N-point transform from two N-point trans-
forms requires the evaluation of (4) for 2N contiguous values of m, say from 1- N
to N. For the Hartley transform, (5) need only be evaluated for the range 0 < m < N
and only for either the real part or the imaginary part when m 0 and m- N. Thus
the labor in each step of the recursion is exactly half that for a full complex transform.

In (5) the recursion step for the real Hartley transform is written in terms of
complex arithmetic. The real form (6) would seem more appropriate. However, the
work done in executing (6) for a positive value of m and the corresponding negative
value of m is exactly the same as executing (5) by complex arithmetic--and this fact
allowed us to make the comparison between the full complex and the Hartley transform.
Moreover, (5) shows clearly how an existing FFT program must be modified in order
to serve as a Fast Hartley Transform: obviously a re-indexing job. Lastly (see 5)
there are certain economies available for the multiplication by e-i"/N which one
would miss if one evaluated (6) separately and independently for positive and
negative m.

An obvious economy, exploited in any good FFT, consists of pairing the execution
of (4) for any m with that for +N + m. Since Fe and Fo have the period N, we find:

(+N+ m)= Fe(m)-e’"/NFo(m)

and the product e-irm/NFo(m) need only be evaluated once for the two cases. To
generate the 2N complex numbers (1- N), fi(2- N) fi(N), one needs to perform
only N complex multiplications and 2N complex additions. A complex multiplication
takes four real multiplications and two real additions. It follows that per real datum
delivered in one recursion step there is just one real multiplication, and there are 1.5

real additions. An N-point FFT calls for log2 N recursion steps: to generate its 2N

real transform data (N complex pairs) takes 2N log2 N real mults and 3N log2 N real
adds.

We can apply the economy of pairing m with +N+ m also to the Hartley recursion

step (5). In terms of the real formula this means that one must process four cases

together: m, -m, -N+ m, N-m. The number of mults and adds per real datum

returned in one recursion step is the same as for the complex FFT, namely one mult

and 1.5 adds. But since an N-point Hartley transform processes only N real data, the

number of mults overall is N log2 N, the number of adds 1.5N log2 N: the work is
just half that for a complex N-point FFT.

For the sake of completeness, we display here the four relevant real equations
explicitly, thereby confirming the operations count. We also use the periodicities (2N
on the left, N on the right) in order to get all indices nonnegative:

H(m)= He(m)+ cos r--Ho(m)+sin ’--Ho(N-m)

II(g- m)= He(N- m)+ sin rHo(m)-cos m)

H(2N- m)= He(N- m)- sin ---Ho(m)-cos r-Ho(N- m)

The index m runs only between 0 and N/2 now. Notice that the index runs backwards
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in the last two equations. If one were to illustrate that data flow in the form of the
traditional butterfly diagram (see, for instance, Brigham 11]), the butterfly would start
with its wings widely spread and finally fold them together. The backward running
index is also a feature used in the supplementary stage of real-data Fourier transforms
which employ the pairing method, described at the end of 2.

In order to avoid unnecessary multiplications by 1.0 and 0.0, it is worth recording
and programming separately the limiting cases m 0 and rn N/2, namely:

gI(O) He(O) + Ho(O),

I:-I(N) He(O)- no(O),

+Ho

Unlike in the case of Bergland’s [10] algorithm, this exception is not necessary for the
correctness of the results--it is just a minor economy. One would conclude that the
indexing for Hartley transforms is not directly related to Bergland’s indexing for real
transforms.

It should be emphasised that our operations count only covers floating point
operations and does not include fixed point adds required for indexing. It also assumes
that all sines and cosines have been pretabulated (see 8).

5. Eliminating one multiplication in every four. The rest of this paper is devoted
to building a useful code from what has been presented so far. Some of what follows
has no relevance to the comparison between Fourier and Hartley transforms but
concerns the optimisation of either. However, further economies in both types of
transform depend largely on the computer which is used for their execution--as well
as on the intelligence ofone’s compiler, ifthe program is written in a high-level language.

Even the floating-point-operations count presented above may become irrelevant.
In many systems one finds that data management costs exceed the arithmetic costs.
On a CRAY machine, for instance, the timing is almost entirely determined by the
number of fetches and stores of the array elements: the mults and adds can be
overlapped with these and with each other. A vectorised radix-2 FFT written by the
author for a CRAY is available through the LIBRIS facility of the NMFECC
(Livermore). It transforms 64 parallel rows of N complex data in parallel, as required
in multidimensional field transformations. The execution time is 64 times 4N log_ N
cycles, plus a few percent overhead, because there is one fetch and one store per real
datum per recursion step. By going to the trouble of programming radix-4 steps one
could improve on this speed a little: see Singleton [7], for instance.

On computers and systems for which arithmetic costs dominate over data manage-
ment costs, the total number of floating point operations ("flops") is tnore often more
significant than what fraction of these are adds and what fraction mults. (Notice that
we have avoided divisions altogether.) In our case, this figure is 2.5 flops per real
datum per recursion step. The time for a floating-point add is often almost the same
as for a floating-point mult, due to the complications in floating-point number rep-
resentation.

However, there are computers and languages for which multiplications are at a
premium. For these we offer the following economy: one can multiply by e-i"/ in
three real mults rather than four, at the cost of introducing another add [6].

Instead of prerecording sin (,n’m/N) and cos (,n’m/N), as needed for 2N-point
transforms, one pre-records sin (.a’m/N) and the half-angle tangent, tan (’rrm/2N).



630 OSCAR BUNEMAN

The identity cos (Trm/N) 1 sin (Trm/N) tan (Trm/2N) and the imaginary part of
the rotation X’+ iY’= (X + iY) e-i=’’/N give

Y- Y’ 7rm

sin (Trm/N)
X + Y tan -.

Likewise from the reverse rotation X + iY= (X’+ iY’) e i’’m/N,

7rm Y- Y’
X’ Y’ tan

2N sin (Trm/N)

so that the rotation algorithm becomes:

7rm m 7rm
X" X + Y tan --, Y’= Y- X" sin zr, X’= X"+ Y’ tan

2N’

and instead of four mults and two adds, we have three of each. The X’s can overwrite
each other, and so can the Y’s. With the angle .a-m/N below r/2, the half-tangent
stays below 1. The operations count for either of the transforms now stands at 0.75
mults and 1.75 adds per real datum per recursion step.

This method of complex multiplication is implemented in the appended Fort-
ran/Basic program, in the innermost loop. However, its merit must be weighed in each
case, taking into account the idiosyncracies of one’s computer, one’s language and
one’s compiler. Furthermore, the preparation of the new trigonometric table may
become an important consideration when the FFT is not called many times in one’s
program. A division is now required for each table entry (see 8).

6. Array economy: bit-reversed indexing. The recursion formula (6) takes the N
data of He and the N data of Ho, to combine them into the 2N data of . The two
arrays He and Ho were built up in the preceding step from four arrays each of length
N/2. Since these earlier arrays will not be required again, one may overwrite them
with .

Evidently, then, two full arrays are sufficient for the entire recursion process" the
information is tossed back and forth between them in successive steps. If the original
data have to be preserved, one must copy them out before transforming.

The question arises: can one get away with a single array? Can the data be
written straight to where they came from, i.e. into the contributing elements of the He
and Ho arrays? Obviously, one wants all three arrays to be recorded in their proper
order as given by their indices. Assuming that Ho is listed immediately following He,
the allocation"

He(N-m)n(N-m),

Ho(m)#n(N+m),

Ho(N-m)# I(2N-m),
is consistent. With this placement of the He and Ho arrays, the index of the combined
array (the index of H) shows the parity, "e" or "o", in its leading bit. But He and
Ho are obtained as N-point transforms from those elements in the original h-array
whose index had these parities respectively, i.e. whose index showed the parity in its
trailing bit.

The original elements must therefore be re-arranged, prior to the recursion process.
The trailing bit of their original index must become the leading bit of their new index.
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This must apply at all levels of the recursion process. For instance, within the He array
the first N/2 elements must originate from those elements of the h-array whose index
was divisible by 4 and the next N/2 elements must originate from those whose index,
while even, is not divisible by 4.

It follows that as a bit pattern, the new index must be the mirror image of the
old. The indices are generated from each other by "bit-reversal". Transforming begins
with permutation of the elements in the form of rather less than N!2 swaps. (Some
of the indices have symmetrical bit patterns.)

The most awkward task in the permutation phase is the construction of the
bit-reversed indices. In principle, reversing a bit pattern seems a very simple task
compared with, say that of squaring a number. But in practice, no computer offers
even a machine instruction to perform this task. High level langauges do not provide
for any form of bit manipulation at all. Language extensions sometimes allow shifts
and logicals. So do assembler languages: this is helpful for the quick construction of
bit-reversed indices. Bit-reversal algorithms written in high-level languages tend to be
painfully slow.

The appended program incorporates a bit-reversal algorithm which makes use of
the fact that the original index increments by one in the permutation loop. For an
N-point transform the bit-reversed index then "increments" by N!2 where "increment-
ing" must be done with a rightward rather than leftward carry. That can be achieved
by subtracting, not adding, N/2, N/4, N/8 etc. in each step until the result goes
negative, at which point the number last subtracted is added twice.

Since high-level languages generally do not allow the sequential construction of
N/2, N/4, N/8 etc. by shifting and would calculate this sequence by long divisions,
we supply a table of powers of 2, generated once, along with the trig tables, on first
call of the FHT.

The favorable outcome of this effort is that beyond these tables no other spare
array is needed. The transform can be placed in the original array and this is, of course,
only half as long for an N-point Hartley transform as for an N-point complex transform.

7. Normalisation and the four-point transform. The discrete Hartley and complex
Fourier transforms which were used in the recursion step are not self-reciprocal. The
inverse Hartley transform would be the same but for a division by N. The inverse
discrete complex Fourier transform requires a change of the sign of as well.

One of the conveniences of the continuous Hartley transform is its strict reversibil-
ity. To achieve the same for the discrete Hartley transform, we have incorporated a
multiplication by N-1/2 for our N-point transform. This is conveniently coupled with
the four-point transform which one eventually reaches in the recursion process.

It would be wasteful to take the recursion any further than the four-point level
because the four-point discrete transform is already free of all multiplications. After
permutation to bit-inverted order (which means swapping h(1) with h(2) when N 4),
the four-point transform looks like this"

H(0) [h(0) + h(2)] + [h(1) + h(3)],

H(1)= [h(0) + h(2)]- [h(1) + h(3)],

H(2) [h(0) h(2)] + [h(1)- h(3)],

H(3) [h(0)- h(2)]-[h(1)- h(3)].

In each of these four equations we introduce a multiplication by R N-/2. This will
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then make the FHT fully reversible. There are two additions and one multiplication
per resulting elementwa little more work than in a single recursion step.

8. Pretabulation of trigonometric functions. In-situ evaluation of sines and cosines
is inefficient since in most applications a Hartley transform is called more than once
in a program. Typically, at least one forward transform and the corresponding back-
transform will be required. Even in a single transform, half of the trig functions are
used more than once. The trigonometric functions of 2rm/N, with m between 0 and
N/4, should therefore be pretabulated before the first call to an N-point FHT. Only
the sines are needed, cosines can be read from the table backward.

One may think that this is a trivial task: most systems have the necessary library
functions available. However, it would be wasteful to call these library functions which
are provided for getting sine and cosine of some arbitrary angle, usually in radians,
and which are very slow. Here we need an array of sines and cosines for regularly
spaced angles, integer fractions of a right angle.

For instance, by just supplying e-2i/ and repeatedly multiplying with it, the
required tables could be built in N real multiplications. This method is not advisable
for large N because round-of[ errors are cumulative and the final sine or cosine values
might deviate noticeably from the desired 1.0 and 0.0 for the angle 7r/2. The method
is linearly unstable, but could be used for moderate N and with high-precision
arithmetic.

However, a stable method is available which requires approximately N/4 multipli-
cations and additions and hence is faster than library function calls. This is, again, in
the nature of a recursive algorithm and involves successive halving of angles. (When
one wants to avail oneself of the economy described in 5, there are N/4 more
additions and N/4 divisions as well.)

Such recursive bisection has been used by the author for his Fourier transforms
since the late sixties. He also used it in the original version of his fast Poisson algorithm
[12] where it is on record. Oliver [13] analysed various methods of creating
trigonometric tables and found recursive bisection the best. He notes that Hopgood
and Litherland [14] used it in a program for Chebyshev quadrature, but perhaps the
credit for recursive bisection of angles ought to go to Archimedes.

One begins with a very coarse table of sines, conveniently the sines of 0, 7r/8,
7r/4, 37r/8 and 7r/2, which are listed directly. Then one creates the sines of odd
multiples of 7r/16 by means of the halving formula:

sin a .5 sec/3 sin (a -/3 + sin (a +/3

with/3 r/16. From the resulting table at spacing r/16 one proceeds to a table with
spacing r/32 by filling in the sines of odd multiples of this, again with the aid of the
above formula and with/3- r/32. One continues until one has reached the spacing
r/ N.

Apart from the initial coarse table, one also needs a record of the half-secants,
.5 sec (Tr/16), .5 sec (r/32) etc. How long this record has to be depends on the precision
to which one wants to work. For instance, keeping eight decimal places, only the first
eleven entries dif[er from. 0.50000000. After that, they stay at this value.

In fact, one can dispense with a list of half-secants altogether, except for the first
item .5 sec (7r/16)=.50979558, if one is content with this eight-place precision. The
recursion formula:

.5 sec - 7001
16016004

.3004+ .5 sec
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delivers the needed subsequent half-secants to eight places. The precision is typical of
many micros, minis and other small systems, and it is better than IBM single precision.
(An exact recursion formula for half-angle secants involves square roots.)

The recursive method of generating the trig tables has been incorporated in the
appended program, along with this approximate algorithm for generating half-secants.

9. Comments/remarks on the Fortran/Basic program. The program supplied
herewith represents an attempt to compromise between simplicity and efficiency of
execution. It is intended for users of small systems, minis and micros. For powerful
vector machines one would write rather different versions of a Fast Hartley Transform,
or one could avail oneself of existing packaged complex transforms of real data (see
references [7] and [9]), followed by the subtraction of the imaginary from the real
partsmsee 3.

In our program, some extra efficiency is achieved by means of the various tricks
described in the preceding sections. Simplicity is a more elusive requirement. One
wants the code to be readily intelligible to both humans and computers. This can cause
conflicts. For example, all older Fortran compilers refuse to recognise a zero index,
and so do some Basic interpreters. In the case of Fourier transforms this is a great
nuisance. In spite of a recent change for the better [15], we have adhered to the older
convention: F(1) in the transformed array holds the zeroth harmonic, F(N/2+ 1)
holds the alternating harmonic and F(N) holds harmonic "-1".

To please the computers, we must also refrain from indulging in elegance. There
are snappy and concise FFT programs in the form of just equation (4) in a triple nest
of loops. These could easily be made into FHT programs. But they rely on library
routines, an intelligent compiler and the availability of complex arithmetic. They are
not the best for speed. And some of these elegant codes evade the permutation problem
by returning transforms in bit-reversed order.

In the hope that even the dumbest compilers would understand the appended
code, it was written in the most primitive form of Fortran (typically with only one
variable in the index). There are no calls to library functions, and divisions, time
consuming on some computers, occur only in the pretabulation, not in the FHT
proper.

As a result, the code is also readily translatable into other high-level languages.
It is, in fact, almost a Basic code as well as a Fortran code. The author has had specific
requests for an FHT in Basic. Here are the few instructions for converting it to Basic:

Change "DO LI I0, I1, 12" to "FOR I I0 TO I1 STEP 12" and change the
"CONTINUE" in line L to "NEXT I".

Change "IF (X.LE.Y) GO TO" to "IF X< Y GO TO" and similarly for the
other relational operators, .LT.,.EQ.,.GT.,.GE.

Change "DIMENSION" to "DIM" and label the dimension statements, deleting
the "F(1)", from the dimension statement in the subroutine; replace the "CALL" to
the subroutine by "GOSUB 30".

Delete the COMMON statements and the comments, beginning with "C", which
were inserted merely to frame the loops. Rephrase the WRITE statements and the
FORMAT descriptions in the style expected by your particular dialect of Basic.

One way in which convertibility to Basic affected the Fortran version was the introduc-
tion of line numbers for all the statements, not only those directly referred to in the
code. This provides the added advantage that specific sections of the code can readily
be identified in the ensuing descriptive comments--sorry, "remarks".
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The program is in three parts: a calling section, lines 1-25, the pretabulation, lines
28-85, and the actual FHT, lines 100-168. The calling program generates the function

100(1 + x) exp (- zrx2).
This should transform into itself: it is well-known (see Bracewell [8]) that exp (-rx2)
transforms into itself. The derivative theorem-- 2wthen shows that x times this also
transforms into itself. The scaling to discrete transforms is x-n/N/2, s- mN/2

with N- 64. There is no call to an "exp" library routine. Instead, the exponential is
generated progressively, starting with an initial Q of value -r/64 .95209793 and then
reducing this appropriately: the multiplier R has the value e-/32.

The F-array is written out before and after the call to the FHT subroutine. The
purpose of NO is to put on record the last value of N for which the subroutine had
been called. If the FHT is called for the same N again, the pretabulation is skipped
(statement 31 ).

This pretabulation begins with the loop 36-39 which just creates a table of powers
of 2, for use in the bit-inverter and elsewhere, in the array M. Note that M(L+ 1) 2L.
Also, L0 log2 N, statement 41. The M-array need only be of length L0. Integers N1,
N2, N3, N4 are multiples of N/16. These are the indices for which the sines are
listed in the S-array. The indices correspond to zr/8, r/4, 3zr/8 and r/2 as angles.
Since sine and cosine of angle zero are not required, there was no need to offset the
index by one here. The S- and T-arrays must be of length N/4. The coarse table is
in 53-56.

Loop 62-72 tabulates this table in progressively finer intervals: the inner loop
68-72 actually performs the multiplications by the half-secants "H". Statement 74
generates successive half-secants to eight-digit precision. The quantity "R" is here the
normalising factor N-1/ needed for reversibility. It is generated as such directly when
N is an even power of 2 by multiplication with G which alternates between 1.0 and
0.5 (see 63). When N is an odd power of 2, statement 79 will put things right. This
way square rooting is avoided altogether. Loop 82-85 generates the half-angle
tangents.

The actual FHT, statements 100-168, begins with the permutation loop, 103-115.
The conditional return in line 111 ensures that the same pair is not swapped twice,
the swap taking place in lines 112-114. K is the bit-reversed index to I. It is constructed
in the inner loop 106-108 where M(J) goes through the values N/2, N/4, N/8 etc.
as described in 6.

The loop 119-128 performs the N/4 four-point FHT’s, with normalisation" see
7. The large outer loop 133-166 then takes one through the recursion steps. L doubles

from 4 to N/2, L2 doubles from 8 to N. J0 goes down by halving, from N/8 to 1.
This is the index spacing in the trig tables for each recursion step.

The loop 137-163 goes through the separate blocks within each of which the
recursion step has to be performed. There are N/8 such blocks in the first level, and
only one in the last level.

In each block, the actual recursion formula (5) is applied. As suggested at the
end of 4, the cases ofzero angle ofturn (statements 138-142) and angle 7r/2 (statements
159-162) have been separated from the generhl case, with the angle between 0 and
7r/2: in the innermost loop runs through these angles (lines 145-157). The multiplication
by e-i’/N is performed in lines 149-151, in accordance with the equations shown in

5. The "m" in the text is identifiable as the index J in the program. The index I of
the F-array increments while K descends, thus running backwards through the array.
In terms of the specific equations displayed at the end of 4, the index identification
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is."
m-->I, N-m.--K, N+m--II=I+L, 2N-m--K1 =K+L.

In the general recursion step, "L" plays the role of the "N" in the illustration. The
length of the innermost loop is one less than L/2.

The program has been tested in both the Fortran and the Basic version on diverse
computers including several micros. It has indeed returned a transform agreeing with
the original to about one part in 108. Timing measurements made by R. Bracewell on
an HP 85 have confirmed that execution times vary as N log2 N. More precisely, it
was found that they go like N (log2 N-1) since the recursion process does not have
to be taken all the way but stops with the four-point transforms.

In due course, the program is to be made publicly available over various communi-
cation channels (such as the ARPA network). In the meantime, those interested might
like to copy it into their computers by hand, with possibly their own variations on the
theme. Acknowledgment of the author in any use of the subroutine would be
appreciated.

10. The program.

SUBROUTINE FHT(N, F)
COMMON NO
DIMENSION F(1), T(16), S(16), M(6)

31 IF(N.EQ.N0) GO TO 100
32 NO N
33 K=I
34 L=0
c / \
36 M(L+I)=K
37 K=K+K
38 L=L+I
39 IF(K.LT.N) GO TO 36

COMMON NO
DIMENSION F(64)

3 N0=0
4 P= 100.
5 Q .95209793
6 R=Q,Q
7 x=o.
8 F(1)=P

c / \
10 DO 17 I= 1, 32
11 X=X+.125
12 P=P,Q
13 Q-Q*R
14 F(I+ 1)-- (1.+X) P
15 I1 =65-1
16 F(I1) (1.-X) * P
17 CONTINUE
c \ /
19 WRITE(5, 20)F
20 FORMAT(IX, 8 F9.5)
21 N =64
22 CALL FHT(N, F)
23 WRITE(5, 20)F
24 STOP

END
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C \ /
41 L0 L
42 L= L-3
43 N1 =M(L)
44 N2 N1 + N1
45 N3=N2+N1
46 N4 N3 + N
47 WRITE(5.49)
48 WRITE(5.51)N4, N4, L0
49 FORMAT(/’ FAST HARTLEY TRANSFORM--COPYRIGHT 6-21-83

& BY OSCAR BUNEMAN, STANFORD UNIVERSITY’)
51 FORMAT(/’ THE S, T AND M ARRAYS MUST HAVE

& DIMENSIONS’, I4,’,’,I4,’,’,I4/)
53 S(N1) .38268343
54 S(N2) .70710678
55 S(N3) .92387953
56 S(N4) 1.

57 N4- N4-1
58 H .50979558
59 R .25
60 G= 1.
C / \
62 R=R*G
63 G= 1.5-G
64 L=L-1
65 I=M(L)
66 A =0.
c / \
68 DO 72 K= I, N4, N1
69 K1 K+I
70 S(K) H (S(K1) + A)
71 A= S(K1)
72 CONTINUE
c \ /
74 H .7001 -.16016004/(H + .3004)
75 NI=I
76 IF (N1.GT.1) GO TO 62
C \ /
78 IF(G.EQ.1.) GO TO 80
79 R R .70710678
80 K N4
c / \
82 DO 85 1.N4
83 T(I) S(I)/(1. + S(K))
84 K=K-1
85 CONTINUE
c \ /
C PRETABULATION COMPLETED
C FAST HARTLY TRANSFORM
C PERMUTATION:
100 K 0
101 I=0
C / \
103 I= I+1
104 J L0 +
c / \
106 J=J-
107 K= K-M(J)
108 IF(K.GE.0) GO TO 106
C \ /
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110 K= K/ M(J)+M(J)
111 IF(I.LE.K) GO TO 103
112 G=F(I+I)
113 F(I+ 1) F(K+ 1)
114 F(K+I)=G
115 IF(I.LT.N-2) GO TO 103
C \ /
C FOUR-POINT TRANSFORM LOOP, FOLLOWED BY RECURSION STEPS:
C
119
120
121
122
123
124
125
126
127
128
C
130
131
C
133
134
135
C
137
138
139
140
141
142
143
C
145
146
147
148
149
150
151
152
153
154
155
156
157
C
159
160
161
162
163
C
165
166
C
168

DO 128 I=l,N, 4
A=F(I )-F(I+I)
a F(I/E)-F(I+3)
G=F(I )+F(I+l)
n F(I/2)+F(I+3)
F(I )-R, (G+H)
F(I+2) R, (G-H)
F(I/ 1) R, (A+B)
F(I+3) R, (A-B)
CONTINUE
\ !

L1 L0-1
L-4

! \
L2= L+L
LI=LI-1
J0= M(L1)

! \
DO 163 I0= 1, N, L2
I= I0
I1 =I+L
A= F(I1)
F(I1) F(I)-A
F(I) F(I)/A
K-I1-1

/ \
DO 157 J J0, N4, J0
I=I+l
II=I+L
K1 K/L

A= F(I1) / F(K1) T(J)
a F(K1) A S(J)
A A+ B * T(J)
F(I1) F(I)-A
F(I) F(I) +A
F(K1) F(K) + B
F(K)- F(K)- B
K=K-1
CONTINUE

\ /
K1 =K/L
A F(K1)
F(K1) F(K) A
F(K)- F(K)+A
CONTINUE
\ /

L= L2
IF (L.LT.N) GO TO 133
\ /

RETURN
END
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NUMERICAL PROCEDURES FOR SURFACE FITrlNG
OF SCATI’ERED DATA BY RADIAL FUNCTIONS*

NIRA DYNe’, DAVID LEVINt AND SAMUEL RIPPAt

Abstract. In many applications one encounters the problem of approximating surfaces from data given
on a set of scattered points in a two-dimensional domain. The global interpolation methods with Duchon’s
"thin plate splines" and Hardy’s multiquadrics are considered to be of high quality; however, their application
is limited, due to computational difficulties, to ---150 data points. In this work we develop some efficient
iterative schemes for computing global approximation surfaces interpolating a given smooth data. The
suggested iterative procedures can, in principle, handle any number of data points, according to computer
capacity. These procedures are extensions of a previous work by Dyn and Levin on iterative methods for
computing thin-plate spline interpolants for data given on a square grid. Here the procedures are improved
significantly and generalized to the case of data given in a general configuration.

The major theme of this work is the development of an iterative scheme for the construction of a smooth
surface, presented by global basis functions, which approximates only the smooth components of a set of
scattered noisy data. The novelty in the suggested method is in the construction of an iterative procedure
for low-pass filtering based on detailed spectral properties of a preconditioned matrix. The general concepts
of this approach can also be used in designing iterative computation procedures for many other problems.

The interpolation and smoothing procedures are tested, and the theoretical results are verified, by many
numerical experiments.

Key words, thin-plate splines, Hardy multiquadrics, shifted logarithmics, preconditioning, roughness,
iterative methods, S-property of a spectrum, DeVote polynomials, low-pass filtering

1. Introduction. Given a data set (xj, yj, f), j 1, 2,..., N, the interpolation
problem consists of finding a smooth surface S(x, y) such that

(1.1) S(xj, y) f, j= l, 2, N.

Duchon [4] introduced a class of roughness measures and solved the interpolation
problem so that these roughness measures are minimized. The resulting surfaces are
termed "surface splines" and are of the form

N

(1.2) S,(x,y)= ., afl/(r,(x,y))+P,(x,y), m>=2,
i=1

where ri(x, y)=(x-x,)2+(y- y,)2,
(1.3) (r) r2("-1) log r,

and P, is a polynomial of degree m- 1. The interpolating surface spline satisfies the
interpolation conditions (1.1) and minimizes the roughness measure

(1.4) J,,(u)=/I (tm.)( 0-’u- .)2i=o \Ox’ Oy’-’
dx dy, rn >= 2.

R

Let

Qr,, span {x’yli +j < m} --= span {q,(x, y),..., qM(x, y)},
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supported by the United States-Israel Binational Science Foundation.

" School of Mathematical Sciences, Tel-Aviv University, Tel Aviv, Israel.
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Then the system of equations defining the interpolating surface spline is

(1.5)

N M, aib(ro)+ 7kqk(Xj, Yj) =f, 1 <--j_--< N,
i=1 k=l

N

Y’, ce,qk X,, y O, 1 <--_ k <--_ M,
i=1

where r0 ri ri(x, y). This system has a unique solution if the only polynomial in
Qm vanishing at all the data points is the zero polynomial. In the following this is the
underlying assumption.

A most popular member of this class of surface splines is the "thin plate spline"
(TPS) $2, which minimizes the bending energy ((1.4) with m 2) of an infinite thin
plate clamped at the data points. Its basis functions are the radial functions O(r)=
r2 log r and the monomials 1, x and y.

Another class of radial basis functions, which is also very successful and popular
[6], is the class of Hardy multiquadrics, namely, (r)=(r2+ d)//. Just recently it
has been shown by Micchelli [9] that interpolation with the two types of Hardy
multiquadrics is well posed, and also with the (r+ d2)+/-/2 basis functions augmented
by a zero order polynomial, i.e. by a constant.

In this work we introduce a new class of radial basis functions (r) log (r2 + d)
which can be viewed as a first order surface spline with a Hardy-type shift d. The
well-posedness of the interpolation problem with these basis functions augmented by
a constant ((1.2) with m 1), for any distribution of data points, is a special case of
a general result of Micchelli [9] concerning the solvability of the system (1.5) for a
wide class of radial basis functions.

A major deficiency of all the above mentioned methods is due to the fact that all
the systems (1.5) are full systems that become very difficult to solve, and sometimes
very ill-conditioned, as N increases. Also, due to the nature of the radial functions,
the common iterative methods cannot be used to solve these systems.

In [5] the authors suggested a method for preconditioning systems of equations
originating from integral equations and from surface interpolation. The purpose was
to increase the diagonal elements in these systems so that the transformed systems
could be solved by iteration. The preconditioning in [5] is applied to systems for
interpolation on a square grid, and only Richardson-type iterative procedures are
considered.

In the present work we generalize the preconditioning method to systems for
interpolation of general scattered data. A number of iterative schemes for solving the
transformed systems are considered. Following an idea due to Agee (see [2]), the
possibility of smoothing by carrying out a few iterations on the preconditioned interpo-
lation system is also investigated. Some heuristic arguments and many numerical
experiments indicate that most ofthe iteration matrices obtained by the preconditioning
we use share the same nice spectral structure. Namely, that small eigenvalues corre-
spond to "rough’" eigenvectors and large eigenvalues to "smooth" eigenvectors. (The
meaning of these terms will be clarified below.) Assuming this special structure of the
iteration matrix, we develop some fast iterative methods for interpolating smooth data,
and some new iterative methods for smoothing noisy data. The smoothing technique
is of the type of a low-pass filter, reproducing a global surface in terms of radial basis
functions, which approximates only the smooth components of the data. In this sense,
it is similar to the method of smoothing with cross-validation ([11] and references
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therein). Yet the advantage of our smoothing technique is in its applicability to large
sets of scattered data.

The various interpolation and smoothing methods developed here are extensively
investigated and verified by many computer simulations (see also [10]), and different
choices of radial basis functions are examined and cross compared. All the numerical
experiments are carried out for sets of data points with a nearly uniform density.

As shown in [5] there is a strong similarity between systems for interpolation by
radial functions, and systems originating from integral equations with singular kernels.
Therefore, all the tools for iterative solution and smoothing developed here can be
adapted to the solution of integral equations of the first kind with singular kernels,
with possibly a noisy right-hand side.

2. Preconditioning operators for general configurations of data points. The basic
motivation to the preconditioning procedure is already described in [5]. Given a system
of interpolation equations (1.5) with radial basis functions @(r) as above, we make
use of the fact that there exists a k such that

(2.1) Akd/(r) ,k 0 as r increases,

and

(2.2) Ak(r) or >>1 as r0,

where Ak is the k-iterated Laplacian, A O2/Ox2 + O2/Oy.
For example,

(2.3) A2mr2(m-1) log r= c,,8(r)

where is the Dirac- function,

(2.4) A(r2+d2)+/-1/2=+2(r2+d2)-+/-/2 1+-1+/-
r+d2

and

4d2

(2.5) A log r + d) r2 + d2)2.

The parameter d is usually taken of the order of the average distance between
neighbouring data points [6]. The system (1.5) for the surface splines can be written as

(2.6) (EAT 0E) () ()
where at (al, , crv) , /= (/1, ", 7M), f= (fl,""" ,fv), Aij 0(ro), 1 _--< i,j <- N,
Ei qk(Xi, y), 1 <-- k <= M, 1 <- <- N, and rank E M. With the basis functions
(r) (r+d)1/ and if(r) =log (r2+d) we construct interpolants u(x,y)
N N=l afl/(r(x, y))+ 3’1 such that --1 a =0. The corresponding systems are of the form

(2.6) with M 1, ql(x, y)= 1. These systems have a unique solution for any configu-
ration of data points [9]. By the preconditioning we would like to increase the diagonal
elements relative to the off-diagonal elements, in the bulk of the system, namely in A.
The jth column of A is a discrete form of the radial function (r(x, y)), evaluated at
the data points (x, Y)I. Therefore, by (2.1) and (2.2), we attempt to increase the
diagonal elements of the system by operating on A with a matrix C which is a discrete
version of the iterated Laplacian operator Ak. We require also the preconditioning
matrix to annihilate the polynomial part of the system (2.6), i.e., CE 0. If, moreover,
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rank C- N-M, then the polynomial part of the solution can be restored from the
solution t of the transformed system.

Following [5], we derive the preconditioning matrices by using discrete analogues
of the iterated Green’s formulae"

(2.7)
i=o \OX’ Oym-i OX Oym_

dx dy

=(-1)’nil (Amu)vdxdy+boundaryterms.

The null space of the functional a,,(u, u) is Q,, the space of polynomials of total
degree <m. Firstly, a "nice" triangulation T with vertices at the data points is
determined (see e.g. [8]). Then we define a discrete analogue of a,,(u, v) as"

)( )(2.8) A,,(u, v)
j=l i=O tX tym-i

where (u/x ym-i) is a finite difference approximation to Ou/Ox Oym-i on the
jth triangle, which vanishes on Q, namely for u E. The triangles indexed by 1, ,
with area T,... ,T, are "interior triangles of order m" in the triangulation T. (The
term "interior triangle of order m" is defined inductively: all triangles in T are "interior
of order 1"; a triangle is "interior of order m" if it has three neighboring triangles in
T (sharing one side with it) which are "interior of order m- 1".)

Motivated by (2.7), we define the discrete analogue A of A by the identity

N

(2.9) A,(u, v) (A’u)jv vTCu.
j=l

In fact (A’u) approximates (AmU)(Xj, yj) Sj, where Sj is an appropriate area attached
to (x, yj), j 1,. ., N. These finite difference approximations (A)j, j 1,. ., N,
arranged in a matrix C of order N x N, comprise the preconditioning matrix.

By definition (2.8) of A,,, the matrix C in (2.9) has the properties"

(2.10) C=CT,
(2.11) uTCu : 0, uERN

(2.12) Cu O > u E’y, ,y E R M.
The direction in the last property does not follow from the above requirements on
the operators in (2.8). In constructing these operators one should guarantee that

(2.13) xiSy,_ =OforO<=i<-m,l<-_j<-t ::> u=E,y,,yERM.

Since a,,(u, v) as given by (2.7) is the roughness measure of the function u, we
view A,,(u, u) of (2.8) as the analogous discrete roughness measure of the vector of
function values u=(uj)==(u(xj, yj))=. Using (2.9), we obtain for the roughness
R(u) of the vector u:

(2.14) R(u)= Rm(u) Am(u, II)’-IITcII.
This measure of roughness of function values on the grid of data points is used

in comparing smoothed versions of sets of noisy data. (See Theorem 3.3 and 5.)
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The construction of the matrix C for data on a square grid is described in [5].
Since for scattered data points we have investigated numerically only the cases m 1, 2,
we present here the procedures for the construction of the difference operators in (2.8),
only for these two cases. For m 1, (u/x, u/y)j is taken as the gradient of the
linear function interpolating the data at the vertices of the jth triangle of the triangu-
lation T, thus satisfying (2.13). The resulting matrix C is appropriate for preconditioning- ),/}systems of interpolation with the Hardy multiquadrics (i- (ri / d and with the
shifted logarithmic functions.

For systems of interpolation with thin-plate splines, m 2, and we define proper
approximations to the partial derivatives Uxx, Uxy, Uyy as follows" for the jth triangle
we take the set of vertices of all its three neighbouring triangles, which consists of 5
or 6 points; we construct a quadratic polynomial P(x, Y)=+v<_-2 axY by a
least-squares fit to the values of u at these vertices, choosing among all possible

2 finally we take the discrete second orderpolynomials the one minimizing ,+=2
finite differences as the corresponding derivatives of P(x, y). It is easy to verify that
by this construction (2.13) is valid, and thus C satisfies properties (2.10)-(2.12).

Applying the preconditioning matrix C to the system (2.6), we obtain the system

(2.15) CAot Cf

which is a singular system. However by properties (2.10)-(2.12) it has a unique solution
t satisfying E Tt 0.

Tables 1-2 present condition numbers of systems of type (2.6) and the ones of
the corresponding conditioned systems (2.15), for three families of radial functions
and several configurations of data points. The improvement in the condition number
is significant in all the cases.

In the following sections we develop iterative methods for computing the solution
t of (2.15) satisfying ETa=0. The polynomial part of the solution of (2.6), namely
the coefficients ,, can be recovered from t by solving any nonsingular part of the
system E, f-Ate, i.e. by fitting a polynomial to the residuals f-Ate. For the case
of thin-plate splines on a uniform square grid, CA is diagonal dominant in most of
its rows, and simple Richardson-type iterations converge quite rapidly [5]. In 3, 4
more sophisticated iteration schemes are devised, based on the special spectral proper-
ties of the matrix AC, for the case of scattered data points.

3. The basic iterative schemes. Interpolation of a set of data (x, y, f), 1, , N,
by radial functions of the above mentioned types, requires the solution of systems of
the form (1.5), or, in the notation introduced in 2:

Aa+ E, f (AT=A),
(3.)

ETot --0.

As shown in [4] for the surface splines, and by Micchelli [9] also for Hardy multiquad-
rics and the shifted logarithmic functions, all these systems share the property that

(3.2) exTAx>O ifETx=0, X#0,

with e + 1 or -1. Namely, A is conditionally positive or negative definite with respect
to E. In the following we assume that A is conditionally positive definite, replacing A
by -A if necessary.

The iterative schemes developed in this work are an adaptation and extension of
the classical polynomial type schemes, such as the conjugate gradient and the Cheby-
shev schemes [7], to systems of the form (3.1) with the property (3.2).
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Applying the preconditioning matrix C of 2, with the properties

(3.3) CT=C, xTCx_->0 for allxRN

(3.4) Cx=0 x=E/,/RM,
to the system (3.1), we obtain the singular system

(3.5) CAat Cf,

which by (3.2)-(3.4) has a unique solution at satisfying Eat =0.
In the following we investigate the convergence properties of general polynomial

type iteration schemes [7] for the solution of the singular system (3.5). In these schemes
the iterants at(k) satisfy the condition Eat(k) -0, and the errors e(k) ]g(k)__lg are of
polynomial form:

(3.6) e(k)-- Pk(CA)e(, e(= --at, Pk(O) 1.

It follows from (3.1) and the relation APk(CA)---Pk(AC)A that the residuals r(k=

f-Aat(k) are of the form"

(3.7) r(k= Pk(AC)r( r(= f.

The study of specific polynomials Pk(W) is postponed to 4, 5, where in addition to
the classical polynomials Pk(W) we present new polynomials, devised on the basis of
the spectral properties of the matrix AC. The schemes obtained with the nonclassical
polynomials yield a significant improvement in the rate of convergence of the iterations,
and are producing good smoothing surfaces in case of noisy data.

The polynomials considered in 4, 5 correspond to either a one-step or a two-step
recurrence relation for at(k). The one-step schemes are of the form:

(3.8) at(k+l) at(k)
_
WkC[f-- Aat(k)], k 0, 1, 2, ,

i.e. at(k-l) :at(k)__ wkCAe(k) or e(k+l)-- (I- wkCA)e(k) Pk(CA)e() with

k-1

(3.9) Pk(W) [I (1 WW).
i=O

The two-step schemes are"

(3.10) at(k+l)--Pk+l[at(k)-t-wkC(f--Aat(k))]nt-(1--Pk+l)at(k-1) k--- 1,2,"

with Pk(W) defined by the recurrence relation [7]"

(3.11) Pk+l(W)=Pk+l(1--WkW)Pk(W)d-(1--Pk+l)Pk_l(W), k- 1,2,....

We define a scheme to be convergent ifthere exists a subsequence k ( k2 ( such
that

(3.12) lim e(k 0.

Then by (3.5) Cr(k)-->0, which by (3.4) guarantees the existence of , e R such that

lim r(k E/,

thus providing a solution to the system (3.1).
The choice of the parameters {w} in (3.8) or {p, w} in (3.10) determines the

convergence properties of the scheme, and depends strongly on the spectral properties
of the matrices CA and AC, which by the symmetry of A and C satisfy (CA)r= AC.
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In the following we denote by : the subspace spanned by the columns of
E" E., ., E.M.

THEOREM 3.1. The eigenvalues of the matrices CA and AC are real and satisfy

(3.13) 0-- h AM < AM+ < < hN.

The eigenvectors ofAC u(1),
matrix C"

U
(N) span RN and are orthogonal with respect to the

(3.14) u(J)rCu(i) ij(U(i)TCu(i)), i,j 1," ", N,

with u<j)= Eq, j 1,. , M. The eigenvectors of CA corresponding to AM+l,"
span =; and are of the form

(3.15) v)= Cu:), j M + 1, N.

Proof. Since xTCx_--> 0, x RN with strict inequality ifx :+/-, the matrix C/2 exists,
has the characterization (3.2)-(3.4) with C replaced by C /2, and has an inverse over
:+/-. Therefore, the eigenvalues of C1/2AC 1/2 are of the form 0= A AM < AM+ <-

--< AN, and the eigenvectors are w) Eq, j 1, , M, w) :x, j M+ 1, , N.
Also the vectors fi<) satisfying

C1/2I(j) w(j) l(j _x, j M + 1, , N,

are well defined and linearly independent.
Now by the definition of

ACfi()=AC/2w(J)=h[fi()+fi()], fi() =,
where the last equality holds since C/2[AC/2w<J)]=Aw). Obviously fi)=
((1/A)AC-I)fiJ),j= M+ 1,..., N. Hence

AC(fi()+
and the vector u() fi()+fi()=(1/Aj)ACfi() is an eigenvector of AC corresponding
to the eigenvalue h. Moreover u(), j M + 1, N are linearly independent since
so are fi(Y) =+/-, j M + 1, N, while fi(J) =, j M + 1, N.

The vectors u()= Eq, j 1,. ., M, are eigenvectors of AC corresponding to the
zero eigenvalue, and span =. Hence the vectors u

The vectors w() are orthogonal since C1/2AC 1/2 is a symmetric matrix. The
orthogonality in terms of the vectors u (j) reads

w(i)Tw(J) fi(i)T Cfi(j u(i)TCu(J 8/j[u(i)T Cu(i)], i,j=M+l,. .,N.

This together with CE =0 implies (3.14).
Now the vectors v<) Cu<) :1, j M + 1, , N satisfy

CAvf:) C[ACufj)] CA:u<) Av)

and are linearly independent since so are fi<J) .,j M+ 1, N, and C is invertible
over Ex. [3

THEOREM 3.2. A scheme satisfying (3.6) and (3.7) is convergent if there exists a
subsequence k < k2 < k3 < such that

(3.16) lim max IPkj(A,)[=O
j->oo M+I<--i<=N

with AM+l, ", AN as in Theorem 3.1.
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N (i)Proof. Let r)=yi__ 0iui where u i= 1,..., N are as in Theorem 3.1. Then
by (3.6), (3.7) and (3.13)

N M N
r<k)= O,Pk(AC)u<’)= 0u<’)+ Y OPkj(A,)U<’,

i=l i=l i=M+l

which in view of (3.16) yields

M

lim r Y Ou).
jo i=1

Since u)= E.i, i= 1,- -, M, lims_ rk)= E/. On the other hand by (3.6) and (3.15),
N

e)= -t Y,i=t+l :i(Cufi)),
N

f-(kJ)--O/-=e(kj)-- E iPkj(Xi) Cu(i) j= 1 2,’’’
i=M+I

and in view of (3.16) lims_ e(k =0.
A cyclic choice of the sequence {wi}i in (3.8)

(3.17) wks+s=w, j=l,...,s, k=l,2,...,

corresponds to the sequence k =is in Theorem 3.2.
A sufficient condition for the convergence of the scheme (3.8) in this case is

max < 1(3.18)

with an average rate of convergence [7]

(3.19) - max
M+Ij<=N

IP, (A;)I] 1/

An important feature of the scheme (3.6), (3.7) is:
THEOREM 3.3. Let k <-k2 <-’", be a subsequence such that

(3.20) 0<= Pkj+ l " Pk.j " 1, M + 1 <- N, j 1, 2,...,

with at least one index io, M + 1 <-_ io = Nfor which the inequalities (3.20) are strict. Then
the approximants produced by the scheme (3.6), (3.7)

N M

(3.21) gk(X, y)= E Ol(ikJ)li( X’, Y)+ ., Yk)q,(x, Y)
i=1 i=l

with l( arbitrary, have discrete roughness (as defined in (2.14))"

(3. (g, g(x, yC,g,(x,, y, (A,(C(,(I,
v,=

which are monotonically increasing

(3.23) R(gks) < R(gk+), j 1, 2, 3,’’’,

and bounded from above by the roughness of the original data"

(3.24) R(gk) <= R(f) fT"Cf.

Proof The vector of function values of gkj at the data points is

g(k) =_ At(k) + E,(kj) f_ r(k) + E/(k).
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Then as in the Proof of Theorem 3.2 f=r()=i= 0iu (i) and by (3.7)
N

f-r<k: [I- Pkj(AC)]f= E [1 Pkj(A,)]O,u(’.
i=1

Therefore in view of (3.14)

R(gk) g(k)TCg(k) if_ r(k)]Tc[f_ r(k)]
N

E [1-Pk(A,)]20R(u(’)).
i=M+I

while

Hence by (3.20)

N

n(f)= E 0,?n(u(’))
i=M+I

N

R(f)- R(gk) E 0,2.{1 --[1 Pk(h,)]2IR(u(’)) > 0,
i=M+l

N
p 2R(gk+,)-R(gkj) E 0{[1- k+,(hi)]-[1-Pk(A)]2}R(u())>0-

i=M+I

Remark. In the case of a cyclic choice of the sequence {w} as in (3.17), condition
(3.20) is satisfied if

(3.25) 0<- Ps(Ai)_-< 1, i=M+l,...,N,

with strict inequalities in (3.25) for at least one io, M + 1 _-< io<_-N. Condition (3.25) is
satisfied by the subsequence kj 2js, for any cyclic choice of the sequence {wi} such
that condition (3.18) holds, since

(3.26) P2js(w) [P(w)]2 ->_ 0.

Theorem 3.3 reveals the smoothing nature of the process (3.6), (3.7), which provides
approximants with smoother values on the set of data points than the original data.
This property will be further investigated in 5 where smoothing methods for noisy
data are developed.

4. Methods for interpolation. The choice of the polynomials Pk(W) in the scheme
(3.6), (3.7), which guarantees good convergence rates in the solution of the system
(3.5), is the subject of this section.

It follows from the analysis in 3 that the functional behaviour of the polynomials
{Pk(W)} is significant only in the interval [AM+l, AN]. In [5] the application of the
classical Richardson scheme [7] Pk(W)= (1- WoW) k is investigated. Here we test and
compare the more efficient classical schemes"

(a) The optimal Chebyshev scheme. In this scheme, Pk(W) for k- 1 is taken to be
Tk(W)mthe Chebyshev polynomial of degree k normalized to the interval [h4+l, AN].
The parameters in (3.10) for this scheme are [7]"

(4.1) Pl 1, 02 (I __1/2(y.2)-1, Pk+l (I --1/4tr2pk), Wk 2(A+I + ,N)-I

where r (hN hr+)/(hN + h+), and the average rate of convergence at the kth
iteration is bounded by [7]"

20/2 1 -x/1 --0.2

(4.2) -r --<_ Tk(1/O’)]-1/k 0
(1-t-ok) 1/k’ +x/1-r2"
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The numerical results obtained with this scheme (Tables 4, 5) also shed light on
the efficiency of the cyclic Chebyshev scheme [7], defined by Pks(W)= Ts(w)]k, k >- 1,
where s > 0 is a fixed integer.

The application ofthese schemes requires good estimates ofthe spectral boundaries
A4+1, Av. Methods for computing these estimates are briefly discussed at the end of
this section.

(b) Conjugate gradient scheme. This scheme applies for systems with a nonnega-
tive (nonpositive) definite matrix [7]. Therefore the preconditioning of the system (3.1)
leading to (3.5) is not appropriate. The correct preconditioning is

(4.3) C1/2AC/2[ C1/2f, C/2.

It is important to note that although it is possible to get a nonnegative (nonpositive)
definite matrix in (3.5) by the substitution I Ca, the preconditioning CAC is not
of the right order. The application of C 1/2 on both sides of A results in finite differences
of the correct order (the same as those obtained in CA), due to the radial structure
of the basis functions. The conjugate gradient scheme for the system (4.3) is of the
form (3.10)"

(k+)=pk+[(k)q-WkC1/2(f--AC1/2(k))]+(1--Pk+l)(k+l), k>0---(4.4)

with

Tlk [ Wk Tlk l] -1

(4.5) Wk t(k)Tc/2AC/2t(k), Pk+ 1
Wk-1 9)k-1 Pk

where p 1, =0, r= C/2f, 1(-)--0, and

(4.6) tk= C1/2rk C1/2[f AC1/2fk], r/k tCkrt.
The application of this scheme in terms of Ot

(k)-- C1/2 (k) avoids the explicit
computation of C 1/2. Multiplying (4.4) by C/2 from the left, we obtain the relation

(4.7) I)
(k+l) Pk+l[13t (k) -I- WkC([-- A(k))] d- (1 Pk+l)13g (k-l),

which is identical with (3.10). The parameters (4.10), (4.11) are computed in terms of
C and ot

(k as follows:

(4.8) r(k) f- Aot(k), k r(k)TCr(k) Tk
14k r(k)TCACr(k)

with Pk+l as in (4.5). The initial values are Pl 1, t()
=t

(-1) =0. The computation of
(4.7) and (4.8) can be organized to require only one application of C and one of A
in each iteration: Given r(k-), t(k-l), r/k-, Wk-, Ok, r(k), x(k), compute"

x(k) Cr(k) y(k) Ax(k), T]k r(k)Tx(k)

Wk x(k)Ty(k), tOk+l 1
Wk-19)k-1

(4.9)
a(+) pk+[a() + WkX(k)] + 1 _.pk+)a(k-1),
r(k+) p+[r(k) Wky(k)] + (1- pk+)r(k-).

The conjugate gradient (CG) scheme achieves rates of convergence comparable with
the optimal Chebyshev (OC) scheme, while it does not require estimation ofthe spectral
boundaries A +, A ].
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Tables 4, 5 display the reduction in residuals by the CG and OC schemes for
certain interpolation problems.

The iteration schemes considered above do not exploit the specific structure of
the preconditioned problem (3.5). The preconditioning with the matrix C yields a
matrix AC in (3.7) with special spectral properties. Letu1), , uN) be the eigenvectors
of AC as in Theorem 3.1, normalized by

(4.10) R(u(j)) "--Ii
(j)T CI! (j)---" 1, j M + 1, , N.

With this normalization (3.14) becomes

(4.11) u’Cu , i,j M + 1, , N.

N i)For any vector f R, f== 0u where by (4.11)

O fTCu M+ l, N,(4.12)

and

N

(4.13) R(f)=fTCf= E 0,2.
i=M+I

Since by (3.1) f- Act :,
M N

(4.14) Act= E ffiu’)+ Y. 0,u’,
i=1 i=M+I

N
and the scheme attempts to retrieve the component i=M+l Oiu( of Act. Thus regarding
the residuals in (3.7)

N M

(4.15) r(k)= Pk(AC)f= _. O,Pk(A,)u(i)+ ., 0,u(i),
i=M+I i=1

N OiPk(Ai)ll (i) below a certain smallthe aim of the scheme is to reduce the sum =t+l
value.

In many applications the data f is taken from a surface which is smooth relative
to the grid of data points, namely a surface exhibiting small changes along distances
of the order of the typical distance h between neighboring data points. It is evident
from numerical testing, that for such vectors f the components 0 corresponding to the
first eigenvalues are negligible in their contribution to R(f). Thus the significant
coefficients among {Oi[M+I<=i<=N} in (4.13) are {OlN(f)<=i<-N}, where N(f)
increases with the relative smoothness of the data. This property of the spectrum of
AC will be referred to as the S-property.

Numerical evidence of the S-property of the spectrum of AC, and the dependence
of N(f) on the relative smoothness of f are presented in subsection 6.3.

The numerical experiments 10] indicate that the S-property of AC corresponding
to the basis functions q(r)= x/r2+ d and (r)= log (r2+ d2) depends on the size of
d. For d hi2 the separation of the spectrum is inferior to that for d h. For the TPS
the S-property of AC is not found. Yet the S-property is found for O(r)=
(r2+ d2) log (r2+ d2) the shifted TPS, with d h (the average grid distance) [10]’. This
basis of radial functions determines a nonsingular system of the form (2.6) [9], as well
as all the "shifted surface splines".

Our conjecture about the S-property of the spectrum of AC may also be stated
as: the smaller positive eigenvalues of AC correspond to the rougher eigenvectors.
This conjecture is borrowed from the univariate case for which the S-property is fully
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understood" starting with the radial basis functions i(x)= Ix-til m, i--- 1,..., N, and
preconditioning by divided differences of order m at the points tl, , trc, the resulting
matrix AC is of the form {Bj(ti)}rc where B1 Brc are the univariate B-splinesi,j

corresponding to the knots t,. , trc. This matrix is known to be totally positive [1]
and therefore the smoother eigenvectors (eigenvectors with fewer sign changes) corre-
spond to larger eigenvalues [2].

Assuming that the spectrum of AC possesses the S-property, we can modify the
choice of the polynomials Pk(W) in (3.6) and (3.7) to achieve better iteration schemes.
Since AN(f) is the smallest "active" eigenvalue of a given data f, it can replace AM+I
in the determination of the parameters of the optimal Chebyshev (OC) scheme, namely
in (4.1) r’= (Arc Arc(f))/(AN + Arc(f)) replaces r. It is clear from (4.2) that the conver-
gence rate of this OC scheme improves with the increase of N(f). This is demonstrated
by numerical tests in Tables 3, 4, 5. Yet it is the CG scheme which achieves the best
rates. Although the parameters of the CG scheme are independent of the interval of
"active" eigenvalues in f, its performance improves significantly with the increase of
N(f). The dependence of the performance of the CG scheme on the actual number
of "active" eigenvectors in the data is well known [7].

We conclude this section by a brief description of the application of the power
method [7] to the estimation of h+, Arc, AN(f).

x(O) NA good initial vector for estimating Arc, == 0u( should have a large
coefficient 0rc relative to the other coefficients. Thus x() should be a smooth vector
relative to the grid. Using the orthogonality (3.14), the approximation of Arc is computed
recursively as follows"

Starting with x(), we define the sequence {x()} by

(4.16)
y(i) X

(i) (x(i)Tcx(i)) -1/2,
x(i+) ACy(i),

and a sequence of approximations to Arc

(4.17) h (//+1) x(i+l)TCy(i).

To find the smallest nonzero eigenvalue of AC, A4+1, we apply the power method
to the matrix CA-ArcI, with an initial vector x() Cy() :-, where y(0) is a "rough"
vector. For example, a vector with random elements is a good choice. Actually by this
method we find the smallest nonzero eigenvalue corresponding to the eigenvector
expansion of y(0), y(0)= Oiu(i). Starting the procedure with y(O)= f, we get, after few
iterations, a good estimate of AN(f) [10].

5. Methods for smoothing. The major object of this work is to develop methods
for smoothing noisy data measured at scattered data points. The S-property of the
spectrum of the iteration matrix AC is the basis of our approach to smoothing.

Let us assume that the data is of the form

(5.1) f=g+h

with g the smooth part, i.e. taken from a smooth bivariate function, and h the noisy
part of f. By the S-property of the spectrum of AC we know that g can be expanded
in the eigenvectors of AC as

M N

(5.2) g-- E 0iu(b)-[- E Oiu(i),
i= i= N(g)
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with N(g)> M+ 1. We further assume that the noisy part h has the expansion

N(g)--I

(5.3) h Oill(i)o
i=M+I

Now suppose we perform iterations of the form (3.8) with a polynomial Pk(W) such
that Pk(O)= 1 and

Pk(A,) 0, N>=i>-N(g),
(5.4)

Pk(A,)=I, 0< i< N(g).

Then, by (3.7) and by (5.1)-(5.4)
N M N(g)-I M

(5.5) r(k)= Pk(AC)f=
i=1 i=1 i=M+I i=1

M
Since r(k) f-Aot(k), (5.5) implies that Aa(k)=g-= 0u(’), i.e. the noisy part h is
completely annihilated by a scheme with Pk(w) satisfying (5.4).

MIn order to retrieve the polynomial part of g, i=10E. from

M N(g)--I
r(k OiE.i-+- Oill (i),

i=1 i=M+I

the residuals r(k are fitted by a vector E(k in the least-squares sense. Since the vectors
{u(, M+ 1 <= <-- N(g)-1} are rough relative to the grid of points and the vectors
{E., 1 <= <_- M} are smooth, the method of least-squares yields the desired separation.
The resulting solution of the smoothing problem

N M

E ak)6(ri(x, Y))+ E 7k)qi(x, Y), 6IF+/-,
i=1 i=1

approximates well the smooth part g of the data f on the set of data points.
In view of the S-property of the spectrum of AC the above smoothing technique

is actually a low pass filter, or smooth-pass filter, since all the rough components in
f, i.e. components with eigenvalues <Ac(g) are annihilated.

In practice the separation of the smooth part from the noisy part in the data as
displayed by (5.2)-(5.3) is not sharp, and (5.2)-(5.3) can be regarded as representing
the significant parts of g and h only. Also N(g) is not known and it is impossible to
generate a polynomial of a practical low order so that (5.4) is satisfied exactly.

Let us suppose that we are given a cut-off value A (not necessarily an eigenvalue
of AC). Then we would like to find a low-order polynomial Pk(W) approximating the
step function

0, A W AN,
(5.6) U(w)=

0, 0 -<- w=<A,

and for consistency we must require Pk(0)= 1.
DeVore [3] developed polynomial approximations to step functions for the pur-

pose of analyzing shape preserving splines. These are polynomials on [-1, 1] obtained
from the Chebyshev polynomials by the relation

(5.7) D,,,,r,j(x) c dt, tj cos 7r, j 1 2,. -, m.
-1 I_ t-t d 2m

The integrand in (5.7) is an approximation to 6(t- tj), and thus D,,.r.j(x) approximates
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a step function with a jump from 0 to 1 at the point tj. The parameter c is chosen so
that D,.r,j(1)= 1. We note that in [3] only m odd and t=0 are considered. The
parameter m controls the width of the increasing part around t, and r determines the
quality of the approximation to the constant values U =0 and U 1. Figures 7, 8
display some of these polynomials and exhibit very nice approximations to step
functions. We note that DeVore polynomials with an even parameter r are monotone,
thus satisfying the requirements of Theorem 3.3.

We use DeVore polynomials to get the desired polynomial approximation to U(w).
First we approximate AN by the power method (4.16)-(4.17); then we choose appropri-
ate m and j such that t -2At/AN- 1. The smoothing polynomial is now defined as

(5.8) Pk w l Dm,r,j ( 2-- )-1 k=(m-1)r+l.

This polynomial determines the parameters {Wi}/k__l for the iterations (3.8)" wi= 1/Z,
i= 1,. -, k where the Z’s are roots of Pk(W). Some of these roots might be complex,
but then they come as complex conjugates, and the iteration can be performed as a
two-step real iteration.

In 6.5 we demonstrate the results obtained in smoothing noisy data with a scheme
based on DeVore polynomials. For those with even r the discrete roughness of the
computed surface is always below the roughness of the noisy data, by Theorem 3.3.

DeVore polynomials can be used also in smoothing univariate noisy data by
splines, due to the S-property of the matrix of B-splines. Agee’s procedure [2] is not
a low-pass filter, since it corresponds to a Richardson scheme with Wo 1, Pk(W)=
(1 W)k in (3.7). In fact this procedure converges too rapidly to the interpolating spline.

6. Numerical examples, tables and figures.
6.1. Test grids (Figs. 1-3) and test functions. For the numerical experiments we

have used three types of data sets:
I. Square grid on the square [-1/2, 1/2] [-1/2, 1/2], Fig. 1.

II. A grid on the circle x2+y2=<1/4, Fig. 2.
III. A grid on the sector x, y >--0 of the unit circle, Fig. 3.
The grids II and III are defined by simple transformations of grid I:

max (Ixl,I --> II: (x, y)-->
x/-5+ y2

(x, y)

FIG. 1. Grid I. FIG. 2. Grid II.
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FIG. 3. Grid III.

max (Ix + 1/2l, y + 1/2l)
I-> III" (x,y)-->

/(x+1/2)Z+(y+1/2)2
(x+1/2, Y+1/2)

By this method of grid generation we get a nontrivial mesh of evenly distributed points,
and for the triangulation we can still use the simple data base for triangulation on the
square grid.

The test functions are taken from [6]:

f(x,y) 0.5 exp [- (9x 2)2 + (9Y2)z]4 + 0.75 exp [ (9x +1):z49 9y+l]lo
-0.2 exp [-(9x-4)2- (9y-7)2]

4

f(x, y) = [tanh (9y -9x) + 1],

fs(x, y) 1/2 exp [-t((x _1/2)2 + (y 1/2)2)],

f6(x,y) [64 81((x-1/2)2+(y-1/2)2)]/2 --2

These functions are defined on [0, 1] x [0, 1] and we use the appropriate translation

to transform them to [-, 1/2] x [-1/2, 1/2] for grids I and II. On each of these grids the

functions are normalized so that max Ill 1.

6.2. The effect of conditioning (Tables 1-2). Tables 1-2 summarize the condition
numbers of the original linear system (2.6) and the conditioned system (2.15), for
interpolation by three different sets of basis functions: TPS, Hardy multiquadrics (HM)

TABLE
Condition numbers of the original systems (2.6).

Basis functions
TPS

HM

SL

Grid

49

1181

10556

605

121

6764

7274

1868

49

1885

17059

1467

121

12633

107333

6633

Grid III

49

2644

35059

Grid II

2721

121

16107

218667

11542
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TABLE 2
Condition numbers of the conditioned systems (2.15).

Basis functions
TPS

HM

SL

49

4.3

69.2

14.7

Grid

121

5.1

126

19.5

Grid II

49

3.4

222.8

43.7

121

3.9

576.0

81.1

Grid III

49

41.5

393.0

66.5

121

116.7

976.5

119.4

and shifted logarithmics (SL). The shift d in the last two sets of basis functions equals
the average mesh size. The data points are taken on three different grids and their
number is 49 and 121.

6.3. Evidence of the S-property (Figs. 4-6, Table 3). The following figures demon-
strate the S-property of AC for the case of the HM functions. Similar clear results
were obtained with the shifted logarithmic functions and the shifted TPS [10].

The eigenvalues of AC for Hardy multiquadrics on mesh II with N 121, are
displayed in Fig. 4. For the same case we examine the magnitude of the coefficients
in the eigenvector expansions of data f taken from functions:

sin Trkx) sin rly).

It is clear that as k2+ 12 increases, the function becomes rougher. Indeed we find
that as k+ 2 increases, the significant coefficients in the expansion correspond to
eigenvalues which are closer to zero. The graphs in Fig. 5 bound from above the
coefficients { 0i} for k 1, 3, 5, 7, 9, 11.

Figure 6 displays upper bounds of the coefficients in the eigenvector expansion
of f,fz, fs, f6 and a random function (f7), on mesh II with N 121. For the smooth
functions f5 and f6 the cut-off index N(f) is very high, >96, while for the random
function f7 we observe that all the significant coefficients correspond to Ai’s with < 72.

FIG. 4. The eigenvalues of AC for Hardy multiquadrics on mesh II, N 121.
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.9

0

FIG. 5. Upper bounds for the magnitude of the coefficients in the eigenvector expansions of the functions
sin (rkx) sin (Trky), k 1, 3, 5, 7, 9, 11.

Z
f.

FIG. 6. Upper bounds for the magnitude of the coefficients in the eigenvector expansions of the functions
f,A,A, f6,f.

HM

SL

TABLE 3

Cut-off index N(f) for different functions on mesh II, N 121.

sin (x) sin (y)

90

80

sin (3x) sin (3y) sin (5x) sin (5y) f f2

60 30 90 72

60 40 86 72

A f6

96 96

110 100

6.4. Comparison of iterative methods for interpolation (Tables 4-5). Tables 4, 5
summarize a set of numerical experiments which compare the reduction in the residuals
by the three iteration schemes: Conjugate Gradient (CG), Optimal Chebyshev on
[AM+, AN] (OC1) and Optimal Chebyshev on JAN<f), AN] (OC2). The tested methods
of interpolation involve the radial basis functions as in Table 1. The data is prescribed
on N 121 points of Grid II. It is taken from the test functions fl(x, y), fs(x, y)min
Table 4, and from f(x, y) f(x, y) + el(x, y) and fs(x, y) fs(x, y) + e5(x, y)--in Table
5, where e(x, y) is a uniformly random noise in [-0.1, 0.1]. For the noisy data case
OC2 is identical with OCt.

The reduction in the residuals is measured by two quantities"
(a) R/2(r))/R/(f), where r)=f-Aa<), and
(b) IIs<  ll=/llcfll=, where S Cf-CA is the residual vector of the condi-

tioned system (2.15).



656 NIRA DYN, DAVID LEVIN AND SAMUEL RIPPA

IIII

d TTT?
o



SURFACE FITTING OF SCATTERED DATA 657

TABLE 5
Comparison of the reduction in the residuals by different iteration schemes in case of noisy data.

Basis functions

HM

SL

TPS

f(x,y)+el(x,y)

k R’/(r())/R’/(f) IIslldllCrll

5
10
20
40

5
10
20
40

5
10
15
20

CG OC1 CG OC

.1El .7E0 .8E0 .4E0

.SE0 .SE0 .4E0 .3E0

.1E0 .3E0 .1E0 .2E0

.2E-2 .2E0 .8E-3 .1E0

.6E0 .3E0 .4E0 .2E0

.2E0 .2E0 .2E0 .1E0

.4E-2 .8E-1 .3E-2 .SE-1

.1E-5 .2E-1 .9E-6 .1E-1

.4E-2 .6E-2 .2E-2 .5E-2

.8E-5 .2E-4 .4E-5 .1E-4
CON .3E-6 CON .7E-7

.2E-6 .3E-9

fs(x,y)+es(x,Y)

IIs )112/II cfll2

CG OC

.7E0 .8E0

.3E0 .6E0

.1E0 .4E0

.6E-3 .3E0

.5E0 .4E0
E0 .2E0

.2E-2 .9E-1

.6E-6 .2E-1

.2E-2 .5E-2

.4E-5 .1E-4

.1E-7 .7E-7
CON .3E-9

R/2(r(k))/R/2(f)

CG OC1

.8E0 .5E0

.3E0 .4E0

.1E0 .3E0

.5E-2 .2E0

.3E0 .3E0

.1E0 .1E0

.2E-2 .7E-1

.7E-6 .2E-1

.3E-2 .6E-2

.7E-5 ..2E-4

.1E-7 .8E-7
CON .2E-7

In the above tables CON denotes convergence, and specifies a situation in which
R(r(k)) is of the order 10-14 and is negative due to round-off errors. At this stage the
CG scheme has to be stopped.

Conclusions from Tables 4, 5. It is evident from the numbers in Table 4 that the
smoother the data (f5 is smoother than fl), the faster the convergence of the CG scheme
and the OC2 scheme. These two schemes theoretically have similar rates of convergence,
since the CG scheme depends on the actual distribution of coefficients in the eigenvector
expansion of the data [7]. Yet the CG scheme is obviously superior to the OC2 scheme.
This can be explained by the fact that the smooth data.has small but not negligible
components in {u u), M + 1 <j= < N(f)}, and the OC2 scheme increases these components
in rk).

On the other hand, as is expected, the improvement in the performance of the
OC1 scheme for a smoother data is only minor.

Table 5 demonstrates the superiority of the CG scheme over the OC1 scheme
when the data is rough and has components in all the eigenvectors of AC. The
deterioration in the performances of both schemes in case of noisy data is significant.

These tables are in agreement with Tables 1-2. Also here the TPS basis exhibits
significantly faster convergence rates when compared to the HM or SL basis.

6.5. Smoothing with DeVore polynomials (Figs. 7-11). In Figs. 7, 8 we give
examples of approximations to step functions by DeVore polynomials:

The final example deals with smoothing data on grid II with N 121, using Hardy
multiquadrics as basis functions. The data is taken from the function fl with the
addition of a noise which is uniformly random on [-0.1, 0.1]. Figure 9 displays the
surface defined by the function fl and Fig. 10 the surface obtained by interpolating
the noisy data with Hardy multiquadrics. Using iterations as described in 5, based
on DeVore polynomial D7,2,2 we obtained the surface displayed in Fig. 11.

Table 6 summarizes several smoothing experiments on grid II with N 121, by
comparing the maximal deviation over 1600 points in the domain, between the approxi-
mated function (without noise) and four approximating surfaces: the interpolating
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FIG. 7. DeVote polynomial D7,2,2.

,’s

FIG. 8. DeVote polynomial D7,2,3.

FIG. 9. Test function fl. FIG. 10. Interpolation to fl with noise.

FIG. 11. Smoothing achieved with DeVore polynomial 07,2,2.

TABLE 6
Comparison of the maximal deviation in approximation by interpolating and

smoothing surfaces.

Basis Approximated
functions function IE IN SN SN2

HM ft .02 .14 .05 .16
SL fl .02 ,13 .06 .05
HM f5 .001 .12 .05 .31
SL f5 .001 .12 .05 .03
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surface to the exact data (IE), the interpolating surface to the noisy data (IN), the
smoothing surface to the noisy data obtained by DeVore polynomial D7,2,2 (SN1), and
the smoothing surface to the noisy data obtained by DeVore polynomial D7,2,3(SN2).
It is evident from Table 6 that smoothing with the SL basis is less sensitive to the
location of the step in the DeVore polynomial as compared to the HM basis.

Further numerical tests can be found in [10].
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LOCALIZATION OF SEARCH IN QUASI-MONTE CARLO
METHODS FOR GLOBAL OPTIMIZATION*

HARALD NIEDERREITERt AND PAUL PEART

Abstract. Quasi-random search methods for the extreme values of multivariable functions suffer from
the defect that they often require a very large number of function evaluations. We introduce and analyze
the device of "localization of search" that speeds up these methods considerably.

Key words, nondifferentiable optimization, quasi-random search methods

1. Introduction. In nondifferentiable optimization the Monte Carlo method of
random search can be used to approximate the global optimum of a function (see 15,
Chap. 7]). A deterministic analogue of random search, which may be thought of as
quasi-Monte Carlo optimization or quasi-random search, was introduced by
Niederreiter [9]. Let f be a bounded real-valued function defined on the bounded
subset E of R, s-> 1, and let Xl,’’ ", xs be points in E. Then

max f(x.)
l--nN

is taken as an approximation for the correct value M of the supremum of f over E.
The error between M and ms can be bounded in terms of the modulus of continuity

to(t) sup If(x)-f(y)], >-- O,
x,yE

d(x,y)t

and in terms of the dispersion

ds- ds(E)=sup min d(x, x,)
xE lnN

of xl,"" ", Xs, where d is a given metric on E. In fact, we have

(1) M-ms<-to(ds)

according to [9, Thm. 1 ]. In this sense, the dispersion can be viewed as a measure for
the effectiveness of the points xl,. ., xs in searching the domain E.

If f is continuous on E and we take a dense sequence Xl, x2, of points in E,
then it is easy to see that the search method described above converges, i.e. that
lim:v_ ms M. However, the rate of convergence is in general very slow, since many
points x, can be expected to be rather far away from that part of E where the values
off are close to M. Therefore, in order to obtain accurate results for some functions,
it may be necessary to carry out a very large number of function evaluations, and this
can be an expensive exercise. In this paper we indicate how the method of "crude
search" described above can be modified by using "localization of search" so as to
speed up the convergence considerably.

2. Localization of search. Without loss of generality, we normalize the domain E
to be the s-dimensional unit cube I=[0, 1]. Other domains of interest can be

* Received by the editors April 28, 1983, and in revised form August 1, 1984.
t Mathematical Institute, Austrian Academy of Sciences, A-1010 Vienna, Austria.
$ Department of Mathematics, University of the West Indies, Kingston 7, Jamaica.
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transformed into I by a suitable parametrization. It is convenient to work with the
metric

d (y, z) max lY zl
lj<--s

for y (Yl, ",Ys), z (zl, , zs) Rs, although we may proceed similarly with other
metrics. Let C(a; e) denote the s-dimensional cube with edge length 2e > 0 and center
a Is, i.e.

C(a; e)={yRS: d(a,y)<-_e}.

For C C(a; e) let gc:I C be the function defined by

gc(x) a + e(2x- e) for x Is,
where e (1,..., 1)Rs. Now let xl,’’’, xN be points in Is, put

S(C) {1 <= n <= N: gc(x,,) Is}

and define

mN(C)=max (f(a), .s(c)max f(gc(x,,))).
Furthermore, let x*(C) be one ofthe points in the set {a} U {gc (x.): n e S(C)} for which

mu(C) =f(x*(C)).

Let el, e2, be a sequence of positive numbers tending to zero. We define a sequence
Co, CI," of cubes by setting

C C(x*(Ci_l); for i=1,2,. ..
The nondecreasing sequence mu(Co), mu(C),. is then taken as a sequence of
approximations for the supremum M of f over Is. Obvious modifications lead to a
method for approximating the infimum of f over Is.

In practice we will often use ei e for i= 1,2,..- with a fixed e satisfying
0 < e < 1/2. The success of the method depends to some extent on the proper relationship
between the dispersion du of the points xl,..., xN in I and the value of e. In
particular, the condition du < e should be observed. If f is continuous on Is, so that
M =f(x*) for some x* Is, then dN< e and the definition of du imply that there is
a point Xk of the set {x, , xu} satisfying d(x*, Xk) < e. If Xk can also be chosen so
that Xk =x*(C0), as will happen in most practical cases, then d(x*,xk)<e implies
that x* C. A similar heuristic reasoning can be applied to the general step from Ci_
to Ci, so in nonpathological cases we can expect that x* C for all >_- 1, i.e. that the
method converges. In contrast to the crude search method, which demonstrably
converges, it seems difficult to obtain a rigorous and satisfactory convergence result
for localization of search. Even in the context of a stochastic model such a result seems
hard to prove, as was pointed out by Solis and Wets [18, p. 21]. See also Devroye [3]
for a related stochastic model.

When implementing localization of search, it is of course desirable to take N as
small as possible to help in minimizing costs. On the other hand, N should be chosen
large enough so that d < e holds. Since dN >-_ 1/2N-/s is an absolute lower bound for
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the dispersion of any N points in I according to [ 10], it follows that N must at least
be of an order of magnitude e -s. More detailed information will be given in 3 on
the basis of numerical experiments.

In each step of the method of localization of search, the error between the
supremum off over Ci and mN(Ci) can be bounded effectively by (1). If the point
sets x,..., x proposed in 3 are used, then the dispersion can be calculated or at
least bounded nontrivially from above. We note also that since the mapping gc" I
C C(a; e) satisfies d(x, y) 2ed(gc(X), gc(Y)) for all x, y Is, the dispersion d(
of the points gc,(X),"’, gc,(X) in Ci is given by dv(Ci)=2eid for i_-> 1, where d
is the dispersion of the points x,-.., x in Is. For the complicated functions f for
which quasi-Monte Carlo optimization has to be applied, it may be difficult or impos-
sible to obtain precise values of the modulus of continuity to(t). However, it suffices
for our purposes to work with upper bounds for to(t), which may be more readily
available.

A typical case in which convergence of the method of localization of search may
be hard to achieve is the following. Suppose x* I is a point at which f attains its
maximum over I and that f also has a local maximum at u Is, with f(x*)-f(u)
being a small positive number. Then localization of search could lead into a "wrong
track", i.e. the sequence x*(Ci), i=0, 1,- ., could converge to u instead of x* if N
is not sufficiently large. There are various possibilities of countervailing that tendency.
One way is to carry out the initial search in I with a point set having as small a
dispersion as is practicable, or equivalently with as large a value of N as is practicable.
The search in the sets IS fq Ci, -> 1, may then be carried out with a smaller number
of points. Another possibility is to prevent the cubes Ci from contracting so fast that
x* Ci for some i. This can be done by adjusting the size of the cubes after a suitable
number of steps. For instance, we may use ei e for 1 -<_ _-< k with some 0 < e < 1/2,
then put ek+l--te k for some 8 > 1 and continue with ei 8e i-1 for k + 2-<_ <-_2k, then
put E2k+l--(2e2k-1, and so on. We call this procedure "outer iteration".

3. The choice of sample points. Suitable point sets for quasi-random search
methods have been considered by Aird and Rice 1], Niederreiter and McCurley [12],
Sobol’ [16], and in the extensive numerical experiments carried out by Niederreiter
and Peart [13]. Theoretical results on the dispersion of point sets can be found in
Niederreiter [9]-[11], Peart [14], and Sobol’ [17]. For a general background on
quasi-random point sets we refer to Niederreiter [8].

If the number N of points in I that we want to use is prescribed, then we can
work with a set of N points in I of minimal dispersion which is constructed as follows.
Let r be the unique positive integer with r =<N<(r+l)s, consider the r points
(h/2r,. , hs/2r) with the hj running independently through the set {1, 3, 5, ,
2r-1}, and add arbitrary points from I to get a total of N points. Then dN (2r)-,
and this is the smallest possible value of the dispersion of any N points in I by
[11, Thm. 1].

For many practical purposes it is preferable to work with low-dispersion point
sets x, , xv possessing the additional property that initial segments Xl, , xp with
p < N also have relatively small dispersion. In this way the intermediate results of
calculations already yield reasonably good approximations. Furthermore, we then have
the flexibility of first running the calculation with p < N sample points and then just
adding sample points if more accuracy is desired, thus being able to use the results of
the earlier calculation. Point sets that are particularly suitable are those arising from
good lattice points and from linear congruential pseudo-random numbers; see [8] for
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detailed information on these point sets. It was noted in [13] that these point sets are
easy to compute and possess a small dispersion.

Let Xl, , xm with xn {ng/m) be a point set in I arising from the good lattice
point g (gl, ",gs) Z with modulus m. Here {. ) denotes reduction mod 1 in each
coordinate. We consider now the point set :1,..., ,, with n {hng/m} and h
[m(x/-1)/2], where It] denotes the greatest integer <-t. If h and m are relatively
prime, then the point set ,..-, ,, is just a rearrangement of Xl,’’ ", x, and thus
has the same dispersion. In published tables of good lattice points (see, for example,
Hua and Wang [5] and Korobov [7]) the lattice points g are always listed in normalized
form, i.e. with gl 1. In this case any segment x, , Xp with, say, p <= 3m/4 exhibits
very poor distribution properties since none of the points has a first coordinate >-.
The effect of introducing the integer h to obtain the point set 1, ",,, is to produce
segments :,..., p with better distribution properties.

Turning now to point sets arising from linear congruential pseudo-random num-
bers, we know from [8] that for a suitable multiplier h the point set x,..., x with

is evenly distributed over I s, where m is the modulus, Y0 is relatively prime to m, and
r is the least positive integer with A= 1 mod m. Moreover, the initial segments
xl, , xp with p -<_ - and p somewhat larger than m 1/2 are also evenly distributed over
Is. Concretely, the inequality (2) in [10] and the results in [8, 11] yield effective
upper bounds for the dispersion of such segments. Suitable values of A can be obtained
from the tables in Borosh and Niederreiter [2] and Knuth [6, Chap. 3].

There exist infinite sequences such as Halton sequences (see [8]) or Faure sequen-
ces (see [4]) with the property that any sufficiently long initial segment is evenly
distributed over I and has in particular a small dispersion. Both types of sequences
have been used successfully in quasi-random search methods (see 12], 13]). A rather
different situation arises with respect to another well-known set of quasi-random points.
Consider the Hammersley points

x(n) (, tg,(n), gs_,(n))Is, n =0, 1, , N- 1,

with bg, being the radical-inverse function defined in [8, p. 973], and g,..., gs-
being pairwise relatively prime integers -> 2. If all N points of this point set are taken,
then they show a very good distribution behavior. However, if we only take the first
p < N points, then none of the points has a first coordinate > (p 1)/N. To overcome
this deficiency, we may use a similar rearrangement as for point sets arising from good
lattice points, or we may work with a pseudo-random rearrangement, for example,
using the recursion yn+ Ayn + r(mod N), n 0, 1, , with integers 0 <_- y, < N and
suitable choices of A, Yo, and r (see [8, pp. 1000-1001]), and ordering the Hammersley
points accordingly. That is, we take the points in the order x(yo), x(y),..., x(yv_).

The sets of N points in 12 arising from optimal coverings by circles (see [13])
present a similar problem as the Hammersley point sets, in that an initial segment of
p < N points is likely to provide a poor covering of 12. Here the rearrangement trick
does not work so well since there is no canonical ordering of the points. Therefore,
this point set should only be used if N is prescribed.

The property we considered above, namely that initial segments x, , Xp of the
low-dispersion point set x, , xN also have small dispersion, manifests itself in the



664 HARALD NIEDERREITER AND PAUL PEART

relatively small average number of "change points" encountered in numerical calcula-
tions with such point sets. By a "change point" of the point set x,. ., xN we mean
a point xn for whichf(x,) >f(Xp) for all p < n, wheref is the function being maximized.
A smaller number of change points leads to a shorter running time ofthe search method.

We have carried out extensive numerical experiments comparing the crude search
method with the method of localization of search. The improvement obtained by the
latter method is dramatic. We have also compared the effectiveness of the various
point sets described above in the method of localization of search. The conclusions
we reached are similar to those in 13], namely that in terms of the total running time
the point sets arising from good lattice points and from linear congruential pseudo-
random numbers perform best. We have experimented with several combinations of
the important parameters e (= contraction factor from the cube Ci to Ci+l) and N
(= number of points used to search each cube). For the dimensions s 2, 3, 4 we have
considered, the choice e 0.2 and N 4 5 performed satisfactorily for most functions.
The procedure of outer iteration (see 2) improved the performance in the case of
strongly oscillating functions. Detailed results of the numerical experiments are avail-
able from the authors on request.
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PERIODIC SMOOTHING OF TIME SERIES*

JOHN ALAN McDONALD,"

Abstract. To discover and summarize regular periodic variation in a time series, {Yi, ti}, we may consider
approximating the observed Yi with a general smooth periodic function of ti:

Yi f(coti),

where f(. is a periodic function with period (so that f(cot) has period A 1/co as a function of t). To
make such an approximation, we need to choose a function f(. ); the frequency, co, may be known, or it
may need to be chosen also. The basic suggestion presented in this paper is to choose the function, f(. ),
by smoothing y as a function of (cot mod 1). If co is unknown, it can be chosen to make f(cot) a good
approximation to y.

More complex periodic variation can be modelled using a variation of the Projection Pursuit Paradigm
(Friedman and Stuetzle (1982a)) to construct approximations of the form

K

Yi fk (cokti)"
k=l

This approach has been developed as part of the Orion project for statistical graphics at the Stanford
Linear Accelerator Center; it is most useful in an interactive graphics environment, like the Orion workstation
(Friedman and Stuetzle (1981b), McDonald (1982a, b, c)). However, given moderate compromises, it can
be used with profit in more conventional environments for statistical computing.

Some advantages of periodic smoothing are: The observed times, t, need not be equally spaced, which
means, in particular, that missing data is not a problem. The function, f(. ), and the frequency, co, can be
chosen in a way that is insensitive to occasional gross errors in y (and t, for that matter). The function,
f(. ), need not be easily approximated by simple linear combinations of sines and cosines at harmonics of
the fundamental frequency, co. Perhaps most importantly, the model can be constructed and modified
interactively, and has a natural graphical representation.

Key words, data analysis, seasonal adjustment, harmonic analysis, Fourier analysis of time series, Lynx
series, projection pursuit

1. Introduction. This paper discusses methods which are appropriate as first steps
in the analysis of time series in which we suspect there may be periodic variation.
These methods are intended primarily for descriptive and exploratory purposes. The
approach was developed as part of the Orion project, whose goal is to develop new
graphical and computational methods for data analysis. In particular, these methods
were designed for use on powerful, interactive computer graphics workstations, like
the Orion I workstation (Friedman and Stuetzle (1981b), McDonald (1982a, b, c)).

Suppose we observe a time series, {yi, ti}. (A real-valued variable, y, is observed
at times ti.) To discover and summarize periodic variation in the series we may construct
a decomposition of the observed series into model plus residuals (signal plus noise):

(1) y, f(tot,)+ r,

where f(. is a periodic function with period 1 (so that f(ot) has period A 1/o as
a function of t).
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ONR N00014-81-K-0340, and the U.S. Army Research Office under contract DAAG29-82-K-0056.
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The purpose of descriptive modeling is to summarize some aspect of structure in
data. In this case, structure means periodic variation. We discover, understand, and
interpret structure by examining the model. So a descriptive model is especially valuable
if it has a natural graphic representation. Also, we can use the model to remove structure
which might otherwise hinder further analysis.

To be more specific, we may be interested in decompositions like (1) in order to:
A. understand the shape of the periodic variation (see the functions, f(. ));
B. find interesting, possibly hidden, frequencies, to;

C. produce an adjusted series, {ri, ti} that can be reasonably modeled as a station-
ary process with continuous spectral measure (e.g. ARMA models);

D. forecast the series: for future time, t, predict y(t)=f(tot).
The methods discussed here are primarily intended for (A) and (B); we emphasize

the ability to discover structure that might not otherwise be seen.

2. Periodic smoothing. The periodic dependence of y on t at frequency to is

equivalent to the dependence of y on the circular variable (tot mod 1). So a scatterplot
of Yi versus (toti mod 1) is a natural picture of the periodic dependence of y on ti at to.

In general, to summarize general (nonlinear) dependence in a scatterplot, we use
a scatterplot smoother (Friedman and Stuetzle (1982b)). I refer to smooths generically
as 5{(y, x)}, which is read as "the smooth ofy as a function of x." The smoother,
5, operates on a set of ordered pairs, {(y, xi)} to produce a set of smoothed values,

So, in this case, to choose a general smooth periodic function, f(. ), smooth y as
a function of the circular variable (tot mod 1). The function, f(. ), is determined at the
observed tot by:

{f(tot,)}: oq’d//{(yi, tot, mod 1)}.

For other values of t, f(tot rood 1) can be determined by interpolating between observed
values of (tot mod 1).

2.1. The smoothing algorithm. The particular smoothing algorithm used is a detail,
but an important one. The examples in this paper use 6e LRC, which is a modified
version of the supersmoother, stm, of Friedman and Stuetzle (1982b). lLRC is
discussed in detail in McDonald and Owen (1983); some important features are as
follows.

Running linear fits. ff’stp is based on running linear fits (Cleveland (1979);
Friedman and Stuetzle (1982b)), which are similar to running averages, AV.

TO produce the smoothed value, 33i, for a point, (y, x), a running average fits a
constant (typically the mean) to the set of yj’s whose corresponding xj’s are in a
neighborhood of x. A running linear fit fits a straight line, y a + b. x, to the points
(yj, x) whose x’s are in a neighborhood of x. The smoothed value, 33i, is the value of
the line at x, that is, .Pi a + b.x.

Running linear fits perform better than running averages when the x’s are
irregularly spaced. Running linear fits also do better at extrapolating to the end points
ofthe data range (which does not matter here, becatse (tot mod 1) is a circular variable).

Split linear fits. The major difference between btLRC and ’/SUP is the use of
split linear fits.

We would like a smoothing algorithm to be able to fit functions that are not smooth
in the usual sense of having everywhere defined, small second derivatives. In other
words, we would like a smoother that does reasonably well at reproducing isolated
cusps and points of discontinuity. This is a generally desirable property for smoothers
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and is particularly important herenbecause we want to be able to discover periodic
functions that are not well approximated by short Fourier series. If we know that the
underlying function is everywhere smooth, in the sense of having small second deriva-

tives, then a low pass filter is a reasonable choice for a smoothing algorithm. Using a
low pass filter is equivalent to Fourier methods discussed below (Bloomfield (1976),
Damsleth and Spj0tvoll (1982)). Periodic smoothing is more expensive than Fourier
methods; it is therefore only justified if it solves problems that Fourier methods
do not.

In running linear fits (and running averages), we smooth the data by making a
guess, 33i, for what yi should have been, based on the values of the yj’s whose xj’s are
near x. bstp uses a symmetric, central window for the neighborhood of x. The
number of observations in the window is called the span, s. A central window contains
s/2 observations to the left of x and s/2 observations to the right.

If we suspect that there may be a jump or sharp cusp in the signal near xi, then
we should consider making the guess based on an asymmetric neighborhood of x. The
idea is to choose a neighborhood in which the underlying function is better approxi-
mated by a line.

To produce the smoothed value, )i, for (yi, xi), 6fRC makes three guesses, 33(L),
33(R), and i(C). fi(C) is derived from a central window, as in 5fsup, fi(L) is found
by fitting a straight line to a window to the left of xi; and )3i(R) is derived from a
window to the right. This is the split linearfit (McDonald and Owen (1983)). How the
three guesses are combined to produce the smoothed value, y, is discussed in the next
section.

Split linear fits are closely related to edgepreserving smoothing algorithms invented
independently in the image processing literature (Tomita and Tsuji (1977), Nagao and
Matsuyama (1977), Haralick and Watson (1979), Scher, Velasco, and Rosenfeld
(1980)).

Combining guesses through cross-validation. A feature that RC inherits from
5esup is the use of local cross-validation combine a number of guesses for

Atsup uses cross-validation to choose the span (the size of the window) of the
running linear fit. The span determines the degree of smoothing done; it is chosen to
adapt to varying signal curvature and noise amplitude.

tst:p computes running linear fits, 33(s), for a number (typically 5) of values
of the span, s. Each of these guesses is cross-validated, that is, the point, (y, x), does
not enter into the computation of )3(s). The 5fsup chooses the value of s that
minimizes the squared cross-validated residual" rE(s) (yi- (s)). To give more stable
results, 5JAstm smooths r2(s) for each s (with a running average) before choosing 3.

5fRC computes 33i as a weighted average of cross-validated guesses, 33(s, L),
33(s, R), and 93(s, C), for several values of span and for left, right, and central windows.
A weighted average seems to give more stable results, on simulated data, than simply
choosing the best guess. The weights used in the examples in this paper are an
exponentially decaying function of the absolute cross-validated residuals; more details
are in McDonald and Owen (1983).

Circular abscissa. egRC is slightly simplified by the fact that (tot mod 1) is a
circular variable; wrapping windows around the end points of the interval is, in fact,
easier than dealing with end effects.

Rejection rule for outliers. To make 6:I/tRC resistant to occasional aberrant
observations, the first pass is an outlier rejection rule (Friedman and Stuetzle (1982b)),
based on residuals from a running median smooth (Mosteller and Tukey (1977)). The
rejection rule is inherited unchanged from ’/Sl.JP.
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2.2. Example: the LYNX data. A classic time series that shows regular periodic
oscillations is the MacKenzie River Lynx data. The raw series consists of the annual
catches of lynx furs for the Hudson Bay Company in the MacKenzie river district in
northwest Canada from 1821 to 1934. The data was compiled by Elton and Nicholson
(1942). This series has received considerable attention from population biologists and
statisticians (for example: Bulmer (1974), Cambell and Walker (1977), Damsleth and
Spjtvoll (1982), May (1974)). The series is of particular interest because similar,
though less well documented, oscillations are reported in many other species of
mammals in Canada and northern Eurasia (Bulmer (1974)). Many analyses have
focused on predator-prey interactions of the lynx and the snowshow hare, another
species with an oscillating population (for example, see Fig. 4.4 in May (1974)).

Figure 1 is a plot of log = furs) over time. The period of the oscillation is about
9.5 years. Figure 2 is a plot of Yi versus (ti rood 9.5). We plot yi versus (ti mod A),
rather than y versus (ot mod 1), so that the horizontal scale is in years rather than
the fractions of a cycle. The data is plotted twice, to show two cycles of the periodic
function. This makes it easier to see the shape of the periodic variation, without
arbitrary breaks at the sides of the scatterplot.

1@
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2

0
1825 1850 1875 1900 1925

YEARS

FIG. 1. Mackenzie River lynx data, original series. Log (counts) of lynx furs trapped in the MacKenzie
river district for the years 1821-1934.
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o % lO 15
FIG. 2. MacKenzie River lynx data. Log (counts) vs. mod 9.5 years. Pluses original data" squares

smooth.
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In all the figures, observed data is plotted as crosses; smoothed values are plotted
as squares; observations flagged as outliers by the smoother are represented by stars;
residuals are plotted as diamonds.

In Fig. 2, the shape of the smooth is not far from sinusoidal; it is slightly skewed,
with a slow rise and a more rapid fall. The apparent skewness is interesting in the
context of predator-prey models; oscillatory solutions to a simple two-species Lotka-
Volterra model (May (1974, Fig. 3.2)) show similar skewness. This is an example of
the sort of qualitative feature of the periodic function that is easy to detect with periodic
smoothing and would be more difficult to see in a Fourier decomposition or a fitted
ARMA model.

Unfortunately, the Lotka-Volterra model is not a reasonable one for the lynx-hare
series, because its oscillatory solutions are unstable under small perturbations. Also,
because similar oscillations occur in many other species, a two species predator-prey
model seems unlikely to be a completely adequate explanation.

3. Choosing a frequency. Consider again the decomposition (1), but now suppose
to is unknown. I suggest two alternatives for choosing to: manually, with an interactive
graphics system, or automatically, following an explicit algorithm.

3’1. Interactive search. On a graphics system like the Orion I workstation
(Friedman and Stuetzle (1981b), McDonald (1982)), we can discover interesting values
of to interactively. The system provides an input device (a trackerball) that can vary
the value of to continuously. At each moment the display shows a scatterplot of Yi
versus (toti mod 1) for the current value of to. The scatterplot is enhanced with the
curve of the smooth, AtLRC{(y, tot mod 1)}. On Orion I, it is possible to update the
picture quickly enough (2-10 times per second) for a user to manually search frequency
space for interesting values of to.1

3.2. Automatic search. A more objective approach would be to choose to to
maximize some numerical criterion of fit, (to). (to) plays the role of the power
spectrum (Bloomfield (1976)) in Fourier analysis, so it is referred to here as the
pseudo-spectrum.

A well chosen pseudo-spectrum is also useful for interactive search; it identifies
potentially interesting frequencies, thereby greatly reducing the time spent searching
over to.

A natural choice for the pseudo-spectrum, by analogy with the periodogram, is:

where

and

(to) R2(to),

R2(to) 1
y’., (y, )3,(to ))2

(;,(to)}= X/(.LRc((Y,, tot, mod 1)}.

Unfortunately, this simple analogy does not work. Roughly speaking, LRC
projects the observed y, onto the space of smooth functions that are periodic with
frequency to. Difficulties arise here that do not arise with the periodogram because the

The use of an interactive graphics system in this way to look at periodic variation in time series has
been suggested independently by Juan Carlos Lerman (1982).
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spaces of general smooth periodic functions at different frequencies are not mutually
orthogonal in the way that sines and cosines are.

Figure 3 shows a plot of R2(to) versus to for the Lynx data. We see a peak at
what should be the dominant frequency: too0.105 1.0/9.5. We also see many other
peaks. The peaks to the left of 0.105 are at the frequencies: too/2, too/3, too/4, etc.
These frequencies correspond approximately to periods of 2 x 9.5 19.0, 3 x 9.5 28.5,
and so on.

Suppose we have data that can well be approximated by a function whose true

frequency is too. Frequencies ofthe form too/m, m an integer, are called the subharmonics
of too. If we look at a scatterplot of Yi vs (too/m)" ti mod 1, we will see m cycles of
the periodic function. For m not too large, the smoother will fit m cycles of the data
as well as one, so R2(too/m) R(too).

Figure 4 is a plot of y versus (t mod 29) which corresponds to highest peak in
Fig. 3. This plot seems to show three cycles of a periodic function (we see six cycles
in the plot because the data is repeated twice). That is what we expect, because 29
years is three times the fundamental period of about 9.5 years.

Figure 3 also has many peaks at values of to >> 0.105. These peaks correspond to
subharmonics of aliases (see Bloomfield (1976)) of true frequency too. Suppose toa is
an alias of too. Then a plot of y versus ((toa/m) t mod 1) will also show m cycles of
the underlying periodic function.

To eliminate spurious peaks in the pseudo-spectrum, we need to somehow penalize
(to) for excess cycles in the smooth. One way to do this is to penalize for the curvature
of t,/[/[t,Rc{(yi, toi mod 1)}. If too is the correct frequency, ,J/LRf{(yi, (too/m)t mod 1)}
will have m times the curvature of LRc{(Yi, toot mod 1)}.

Experiments with simulated data suggest the following pseudo-spectrum"

R(o)
(,o)

(o)

BEST F,P,R,C: 0.0345 28.7806 0.0

0.6

0.4

0,2

0 0.1

FIG. 3. MacKenzie River lynx data. R2(to) vs. to.

O3 O.4



PERIODIC SMOOTHING OF TIME SERIES 671

0 20 40

FIG. 4. MacKenzie River lynx data. Log (counts) vs. mod 29.0 years. Pluses original data; squares
smooth.

where (to) is a measure of curvature. Curvature is measured by an integrated absolute
second derivative. To be more precise"

1 N

(to)= ’. IgMAV{()3,, tot, mod 1), s}-9MAv{(:,, tot, mod 1), 3s}l,
i=1

where ’-fl/[AVE{(’," ), S} is a running average of span s. The difference of a running
average of span s and a running average of span 3s is equivalent to a smoothed second
difference filter.

Figure 5 shows a plot of if(to) versus to. The dominant frequency in this plot,
0.104, corresponds to a period of 9.64 years. Figure 6 shows Yi (crosses) and 33i (squares)
versus (t mod 9.64).

Figure 5 shows that (to) is still a function with many local maxima. So usual
methods for numerical optimization may have difficulty finding the global maximum.
To be sure of finding the global maximum we can either do an exhaustive search over
values of to or provide a numerical optimizer with a good set of starting values.

Exhaustive search is simple in concept and very reliable. A search with sufficient
precision may, however, be too expensive for most statistical computing environments
at present. On the other hand, exhaustive search is a perfectly reasonable option on
a dedicated graphics system like Orion I. Furthermore, we expect that similar, inexpen-
sive, powerful workstations will be the standard environment for scientific computing
within five to ten years.

On a graphics workstation, we need not be restricted to a single choice for if(to).
We can display on the screen both R2(to), cO(to), and ;T(to, a), where (to, a) is
something like R2(to)/cg(to) ’. The value of a can be controlled by an input device
such as a trackerball, and the plot of if(to, a) can be recomputed and redrawn in
real-time as a is changed.

For the immediate future, an effective and inexpensive alternative to exhaustive
search (when t are equi-spaced) is to take the 10-20 largest values from the periodogram
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0.4
BEST F,P,R,C: 0.1038 9.5941 0.0
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0.2

0ol

0 O2 0.4

FIG. 5. MacKenzie River lynx data. (to)= R2(to)/cC(to) vs. to. Maximum corresponds to a period of
9.64 years.
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FIG. 6. MacKenzie River lynx data. Log (counts) vs. mod 9.64 years. Pluses original data" squares
smooth.

(or some other estimate of the power spectrum) as starting values for a local numerical
optimization.

4. Comparison with Fourier analysis. A standard, and often successful, approach
to constructing decompositions like (1) is based on Fourier analysis (Bloomfield (1976),
Damsleth and SpjOtvoll (1982)). To find an unknown frequency, to, one looks for a
peak in an estimate of the power spectrum of the series. The model, f(. ), is fit by a
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Fourier series at harmonics of the fundamental frequency, to. That is"

J

(2) f(tot) cj. sin (27rjtot +
j=l

(The amplitudes, a and the phases, ffj, are typically estimated by least squares.)
The major advantage of Fourier methods over periodic smoothing is computational

speed. Also, the power spectrum does not have the problems in the pseudo-spectrum
that arise from lack of orthogonality.

The major advantages of periodic smoothing are:
A smoother can approximate simple functional forms that are difficult to

approximate well by a Fourier series of reasonable length.
A plot of the Fourier approximation may be misleading, due to eye-catching

peculiarities related to Gibb’s phenomena. An inappropriately chosen smoothing
algorithm may also show Gibb’s phenomena, which arise from trying to fit a smooth
function (with continuous second derivatives) to nonsmooth data. 6eMLRC was designed
to deal with nonsmooth data and does not show Gibb’s phenomena.

Smoothing Yi as a function of (toti mod 1) is not sensitive to whether the t are
equi-spaced, that is, whether t to+ i. At. Most estimates of the power spectrum
require t to be equi-spaced. In particular, this implies that Fourier methods have
difficulty with missing data.

Most estimates of the power spectrum are sensitive to the effects of a few
aberrant observations; with a resistant smoothing algorithm the pseudo-spectrum need
not be.

If the amplitudes and phases are fitted by least squares, then the model, f(. ),
will also be sensitive to aberrant observations; a periodic smoothing model need not be.

5. Comparison with seasonal adjustment. Periodic smoothing may be viewed as a
generalization of additive seasonal adjustment.

If the observed times, ti, are equi-spaced (t= to+ iAt), and the period, A 1/to,
is an integer multiple of the spacing (A lAt), then the toti mod 1 will take on only
discrete values. This is typical of problems in seasonal adjustment; the season is usually
of integer length (for example, 12 months). In this case, it makes sense to simply
average over each of the values of tot mod 1.

Choosing to to maximize a numerical criterion, (to), is a generalization of
pre-Fourier methods for uncovering hidden periodicity in time series. Buys-Ballot
(Buys-Ballot (1847), Whittaker and Robinson 1924)) suggested essentially the same
procedure, for equi-spaced data, restricting consideration to those to’s that correspond
to integer length periods, averaging as in seasonal adjustment rather than smoothing,
and using R2 as the measure of fit. In other words, we try seasonal adjustment for all
integer length seasons and take the season that fits best.

The use of a smoothing algorithm makes it possible to consider noninteger length
periods and series with irregularly spaced times or missing observations.

6. Several frequencies. More complicated periodic variation in time series can be
described with a decomposition involving several frequencies:

K

(3) Y, E fk(tokt,) + r.
k=l

We construct such a decomposition using a variation of the Projection Pursuit Paradigm
(Friedman and Stuetzle (1982a)).
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The decomposition is constructed sequentially, adding terms until no improvement
in fit is possible. We choose the Kth periodic function, fr(" ), by smoothing the
residuals, r-, from the first K- 1 terms"

fr (tort,) ’Od[/gLRC{( riK-l, tort, mod 1)}.

The Kth frequency, tot, is chosen to maximize the fit, (tor), offr(torti) to rff -1.
Given a K term model, we can sometimes improve the fit by backfitting, a technique

of cyclical optimization used in Projection Pursuit algorithms (Friedman and Stuetzle
(1982a)). The basic idea is to refit each term, tok and fk(" ), to adjust for variation in
the residuals from the other K- 1 terms.

In cases where the frequencies, tok, are known beforehand, the Projection Pursuit
Paradigm reduces to just the backfitting step.

We can adjust the series for a long term, nonperiodic trend with only a minor
modification of the Projection Pursuit Paradigm. We merely need to include a term,
fo(ti)- S[/[LRC{(Yi, t,)}. (t is not treated as a circular variable in the trend term.)

7. Example: the variable star data. Figure 7 is a plot of the so-called "Variable
Star" data of Whittaker and Robinson (1924). This data set purports to be observations
of the brightness of a variable star over 600 days.

30
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@
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two term model with periods24 and 29 days.

This data set was analyzed in detail by Bloomfield (1976), using Fourier methods.
The periodogram of the data shows peaks at two fundamental frequencies and at their
harmonics. The two frequencies correspond to periods of almost exactly 24 and 29 days.

I fit a two term periodic smoothing model to this data. Figure 8 shows a plot of
y versus (t mod 24), together with the fit produced by smoothing. Figure 9 shows a
plot of the residuals from the first fit, r, versus (t mod 29).

Figures 10 and 11 show the result of backfitting (the frequencies are held fixed).
The two functions look like discrete approximations to sines. The discreteness accounts
for the presence of higher harmonics in a Fourier decomposition. This data appeared
originally as an example in a textbook (Whittaker and Robinson (1924)), with no
explicit reference. It is likely that it is artificial, constructed (in the nineteen twenties)
with not very accurate approximations to sines.

Figures 10 and 11 have another interesting feature: there is one clear outlier,
probably due to an error in manual computation of approximate sines. This outlier
was also discovered by Bloomfield (1976), using a subtle analysis of the periodogram.
Using periodic smoothing, the outlier is obvious. It is not clear whether Bloomfield’s
approach would have succeeded if there had been more than one outlier. The number
of aberrant observations that can be detected by periodic smoothing is determined by
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3O

10

FIG. 8. Variable star data. Brightness index vs. mod 24 days. Pluses original data; squares smooth.

the breakdown properties of the smoothing algorithm. Periodic smoothing is insensitive
to a substantial percentage of gross errors if an appropriate smoother is used.

8. Example: the LYNX data continued. Figure 6, recall, is a plot of the MacKenzie
River Lynx data versus mod the fitted period of 9.64 years. The smooth is slightly
skewed, with a slow rise and a faster fall. The skewness is of particular interest, as
noted above, because solutions to simple predator-prey models have similar shape.

-5

-1@

o o 4o

FIG. 9. Variable star data. Residuals from 24 day term vs. mod 29 days. Pluses residuals from 24 day
term; squares smooth.
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FIG. 10. Variable star data. 24 day term after backfitting. Pluses residualsfrom 29 day term; squares
smooth. Note outlier represented by star.

Before investing much mental energy in pursuing this interpretation, we should
assess how serious the indication of skewness is. In other words, we want to know if
the skewness is significant.

It is not obvious how to test the significance of the apparent skewness. For any
such test, even nonparametric methods like the bootstrap or permutation tests, signifi-
cance levels will be unreliable, because we identified skewness as an interesting feature
in exploration of the data.

What we need is to, somehow, repeat the experiment.

10

-5

-10

0 2o 40

FIG. 11. Variable star data. 29 day term after backfitting. Pluses residuals from 24 day term" squares
smooth. Note outlier represented by star.
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Fortunately, we do have repetitions ofthe "lynx" experiment. Elton and Nicholson
(1942) reported the number of lynx furs sold to the Hudson Bay Co. for 11 regions
in western Canada, for the years 1821-1934. The MacKenzie River district data has
been analyzed repeatedly (for example: Bulmer (1974), May (1974), Cambell and
Walker (1977), Damsleth and Spjtvoll (1982)); the other ten series have been ignored
since they were first published. The reason for this is that the MacKenzie River series
is the only one of the 11 that has no missing data. Periodic smoothing is not affected
by missing observations, so we can repeat the analysis on the other series.

Figures 12-16 show log 4 lynx furs) versus years for the 5 most complete of 10
other lynx series: the Athabasca Basin, West Central, Upper Saskatchewan, Winnipeg
Basin, and North Central regions. These districts approximately cover the provinces
of Manitoba, Alberta, and Saskatchewan. The MacKenzie River district covers a large
part of the Northwest Territories. (See maps in Elton and Nicholson (1942).)
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FIG. 12. Athabasca Basin lynx data, original series. Log (counts) of lynx furs trapped in the Athabasca
Basin district for the years 1821-1934.
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FIG. 13. West Central lynx data, original series. Log (counts) of lynx furs trapped in the West Central
district for the years 1821-1934.
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FiG. 14. Upper Saskatchewan lynx data, original series. Log (counts) of lynx furs trapped in the Upper
Saskatchewan district for the years 1821-1898.
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FIG. 15. Winnipeg Basin lynx data, original series. Log (counts) of lynx furs trapped in the Winnipeg
Basin district for the years 1821-1934.
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FIG. 16. North Central lynx data, original series. Log (counts) of lynx furs trapped in the North Central
district for the years 1821-1939.

Unlike the MacKenzie River data, the other 5 series show clear long term trends.
So for our analysis to be reasonable, we need to include a trend term.

If we overlay all six series on the same plot, we see that they stay almost perfectly
in phase over the 119 years. So it seems reasonable to fit a periodic term with the same
period to all 6 series. To do this, we simply choose to to maximize Rt(to) where
indexes the series.

o 5 lO 15

FIG. 17. MacKenzie River lynx data, periodic term. Log (counts) vs. mod 9.55 years. Pluses original
data adjusted for trend; squares smooth.
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10

FIG. 18. Athabasca Basin lynx data, periodic term. Log (counts) vs. mod 9.55 years. Pluses original
data adjustedfor trend" squares smooth.

Figures 17-34 show the results of fitting a two term model (one trend term and
one periodic term) using the Projection Pursuit Paradigm and backfitting described
above.

Figures 17-22 show the periodic term for each of the six series. The period, fitted
to the six series simultaneously, is 9.55 years, slightly different from the 9.64 years
fitted to the MacKenzie River data alone. The MacKenzie River data still look slightly

0 5 10 15

FIG. 19. West Central lynx data, periodic term. Log (counts) vs. mod 9.55 years. Pluses original data
adjusted for trend" squares smooth.
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FIG. 20. Upper Saskatchewan lynx data, periodic term. Log (counts) vs. mod 9.55 years. Pluses original
data adjusted for trend" squares smooth.

skewed; the other five series are much less skewed, if at all. So the conclusion is that
the skewness should not be taken seriously.

Figures 23-28 show the trend terms. There is no obvious pattern in the trends.
They may reflect the fact that the boundaries of the regions changed over time (see
maps in Elton and Nicholson (1942)).

Figures 29a-34a show original series (pluses) compared with the unwrapped model
(squares). Figures 29b-34b show the unwrapped residuals from the model.

10

0 5 10 15

FIG. 21. Winnipeg Basin lynx data, periodic term. Log(counts) vs. mod9.55 years. Pluses=original
data adjusted for trend" squares smooth.
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0 5 10 15

FIG. 22. North Central lynx data, periodic term. Log (counts) vs. mod 9.55 years. Pluses original data
adjusted for trend; squares smooth.

9. Extensions. It is important to consider more general models than the simple
additive models (1) and (2).

9.1. Transform the response. One class of more general models is provided by
transforming the response:

K

g(y,) f(t0kt,).
k=l
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+
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FIG. 23. MacKenzie River lynx data, trend term. Log (counts) vs. years. Pluses residuals from periodic
term" squares trend.
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FIG. 24. Athabasca Basin lynx data, trend term. Log (counts) vs. years. Pluses residuals from periodic
term; squares trend.

The transformation, g(. ), can be chosen, interactively, on a graphics system like
Orion I, or objectively, using an ACE style algorithm (Breiman and Friedman (1982)).

Interactive choice requires g(. to be a member of a parametric family, for example,
the power transformations. When the frequencies are unknown, it should be informative
to watch the periodogram (or other estimate of the power spectrum) change as we
manually change parameters in g(. ). When the frequencies are known, then we might

1825 :1850 1875 1go0 :1925

FIG. 25. West Central lynx data, trend term Log (counts) vs. years. Pluses residualsfrom periodic term;
squares trend.
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1850 !875 lgO0 lg25

FIG. 26. Upper Saskatchewan lynx data, trend term. Log (counts) vs. years. Pluses residualsfrom periodic
term; squares trend.

consider watching scatterplots of g(Yi) versus (tokt mod 1) together with the curve of
the smooth f(ot) as we adjust g(.).

The ACE algorithm (Breiman and Friedman (1982)) provides an objective way
to choose nonparametric transformations.

The optimal frequencies can be unstable under transformations of the response.
For example, taking the logarithm of the response is equivalent to fitting a multiplicative
model. If the data is approximately: cos (tot) +cos (to2t), it will also be well approxi-
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FIG. 27. Winnipeg Basin lynx data, trend term. Log (counts) vs. years. Pluses residuals from periodic
term" squares trend.
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FIG. 28. North Central lynx data, trend term. Log (counts) vs. years. Pluses residuals from periodic
term" squares- trend.

mated by the multiplicative model: 2.cos ((to1+ to2). t/2). cos((to-to2) t/2) ACE
should be most useful when the frequencies are known beforehand, as is the case in
seasonal adjustment.

9.2. Almost periodic smoothing of time series. For many data sets, a more realistic
model than (1) is"

yi f(tot, + dp( ti)),
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FIG. 29. MacKenzie River lynx data. (a) Original Series (pluses) with unwrapped model (squares).
(b) Residuals from model.
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FIG. 30. Athabasca Basin lynx data. (a) Original Series (pluses) with unwrapied model (squares).
(b) Residuals from model.
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FIG. 31. West Central lynx data. (a) Original Series (pluses) with unwrapped model (squares).
(b) Residuals from model.
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FiG. 32. Upper Saskatchewan lynx data. (a) Original Series (pluses) with unwrapped model (squares).
(b) Residuals from model.
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FIG. 33. Winnipeg Basin lynx data. (a) Original Series (pluses) with unwrapped model (squares).
(b) Residuals from model.
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FIG. 34. North Central lynx data. (a) Original Series (pluses) with unwrapped model (squares)
(b) Residuals from model.

where th(" is a phase shift that varies slowly over time. Fitting a model of this type
is analogous to complex demodulation (Bloomfield (1976), Bingham, Godfrey, and
Tukey (1967)).

Consider the residuals from the Lynx data (Figs. 29b-34b). The series wanders
slightly in and out of phase with the model. This is especially noticeable in several of
the series around the time of World War I.

To fit b(ti), we first find an to and an initial guess for f(. ), assuming regular
periodic variation as in the previous section. The initial guess for th(ti) is zero for all
i. We then adjust b(. and f(-) together, with the following iteration:

Repeat <
Given f(. ), get a rough adjustment for b(t) to improve the fit to Yi (using, for
example, a Taylor’s expansion of f(. )).
Smooth b(ti) as a function of t to ensure that it varies slowly.
Given b(t), find f(. by smoothing y as a function of (tot + b(t))mod 1.

> Until (convergence).
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THE DISTRIBUTION FUNCTION OF POSITIVE DEFINITE QUADRATIC
FORMS IN NORMAL RANDOM VARIABLES*

ROBERT H. BROWN?

Abstract. Some existing representations for the cumulative distribution function of positive definite
quadratic forms in normal random variables lead to inefficient computational algorithms. These inefficien-
cies are overcome with the derivation of some alternative recurrence relations. Some additional results con-
cerning the distribution function and some extensions are also provided which make it possible to compute
exact significance levels for certain test statistics proposed for the analysis of variance of unbalanced data.

Keywords. quadratic forms, positive definite, laguerre polynominals, gauss hypergeometric function

1. Introduction. Let the random vector Y have an n-variate normal distribution
with mean vector 0 and positive definite covariance matrix V TT’. If the nonstochastic
matrix B is positive definite and such that TBT’ 19’ I4/19 where P is orthonormal and
W is a diagonal matrix of positive constants, then the quadratic form Q Y’BY can
be written

Q Y’BY (Y-O+O)’ T-1TBT T’-I(Y-O+O)

(z+)’ w(z+.)

(1) ,=1

where Z PT’-I(Y-O), /z PT’-10. The constants wi are assumed to be ordered so
that wl < w2 <... < w,. The random vector Z has an n-variate normal distribution with
mean vector zero and covariance matrix I,.

The distribution function of the random variable Q has been extensively studied.
A comprehensive survey can be found in Johnson and Kotz [1970]. Methods for com-
puting the distribution function have generally taken one of two approaches. Rice [1980],
Davies [1980] and Imhof [1961] describe methods based on numerically inverting the
characteristic function of Q. These methods are applicable in the more general case where
the coefficients of the linear combinations (1) are permitted to assume negative values.
Confined to the positive definite case, Sheil and O’Muircheartaigh [1977] and Johnson
and Kotz [1968] present algorithms based on particular infinite series representations
of the distribution function of Q.

The algorithms based on infinite series representations suffer from several com-
putational disadvantages. The current paper shows how these disadvantages can be easily
overcome and presents some new results concerning the distribution function of Q.

2. Infinite series representations. It can be shown (see Johnson and Kotz [1970])
that the probability density function f(Q;y) and the cumulative distribution function
F(Q;y) of the positive definite quadratic from Q evaluated at y can be written

*Received by the editors June 26, 1984, and in revised form March 25, 1985. This paper represents
a portion of the author’s doctoral dissertation which was submitted to the Department of Statistics,
University of Kentucky. It was typeset at McNeil Pharmaceutical, Spring House, Pennsylvania, using
Compugraphic MCS20/8400 phototypesetter. Final copy was produced on September 25, 1985.

?Manager of Statistics, McNeil Pharmaceutical, Spring House, PA 19477.
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(2)

(3)

f(Q;y) (1/fl) o c,,g(n + 2k, y/fl)

[P(n/2)/2]g(n,y/fl) , k.ta,,L,,t’-l(y/2fl)/P(k + n/2),
k=O

(4) F(Q;y) c,,G(n + 2k, y/fl)
k=O

(5) G(n,y/)+(y/23)"/2e-y’2 S, (k- 1)!a,,L,,_lt(y/213)/F(k + n/2)
k-1

where g(m,x) and G(m,x) are the density function and cumulative distribution func-
tion, respectively, of a central chi-squared random variable with m degrees of freedom
and Lra(X) is the generalized Laguerre polynomial.

The coefficients in the above expansions are defined by the following recurrence
relations

(6) kc, c,,-rdr,

ka,, E
r=l

(7)
where

(8) dr 1/2r V-’/ + 1/2 (1-r/)7
i=1 i=1

with y, (1-13/wi),

and

(9)

Co e-x I [8/w,] ’’2,),, 1/2
i=1 i=1

br =-1/2r 3,r-/z (1+ 1/2 +r),
i=1 i=l

with ,, (I-w,.//3), ao 1.

The parameter/3 is a positive constant chosen to ensure the convergence of whichever
series is being used. For some choices of the series (2)-(5) are uniformly convergent.
For computational purposes Kotz, et al [1967a] suggest that/3 (w + w,)/2 for the
Laguerre polynomial expansion and/3 2w, w./(w, + w.) for the central chi-squared
expansion are close to optimal choices. The constants n, w, and , are from (1) the defini-
tion of Q as a linear combination of noncentral chi-squareds.

The algorithms of both Sheil and O’Muircheartaigh [1977] and Johnson and Kotz
[1968] use the recurrence relations (6)-(9) to compute the coefficients. For computa-
tional purposes these equations are unattractive for two related reasons. Using (7) and
(9) to compute ak requires that all previously computed a’s and b’s are available. This
requires work vectors whose lengths depend on the number of partial sums needed for
numerical convergence. Since an inner product of the vector of previous a’s with the
vector of previous b’s must be computed, the number of arithmetic operations needed
to compute ak increases as k increases.

The next section will present a simple rearrangement of calculations which avoids
both of these difficulties.

3. Computing the coefficients. Examination of (6)-(9) shows that with minor changes
in sign and definition of the -/i the same recurrence relations hold for the coefficients
from either expansion. The following derivation is based on the formulae for the Laguerre
series coefficients.
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From (7) and (9) it can be seen that

ka,, / F r-1"2im 4- 1( +
r=l i=1 i=1

k k

r, a_r + Iz r3,.a-]
i=1

(10)

where
(11) Pi E "y’ak-r,

r=l

(12)

Recurrence relations for the p;,k and f,.,k can easily be derived. From (11)

’ yi lk-s
s--0

(13) "yi(ak +Pi.k)

Similarly, from (12)
k+l

f/,k+ r’yi ak+-,.

o (s+ ).a_s

(14) tZ2i(ak +Pi,k) "k" "y’dCi,k.

Conceptually (13) and (14) are derived by recognizing that p; is a k-th degree
polynomial in y, and then by applying Horner’s scheme (Ralston [1965]) to the evalua-
tion of that polynomial.

There are only n of the p,,,,’s and f,’s which are updated (i.e. overwritten) recur-
sively using (13) and (14). The coefficient a/ is then computed using (10). Only the
k-th coefficient is saved rather than all previous coefficients. Explicit computation of
the br’s is no longer required. The number of arithmetic operations required to com-
pute the k-th coefficient is now a function of n, the number of parameters, and hence
does not increase as k increases.

As stated previously the coefficients of the central chi-squared expansion follow
essentially the same recurrence relations. Without presenting the algebraic details, the
final results can be stated as follows:

kC 1//2 (P "-f "[ "tf
i=1
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where pi,k is defined by (11) and therefore follows the recurrence (13) and f,.,k is defined
by (12) and therefore follows the recurrence (14). However, since the expansion is now
in central chi-squared distribution functions rather than Laguerre polynomials, in all
these formulae -, is now defined by (8) as 7i (1-fl/w,).

The above recurrence relations in combination with well-known results for either
the generalized Laguerre polynomials or the central chi-square distribution function pro-
vide simple and efficient algorithms for the computation of F(Q;y) or f(Q;y). See Kotz,
et al. [1967a&b] for a discussion of truncation error bounds and convergence criteria.

4. Some additional results concerning F(Q;y). For the central chi-squared expan-
sion (2) and (4) Ruben [1963] has shown that if fl< wl, then

(15) c Ae-XE[Q]/r!

where A fI (fllw,)’’,
i-1

X /d/2,
i-1

Q, 1/2 (1-fl/w,)[z,+tz,fl’/2/(wi+)"2]z,
i-1

z, z. are iid N(O, 1) random variables and E[ Y] denotes the expected value of the
random variable Y.

A similar result can easily be established for the coefficients from the Laguerre
polynomial expansion. To this end it can be seen that

E[L./2-, ,(Q/2)] L./--’ ,(y/2)f(Q;y)dy
(n/2 -1) (n/2 -1)

r!a. je-,t./,-,L,(t) Lr(t) dt
r=O P(n/2+r}

(16) a
which follows from the orthogonality properties of the Laguerre polynomials. Inter-
change of summation and integration is justified by the uniform convergence of (3) for
appropriate choice of/3.

The central chi-squared distribution function G(p,y) with p degrees of freedom
follows the well-known recurrence relation

G(p + 2,y) G(p.y)-2g(p + 2,y)

where g(p+ 2,y) represents the corresponding density function. The above statistical
characterizations of the coefficients from (4) and (5) can be used to provide a similar
result for the distribution function of a positive definite quadratic form. In particular
let the random variable Q be defined by (1) and let Q’ Q + wx where wl -< w_< w.
and x is a central chi-square with 2 degrees of freedom distributed independently of
Q. If w= w. for some r= n then Q’ can be expressed as

Q’= WiX21+2sx
i-1 Jr’

where 6i if i= r and 0 otherwise. The statistic Q’ is a linear combination of chi-
squared random variables in which each chi-squared has degree of freedom with the
exception of the r-th chi-squared which has 3 degrees of freedom. Let c and a be defined
by (6) and (7) as the coefficients in the central chi-square and Laguerre polynomial ex-
pansion, respectively, of the cumulative distribution function of Q. Similarly, let c and
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a be the coefficients in the corresponding expansions of the distribution function of
Q’. The following lemma relates c to ck and a to ak.

LEMMA 1. Let c and cL a and aL Q and Q’ be as defined above. For the central
chi-square expansion assume that {3 is chosen so that (15) holds. For the Laguerre
polynomial expansion, assume that {3 is chosen so that (16) holds. Then

1. c (13/w)c + (1-/w)c_l,

2. a a + (1-{3/w)aL
with c’_ a’_l O.

Proof. To prove 1. first note that since w_> w, the same choice of/3 suffices to make
(15) hold for both ck and c. Therefore, from (15)

-h,k!c A e E[(Q,)

where A’ (t3/w) A,

Q QI + l/2(1-13/w)xZ

and A, Q and , are from (15).
Clearly, when k O, c ({3/w)c. For k > 0

k.tc], (13/w)Ae-XE[[Q + 1/2(1-/w)xZ]]

(/w)Ae-x E k.tE[Q-r/(k-r).t](1/2)r(1-/wfE[Xlr/r,t]
r=O

k.t {3/w ro c_(1 [3/w

From this equation it can be seen that

k-I

c/, (/w) S. c__(1 /w)

k-I

(/w)ck + (1 t3/w)(/w) =o c__(1 13/w)

({3/w)c + (1 {3/w)c_

To prove 2. note that since w < w, the same choice of/3 suffices to make (16) hold
for both a and a. Therefore

a E[L"/’(Q/2 + (w/2{3)X)]

E[ E ,_I "/2- (Q/2{3)L(wx/2{3)]
r=O

from a standard addition formula for the generalized Laguerre polynomials. Then

a E ,tk-rr""/2- ’(Q/2{3)]E[L(wxl/2{3)]
r--O

E a_(1 w/)
r--O

k-1

a + (1 w/)a/,_.
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Clearly, ag ao 1.

Using these results the following theorem can be established.
THEOgFM 1. Let Q and Q’ be as defined above. Then

F(Q’;y) F(Q;y) 2wf(Q’;y).

Proof. From (4) with/3 < wl

F(Q’ ;y) S, c/,G(n + 2 + 2k,y/)
k=O

E c[G(n + 2k,y/fl) 2g(n + 2 + 2k,y/)]
k=O

E c/,G(n + 2k,y/fl) 2f(Q’;y)
k=O

S, [(fl/w)ck + (1-/w)c/,_,lG(n+2k,y/) 2f(Q’;y)
k=O

(/w)F(Q;y) + (1-fl/w)F(Q’;y) 2flf(Q’;y).

Collecting terms gives the desired result.

5. A generalization. Let Q be as defined in (1) and let x be an independently
distributed central chi-square with p degrees of freedom. Pr[Q<s,} where s is a positive
constant is of some interest and can be easily obtained from the preceding results.

THEOREM 2. Let Q and x be as defined above. Then

F(Q/x;s) Pr[Q<sx} Pr[x, < (s/)x}

+ [(n/2)B(n/2,p/2)]-u"/2(1 u)p/2 E ak,F[- k + 1,(n +p)/2;(n + 2)/2;u]
k=l

where B(a,b) is the complete beta function, {3 and a are defined by (7) and (9), u
s/(s+ fl) and ,F,(a,b;c;x) is the usual Gauss hypergeometric function.

Proof. F(Q/x;s) Ey[F(Q;sy)l Y=y] Ey[G(n;sy/2fl)]

(17) + (k- 1).ta Ev[e_sy/,e(sy/2),/L,_/2,(sy/2{3)l
k=l P(n/2+k)

where Y is a random variable distributed as x. It can be seen that

Ede-sy/a(sy/2)"’-..*_,"’2 (sy/2)]

[r(p/2)l-’(fl/s)’XE[x’"/’’ -’L"_X’(x);/s + 1]

where [f(x);c] denotes the Laplace transform of f(x) with parameter c. From tables
of the Laplace transform

[x"/’,2 -’Ll"_/’’(x);fl/s + 11

P[(n +p)/2l,.F[-k+ 1,(n +p)/2;n/2 + 1;s/(fl + s)l.
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Substituting this expression into (17) gives the desired result.

6. Discussion. The methods used in Section 2 along with the results of Section 5
can be generalized to deal with the distribution function of a nondefinite quadratic form.
This will be the subject of a subsequent paper.

The distribution function obtained in Section 5 is of interest in several special con-
texts. In the special case wl w2 =... wn Theorem 2 gives a representation for the
cumulative distribution function of a noncentral F random variable with n and p degrees
of freedom and noncentrality parameter k E7--1/z. Some approaches to dealing with
unbalanced data in the analysis of variance of cross-classified data lead to sums of squares
of hypotheses which are distributed as linear combinations of chi-squares. Hirotsu [1979]
discusses approximations to the distributions of test statistics derived from such
approaches.

Theorem 2 provides the basis for a method by which exact (under the usual assump-
tions) significance levels of these types of procedures can be computed. Since Theorem
2 also gives the noncentral distribution, the power of these methods can also be studied.
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Abstract. Variation diminishing splincs providc an cffcctivc tool for modeling active elements in cir-
cuit simulation. Using quadratic tensor product splints and maintaining uniform sampling at the boundary
by linear extension of the data yields an algorithm that is smooth (unlike simple table lookup), shape
preserving (unlike simple interpolation), and efficient (30 microseconds to evaluate on a Cray-lA). The
rate of convergence to function and derivative values and to the location of minima is O(h2).

Key words, monotonicity, convexity, table model, transistor model
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1. Introduction. Few methods are known for the monotone approximation of
data in several variables. Tensor product variation diminishing splines provide a sim-
ple, efficient, and effective solution for problems where the data need not be exactly
interpolated. This paper analyzes this method for the particular case of quadratic
splines on uniformly spaced knots and discusses the application to an important
modeling problem in electrical circuit simulation.

Tensor product splines are popular tools for unconstrained fitting of data on a
rectangular grid. Unfortunately most univariate monotonic spline techniques do not
generalize easily. Figure illustrates the difficulty. The univariate algorithm must
not only produce monotonic splines, but do so in a monotonic way" if {di} and {d}
are two sets of data such that di<-d for all then the corresponding fits must satisfy
f (x)<--f*(x) for all x. Fortunately, variation diminishing splines have this property.

For evaluation efficiency, we use quadratic splines on uniform knots. The rate
of convergence of the derivative is faster than might be expected at first, and local
minima in the data are reproduced in the spline.

In the following sections of this paper, we analyze a particular form of the
univariate variation diminishing spline, establish the multivariate generalization, and
review previous techniques used for transistor modeling.

2. Uniform variation diminishing splines. First consider the univariate problem.
We wish to approximate a smooth monotone function f, given data at uniformly
spaced sample points t (i-I)h on the interval 10,1] where h= I/(n-I) and
l<--i<-n. Since in our application only a C approximation is needed, we elect to use
quadratic splines. Take knots (i-2.5)h midway between the sample points t-2
and t’-l. (These are chosen so that t=(ti+l +/i_1)/2, as is required for variation
diminishing splines.) Using the data as B-spline coefficients gives the variation
diminishing spline 1181

S(x) f(t)Bi(x).
(See I61 for the definition of {Bi}, which are written as {Bi. 3,t} in that reference.)
Because of the local support of the B-splines, if ti<_x<_ti+i then S (x) depends only on

*Received by the editors August 31, 1984, and in revised form March 10, 1985. This paper was
typeset at AT&T Bell Laboratories on August 13, 1985.

’AT&T Bell Laboratories, Murray Hill, New Jersey 07974. Electronic mail: research!ehg or
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:t:AT&T Bell Laboratories, Murray Hill, New Jersey 07974. Present address: Computer Science
Department, Duke University, Durham, North Carolina 27706.
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f at ti_2, ti_l, and In the trivial case n=l, take the constant function
S (x)=f (t).

Note that we depart from the customary definition by not using multiple knots at
the endpoints. We thereby obtain B-splines that are all identical up to translation

Bi(x)=Bo(x-ih)

and avoid introducing an irregular sample point near the boundary. But the defini-
tion of S(x) for x <h/2 refers to f (tt]), an imaginary sample outside 10, 11 indicated
by the dotted circle in Figure 2. We implicitly estimate this by linear extrapolation
from f(t) and f(t). This implies that for x<h/2 the spline reduces to a linear
function. Here and in the following, we only discuss the left boundary and implicitly
treat the right boundary symmetrically.

EDGE ON VIEW

Monotone interpolation along two grid lines independently may ./brce nonmonotonicity in the
orthogonal direction.

o.8

0.6

0.4

02

0

+ :7.. + 0 + 0 +

to* 2 t* t: tz* t,

FIe;. 2

For knots as indicated by (+), B-splinea" are translations of the indicated piecewise quadratic,
where y (x-ti)/h .]br ti<-x<-ti..l Function wllues at the sample points (o) are taken as B-
spline co([.’ficients.
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Recently we have found that this technique used in computer graphics under the
name of "phantom vertices" 14]. Since we were unable to locate any convergence
analysis in the literature, we include the following theorem to show that this nonstan-
dard definition retains the properties of variation diminishing quadratic splines
defined with the customary multiple knots.

THEOREM I. lff" is Lipschitz continuous then S has the following properties:
(I) s(cl’
(2) ff is linear then S =f;
(3) S(O)=,f (O), S(I)=.f (I);
(4) iff is monotone or convex then so is S;
(5) ff is quadratic then S’=f’;
(6) II.f--SllL.lO. ll O(h2);
(7) Ill’-S’ II/,10,11 O(h 2) and If’-s’[ O(h) at 0 and I.

Proof. (I) S is a sum of C functions.
(2) Consider the linear extension f* of f outside 10, I! and the fit by a variation

diminishing spline S* as customarily defined but with the boundary moved away so
that there are equally spaced knots in the neighborhood of 0. It is known that
S*=f*; but the imaginary sample lies on f*, so S=S* on 10, 11.

(3) Since linear functions are reproduced and since the first three spline coeffi-
cients lie on a straight line, S coincides on 10, h/21 with the line through (0, f (0)) and
(h, f (h)).

(4) By the well-known formula for differentiating a spline in B-representation,

S
.f( ti )-.f(ti-

h Bi’2’

where {Bi, 2} are the piecewise linear B-splines. in other words S’ is the piecewise
linear interpolant of the first difference of the discrete data, where (f(ti)-f(ti_ ))/h
is associated with ti+ But if f is monotone, these differences must all have the
same sign and hence S must be monotone. If f is convex, these differences are
increasing and hence S must be convex.

(5) If./" is quadratic then (f(t)-f(t_))/h f’(ti+) and f’ is linear. Apply
the proof of (4).

(6) Let f* be a C extension of f to R. The customary variation diminishing
spline approximation to f* is known to be O(h 2) and differs from S only on [0,h/2],
where the coefficients of B0 differ by a quantity that is also O(h2).

(7) Define

S A f’ (ti+l)Bi, 2

and consider

Is’ <x)-f’ x) Is’ + IS <x)-,f
If x is in the interior, the first term on the right hand side is O(h 2) because that is
the error in a centered difference approximation to f’ and because 0 --< B < 1. The
second term is also O(h 2) since it is just the error in local linear interpolation. At
the boundary, S’ is just a one-sided difference approximation. []

More precise estimates are possible. Theorem 11 of [18] shows that

S (x)-f (x)= h- f" (x)
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in the interior. At the boundary, the error introduced by the linear extrapolation is
about half that, but of opposite sign.

The restriction to a uniform mesh saves a factor of eight in execution time over
efficient general spline codes 161 with k =3 and leads to improved convergence of the
derivative. Note that higher order splines would not give higher order convergence
to f, though they of course would give more continuous derivatives. A more compli-
cated code could handle multiple endpoint knots without much loss of efficiency. A
minor advantage of variation diminishing splines over other techniques used previ-
ously in simulation modeling is that no preprocessing of the data is required.

As the name implies, variation diminishing splines introduce no minima not
already present in the data. For the quadratic spline, it is also possible to show that
any discrete local minimum in the data has a corresponding local minimum in the
spline and that the difference between the location of the minimum of the spline and
that of the function underlying the data is O(h2).

THEOREM 2. The point t is a discrete minimum of the data if and only if the varia-
tion diminishing spline S has a strict local minimum in the interval Iti+l,ti+2]. Note
that S is a quadratic on that interval, and hence such an is unique.

Proof. As shown in the proof of Theorem l, S’ is the piecewise linear interpo-
lant of the first difference of the discrete data. But the definition of discrete
minimum implies that ai-ai_ is strictly negative and ai+l-ai is strictly positive, so
at some point . between and i+l S’ must cross zero, increasing from negative to

positive. This implies . is a local minimum. []

The method of the proof illustrates why cubic variation diminishing splines could
have fewer minima than appear in the data. The derivative would be a quadratic
spline with first differences of the data as coefficients. But if one difference is
slightly positive with two strongly negative neighbors, the derivative might not cross
zero. Cubic interpolatory splines, on the other hand, are infamous for often having
more local minima than the data. Polynomial interpolants are even worse.

THEOREM 3. Assume that f’ is Lipschitz continuous and let x* be a strict local
minimum off. Then .for all sufficiently small h the spline Sh has a local minimum with

13--X* O(h2).
Proof. Define

S a f’(ti+l)Bi, 2

and consider

Is’ -< Is’ + Isa  )-f
The first term on the right hand side is O(h 2) because that is the error in a centered
difference approximation to f’ and because 0--< B --< I. The second term is also
O(h 2) since it is just the error in local linear interpolation.

Since x* is a strict local minimum, there is an e for which f"(x*) > e > 0.
For sufficiently small h, the previous theorem ensures that S will have a local
minimum J. A Taylor series expansion for f’ gives

f’ (c) f’ (x*)+(J--x*)f" (x*)+O(h2).
But the left hand side is O(h 2) and f’ (x*) 0, so .-x* must be O(h2). []

These properties of reproducing local minima have been used by B. Bosacchi of
the AT&T Technologies Engineering Research Center in Princeton for the spectral
analysis of multilayer thin films.
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3. Tensor product generalization. Any linear univariate approximation process
can be extended to several variables through the use of tensor products; details of the
computational method are described in [14. For the variation diminishing spline, a
two-dimensional tensor variant with the same knots in each variable is given by

S(x,y) ,.f(ti ,tj )Bi(x)Bj(y).
ij

(Of course, in practice we use different numbers of knots in different variables; we
have simplified here only to keep down the otherwise bewildering mass of indices.)

COROLLARY 4. l.f second derivatives of .f are continuous then [[.f-Sll--O(h2),
where h is the larger of the sample spacings in x and y.

Proof. By the triangle inequality,

[f (x,y)-S(x,y) <-- [f (x,y)-f (x,t)Bj(y)
J

/, If (x, tT)-f’(t,t.)Bi(x) Bj(y).

Apply Theorem 1(6) and Bj(y)= I.
For more genera] results along this line, see [19].

Define a bivariate function f to be monotone increasing if xx* and yy*
implies f (x,y)f (x* ,y*).

COROLLARY 5. f.f is monotone then so is S.
Proqf. By using the monotonicity of univariate variation diminishing splines and

the linearity of the definition in the bivariate case, it is easy to see that
S (x,y)S (x*,y)S (x*,y*).

The extension to three variables is immediate:

S(x,y,z) ,.f(t,tj,tk)Bi(x)Bj(y)Bk(z).

The computational costs of a tensor spline in p dimensions is o(I-Ini) space if
there are n sample points for the ith variable and O(Y’) time for one evaluation !141.

4. Experience. Designers of electronic circuits have come to rely heavily on
simulation programs. The transistor model used in these simulations is a dominant
factor in the speed of the program (and hence the size of the circuits that can be
analyzed) and in the accuracy of the computed results. Variation diminishing splines
play a useful role here. We will digress briefly to describe the application before dis-
cussing the performance of our implementation.

Circuit simulators are based on Kirchhoff’s current and voltage laws supple-
mented by constitutive relations governing the behavior of individual devices, such as
transistors. The global circuit equations can be assembled from individual devices
using localized Kirchhoff and constitutive relations [I I. In particular, a MOS transis-
tor can be viewed as a device with four terminals: source, gate, drain, and bulk; let
us, ug, Ud, and u, be the corresponding terminal voltages relative to ground. (See
Figure 3.) The transistor has three independent currents since Kirchhoff’s current
law implies that the fourth current is the negative sum of the other three.

if the switching time for a transistor is assumed to be short compared to interest-
ing circuit times then an appropriate transient transistor model is the so-called quasi-
static model given by
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d
-tq(Vds,Vgs,Vbs)+f(Vds,Vgs,Vbs)

where represents the three independent currents, q represents the charges, f
represents the steady-state (static) currents, and v,t,. ud-- u.,. vg.,. ug uL,.

Vbs =--Ut,--UL,. are the three independent voltages. The voltages u and the currents
are functions of time t. if there are no bulk leakage currents, the transistor model
can be simplified to

!, q(v,.,.,,,,,v,,+ /./’(v,.,.,.,.,,,.
lg) 0

where now f is scalar. We assume this last form of the transistor model, but the
reintroduction of bulk leakage currents only requires approximating two additional
functions.

GATE
SOURCE DRAIN

ii11111i! I!11111111111111111

J

FI:;. 3

A MOS transistor.

Sample currents can be measured experimentally or computed by numerical or
analytical approximate solution of the partial differential equations describing the
behavior of the transistor. Data can be most readily obtained if the sample points lie
on a uniform rectangular grid. In the normal operating region, current increases
smoothly and monotonically with voltage, which makes the Newton iteration inside
the simulation program more robust.

We have implemented the variation diminishing spline algorithm in FORTRAN

and found that a single evaluation for p =3 dimensions of S and its three first partial
derivatives takes 37 microseconds on a Cray-lA using the CFT I. 10 compiler, includ-
ing subroutine call overhead. In the transient circuit simulation application, for each
set of applied transistor voltages, we need the steady-state current and three charges.
By running these four evaluations together, the cost per evaluation drops to 30
microseconds. This is comparable to the cost of compact analytical models. A ver-
sion of the code is included in release 3 of the PORT library.

Since S is linear near the endpoints, there is a natural C linear extension to IR.
This is often an excellent approximation in transistor modeling and allows the New-
ton iteration in the circuit simulator to temporarily step outside the physically realiz-
able region.

Existing experimental instruments and device simulation programs produce data
on a uniform grid. If general grids could be used, coordinate transformations such
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as square root in the vg,,. variable for transistor models would reduce somewhat the
number of coefficients needed. (We would still use uniformly spaced knots, but in
the transformed variable.)

Figure 4 illustrates a typical spline model compared with input data. In this
application, the grid consisted of 7 samples in the Vds and vg,,. directions and 4 in v,,,.,
giving a accuracy of 2%. For Vd,,.<0, the symmetric extension f(-x)=-f(x) is
used; otherwise, the linear extension described above is applied. This model is for a

V: 0

FK;. 4

These slices of a tensor variation diminishing spline and corresponding data values illustrate the
qualities neededfor simulation models: modest accuracy but guaranteed monotonicity.

transistor of specific length and width, and for a typical circuit simulation perhaps a
dozen models would be required. Sometimes the width can be treated as simply a
scale parameter and fewer models are needed. The principal remaining difficulty for
this application is in the "subthreshold region" of operation of the transistor; in that
case, where very little current flows, there is an exponential voltage dependence that
is not modeled by the spline. Hence the present model is better suited for digital
than for analog circuits. We are attempting to overcome this by a C transformation
of the current before fitting by the spline.

In general we have found this approach quite satisfactory and depend exclusively
on splines for element models in our circuit simulator CAzMlll !. In macromodeling,
where the steady-state behavior is preanalyzed for a collection of transistors forming
a logic gate, the splines have been especially valuable.

5. Previous models. A brief survey of existing techniques for transistor model-
ing in circuit simulation may help put our work in perspective.

Most simulators !17] have used analytic models. These are derived from
approximate solutions of the partial differential equations describing the behavior of
the transistor. See chapter 10 of 124]. The model may be as simple as

0 for v. < co,

f(vd.,.,v..,.) "vd.,.(V,,.--Co) for co < vg.,. < Vd.,.,

(vg.,.-co) 2 for vd,,. < v.,.,
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or may require a program of several hundred lines and involve iterative solutions to
nonlinear equations. (The best model would solve the partial differential equations
for each set of conditions but, even with the fastest methods described in II, 12], that
is vastly too expensive for nontrivial circuits.) A basic advantage of the analytic
model is that parameters such as device geometry and temperature appear explicitly
and therefore can be varied conveniently. The disadvantages are that new approxi-
mations may need to be derived as smaller devices are fabricated, various empirical
factors need to be estimated, and as models get more complicated they become rather
expensive to compute. A general purpose form is also important for macromodeling,
in which several transistors are clumped together and a simple model for, say, a logic
gate is built.

These disadvantages have caused increasing attention to be given to table look-
up schemes. For an accurate model of the current flowing through a MOSFET, there
are at least three important variables, called v,i.,., vx, and v,.,., representing the differ-
ence in potential between the four terminals on the device. The simplest scheme is
to tabulate, say, 203 values of the current for 20 independent settings of each of the
variables. In a compromise to save storage, 19] uses nested tables that yield approxi-
mations of the form

.f (vas,vgs,vi,L,.) T2(vas,vgr),

I,’gT Ig,,. T (vm.).

Nested tables with quadratic interpolation are used by [7], possibly with embellish-
ments to compensate for electrostatic feedback. This idea leads to substantial savings
when it is applicable, but in contrast to the three-dimensional tables, there is no
guarantee that enough accuracy can be obtained by just increasing the number of
sample points.

Currents increase smoothly with voltages on a transistor. If the model does not
reflect this, experience shows that the Newton iteration to solve the nonlinear equa-
tions characterizing the circuit often fails to converge. In an inadequately tested ana-
lytic model, such failures may be seen at the boundary between two regions on which
different approximations are used. In the crudest table look-up models, piecewise
constant or linear interpolation is used, introducing singularities at each data point.
When interpolatory splines are used, monotonic input data can lead to nonmonotonic
splines, in the more sophisticated models, such as [21,22], univariate monotone
piecewise cubic interpolation has been used.

Our own method, which we use in the circuit simulation program CAzM and
which has been adapted in [23] for timing simulation, guarantees smooth monotonic
fitting at approximately the same cost to evaluate as the existing compact analytic
model [16]. For generality we use a full three-dimensional table, and find that in our
applications the 200 to 1000 entries per transistor type do not cause storage difficul-
ties. We use uniformly spaced knots for simplicity and speed.

If nonuniform knots are insisted upon then a piecewise polynomial representa-
tion may be preferred. Hence [2] focuses on compressing the piecewise polynomial
coefficients, which would otherwise use 64 times as much storage as the B-spline
representation. We have not observed the great improvement in accuracy claimed
for nonuniform knots.

For univariate monotone fitting, see [13,20] and papers referenced there.
Recently Beatson and Ziegler [5] and Carlson and Fritsch [8] have proposed methods
for monotone interpolation on bivariate grids. An extension to three variables may
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be possible, but is not immediate. Except for maintaining special properties like

f(0) 0, interpolation is of little intrinsic value in our application. Although easy
to achieve and yielding the optimal order of convergence in ordinary spline fitting,
unnecessary interpolation constraints may hinder progress in monotone fitting. Ten-
sor product variation diminishing splines are popular in computer-aided design, as
described in 13], but that has had surprisingly little influence in data fitting. Two
Chinese papers, !101 and i151, are the only ones we are aware of using tensor varia-
tion diminishing splines, but they consider somewhat different problems.

Acknowledgments. We thank Prasad Subramaniam for suggestions that
improved the speed of the code and Sally Liu and Bob Rennick for discussions of
modeling near and below threshold.
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THE IMPORTANCE OF SCALING FOR THE HERMITE BICUBIC
COLLOCATION EQUATIONS*
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Abstract. It is well known that improper scaling of linear equations can result in catastrophic loss of
accuracy from Gauss elimination. The scaling process is not well understood and the commonly used
"scaling rules" can fail. We study the scaling problem for the linear equations that arise from solving elliptic
partial differential equations by collocation using Hermite bicubics. We present an a priori scaling rule that
is effective but not foolproof. We conclude that one should use scaled partial pivoting for such equations.
We also explore the relationship between the ordering used during Gauss elimination and the underlying
geometry of the elliptic problem; we conjecture that this ordering must maintain the geometric integrity of
the problem in order to avoid severe round-off problems.

Key words, scaling, Hermite collocation, elliptic problems
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1. Introduction. It is well known that improper scaling of linear equations often
results in a catastrophic loss of accuracy from Gauss elimination. Unfortunately, the
scaling process is not well understood and the most commonly used "scaling rules"
can fail. Textbooks usually choose one of three courses: 1) say that the linear equations
should be "properly scaled" and ignore the issue (Dongarra et al. [3]); 2) give some
rules for scaling and then warn that they are not infallible (Rice [11]); or 3) present
scaled partial pivoting as the proper version of Gauss elimination (Conte and de Boor
[2]). A few books combine these (Rice [13]).

We report here on an experimental study of the scaling problem for the linear
systems that arise from solving elliptic partial differential equations using Hermite
bicubic collocation. An attractive feature of collocation is that it applies easily to
general partial differential equations with general boundary conditions. However, the
system of linear equations obtained from Hermite bicubic collocation does not possess
any special properties such as being positive definite and, as a result, it is most often
solved using simple band Gauss elimination. This study demonstrates that it is essential
to scale the Hermite bicubic collocation equations; that is, if some type of scaling is
not used, then the accumulated effects of round-off dominate the computations. We
recommend using both a particular a priori scaling of the equations together with
scaled partial pivoting. However, since we cannot formulate a completely reliable a

priori scaling rule for these equations which requires less computation than what
scaling adds to scaled partial pivoting, we conclude that one should always use scaled
partial pivoting. Moreover, we conjecture that the ordering used during Gauss elimina-
tion must preserve the underlying geometry of an elliptic problem.

We believe that this conclusion is applicable to other finite element methods.
Specifically, collocation using Hermite quintics is an attractive method whose practical
value is yet to be explored. It will be a formidable task to determine good a priori
scaling factors for this method applied to general problems on general domains. It is
likely that the only reliable approach for it is to use software which implements scaled
partial pivoting.

* Received by the editors September 6, 1984, and in revised form December 15, 1984. This work was
supported in part by the U.S. Department of Energy under contract DE-AC02-81ER10997.

f Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907.
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2. Collocation with Hermite bicubics. We consider a second order, linear elliptic
problem on a rectangular domain R in the form

L[ u auxx + buxy + C.Uyy "91- du, + eUy -k-fu g, (x, y) R,

M[u] au +u+ yuy 6, (x, y) OR

where a, b, c, d, e, f, g, a, /3, y and 6 are given functions of x and y. We choose a
positive integer n and subdivide the domain R with a tensor product grid containing
n2 rectangles. We then approximate u(x, y) by

N

U(x, y)= E w,H,(x, y)--- u(x, y)
i=1

where N =4(n + 1)2 and the Hi(x, y) are the Hermite bicubic basis functions formed
as the tensor product of the standard one-dimensional Hermite cubics with the grid
lines being the knots.

The N unknowns wi are determined by choosing N distinct points in R and
Collocating the elliptic problem at these points. In particular, 4n2 collocation points
are placed at the four Gauss points of each of the n2 grid rectangles since this gives
a fourth order discretization error for smooth problems (Houstis [8], Percell and
Wheeler [10]). The remaining 4(2n+ 1) collocation points are the two Gauss points
of each boundary grid segment plus one at each of the four corners of R. Collocating
at these points, we obtain the Hermite bicubic collocation equations

L[ U](xt,, y,) g(x,, y), k 1,..., 4n2

M[U](x,,y,)=6(x,,y,), k=4n2+l,...,4(n+l).
The structure of the coefficient matrix of the resulting linear system is determined

by the ordering of the collocation points (the equations or rows) and the basis functions
(the unknowns or columns). A common finite element ordering is to order the grid
rectangles in the natural way from bottom to top, left to right. The collocation points
are then numbered corresponding to their containing grid rectangles (see Fig. 4). The
Hermite bicubic basis functions are ordered corresponding to their support in a natural
way from bottom to top, left to right. The resulting coefficient matrix is somewhat
block bi-diagonal (Dyksen [4], Dyksen and Rice [5]).

3. Numerical experiment. We studied this problem using the ELLPACK system
(Rice and Boisvert [14]). Its discretization modules P3C1 COLLOCATION and HER-
MITE COLLOCATION generate the Hermite bicubic collocation equations; HER-
MITE COLLOCATION scales the equations associated with the boundary conditions
(see 6) whereas P3C1 COLLOCATION does not. The solution modules LINPACK
BAND and BAND GE solve the resulting linear system of equations. LINPACK
BAND uses the LINPACK routines SGBFA and SGBSL which do band Gauss
elimination with partial pivoting (Dongarra et al. [3]). BAND GE does band Gauss
elimination with scaled partial pivoting (Conte and de Boor [2, 4.3]) using a direct
modification of SGBFA and SGBSL. The equations are solved in the order in which
they are generated by the discretization modules, namely, the finite element ordering
described above.

The module which we refer to here as HERMITE COLLOCATION has subsequently been split into

two separate ELLPACK modules, HERMITE COLLOCATION and INTERIOR COLLOCATION, and

P3C1 COLLOCATION has been removed from ELLPACK.
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We combine these modules to obtain four similar, yet distinct numerical methods.
Note that scaling is the only difference between P3C1 COLLOCATION and HERMITE
COLLOCATION and between LINPACK BAND and BAND GE. Letting S and U
stand for "scaled" and "unscaled", we denote these four methods as follows:

Notation Numerical method

u/u
u/s
s/u
s/s

P3C1 COLLOCATION/LINPACK BAND
P3C1 COLLOCATION/BAND GE
HERMITE COLLOCATION/LINPACK BAND
HERMITE COLLOCATION/BAND GE

We use a subject population of twenty elliptic problems from the population of Rice
et al. [12]; it consists of Problems 2-1, 3-1, 5-1, 6-1, 9-2, 10-2, 10-3, 12-3, 17-2, 20-2,
22-1, 23-6, 33-1, 35-3, 38-1, 40-1, 50-1, 53-3, 54-2 and 59-1. These twenty problems
represent a variety of partial differential operators and boundary conditions. Fifteen
problems have Dirichlet boundary conditions, five of which are homogeneous. Fifteen
of the domains are the unit square.

Each of the four numerical methods described above are applied to each of the
subject population problems using the performance evaluation system of Boisvert et
al. [1]. We use n =4, 8, 12, 20 and 29 which involves from 100 to 3364 unknowns wi.
The computations are done on a VAX 11/780 computer with floating point accelerator
using the UNIX FORTRAN complier f77. Note that this experiment involves comput-
ing 400 solutions of elliptic problems.

4. Performance analysis. We now consider the following hypothesis: Scaling is
essential for numerically solving the Hermite bicubic collocation equations. To establish
this hypothesis, we compare these methods pairwise using simple nonparametric
analysis as follows:

Comparison Interpretation

U/S vs U/U

S/U vs U/U
S/S vs S/U
S/S vs U/S

Solve the unscaled equations with scaled partial pivoting (BAND GE) versus partial
pivoting (LINPACK BAND)
The scaled versus unscaled equations solved with partial pivoting
Solve the scaled equations with scaled partial pivoting versus partial pivoting
The scaled versus unscaled equations solved with scaled partial pivoting

The two methods of each pair are ranked on each problem using the maximum
error at the grid points. For example, Fig. 1 shows performance graphs of log (n + 1)
versus the logarithm of the maximum error at the grid points for two problems. We
see that method U/S is dramatically more accurate than method U/U; in fact, method
U/U gives results which are so contaminated by round-off that they are totally
unacceptable. By contrast, we see that methods S/S, S/U and U/S each give similar,
accurate results; that is, the effect of either scaling the collocation equations or using
scaled partial pivoting to solve them appears to remedy the problem present in method
U/U. Note, however, in Fig. 1 that for Problem 23-6 U/S and S/S give significantly
better accuracy for one case. This means that our a priori scaling method was not
nearly as good in this case as using scaled partial pivoting. These graphs typify the
results obtained for the other problems.
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FIG. 1. Graphs of the logarithm of NX n + versus the logarithm of the maximum error at the grid
pointsfor Problem 23-6 which has mixed boundary conditions andfor Problem 40-1 which has nonhomogeneous
Dirichlet boundary conditions.

We rank each pair of methods on each problem and compute average ranks for
four different groups of problems: the ten with nonhomogeneous Dirichlet boundary
conditions, the five with homogeneous Dirichlet boundary conditions, the five with
mixed boundary conditions, and the entire subject population. An average rank of
1.00 means that the method is always the best whereas 2.00 means that it is always the
worst. We obtain confidence levels on the observed differences using the Friedman,
Kendall and Babington-Smith test (Hollander and Wolfe [7]). We summarize the
results in Tables 1-4.

For example, we see from Table 1 that comparing U/S versus U/U on the entire
subject population gives a rank of 1.17 for U/S and a rank of 1.82 for U/U. The
difference in rank is significant at the 99% level of confidence.

These experimental results strongly support our initial hypothesis, namely, that
scaling is essential for numerically solving the Hermite bicubic collocation equations.
We see from Fig. 1 that the results obtained by scaling are significantly more accurate
than those obtained by not scaling. Moreover, the data in Tables 1-4 demonstrate that



SCALING FOR HERMITE BICUBIC COLLOCATION EQUATIONS 711

TABLE
Average rank of U/ S vs U/ U.

Average rank
Group U/S U/U Significance

Dir/Non (10) 1.00 2.00 99%
Dir/Hom (5) 1.70 1.30 <80%
Mixed (5) 1.00 2.00 99%
Combined (20) 1.17 1.82 99%

TABLE 2
Average rank of S/ U vs U/ U.

Average rank
Group S/U U/U Significance

Dir/Non (10) 1.00 2.00 99%
Dir/Hom (5) 1.60 1.40 <80%
Mixed (5) 1.00 2.00 97%
Combined (20) 1.15 1.85 99%

TABLE 3
Average rank ofSS vs S U.

Average rank
Group S/S S/U Significance

Dir/Non (10) 1.40 1.60 <80%
Dir/Hom (5) 1.70 1.30 <80%
Mixed (5) 1.50 1.50 <80%
Combined (20) 1.47 1.52 <80%

TABLE 4
Average rank of S/ S vs U/ S.

Average rank
Group S/S U/S Significance

Dir/Non (10) 1.50 1.50 <80%
Dir/Hom (5) 1.60 1.40 <80%
Mixed (5) 1.20 1.80 80%
Combined (20) 1.45 1.55 <80%

the observed similarities or differences between methods are themselves statistically
significant and not due merely to chance.

Our initial hypothesis can be stated more specifically in terms of the four methods
considered here: method S/S is slightly more accurate than methods S/U and U/S
which are all very much more accurate than method U/U. We believe that this data
supports our hypothesis with a high level of statistical confidence.

Finally, we note from Tables 1 and 2 that problems with homogeneous Dirichlet
boundary conditions are a significant special case. In this case, both HERMITE
COLLOCATION and P3C1 COLLOCATION eliminate the boundary condition
equations from the linear system during the discretization and before Gauss elimination.
This suggests that the boundary equations might be the key to understanding the severe
round-off problems resulting from method U/U.
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5. Scaling and the boundary equations. To further study the effects of round-off,
we constructed a parameterized elliptic problem, Problem 59, whose solution is a
bicubic for which Hermite bicubic collocation gives the exact solution except for
round-off. Problem 59-1 is a Poisson problem with nonhomogeneous Dirichlet boun-
dary conditions on the unit square.

Figures 2 and 3 show contour plots of the error for Problem 59-1 using S/U and
U/U with n--8. Figure 2 shows that if we solve the scaled equations using partial
pivoting, then the error is rather randomly distributed and is of the order of machine
precision, 10-6. By contrast, we see from Fig. 3 that if the unscaled equations are
solved using merely partial pivoting, then the error in the interior of the domain is
still on the order of 10-6 whereas the error on the boundary is on the order of 10-5

and is as large as 10-4 Hence, essentially all of the round-off error occurs on the
boundary; this is unexpected since the boundary Conditions are Dirichlet and hence
should be interpolated exactly. This is further evidence that the boundary equations
are the key to understanding the round-off problems.

The relationship between the boundary equations and scaling is geometrical and
can be seen by considering the order in which the equations are eliminated during
Gauss elimination. Since the equations are associated with the collocation points, we
can view the reordering of the equations produced by pivoting as a reordering of the
collocation points themselves.

Figure 4 shows a typical example of the order of elimination resulting from solving
Problem 59-1 using the unscaled collocation equations. We give the geometric ordering
of the collocation equations before Gauss elimination and after Gauss elimination
with scaled partial pivoting, partial pivoting and complete pivoting.

Figure 4 shows that the three pivoting strategies differ dramatically in the order
in which they eliminate the interior and the boundary equations. Partial pivoting
eliminates as many of the interior equations as possible before it must eliminate a
boundary equation. Complete pivoting eliminates all of the interior equations before
eliminating any of the boundary equations. Scaled partial pivoting weaves the elimina-
tion of the interior and boundary equations together; in fact, the reordering produced
by scaled partial pivoting is essentially the Hermite Collorder ordering discussed in
Dyksen and Rice [5].

The above phenomena results from the inherenf differences in magnitudes of the
boundary and interior equations. In a typical elliptic Dirichlet problem, the coefficients
of the boundary equations involve values of the basis functions and hence are O(1).
The interior equations, however, involve second derivatives of the basis functions and
hence are 0(n2). Thus, during simple partial pivoting and complete pivoting, the
interior equations are chosen before the boundary equations as often as possible. As
a result, the boundary condition information is not used until the last possible moment.

In practice, the lack of scaling using the original ordering results in the two-
dimensional analogue of numerically solving an ordinary differential equation from
the inside out.

6. Scaling the boundary equations. There are two approaches to scaling the boun-
dary equations. Since the scaling is required only for choosing the pivots, it need not
be carried out explicitly, although to do so is a simple way to proceed. Thus, we can
scale the boundary equations either explicitly before elimination or implicitly during
elimination.

In order to determine an a priori scaling factor, we consider the Hermite bicubic
U in the case in which all of the coefficients wi are O(1). If the domain is discretized
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FIG. 2. Contour plot of the error obtained by solving Problem 59-1 using S U with n 8. The error is due
to round-off and is of the order of 10-6 which is machine precision.

with a uniform x and y spacing hx and hy, respectively, then a simple computation gives

(6.1)

and

(6.2)

Uxx+ Uyy (1 + hy)(1 + 1/h)/hx+(1 + hx)(1 + 1/hy)/hy

U--- 1 + hy h- hx + hxhy,

Ux" 1/hx+ hy/hx+ 1 + hy,

Uy"-- 1/hy+ 1 + h/hy+ hx.
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FIG. 3. Contour plot of the error obtained by solving Problem 59-1 using U U with n 8. The error in
the interior of the domain is on the order of 10-6 whereas the error on the boundary is on the order of 10-s

and is as large as 10-4

Thus, for the model problem the interior equations look like (6.1) and the boundary
equations look like (6.2).

With this in mind, we experimented extensively with many scaling factors, applying
them to Problems 2-1, 22-1 and 59-1. We varied n and computed the maximum error
at the grid points as well as the condition number of the coefficient matrix using the
LINPACK routine SGBCO. For example, Table 5 summarizes the results for Problem
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FIG. 4. The geometric ordering of the collocation equations before Gauss elimination (upper left) and after
Gauss elimination using scaled partial pivoting (upper right), partial pivoting lower left) and complete pivoting
(lower right).

59-1 using the scale factor 1/h2/ 1/h2 We see that scaling the boundary equationsy"

produces significant changes in both the error and the condition number.
Having experimented with these scaling factors, we propose the L type scaling

factor given in (6.1) (Skeel [15], [16], [17]). It has a simple and natural analytical

TABLE 5
The effect of scaling on the condition number and the maximum error for Problem 59-1.

Number of Condition number Maximum error
n unknowns scaled unscaled scaled unscaled

4 100 1.4.10+4 5.1.10+5 9.5* 10-7 1.1.10-5

8 324 5.3* 10+4 6.9* 10+6 9.5* 10-7 8.0* 10-5

16 1156 1.8" 10+5 1.0" 10+8 1.9" I0-6 7.8* 10-4

22 2116 3.2* 10+5 3.5* 10+8 3.7* 10-6 1.5" 10-3

28 3364 4.8* 10+5 9.1" 10+8 1.2" 10-5 2.9* 10-3
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basis. Since from (6.2) U O(1), we multiply a boundary condition equation involving
only u by (6.1) to make it the same size as the interior equations. Similarly, since from
(6.2) Ux O(1/hx) and Uy O(1/hy), we scale a boundary equation involving ux or
Uy by the product of h or hy, respectively, and (6.1). This proposed scaling method
is in fact used by HERMITE COLLOCATION.

Although the above scaling method works well on a fairly large set of problems,
we believe that it is not always practical to scale a priori the boundary equations to
make them the same size as the interior equations. The scale factor in (6.1) is derived
using a simple model of the coefficients in the elliptic problem. The severe round-off
phenomena observed above may occur again for problems in which either the
coefficients in the partial differential operator are large or the coefficients in the
boundary conditions are small at the collocation points. In such a case one would
need to compute either the extreme values of these coefficient functions or perhaps
the maximum L1 norm of the interior equations to scale the boundary equations
correctly. As a result, we conjecture that S/S is more reliable than S/U; that is, BAND
GE is more reliable than its ancestor LINPACK BAND.

For example, Fig. 5 shows a performance graph for Problem 22-1 which involves
an operator with a large coefficient function. In this case, our a priori scaling method
is clearly inferior to using scaled partial pivoting (with either the scaled or unscaled
collocation equations).

As another example, consider the "scaled" Poisson problem

10k(uxx + Uyy) "--f (X y) R= [0, 1] [0, 1],

u=g, (x,y)OR

where f and g are chosen so that u =(x3+(xy)2+2xy3+ 1)/5. If we vary k and solve
this problem using S/S and S/U with n 21 (1764 unknowns), we obtain the results
given in Table 6. We again see that scaled partial pivoting is superior to our particular
a priori scaling method.

The data in Tables 1-4 do not provide any support for the conjecture that S/S is
sometimes more reliable than S/U; the nature of those statistical tests masks this
because the .advantage of S/S shows up infrequently, only if the discretization error
is close to round-off. In particular, there are 23 instances involving 11 problems in
which the maximum relative error for either S/S or S/U is less than 10-5. In twelve
cases the errors differ by more than 10%, and S/S is more accurate in ten of these
cases. For these twelve observations, the Sign test (Hollander and Wolfe, [7]) assures
that S/S is more accurate than S/U with 98% confidence (p-value of 0.02).

The comparative work of different scaling methods is easily computed. For a grid
of n2 rectangles, there are 4n2 interior equations and 8n +4 boundary equations. The
half bandwidth of the linear system is 4n + 7 and there are at most 16 nonzero entries
per interior equation and 8 nonzero entries per boundary equation. The comparative
work for three scaling methods is given in Table 7. We see that each method requires
much less work than Gauss elimination which is O((4n+7)2.4(n+l)2)=O(n4).
Although scaling the boundary equations alone is the least amount of work, it is also
probably the least reliable.

The work estimates in Table 7 lead to an important observation. At each stage in
scaled partial pivoting, the "scaled" entries below the diagonal are searched for a
pivot. In the case of the collocation equations, this involves 4n + 7 multiplies even
though there are at most 16 nonzero entries to examine. Clearly it is more efficient for
the equations to be scaled during the discretization phase, before these relatively few
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FIG. 5. Graphs of the logarithm of NX n + versus the logarithm of the maximum error at the grid
points for Problem 22-1 which involves an operator of the form (WUx)x + (WUy)y =f where w is large.

nonzero entries are dispersed throughout the band. The resulting savings is an order
of magnitude in the work of scaling. It might be that the overall best choice is to do
the scaling of scaled partial pivoting during the discretization and then to use simple
partial pivoting during the elimination.

In view of all of the above, we recommend using both the a priori scaling method
described here along with scaled partial pivoting. Although the a priori scaling method
is not foolproof, it is simple to apply. Moreover, neither method of scaling requires
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TABLE 6
Maximum errors for the scaled Poisson problem.

Maximum error
k S/S S/U

0 3.1,10-6 2.6,10-6

2 1.4,10-6 1.2,10-4

4 1.5,10-6 1.0,10-2

6 6.3,10-7 8.5,10-1

8 1.7"10-6 2.0,10+5

TABLE 7
Comparative work for three scaling methods.

Scaling method Work

Only boundary equations during discretization
All equations during discretization
Scaled partial pivoting

O(8,(8n+4))=O(n)
O(16*4( n + )2) O( n2)

O((4n + 7),4( n + )2) O( n3)

any significant extra computation. For example, S/S takes on the average only 5%
longer than S/U to solve the collocation equations with n 28 (3364 unknowns).

Finally, we note that it is not the case that the Hermite bicubic collocation equations
with unscaled boundary equations are inherently ill-scaled. In fact, we have observed
that they can be solved accurately without scaling and without pivoting if one orders
the equations and unknowns using the Hermite Collorder ordering given in Dyksen
and Rice [5]. Even though this approach seems attractive at first glance, there are a
number of reasons why we do not recommend it in practice. First, one would have to
implement this ordering which is nontrivial; in many software environments this task
would be impractical if not impossible. Secondly, using the Hermite Collorder ordering
with no pivoting requires (contrary to intuition) on the average 8% more execution
time than using a traditional finite element ordering with scaled partial pivoting (Dyksen
and Rice [5, p. 478]). Finally, and most importantly, we conjecture that the phenomena
observed in this paper are not particular to Hermite bicubic collocation, but would
result with other piecewise polynomial collocation methods. In such settings, both a
natural a priori scaling as well as scaled partial pivoting would apply. By contrast, it
is not clear that an ordering analogous to Hermite Collorder for which no pivoting is
needed can be discovered or even exists. Thus, the striking result that the Hermite
bicubic collocation equations can be solved accurately without scaling and without
pivoting is currently only of theoretical interest.

7. Preservation of geometric integrity. The poor scaling ofthe collocation equations
in their original form destroys the relationship between the geometry of the problem
and the order of elimination. One hopes that the ellipticity of an elliptic problem
should damp out errors, including round-off. However, destroying the geometry of the
problem seems to ruin its ellipticity.

As a further example of this phenomenon, we consider the linear equations
obtained from Problem 59-1 by using the standard 5-point star discretization modified
to include the unscaled Dirichlet boundary equations. As in the case of Hermite bicubic
collocation with the Hermite Collorder ordering, these 5-point star equations can be
solved to machine precision without scaling and without pivoting. If the equations are
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solved with simple partial pivoting, then round-off dominates the computations as the
grid is refined. We see that it is not only obviously inefficient to include the boundary
equations haphazardly in the linear system, it is also dangerous. Note that this is done
routinely in many finite element programs in structural engineering.

We also generated random row permutations and solved the equations using
partial pivoting to see what effect if any this might have on the solution. In summary,
we observed that the more the underlying geometry is perturbed, the larger the error
becomes. This again suggests that the ordering used during Gauss elimination must
maintain the geometric integrity of the elliptic problem. We believe that this is not
particular to the 5-point star or Hermite bicubic collocation, and we conjecture that
it is true for other numerical methods for elliptic problems.
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Abstract. In this paper we investigate the behavior of numerical ODE methods for the solution of
systems of differential equations coupled with algebraic constraints. Systems of this form arise frequently
in the modelling of problems from physics and engineering; we study some particular examples from fluid
dynamics and constrained mechanical systems. We investigate some ofthe practical difficulties of implement-
ing variable-stepsize backward differentiation formulas for the solution of these equations, showing how to
overcome problems of matrix ill-conditioning, and giving convergence tests and error tests which are
supported by theory.
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systems
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1. Introduction. In this paper we investigate some of the practical difficulties
involved with implementing backward differentiation formulas (BDF) for the solution
of differential/algebraic equations (DAE) of the form

(1.1) 0= Fl(X x’, y, t), 0= FE(X, y, t)

where the initial values of x and y are given at 0 and OF1/Ox’ is nonsingular. Systems
of this form arise frequently in the modelling of engineering problems, for example
the simulation of electrical networks and mechanical systems, and the solution of the
equations of fluid dynamics. In an earlier paper [1] we showed that for the systems
under consideration (certain restrictive assumptions must be placed on (1.1); these
assumptions are satisfied in many practical applications) the k-step constant stepsize
BDF method converges to order of accuracy O(hk), where h is the stepsize. Here we
are concerned with the practical difficulties such as varying the stepsize and dealing
with ill-conditioned matrices which arise in implementing BDF methods for the solution
of (1.1). Recently, similar systems of equations have been studied also by Brenan [2].

The idea of using BDF methods for systems of this type was introduced by Gear
[3] and consists of replacing x’ in (1.1) by a difference approximation, and then solving
the resulting equations for approximations to x and y. Let F (F1, F2)r. To solve (1.1)
numerically at t, bythe k-step BDF, we replace x’(t,) by px,/h where p is the difference
operator defined by

k

(1.2) px,, Z aix,,_,,
i=0

h t. t._l and ai are the BDF coefficients, to obtain the system of nonlinear equations

(1.3) F xn,--h-, y,, tn =0.
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This system has a unique solution [4] if the inverse of the scaled Jacobian matrix

cF OF10F\

(1.4) hJ,,
0 -x + h

Ox

h OF2 h OF2
ox l

exists.

The types of equations that we consider here arise commonly in several areas of
application, which are discussed in more detail in [5]. For example, the flow of an
incompressible, viscous fluid is described by the Navier-Stokes equations

(1 5a)
Ou
+(u" V)u -Vp+ ]/V2u,
ot

(1.5b) V. u=0

where u is the velocity in two or three dimensions, p is the pressure, and y is the
kinematic viscosity. After spatial discretization of (1.5) with a finite difference or finite
element method, the vectors U and P, approximating u and p, satisfy [6]

(1.6a) M(J+(K+N(U))U+CP=f(U,P),
(1.6b) cTu=o
which has the form (1.1). The mass matrix M is the identity matrix (finite differences)
or a symmetric positive definite matrix (finite elements). The discretization of the
operator X7 is C and the forcing function f emanates from the boundary conditions.

Another application which fits into this general framework is the simulation of
mechanical systems of rigid bodies interconnected directly by joints or via other
components such as springs and dampers. The vector q of coordinates of the bodies
satisfies the following equations [’7]

(1.Ta) M(q)q"=f(q, q’, t)+ G(q)A,

(1.7b) (q) =0.

The mass matrix M is nonsingular almost everywhere, Z is the Lagrange multiplier
vector and O/Oq= Gr. The algebraic equation (1.7b) often represents geometrical
constraints on the system. A simple example of a system such as (1.7) is the physical
pendulum. Let L denote the length of the bar, )t is proportional to the force in the
bar, and x and y the Cartesian coordinates of the infinitesimal ball of mass one in
one end of the bar. Then x, y and A solve the DAE system

X"

(1.8) y"= Ay g,

0 1/2(X2 q- y2__ L2),
where g is the gravity constant.

To state our results, we must first introduce the concept of the index of a DAE
system. The index is a measure of the singularity of a system. Standard form ODEs,
y’=f(t,y), have index zero, the fluid flow system (1.6) has index two, and the
constrained mechanical system (1.7) has index three. In general, the higher the index,
the more severe the numerical difficulties that we can expect. For the purposes of this
paper we will simply define the index as the number of times the constraints of the
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system must be differentiated in order to obtain a standard form ODE system. This
definition is compatible with previous definitions, for the systems considered here [8].

To illustrate the idea of index, we compute the index of the mechanical system
(1.7). If the initial condition qo q(0) is consistent with (1.Tb), (qo)=0, then the
algebraic constraint (1.7b) can be replaced by its differentiated form

(1.9) GT(q)q’=O.

If (qo) =0, q= q’(0) and Gr(qo)q’o=O then the condition (1.9) is equivalent to its
derivative,

d
(1.10) d-(Grq’) GWq"+ G’rq’= O.

We obtain a system of linear equations satisfied by h by introducing q" from (1.7a)
into the expression above and solving for A,

(1.11) h -(GM-G)-(GM-f+ G’q’).

This condition replaces (1.9). Finally, if ho, qo, q satisfy (1.11) at 0 we can differenti-
ate (1.11) once more and the resulting equation, coupled with (1.7a), form a standard-
form ODE system. The index ofthe original system (1.7) is three, because the constraint
was differentiated three times to obtain a standard form ODE system. Similarly, it is
easy to verify that the index of the equivalent system (1.Ta, 1.9) is two, and that the
index of the fluid dynamics system (1.6) is two [5].

In [1], [5], we showed that the k-step constant-stepsize BDF method converges
to order O(h k) for systems of the form (1.1) where the initial values are consistent
and the functions are sufficiently smooth, provided the system satisfies

ASSUMPTION 1.1.
(1) The index is less than or equal to one, or
(2) the index is equal to two and OF./Oy =-0, or
(3) the index is equal to three and the system has the form (1.7).

These conditions are satisfied by the fluid dynamics and mechanical systems mentioned
earlier. In this paper we study the practical difficulties which are inherent in implement-
ing a variable-stepsize code based on formulas such as BDF for solving these types
of problems.

Often, as in the case of the simulation of mechanical systems of rigid bodies, a
DAE system may be written in a ditterent but analytically equivalent way. In some
cases this is a good idea, because it may reduce the index and make the problem easier
to solve by numerical methods. Therefore, in 2 we discuss some analytical techniques
for rewriting DAE systems in a simpler form, and the reasons why we may or may
not want to do this.

The remainder of the paper is concerned with the numerical difficulties associated
with solving the systems in their original, high index form. A difficulty that is common
to the solution of all high index DAE systems is that the iteration matrix which is used
by numerical ODE methods is poorly conditioned when the stepsize is small. This can
cause variable-stepsize codes to fail or to give poor diagnostics in case of failure from
other causes [9]. In 3 we give a general technique for scaling the equations and
variables in (1.1) that circumvents this difficulty. Scaling can also cause trouble with
the convergence and error tests in an automatic code. We study these problems in 4
and 5 and devise convergence tests and error tests that do not suffer from these
difficulties, and that are justified by the theory in 1 ].
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2. Alternative forms for DAE systems. In this section we consider some techniques
for rewriting a system in an alternative form that may be easier to solve numerically.
All of the different forms of the equations that we consider are analytically equivalent
in the sense that, given a consistent set of initial conditions, different forms of a system
have the same analytical solution. Computationally, however, some forms of the
equations may have much different properties than others. We discuss some of the
advantages and disadvantages of rewriting a high index DAE system in a different form.

As an example, let us consider some different ways to solve the constrained
mechanical system (1.7). First of all, we can attempt to solve the system in its original,
index-three form, using an implicit numerical method such as BDF. This technique is
actually used in some codes [10], [11] for solving mechanical systems. Solving the
problem in this way has the advantages that it is easy to formulate the system (we do
not have to differentiate the constraints or rewrite the system in any way), the sparsity
of the system is preserved, and the constraints are satisfied exactly on every step.
However, there are several difficulties in using a variable-stepsize BDF code for solving
systems in this form. First, the iteration matrix that the code uses at each time step is
very ill-conditioned for small stepsizes. This can cause severe difficulties with the
Newton iteration and with stepsize selection in the code. This difficulty can be partially
remedied via the scaling techniques considered in 3. Secondly, error estimation and
stepsize selection algorithms that are normally used in variable-stepsize codes fail for
this type of problem (see 4 and 5). One way to overcome this difficulty is to base
the error control and stepsize selection strategies only on the vector q, and not on the
velocities q’ or the Lagrange multipliers &. We can use the theory developed in 1] to
show that the constant-stepsize BDF converges for problems written in this form, but
this says nothing about what will happen when there are errors, for example, in the
initial velocities. We have found from experiment that a variable-stepsize code which
bases its stepsize selection and order control strategies only on q can obtain completely
wrong answers when the initial velocities fail to satisfy the condition that the derivative
Ofthe constraint should be zero. Thus, we must be very careful that the initial conditions
are consistent in the sense that not only the constraint, but also the derivative of the
constraint, is zero at the initial time. Unfortunately, all of the techniques for solving
mechanical systems that we discuss in this section experience some type of serious
difficulty when the initial conditions to the original problem are not chosen to be
consistent. For this reason, we do not reject this method (of solving the original
index-three problem with variable-stepsize BDF) entirely, but we do doubt its reliability
when the initial conditions are inconsistent, or in situations where there are steep
gradients or discontinuities in the velocities. It may be possible to reliably solve systems
in the index-three form with methods other than BDF, such as extrapolation [8] or
defect correction, by controlling errors on the velocities as well as the positions, but
we will not take up this subject further in this paper.

A second way of solving (1.7) is to differentiate the constraint and solve the system
(1.7a), (1.9). This approach produces a poorly conditioned iteration matrix (though
not as poorly conditioned as solving the system in its original form), but we can again
eliminate most of these difficulties by scaling the problem as described in 3. Stepsize
selection and error control strategies for variable-stepsize BDF codes fail for these
problems, unless we somehow exclude the Lagrange multipliers , from the error
control decisions. In contrast to the error control strategies proposed in the previous
paragraph, there is some justification (see 5) for excluding from the error control
decisions. In this approach, it is a simple task to verify that the initial conditions q’(0)
on the velocity satisfy the algebraic constraint (1.9). If GT(q(O))q’(O)30 then q’(0)
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can be corrected by computing an impulse A in the system at 0 such that

q’+- q’(O) GA, GTq’+ O.

However, now we must be careful that the constraint itself is satisfied at the initial
time. An initial error in the constraint will contaminate the solution in the whole time
interval of interest. There are, though, reasons to believe [5] that any system which
does not satisfy the constraint initially is not a good physical model. The main difficulty
with solving (1.7a), (1.9) is that of "drifting off" the original constraint. (Note that
this is not a problem for solving the Navier-Stokes equations (1.6), which are essentially
the same form as (1.7a), (1.9) because there the constraint that we are using is the
original constraint of the system.) This formulation of the problem does not force the
constraint to be satisfied on every step, and there may be a tendency for the amount
by which the constraint is not satisfied to increase from step to step. By using small
stepsizes (in an automatic code, by keeping the error tolerances fairly stringent), we
can keep small these errors in the amount by which the constraint is not satisfied.
Whether this is a serious problem or not depends on the application, although clearly
it could be troublesome if the solution is desired over a long interval in time.

A third strategy, which is used in some codes for solving mechanical systems [10],
is to eliminate the Lagrange multipliers analytically by means of methods in analytical
mechanics to obtain a standard form ODE system. The system of.ODEs is assembled
from a data structure describing the mechanical system. If the resulting problem is not
stiff, this approach has the advantage that the system can be solved by an explicit
numerical method. The number of unknowns after this type of transformation usually
is smaller, but the sparsity of the system has decreased, which is an important consider-
ation if the problem happens to be stiff. Again, we must be very careful that the initial
conditions satisfy that both the constraint and the derivative of the constraint are zero,
or we will obviously obtain a solution which is nonsense. A constraint corresponding
to an eliminated Lagrange multiplier is automatically satisfied in the chosen representa-
tion of the mechanical system. Consider the pendulum (1.8) as an example. Let

x L sin 0, y L cos

Then the algebraic constraint of constant length is fulfilled and the well-known ODE
is

g; 3’ sin o 0, 3’ L"
Various combinations of the above strategies can be employed. Baumgarte [12]

discusses a technique for circumventing this problem of "drifting off" the cbnstraints
(q) by adding to the original equations an equation consisting of a linear combination

of , dd/dt and d2dp/dt2. The linear combination is chosen so that the resulting
system damps errors in satisfying the constraint equation. This approach is similar,
but not identical, to penalty function methods (L/Ststedt [13], Sani et al. [14]). Depend-
ing on the choice of the parameters in the linear combination, we may see any of the
difficulties discussed earlier. This technique introduces extraneous eigenvalues into the
system, which may or may not cause difficulties. Finally, the penalty techniques have
the disadvantage that if the initial conditions are not posed correctly, they introduce
a nonphysical transient into the problem [14].

While all of these techniques have their shortcomings, we have attempted here to
put them on a firmer foundation, and to suggest some ways to implement them more
effectively. All of these techniques experience serious difficulties when the initial
conditions are not consistent.
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Before leaving the subject of alternate forms for DAE systems, there is one more
aspect of this problem that we wish to consider. Sometimes there is a choice of which
variables to use for solving a problem. For example, in the system

u’= v,

(2.1) v’=f(u, v, t)+ G(u)A,

G% =o
we could have replaced v in the constraint by u’ to obtain

tt’ V,

(2.2) v’= f(u, v, t)+ G(u)A,

GT"u,=O.

Are there any advantages in writing the system in one form over the other? Using BDF
with Newton iteration for linear problems in exact arithmetic, the two forms of the
equations give identical solutions. (This is because Newton’s method is exact in one
iteration for linear systems, and because the equations which result from discretizing
both systems by BDF are identical--this last fact is obviously true for nonlinear systems
too.) For nonlinear systems in exact arithmetic we know of no reasons why Newton’s
method would be more likely to converge for one form of the equations than the other.
Both forms of the system may lead to very poorly conditioned iteration matrices. In
the next section we will suggest scaling techniques to overcome this difficulty. These
techniques are directly applicable to problems of the form (2.1) but not to (2.2) (though
it is often possible to devise ways to scale the analytically equivalent systems such as
(2.2)). This may be a reason to prefer (2.1). Everything that we discuss in this paper,
with the exception of the scaling techniques introduced in 3, is applicable to systems
such as (2.2) where these obvious substitutions have been made. Thus, if it is more
convenient to solve one of these alternative forms of a system, then there is some
justification for doing so.

3. Conditioning of matrices arising in the solution of DAEs. In this section we
study the solution of DAEs of the form (1.1). Conditioning is a problem for DAE
systems, and especially for high index systems, because the condition number of the
iteration matrix for a system with index of m is O(h-") ([5, Thm. 4.1]). We describe
schemes for scaling systems (1.1) so that the iteration matrices are no longer singular
as h 0, and we discuss how these scaling techniques can be conveniently implemented
into existing DAE software.

The system of linear equations to be solved in each Newton iteration step is

Az= b.

If we use Gaussian elimination with partial pivoting we know that the computed
solution z + Az satisfies

(3.) (A + aA)(z + Az)= b,

where

(3.2) IIAAII--< rullall.
In (3.2) r is a moderate number and u is the machine unit. The accuracy of this
computation is improved if we introduce a row scaling of A by premultiplying by a



726 LINDA PETZOLD AND PER L6TSTEDT

diagonal matrix D. Then by (3.2)

lAzil <= I(A-1D-1DAA(z + Az)),

<=E I(A-1D-)oII(DAA(z + Az))jl
(3.3)

-<-E I(A-D-1)ijl IIDAAIIool[z / azll

_--< ru E I(A-’D-),] IIOAllllz / azll.

We consider three cases" index one, index two, and index three systems of the form

x’-f(x, y, t) O,
(3.4)

g(x,y,t)=O.

(These ideas extend easily to the slightly more general form (1.1).) For these problems,
the iteration matrix is written as

(3.5) hJ,,
aoi_h Of _h Of]

Ox Oyl.I h
Og

h
Og

L ox oy J

Case I. When the index is one, we have that Og/Oy is nonsingular, so hJ,, is
nonsingular as h 0 if we scale the rows corresponding to the algebraic constraint by
1/h. Since we are not scaling variables, but only equations, the effect of this scaling
should be to improve the accuracy of the solution of the linear system, for all variables.

Case II. For this case, we will assume that the index is two, and that Og/Oy =-O.
By explicitly computing (hJ,,)- we find that the orders of the blocks of the inverse are

1 1/h(3.6)
1/h l/h2]

where the elements in the first row correspond to x and those in the second row to y.
If we scale the bottom rows of hJ, (corresponding to the "algebraic" constraints) by
l/h, then the scaled matrix can be written as

(3.7) hJ’,
aoI_h Of _h Of

"gox
Ox oOY ).

It follows from (3.3) that roundoff errors proportional to u/h and u/h2 are introduced
in x and y, respectively, while solving the unscaled linear system. With the suggested
scaling the roundoit errors are of O(u) in x and O(u/h) in y. As h- 0 these errors
can begin to dominate the solution y. This is likely to cause difficulties for the error
estimates and convergence tests in an automatic code. These difficulties, along with
what can be done to minimize their effects, will be described in greater detail later.
For now, we merely note that the effect of the proposed scaling is to control the size
of the roundoff errors in x which are introduced in solving the linear system. At the
same time, the "algebraic" variables y may contain errors proportional to u/h. However,
since the values of y do not affect the state of the system directly (that is, how the
system will respond at future times), we may be willing to tolerate much larger errors
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in y than in x. In any case, this scaling is a significant improvement over the original
scaling (3.5). For the scaled system, the errors are considerably diminished, and the
largest errors are confined to the variables which are in some sense the least important.
Painter [15] describes difficulties due to ill-conditioning for solving incompressible
Navier-Stokes equations of the form (1.6), and employs essentially the same scaling
that we have suggested here to solve the problem. These difficulties are most severe
when an automatic code is using a very small stepsize, as in starting a problem or
passing over a discontinuity in some derivative.

We further note that if we are using Gaussian elimination with partial pivoting,
we do not need any column scaling. The solution will be the same without this scaling,
because it does not affect the choice of pivots [16]. What the analysis shows is that
the errors which are due to ill-conditioning are concentrated in the "algebraic" variables
of the system and not in the "differential" variables. Thus, we must be particularly
careful about using the "algebraic" variables in other tests in the code which might
be sensitive to the errors in these variables.

Case III. For this case, we will work with systems of the form

(3.8) v’=f(u, v, t)+ G(u)A,

(u) =0,

i.e., mechanical systems where we have assumed, without loss of generality for the
purposes of this discussion, that M L For these systems, the iteration matrix is written
as

(3.9) hJn

where

and

aoI -hi !GIhX aoI + hY
hGr 0

of OG
X-

Ou Ou

Let (hJ,)-1 be partitioned into nine blocks such that the three block rows corre-
spond to the variables u, v and A and the three block columns correspond to the
differential equations and the algebraic constraint in (3.8). Then the leading terms in
3 h/ao in the blocks of (hJ,) -1 are

I- P ),(I- P)S-’ T-’S-1GA
(3 10)

1 -1
-’), n (I-P)S-’ ,-S-’GAI.OtO _,y-2AGT _T-1AGrS- T-3A

In (3.10) the notation is S= I+yY+y2X, A=(GrS-1G)-1 and P=S-IGAG. If we
perform row equilibrium, i.e. scale the last row in (3.9) by i/h, then (3.3) and (3.10)
give that the roundoff errors in u, v and A are proportional to u, u/h and u/h2,
respectively. Note that if we scale the second row in (3.9) by h then the ith row block
in each column of (hJ,)-D- is of O(yl-i). The errors with either of these scalings
are much smaller than if we had solved the system with the original unscaled matrix
(3.9), which had condition number O(1/h3). We may not be interested in the values



728 LINDA PETZOLD AND PER LtTSTEDT

of A, because these Lagrange multipliers have no direct effect on the state of the system.
The situation is not quite so simple with respect to the velocities v, however. The
components of v in certain directions do in part determine the state of the system. In
the two-dimensional pendulum example (1.8) such a direction is perpendicular to the
bar. However, the O(u/h) errors that we can expect in v using this scaling are still
considerably smaller than the O(u/h), O(u/h2) and O(u/h3) errors that we could
expect in u, v and A in solving the original unscaled system. The analysis shows that
the errors which are due to ill-conditioning are concentrated in the variables v and
and not in u. Thus, we must be careful about using the "algebraic" variables v and
in other tests in the code.

One further question that remains is how to implement row scaling in a general
DAE code. There is a very nice solution to this problem. In a general purpose DAE
code [18] (for solving systems of the form F(t, y, y’)=0), there is a subroutine which
the user writes for computing the residual F(t, y, y’) A, given (t, y, y’). The user can
scale A inside this subroutine, and according to our guidelines, if we pass the stepsize
h in the argument list to this subroutine. This way, the scaling costs virtually nothing.
An alternative idea is to provide an option to automatically do row equilibration, or
to use linear system solvers which perform row scaling, as suggested in Shampine 17].

4. Tests for terminating the corrector iteration. In the last section we saw that for
high index systems, even with scaling, there are rel.atively large errors in some of the
variables. For the most part, these variables do not determine the state of the system,
so these errors are in some sense tolerable. However, from the point of view of an
automatic code where we must have some criterion for deciding when to terminate
the corrector iteration, the errors in these variables are still a source of difficulties.. Our
objective in this section is to show that, from the point of view of propagation of errors
in the state variables of a system, it is sufficient to terminate the Newton iteration
based on the errors in the scaled variables, where the variables are scaled by powers
of the stepsize as in the previous section. This eliminates troubles due to ill conditioning
in the corrector iteration part of a code.

We will examine the propagation of errors caused by the interruption of the
Newton iterations for a BDF method, for systems of the form (1.1) of index one, two
and three.

For these purposes, let (x,, y,) be the computed solution (where the corrector
iteration has not necessarily been solved exactly), and let (,, 37,) be the true solution
to the difference equation. Then .= x. +, 37. y.+ ty., where ’. and BY. are the
errors in x. and y. due to terminating the Newton iteration early. Let e
eY. y. -y(t.) be the global errors and let -. be the local truncation error. Then we have

O= F(., p;./ h, y,,,
F(x. +, p(x. + )/h, y. + 8Y., t.)

F(x(t.) + e +, p(x(t.) + e + ’)/h, y(t.) + eY. + 8Y., t.)

F(x(t.), x’(t.), y(t.), t.)+(e. + ’)(4.1)

OF
+--x,(p(e + .)/ h + ’.)

OF
+(eY. + aY.) + (higher order terms).
Oy
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For notational convenience, introduce Fx OF1/Ox, F, OF/Ox’, A1 aoF, + hFl,
A2=OF1/Oy, A3=OF2/Ox, A4=OF2/Oy. Then the errors must satisfy

where cn ki=l ai(en_i+ ,_i). Only higher order terms of 8 and Y are present in
the right-hand side of (4.2). From (4.2) we find that

(4.3)
] hA3

where sr is the right-hand side of (4.2a). For the purposes of only controlling the errors
in x and y at tn, the same criterion can be used on both 8 and Y. In the analysis in
1 of the accumulated error in x and y as time progresses we derived the requirements
on the residual r/from the Newton iteration to obtain e O(hk) and eY. O(hk)
with the kth order BDF. It follows from (4.1) that

0= hF(x, (aoX + cn)/h, y, t,)+
hA hA4] Y]

+(higher order terms).

Hence,

(4.4) (A1 hm2(tx) (FlnhA3 hA4] t hrl =-h F2n]

where F, and F2, are evaluated at x,, y, and t. In the index one case must be of
O(hk) according to the results in 1]. The iteration should be terminated when 8 and
hSY, are of O(h k/l) in (4.4). Let r/T (r/, r/). If A4-=0 and the index is two, then
r/1 and r/2 must be of O(h k) and O(hk/). This is achieved by letting 8 and hY, be
proportional to h k+ in (4.4). Equation (4.4) is satisfied with xT"=(u , v) and y= h
by the index three system (3.8). Here, we require I1,  11- O(h and I1, =11- O(h
in [1] which is obtained by taking I111- o(h+) and IIhll--O(h+). These con-
clusions are independent of the row scaling.

In general, variables should never be totally excluded from the test for convergence
of the corrector iteration. Even if a variable occurs linearly, as for example in Brown
and Gear 19], it is a mistake to exclude it from the convergence test in an automatic
code. The reason for this is that codes are so often using Jacobians which were calculated
on previous steps and possibly even based on different stepsizes that in general we
cannot count on the Newton iteration to converge in one step.

5. Error tests. In this section we will examine the reasons why some variables
should be excluded from the error test in an automatic code.

It follows from (4.1) and (4.2) that the errors in the "algebraic" variable y on
previous time steps, ey, < n, do not directly influence the errors in any of the variables
at the current time t, for systems of index one and two satisfying Assumption 1.1 since
they do not appear in (4.1). Therefore, we can consider deleting these variables from
the error estimate. This could be advantageous for the smooth operation of a code.
Consider first the case of solving index one systems. Suppose, for example, that on
one step we make a fairly large mistake by terminating the Newton iteration before it
has really converged, and that on this step the value of y that should have been
computed has a large error in it, but that based on the incorrect value it passes the
error test anyway. If we base the error test on y, then on the next step this could cause
a big problem, because the new value of y does not approach the old (incorrect) value
of y, so that their difference, and hence the error estimate, does not approach zero as
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h- 0. Because of this, we feel that in this case it is probably wise to leave y out of
the error control decisions. The main drawback in this strategy is that if we would like
to know the values of y at interpolated points (between mesh points) then the stepsize
should be based in part on the values of y. For index two systems, the stepsize control
strategy in an automatic BDF code will fail, for reasons explained in Petzold [9],
unless the "algebraic" variables y are excluded from the error test. For Navier-Stokes
systems, this means that the pressure should be excluded from the error test, and for
constrained mechanical systems (1.7a), (1.9) where the constraint has been differenti-
ated once, it means that the Lagrange multipliers should be excluded from the error test.

Another possible error estimate is based on the observation that the part of the
error in x and y due to the truncation error hzn in (4.2) in the present step is

(eX)(5.1) e. ey
Tn

where higher order terms have been omitted. This is the contribution to the global
error that is directly influenced by a change of the stepsize. An estimate of e. can be
obtained by multiplying the usual error estimate by the matrix

An approximate factorization of hJ,, is available from the Newton iteration. Then an
estimate of e can be computed according to (5.1). The step size is chosen such that
e, is less than a given error tolerance. This is a generalization of the estimate given
by Sincovec et al. [20] for constant-coefficient DAE.systems (see also Petzold [9]). If
A4 0 and the index is two, we find from (3.6) that ex. h’r, h k+l as we would expect
but that ey k

For the index three mechanical systems, the situation is almost as simple. According
to (3.10) the leading term in the contribution from the discretization error h, to the
errors e and e is

e. ao -P/y (I-P)S-1 h-
The next term of higher order in the lower left-hand block is of O(y). The lower left
part of the first matrix above is of O(h-1). In general we have Pr’ 0 and the order
of the asymptotic behavior of e. is one less than what we can expect for differentiated
variables from index one or two systems. What we would ideally like to control is e Tn

and the truncation error in the components of the velocity vector v which are in
allowable directions (which would not cause u to violate the constraint). Stepsize
control strategies used in BDF codes will fail [9] if we base the strategy on the values
of v and/or A. One way to solve this problem using a general purpose BDF code is
to base the error control and stepsize selection strategies solely on u. This is actually
done in a production code [10], [11] for solving mechanical systems. However, we
question whether this is always a reliable procedure.

Another possible error estimate for the index three mechanical system is based
on the observation from (5.2) that we can obtain the leading terms in e and e byTn

solving

(hJ) e h
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where the value of z does not matter to us. Now if we are only interested in the
components of v in the nullspace N(G7") of GT then such a component is

(5.3) v*=(I-P)v,

where

p=S-’G(GTS-IG)-’GT,
as in (3.10). The matrix P is a projector [21] since p2= p. Let }1" denote the spectral
matrix norm. For h sufficiently small

s-’ I + hS,, S, O(),

and from the definition of P in (5.3)

P Po + hV, e O(1),

where P0 G(GTG)-IG= P, an orthogonal projector [21]. Therefore,

IIPII 1 + O(h), lit- PII 1 + O(h),

and IIv*ll is bounded by

(5.4) Ilv*[[ <_-Ilvll(1 + O(h)).

From the pendulum example in (1.8) and the definition of S and P we find that with
uT"=(x,y)

IIs- 11- O(h=), Po (u)-u, liP- Poll O(h=).

The motion of the pendulum ball is constrained in the direction u--Pou and free in
the perpendicular direction wr= (y,-x) for which Pow =0.

The contribution to the error in v* from the truncation error is

v.* e(5.5) e -(l-P) ..
It follows from (3.10) that the leading term in e. is the solution to

(hJn 0Z

Z2 0

The reasons why the particular projector in (5.3) is chosen are first that P is close to

an orthogonal projector so that a relation such as (5.4) is satisfied and second the
I)*determination of e is not too complicated. Thus we can obtain e. and e. with two

extra back substitutions using the approximate factorization of hJn which was computed
during the Newton iteration. It follows from (5.2) and (5.5) that the terms of lowest

order in e are

(I- P)(-hP-/ 3,+ h(I- P)S-1-)- h(I- P)- + o( hk+2).

The projector in front of the truncation errors is bounded independently of h. Hence,
1)*e. is proportional to h k+l This is in contrast to the error e. which is O(h k) due to

the error component Pe.--. P’ in Pv. If the approximate factorization of hJ, is the

exact factorization at t, i< n, then v* corresponding to the computed e. will not

satisfy Gv* 0 exactly, but rather

0= GTv* Gr, v*+ hr, llrll O(1),
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where r=-(n-i)(G’)Tv* +.... In sum, we have derived an estimate based on the
size of (en, en). It is somewhat complicated, but it may be more reliable than basing
the estimate solely on ’,.

There are several issues to consider when implementing these alternative error
tests (where some variables are excluded from the error tests) in software for the
solution of differential/algebraic systems. First, we note that there are two main tests
which control the operation of a code--namely, the test to decide when to terminate
the Newton iteration, and the error test to accept or reject the current step and to
control the stepsize. If we exclude some variables from the error test but base the
convergence test on the values of all the variables (or scaled variables), then the
weighted max norm seems to be preferable to some other norms. Why? Consider for
example the RMS norm, which is used in several popular ODE codes. Since this norm
looks at all the variables for the convergence test, but only some of them for the error
test, and it is weighted by the number of variables, then something like the following
can happen. The code can pass the convergence test very easily, possibly because some
very small components are included in the norm for the convergence test, but not
really have converged to a great enough accuracy in the variables which are included
in the error test. This can cause the code not to run smoothly, or to be unreliable. With
the max norm, this kind of incompatibility in norms cannot occur. The second observa-
tion is that it is relatively easy and cheap to implement the error test where some
variables are excluded in a code which allows the user to write a subroutine to define
his own norm. We can pass a flag to the norm routine which tells it whether it wants
a norm for the convergence test or for the error test, and’then the norm can be computed
based on the appropriate variables.

Acknowledgment. We wish to thank Bob Skeel for his comments on an earlier
version of this paper, and in particular for suggesting (3.3) as a basis for the roundoff
error analysis.
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MAINTAINING SOLUTION INVARIANTS IN THE NUMERICAL SOLUTION
OF ODEs*

C. W. GEAR

Abstract. Techniques for maintaining the numerical consistency of equality and inequality invariants
known to be obeyed by the true solutions of ODEs are discussed. Shampine [11] has examined the problem
and made some recommendations for one-step methods. A general framework is used to justify a,particular
form of his technique for both one-step and multistep methods in the case of equality invariants. This
framework can also be used for inequality invariants, but is not satisfactory for multistep methods. However,
in a large class of inequality invariants, typified by those arising in chemical kinetic problems, it is shown
that the invariant can be satisfied automatically by the numerical method.

Key words, conservation laws, invariants, inequalities, chemical kinetics, Lagrange multipliers, index-2
systems
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1. Introduction. Many systems of ordinary differential equations which are solved
numerically have known invariants, that is, relations which hold along any solution
trajectory. These may be equalities such as the invariance of the total energy, momen-
tum, mass, etc., and as such are integrals of the system, or they may be inequalities
of the form b(y, t) > 0 or b(y, t) >= 0 which are known from physical principles and
can, in principle, be demonstrated from the equations. Often it is desirable to conserve
these invariants numerically because the solution may be quite sensitive to small
changes in some of these quantities and may even become unstable if some of the
inequalities are violated. We refer the reader to Shampine [11] for a discussion of
these reasons and a review of other literature.

The equations take the form

y’ f(y, t), y(O) Yo, (1.1)

where, along any particular solution trajectory, y(t), we have

g(y( t), t) g(Yo, to), (1.2)

b(y(t), t) >- 0 if b(yo, to) >= O. (1.3)

(The notation y-> 0 when y is a vector means that all components of y satisfy the
inequality.) Equation (1.1) is sufficient to uniquely determine a solution y(t) which
automatically satisfies eqs. (1.2) and (1.3). The problem is to ensure that the latter two
equations are satisfied by the numerical solution.

As examples of equality invariants we consider the D3 system of equations from
the stiff test set [5] and the equations for a pendulum. The D3 system is

Y Y3- 100yly,

Y Y3 + 2y4- lOOyy2- 2104y,

Y -Y3 q- 100yy2,

Y -Y4 + 104y
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Equations (1.4) describe a chemical kinetic problem in which Y and Y2 react to form
Y3, and Y2 reacts with itself to form Y4. It can be seen that the mass-balance invariants
of this system are

and

kl y + Y3 (1.5a)

k2 y2 q- y3 -F 2y4. (1.5b)

Note that these are linear, the weights are non-negative, and that every variable appears
in at least one invariant. For systems that satisfy invariants meeting these criteria, we
can conclude that they satisfy an invariant

k w,yi wry (1.5c)

where w { wi} are a set of strictly positive weights for the s components of the system,
and wr is the transpose of w.

A simple pendulum satisfies

0’ to, (1.6a)

to’= -g sin (0)/L (1.6b)

where 0 is the angle with the vertical, L the pendulum length, and g the acceleration
due to gravity. Equations (1.6) have a constant energy, so we have the invariant

k to2 2g cos (0)/L (1.7)

This is a nonlinear invariant.
As an example of an inequality invariant, we also use eqs. (1.4). Because the

variables are the concentrations of radicals in a chemistry model, they should be
non-negative. Indeed, if the equations permitted the concentrations to assume negative
values from a consistent initial condition with Yo => 0, the mathematical model would
be incorrect. In fact, it is simple to prove that these and similar equations do satisfy
y(t)>-O for all t>0 if yo_->0. Also, note that this lower bound and eqs. (1.5) imply an
upper bound for all variables, namely yi <-k/w.

Shampine [11] discusses one-step methods for the numerical integration of eq.
(1.1) and suggests that, after each step, the numerical solution can be perturbed by
the minimum amount to satisfy eq. (1.2). He also argues that perturbing the solution
at the end of a step to satisfy the inequality invariants (1.3) actually decreases the local
error, at least in the case of simple invariants such as y ->_ 0. His treatment is restricted
to one-step methods because of the potential impact of the perturbations used to satisfy
the invariants on the error estimating formulas used in multistep methods. Since these
formulas usually are equivalent to high-order divided differences of the computer
values, arbitrary perturbations can lead to unreasonably large error estimates which
will cause inefficiency by both reducing the stepsize and reducing the order.

This paper takes a different approach to the problem of equality invariants,
producing instead a modified set of equations which automatically satisfy the invariants.
Computationally, the technique can be implemented with exactly the same code as
would be used by Shampine in one of his suggestions, but the approach provides a
theory which justifies its use in multistep methods.

The same approach can be used for inequality invariants, but its application can
lead to discontinuous derivatives, which impact a multistep method severely. However,
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in a number of classes of problems, of which virtually all chemical kinetic problems
are examples, it is possible to control the code so that the inequality invariants are
satisfied by the numerical solution automatically. The class of problems are those that
can be written in the form

y’= -Dy / q, (1.8)

where the diagonal matrix D and the vector q are non-negative functions of y and
on the region y ->_ 0, and q is bounded. For such problems it is clear that y => 0 is an
invariant of the solution. We will present a technique in 5 which will cause it
to be an invariant of the numerical solution also. We will see that, although q(y) is
an unbounded function of y in chemical kinetic applications, the boundedness of y,
which implies a bound on q(y), is sufficient to allow the results to be applied.

2. Linear equality invariants. It is convenient to classify the equality invariants
into two classes, linear and nonlinear. Many authors have pointed out that the majority
of numerical methods preserve linear invariants. This follows because the linear
invariants represent linear dependencies between the right-hand sides of eq. (1.1).
Thus, an invariant of the form eq. (1.5c) implies that

wry’=O, (2.1)

which, using eq. (1.1) means that

wT"f(y, t) 0 (2.2)

holds everywhere. If the numerical method has the form

Yn+l Y, + ch,(y,, t,, h) (2.3)

where y, is the numerical approximation to y(t,) at t,, and b also satisfies w Tb 0
everywhere, then Y,+I satisfies the invariant if y, does. The fact that wT4 0 follows
from eq. (2.2), the form of the method, and induction in most cases. Because linear
invariants are automatically satisfied (apart from roundoff errors1), and because it is
inexpensive to use them to reduce the order of the system by elimination of variables,
this is usually the best approach to take. Edsberg [4] points out that numerical accuracy
in the matrix work required in stiff systems is also an important reason for eliminating
variables using linear invariants. This is discussed in Shampine [11]. (It should be
noted that the choice of variable to be eliminated may seriously affect roundoff error
because of the relative sizes of the variables. In many chemical kinetic problems,
variables may differ by many orders of magnitude.)

We concur that it is generally better to eliminate variables. However, if they are
eliminated, it must be remembered that the corresponding inequality invariants are
not eliminated. Thus, in the example given in eqs. (1.4), we could use (1.5a) and (1.5b)
to replace Yl and Y4 with kl- Y3 and (k2- Y2 + y3)/2 respectively, thus reducing the
order of the system to two. However, the four inequality invariants, which originally
were y _-> 0 when y was a four-dimensional vector, remain as the two invariants y -> 0

If implicit methods are used, the way in which the nonlinear equations are solved could affect the

linear invariants. If iterative methods based on Newton are used, and if the approximation for the matrix

Of/Oy satisfies wT"(Of/Oy) 0, the approximate solution to the nonlinear equations also satisifes the linear

invariant within roundoff error. This follows from the fact that successive corrections Ay to the iterated

solution satisfy an equation of the form [I y(of/Oy)]Ay f, where f is related to f and satisfies eq. (2.2).
Premultiplying this by w7" yields waAy 0. Since the initial iterate is obtained from an explicit integration
method and satisfies the invariant in exact arithmetic, all subsequent iterates also satisfy it.
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(since y is now a two-dimensional vector) and the two upper bounds

Y3 =< kl, (2.4a)

Y2 -I- Y3 < k2. (2.4b)

If the numerical values of the variables are allowed to become large enough to violate
these bounds, the solution could become unstable. Section 4 discusses a way to satisfy
inequality invariants of this sort. There we will treat them as if all are of the form
y >= 0, but the techniques extend to ones of the form of (2.4).

If it is not feasible to eliminate the linear equality invariants by order reduction,
they can either be ignored, since they will be satisfied within roundott error, or can
be handled by the technique given in the next section for nonlinear equality invariants
so that even roundott error does not accumulate. However, if they are not eliminated
but ignored, we may have to take them into account when satisfying other invariants,
so that modifications made to satisfy the other invariants do not violate the ignored
linear invariants.

3. Nonlinear equality invariants. As Shampine [11] points out, it is not usually
practical to use nonlinear equality invariants to eliminate variables. He proposes
projecting the solution of the differential equation (1.1) back onto the invariant after
every step using a minimum norm perturbation to select the projection direction. If
the stepsize control restricts the local error in each step to be less than the tolerance,
it is not possible for the numerical solution to move further from the invariant than
the tolerance in one step. Hence, a perturbation to the solution at the end of a step
to satisy the invariant will not cause an error larger than the tolerance. (This argument
is also used to prove convergence as the stepsize is reduced to zero, but it is applicable
only to one-step methods.) However, for the above argument to be valid, the norms
used to compute the minimum norm projection and to control the local error in the
code should be the same. Therefore, he suggests that the user may want to change the
error control in the code to use an L2 norm (if it does not already) because it is easier
to compute the minimum projection in the L2 norm than in others.

We will give a modified system of equations with the same solution as the original
system, which can be solved by performing a minimum L2 norm projection onto the
invariant after each step, regardless of the norm used in the code. This justifies the
use of the process both in one-step and multistep codes.

Because eq. (1.2) is an invariant for the system, we have

ag ag
--fyy’ +--00t (3.1)

along any solution trajectory, which implies the identity

Gf + g,= 0 (3.2)

for all y and t, where G Og/Oy and gt Og/Ot. To avoid excessive notation, we have
not shown the explicit dependency of g and G on y, and t, and will not do so unless
it is needed for clarity.

Let us consider a modification of eq. (1.1)"

z’ f(z, t)+ GT"A. (3.3)

We couple this with the invariant (1.2) applied as a constraint to z"

g(z, t) g(zo, to). (3.4)
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The variable A is a type of Lagrange multiplier. If the number of constraints in eq.
(3.4) is m, eqs. (3.3) and (3.4) form a system of s + m equations for the s variables z
and the m variables A. These equations are differential-algebraic equations [7] of index
2. provided that the constraints (3.4) are linearly independent. The equations have the
same solution as the original system, as can be seen by differentiating eq. (3.4) to get

Gz’ + gt =0.

Substituting eq. (3.3) into this we get

Gf +g,+ GGT"A =0.

Using the identity (3.2) in this, we have

GGA O.

(3.5)

(3.6)

(3.7)

If the m constraints (3.4) are linearly independent, we have m-< s and G has full
rank. Hence, GG7" is nonsingular, so eq. (3.7) implies that h 0 and a solution of
eqs. (3.3) and (3.4) yields a z(t) that is a solution of eq. (1.1). Conversely, any solution
of (1.1) satisfies eq. (3.3) with h 0.

The relation between eqs. (3.3) and (3.4) on the one hand and eqs. (1.1) and (1.2)
on the other can be viewed in several ways. h can be viewed as a Lagrange multiplier
which permits the invariants to be satisfied as constraints. Because they are automati-
cally satisfied along the solution, the Lagrange multipliers are automatically zero.
Another view is to start with the approach of Baumgarte ([1], [2], and [3]) in which
a multiple of the amount by which the invariant (1.2) is not satisfied is added to the
ODE (1.1) in order to force its solution to return to the invariant. Stability considerations
show that GTDg should be added, where D is a positive, diagonal matrix. He
recommends choosing a specific functional of g for D which results in a predetermined
exponential decay rate of the residual g. The approach taken here is to choose h Dg
continuously to force the solution onto the invariant at all times. In the discrete
integration, values of h are chosen separately at each time step. They can be thought
of as impulses applied at each step to keep the solution on the invariant.

The reader may wonder if we have not made a simple problem more complex by
increasing the number of variables and turning it into a differential/algebraic equation
(DAE). Fortunately, this system of DAEs has a particularly simple form, and it has
been shown in [6] that variable-stepsize, variable-order BDF methods are convergent
for index 2 problems. It is also shown in 4 that any multistep method convergent for
ordinary differential equations is convergent for this particular index 2 problem when
applied in the appropriate way. While similar results have not been developed for
Runge-Kutta methods, it appears that implicit and explicit Runge-Kutta methods can
also be used for these problems. (See Petzold 10] for a discussion of implicit Runge-
Kutta methods applied to index 1 problems.)

If the BDF method were to be applied to (3.3) and (3.4), an implicit system of
s + m nonlinear equations would have to be solved at each step. If the ODE is not
stiff, this is clearly not an efficient scheme if a Newton-like method is used for the
solution of these equations. Instead, a predictor-corrector, nonstiff method such as an
Adams method can be used for eq. (3.3) while a Newton method can be used for eq.
(3.4); that is, at each corrector iteration we compute

yq+l yq + hflo(f(yq, t)- y,q-1 + Grh q), (3.8)

y’q f(yq, t) + Grh q, (3.9)



SOLUTION INVARIANTS IN THE NUMERICAL SOLUTION OF ODEs 739

where /q is chosen so that the (q+l)st corrector iterate yq+l satisfies eq. (3.4). This
technique can be applied to any implicit multistep method. If only one corrector
iteration is used, it is equivalent to performing a final perturbation to the result of a
step in the direction Gr to satisfy eq. (3.4). If G is constant, this is exactly the minimum
L2 norm change needed to satisfy eq. (3.4). In practice, the local error must be small
enough that G does not change appreciably during this projection step so that it is
adequate to compute G immediately after the corrector step. (If G did change
significantly over the projection, the differential equation almost certainly is in a region
of potentially rapid change, the error estimation procedures are suspect, and the stepsize
should be reduced.) For the same reason, one step of a Newton method is often
adequate for computing the value of A in (3.8) such that y satisfies (3.4). In this case,
we simply solve the linear system

GGrA -g(y, t),

where y is the value obtained from eq. (3.8) when A is zero.
The technique could be applied at each stage of an explicit Runge-Kutta method,

although it is questionable if the increased accuracy would justify the amount of
additional work over doing it only to the final result of each step unless the problem
was very sensitive to small deviations of the invariants (in which case it might well be
stiff). If the problem is stiff, a Newton-like iteration must be used for the corrector,
and the projection onto the invariant manifold can be folded into that iteration.

Since the theory tells us that the solution for A should be zero, the local error in
A is precisely,its value. The error control should measure the size of A in whatever
norm is used in the code along with the estimates of the local errors in the other
components.

As Shampine 11 points out, the corrections to the solution to satisfy the nonlinear
invariants could destroy the linear invariants ifthey have not been removed by reduction
of order. While it is possible to solve this problem by treating the linear invariants
along with the nonlinear invariants, some of this work can be avoided by modifying
the direction in which the solution is projected onto the nonlinear invariants so that
it lies in the space spanned by the linear invariants. The linear invariants have the
form

Wy k, (3.10)

where W is a constant matrix. If these are treated simultaneously with the nonlinear
invariants, we will have to add the additional term W to eq. (3.3) so that K and A
can be chosen to satisfy both (3.4) and (3.10). However, we have already noted that
eq. (3.10) is satisfied automatically by the computed solution before it is projected into
the nonlinear invariant manifold. Hence, any changes made to y, say Ay, should satisfy

WAy =0. (3.11)

The change to y has the form

Ay (W + GrA). (3.12)

It is sufficient to satisfy the nonlinear invariant (3.4) and (3.11) simultaneously.
Let us write the matrix B W, Gr], as/R where R is an upper t.riangular matrix
(computed by the Gram-Schmidt process) so that the columns of B
are orthogonal, and set [ff, ,r]r R[K, A r]. Using these relations in eq. (3.12) we
get

Ay tcrT/ + dT/). (3.13)
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Applying eq. (3.11) to this, and noting that G is orthogonal to W and hence to W,
we find that =Oand

Ay T. (3.14)

Therefore, we can compute the correction, Ay, that satisfies the linear invariants by
orthogonalizing the rows of G against the rows of W to get t and then projecting
the solution into the nonlinear invariant manifold (3.4) using a projection in the space
spanned by the rows of t. Since W is a constant matrix, its rows can be orthonormalized
prior to the integration to get if’, and G can be orthonormalized against at each step.

4. Convergence of multistep methods for special index 2 problems. A multistep
method is not convergent for index 2 problems unless it satisfies many restrictions,
which, for example, rule out Adams methods (see M/irz [9] for a treatment of multistep
methods on index 1 problems). However, it is possible to use any stable implicit
multistep method for eqs. (3.3) and (3.4) provided the solution for A is zero. They can
be applied in the form

k

(a,z,_, + hfl.cf(z,_,, t,_,)) + hfloGA,, (4.1)
i=0

g(z,, t,) 0, (4.2)

where A, is chosen so that eq. (4.2) is satisfied. The important difference between this
technique and the application of multistep methods to the general index 2 problem is
that in the application of the multistep method at the nth step, z’,_i is replaced with
f(gn_i, t_) for >-- 1, but with f(z,, t,) + GA, when 0 to get eq. (4.1). This does
not affect the order of the method because we are using the true solution for past
values of A rather than computed values.

THEOREM 1. Suppose that a variable-order, variable-step, multistep method is scaled
so that flo 1, its truncation error is defined as

1 k

’rn n i=0 (OtiZ(tn_i) -4r hniZ’(tn_i)), (4.3)

the maximum roundoffor other errors in solving eqs. (4.1) and (4.2) are rl, and the initial
error in z is eo. If

(a) the method is convergent for ordinary differential equations,
(b) ’ O(h) where h max(h,),
(c) rl O(h2),
(d) eo O(h),
(e) the fl coefficients (after the scaling so that flo 1) are bounded,
(f) f(z,t) is Lipschitz continuous,
(g) [GGT"]-1 exists and is bounded,

then the solution of eqs. (4.1) and (4.2) is an O(r+ rl/h + eo) approximation to the
solution of eqs. (3.3) and (3.4).

Proof. The proof of Theorem 2.2 in [6] can be used with minor modifications
(after adjusting for the change of notationmx and y in the reference have been replaced
by z and A here). When the equivalent of eq. (2.20a) of [6] is developed, it has the
form

1 T A T]
p,,e + o’.f:e + GA.e,, + G.e. + 7-. (4.4)
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where r, is the difference operator based on the/3 coefficients. 11 of reference [6]
has been replaced by cr,fz + GrzA,. It is necessary to bound this quantity in order to
apply the previous proof. The first term of the expression for t11 is bounded by the

Ahypotheses. Since the true solution for A is zero, A, e,. Any bound on ex will allow
the proof to continue and show that ex is O(h), so the contraction mapping theorem
can be used to complete the result.

5. Inequality invariants. If we have the inequality invariants (1.3) and wish to
enforce them on the numerical solution, we can use a similar approach. In this case
we modify eq. (1.1) only if b(y, t) is negative. The resulting equation is

y’ f(y, t) + GT{min (b,(y, t), 0)A,}. (5.1)

The value of A is irrelevant if b i(y, t) is non-negative. We can think ofthese as Lagrange
forces applied only when the inequality is about to be violated. (For a problem in
which inequality constraints rather than invariants are enforced, see L6tstedt [8]). If
it is also necessary to preserve equality invariants, this can be combined jwith the
techniques of the previous sections.

Although this method provides a theoretical basis for projecting the computed
solution back into the invariant spaces, it seems possible that the computed values of
A may be discontinuous, and that this could affect the error control in a multistep
method (but not in a one-step method if the error control is locally computed in each
step). In the equations of chemical kinetics and related equations, we often wish to
use multistep methods because the equations usually are stiff with real eigenvalues
and the BDF methods have proved to be the most efficient methods for that case. For
this reason, we are going to suggest an alternate scheme that guarantees positive
solutions for the special class of problems (1.8). Suppose we apply a multistep method
to (1.8). We get

Yn hflo(-Dyn + q) + ,, (5.2)

where D D(y,, t,), q q(y., t,), and Z is the sum of prior values and derivatives.
This is a nonlinear system to be solved for y,. First note that y h/3o is positive. We
will prove that eq. (5.2) has a positive solution provided Z is positive. We will delay
the proof of this result until we have examined its consequences. The result means
that we can force the nonlinear equation solver to locate a positive solution for eq.
(5.2), provided we can guarantee that is positive, is a polynomial prediction of
the value of y, hoy’,. For small enough h it will be positive. For example, for the
backward Euler method, Z y,_ so it is always positive. Therefore, for this class of
problems, we recommend testing to see if it is positive at the start of each step, and
if not, reducing the stepsize appropriately. Then, the users’ favorite iteration can be
used to compute Aye’). To keep the solution positive, the new iterate should be set to
y(m+l) max (y")+ Ay’), 0), but the convergence test should be done on Ay(m).2

Unfortunately, it does not seem possible to show that forcing the iterates to stay in
the positive quadrant forces convergence to a positive solution with the hypotheses
given, so it may be necessary to reject steps if they get stuck at the boundary of the
positive quadrant and reduce the stepsize for a retry, or to move away from the
boundary to look for the solution.

It remains to show
THEOREI 2. If
D is a diagonal matrix,

2I am grateful to Linda Petzold for this suggestion.
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D and q are non-negative, continuous functions ofy,,
q is bounded,
E is non-negative,
y hflo is positive,

then eq. (5.2) has a positive solution
Proof Consider eq. (5.2) as a set of single equations. As a function of Y,i (the

second subscript referring to the ith component of y,), the ith equation can be written
as

(1 + yO,)y,,- E,- q,, 0. (5.3)

The left-hand side is negative when y, 0 and positive when

y, (; + max q,i).
y

This is sufficient to guarantee a positive solution of eq. (5.2). by
LEMMA. If the nonlinear equationsf(x) 0 are such thatf is a continuousfunction

of x from the closed s-dimensional unit hypercube 0 <-x <- 1 into R, and if, for all i,
f(x) < 0 when x 0 andf(x) > 0 when x 1, then the equation has a solution in the
unit hypercube, H.

Proof We will construct a function F(x) x + Df(x), where D is a nonsingular
diagonal matrix (unrelated to the matrix in Theorem 2), such that F is a continuous
map of the H into itself. Under the metric

p(x, y) max ]xi

H is a ball and the Brouwer fixed-point theorem is applicable to F(x) x, thus proving
the existence of at least one zero of f in H. D is constructed in two stages. First let
Da contain as its ith diagonal element the inverse of the maximum of If,(x)l over H.
Thus, g(x)= Dlf(x) satisfies Ig(x)[--< 1 and also satisfies all of the hypotheses of f
Define

6i- min (xi, 1 x gi(x) 0).

Because H is closed, 6i > 0 (it is the minimum distance from the /-dimension faces
of H to a zero of f or g). Now define the ith diagonal of DE tO be -6 and let
D DD2. Note that the ith component of F(x) is x- 8g(x), which lies in [0,1]
if x is in H. Hence F(x) maps H into itself and the lemma is proven.

In the case of chemical kinetic equations, we do not .immediately satisfy the
hypothesis that q is bounded because q is normally a polynomial equation of the
unknowns with positive coefficients (see eqs. (1.4), for example, where q consists of
exactly those terms with positive coefficients and -Dy, consists of exactly those terms
with negative coefficients). However, we can still arrive at the result. We have already
noted that the linear invariant (1.5c) coupled with the nonnegativity of the variables
implies an upper bound on the variables. This is only a bound on the solution of the
ODE, not necessarily on the numerical approximation. However, we will show that
there is a numerical solution of eq. (5.2) that satisfies this upper bound also. Let qmax
be the vector of the largest values that can be assumed by the components of q over
the region of possible values of y. Replace q in eq. (5.2) with t, where is equal to
q in those components which are less than the maximum, and equal to qmx elsewhere.
The modified problem satisfies the hypotheses of Theorem 2, therefore it has a positive
solution. Since this solution satisfies the linear invariant (1.5c), its components must
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satisfy the same bounds as the true solution. Hence, at the computed solution Yn, (yn)
q(y,), so that y, is a positive numerical solution of the original eq. (5.2).

Acknowledgments. I am grateful to the referees for many helpful suggestions.
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FOR COMPRESSIBLE DUCT FLOWS*
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Abstract. An upwind second-order scheme is proposed for time-dependent, inviscid, compressible fluid
flow in one space dimension and variable cross-section. The basic ingredient of the method is an analytic
solution of the corresponding GRP (Generalized Riemann Problem), leading to explicit expressions for the
fluxes. Sonic lines are given a special treatment. The only accessory technique used is a simple monotonicity
algorithm. Results of two test problems are shown: (a) the cylindrical converging shock problem, where
boundary conditions at r-0 are shown to be natural extensions of the analytic method; (b) a quasi 1-D
nozzle problem.

Key words, compressible duct flow, second-order scheme, Godunov scheme, high resolution, Lagrangian,
Eulerian

AMS(MOS) subject classifications. 65M05, 76L05

1. Introduction. Consider the Euler equations that model the time-dependent flow
of an inviscid, compressible fluid through a duct of smoothly varying cross-section.
Denoting by A(r) the area of the cross-section at r, these equations are,

AL U+--[AF(U)]+A -- G(U) =0,
Ot Or Or

(1.1)

U= pu F( U)= pu a( g)
pE (pE +p)u

where p, p, u are, respectively, density, pressure and velocity, E- e +1/2u2 is the total
specific energy (with e being the internal specific energy), and an equation-of-state of
the form p p(e, p) is assumed.

In this paper we derive an upwind second-order scheme for the time integration
of (1.1), imposing no assumptions on the form of A(r). Thus, our generic name "duct
flows" covers indeed all 1-D flows, including, for example, cylindrical and spherical
flows with radial symmetry. The present paper is an extension of our previous work
[2] which treated the case A-= 1 (slab symmetry).

To give the basic idea, suppose that we use equally spaced grid-points r iAr
along the r-axis and equal time intervals of size At. By "cell i" we shall refer to the
interval extending between the "cell boundaries" ria:/2--(i +1/2)Ar. We let Q’ denote
the average value of the quantity Q over cell at time nat. Similarly, we designate by
+/2 the value of Q at the cell boundary r+/., averaged over the time interval (nAt,

(n + 1)At). Generally speaking, a difference scheme for (1.1) is given by,

At
U7+1. U’] [a(r,+,/2)F( U) n+1/2i+1/2 a(r,_,/2)F( U)’_+ff]

(1.2)
At

-[G(U) n+1/2
,+,/. ( u) 7_+;/],Ar
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where AV [ r’+l/’ A(r) dr. In this scheme one must still give an appropriate interpreta-
ri-1/2

tion to the "flux" values F(U) "+1/2 G(U) "+/2
i+1/2, i+1/2" A fundamental way of doing it, and

at the same time obtaining the correct amount of "up-winding", was proposed by
Godunov [7] and may be described as follows. Assume that at time t the point ri+/2
separates the two uniform states U’, Ui"+. This now constitutes a simplified initial
value problem for (1.1), namely, the Riemann Problem (RP). The subsequent solution
for > t, consists of several centered waves emerging from the initial discontinuity
and separating regions of smooth flow. Let RE(r/t; U_, U/) be the solution of the
Riemann problem in the planar case (A 1), subject to the initial condition U(r, 0) U+
according to +r> 0. In writing r/t we use the well-known "self-similarity" of the
solution in this case. The Godunov scheme is now obtained by setting,

(1.3)
Ui+l/2 RE(O; U’, U,"+,),

F( U) n+l/2 F( U,"+ /_1, G( U) n+l/2 G( UiL1/2).i+1/2 i+1/2

As is well known, inserting (1.3) in (1.2) results in a first-order scheme. In order to
upgrade this order of accuracy and achieve better resolution of discontinuities we
assume that the values of U in cell at time t, are linearly distributed and retain
the notation U’ for the average values. Let (A U)’ be the variation of U over cell i.
Thus U+ Uin+l-1/2(AU)in+ and U_= U’ +1/2(AU)’ are the limiting values (from right
and left respectively) of U at the discontinuity r ri+1/2. Assume now for simplicity that

ri+l/2 O, t. =0.

The two linearly distributed states on both sides of the discontinuity are given by

U+(r) U+-F
r

(AU)iL1
Ar

r>0,

U_(r) U_+r. (AU),, r<0.

Due to the nonuniformity of the initial data, as well as the variable cross-section,
the flow in the neighborhood of the singularity does not possess the "self-similarity"
features of the Riemann problem. Thus, characteristic curves and discontinuity trajec-
tories are no longer straight lines, and they do not carry constant values of the flow

gin+lvariables. Hence, in order to evaluate i+1/2 with second-order accuracy we need not
only the "limiting value" U"+/2 (reflecting the immediate values of the variables after
the resolution of the discontinuity) but also its rate of change in time. We are now led
naturally to the following statement of the Generalized Riemann Problem (GRP).

Given two linearly distributed states U+(r), U_(r), let

V+(r), r>0,
U(r, 0)

U_(r), r < 0

be the initial condition for (1.1). Let R(r, t; U+(r)) be the solution for >0. Find

(1.4)

R(0, 0; U+(r))= lim R(0, t; U+(r)),
tO+

OR
(0, 0; U+/-(r))= lim

OR
(0, U+(r)).

Ot t-,o+ Ot
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Turning back to the scheme (1.2), the GRP solution may now be used to obtain
a second-order algorithm which replaces (1.3) as follows:

uin+l/2 R(O, 0; U+(r)),

o u __aR (0, O; U+(r)),
i+/2 Ot

F( U F’(U7+1/2) U
i+1/2 i+1/2

S o(u) o’(u,/,/)
0 u

i+1/2 i+1/2

i+,/2 - F( U)
i+1/2

G(U) "/’/2 G(U,%,/2)+-- G(U)i+1/2
i-1-1/2

We have used the notation F’(U), G’(U) for the Jacobian matrices of F, G,
respectively, with respect to U.

The main building block in our scheme is an analytic derivation of the solution to

the GRP, as formulated above.
Once this solution is established, the procedure (1.2), (1.5) is set up, yielding a

second-order accurate upwind scheme for (1.1). Let us observe some features of this
scheme.

(a) A Riemann problem is solved once per cell per time-step. It determines
completely the initial wave structure which serves as a basis for all subsequent calcula-
tions.

(b) A "plug-in" procedure, using the explicit analytic solution, is used in order
to compute time-derivatives offlow quantities. Cell averages are then updated according
to (1.2), (1.5), and the new slopes are obtained by a straightforward differencing of
cell-boundary values at t,+l.

(c) The only accessory technique used is a simple monotonicity algorithm. In
particular, no other dissipative mechanism is incorporated.

Further details of the numerical scheme are practically identical to those used in
the planar case [2] and will not be repeated here. Thus, we concentrate in the present
paper on the analytic solution of the GRP and in doing so, we impose the following
basic hypothesis.

Given the initial data for the GRP, define the "associated RP" as the Riemann
problem for the planar case (A 1), with uniform initial states U+/- limr-o+/- U+/-(r).
We then assume that locally the wave pattern for the GRP is the same as that of the
associated RP, meaning that if the RP solution involves a shock travelling to the left,
then so does the GRP solution, etc. Furthermore, the two solutions converge to the
same values at the singularity. Using the notation RE, R introduced above for the
solutions of these problems, the last statement implies

r
(1.6) lim R(r, t; U(r))= RE(p; U_, U/) along=p=const.

t-O+
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Observe, however, that some features of the solution to the associated RP are lost in
the case ofthe GRP, even locally. Thus, the solution is no longer self-similar, characteris-
tic curves are not straight lines and centered rarefaction waves are not necessarily
isentropic. In particular, this applies also to the Riemann problem (i.e., uniform states
on both sides) with variable cross-section (A(r)# const.).

Our approach to the solution of the GRP is based on a simple "propagation of
singularities" argument, i.e., the fact that along a characteristic curve the jump in the
highest-order transversal derivative satisfies an ordinary differential equation [6, V. 1].
To be more specific, suppose that we deal with a F--rarefaction wave, one that consists
of F--characteristics (slope u c) fanning out from the singularity. The F/ characteris-
tics cross the wave transversally and the discontinuity itself may be regarded as a
degenerate F/ curve, denoted as F. It turns out that the derivative of R(r, t; U+(r))
in the F- direction satisfies a simple ODE "along" F. The equation reflects both the
nonuniformity of the state ahead of the rarefaction (i.e. U_(r)) and the geometrical
factor introduced by the variation of A(r). While our final goal is an "Eulerian"
solution (in terms of r, t), we shall find it convenient to carry out the first steps in
terms of a "local" Lagrangian coordinate :. Such a representation, of course, guarantees
that the contact discontinuity lies along : =0 while the F+-waves propagate in +:-
directions. The difficult problem posed by a "sonic" grid-line (i.e., when r=0 is
contained in a rarefaction fan) is bypassed and relegated to a later stage.

Let us review briefly the plan of the paper. Basic notation and assumptions are
listed in 2, along with the local Lagrangian formulation. In 3 we analyze the structure
of a centered rarefaction wave and give our main analytical result of this work. This
result is combined in 4 with the Rankine-Hugoniot relations to give the derivatives
of flow quantities along the contact discontinuity. At this stage we have all the
information needed in order to establish a Lagrangian scheme, analogous to (1.2).
Indeed, such a scheme would be very close to the one proposed by van Leer [12] and
was actually worked out in [2]. However, we shall not pursue it further here. In 5
we switch back to the full Eulerian treatment and discuss the "nonsonic" case, which
follows easily from the Lagrangian case. The "sonic" case is taken up in 6. The
grid-line is now contained in a (curvilinear) rarefaction fan and must be determined
in terms of characteristic coordinates. To compute the limits (1.4) in this case we need
a careful inspection of the geometry of the characteristic curves near the singularity.

Finally, we illustrate the method in 7 by two numerical examples which are very
different in nature: (a) a converging cylindrical shock; (b) a steady state solution to
a duct flow problem. In the context of the first example we must discuss, of course,
the boundary conditions at r 0. It is shown that only a simple adjustment is needed
in order to implement the analytic solution at the singularity. We emphasize that both
problems were solved using exactly the same scheme as described above.

2. Notation and Lagrangian formulation. Here and in the sequel we refer to the
Generalized Riemann Problem (GRP) as stated in the previous section (see (1.4)).

In addition to the basic flow variables appearing in (1.1), we shall also make
extensive use of the speed of sound c and the "Lagrangian" speed of sound g pc.
We shall carry out the analysis in terms of a general equation of state. The results are
particularly simple when applied to the T-law equation,

(2.1)v p=(T-1)pe, ),> 1.

We shall always give the explicit form of the formulae for this special case and add
the label "/" to the numbers of such equations (as has already been done in (2.1)v).
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Initially U(r, 0) U+/-(r) is piecewise linear with a jump discontinuity at r 0. We
let U(r, t)- R(r, t; U(r)) be the solution of (1.1). Using the initial density distribution
we define the Lagrangian "mass" coordinate by

(2.2) d=Apdr, (0) O.

In terms of :, t, the equations (1.1) take the form

(2.3)

0 V+O__(A(V))+A 0
*(v) o,

.(v)= .(v)=
pu

1

We assume that initially V(:, 0)= V(:) is piecewise linear with a jump at : =0. This
is justified by the fact (to be proved later) that 0U(0, O)/Ot (in the sense of (1.4))
depends only upon the limiting values (as r +0) of U(r, O)/Or and U(r, 0). Hence
we may replace r-derivatives by :-derivatives using (2.2). Letting V+/- =lim_+/-o V(:)
we denote by RL(p; V_, V/), p= /t, the (Lagrangian) solution to the "associated
RP". Clearly, the line :- 0 represents the contact discontinuity.

We shall employ the following notation conventions.
Subscripts "r,/" denote limiting values as - 0+, 0-, respectively.
An asterisk (*) is used for values at t-0+ along =0 (along with "r,/" for

discontinuous quantities).
We shall use the subscript "0" for the limiting value as 0+ along r 0 (i.e., in

the Eulerian framework).
Further details are given in Table 1, where Q stands for any one of the flow

variables (see also Fig. 1).

r-

/ F

a=&

FIG. Wave pattern and related quantities, in conjunction with Table 1, 2.
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TABLE
Notation.

Symbol Definition

Q. Q

RL(p; V_, V/)

R(p; U_, U+)

V*

O*,

lim Q(s, 0) as c 0+, 0-.

Constant slopes for : > 0, : < 0.

Lagrangian solution of the "associated RP", p :/t.

Eulerian solution of the "associated RP", p r/t.

=R/(0; V, Vr).

Right and left values for Q discontinuous across

:=0. (Q= p, c, g= pc.)

lim --Q(:, t) at :=0.t-,o+ O

Right and left values of (9-) *
for discontinuous Q.

lim lim
0

t-,o+ -,o+ 0- Q(s’ t), lim lim Q(:, t).
t-,o+ -o- 0

lim
0

-,o+ 0- Q(:’ t) om_ - Q(, t)
t=O =0

=RE(0; U,, Ur)

lim Q(r, t) at r=0.
t-,o+ O

Remark 2.1. Note that if two limiting processes are implied, they must be carried
out in the indicated order. For example, (0Q/0:)* means that first the :-derivative is
evaluated at : =0+ and its limit is then taken as 0+. On the other hand, (0Q/0t)r
is computed by first taking the t-derivative at 0 and then letting 0+.

Also note the meaning of the various groups of quantities:
Q. Q, (oQ/o), (oQ/a) are the given initial data;
Qo, Q*, Q*, Qt* result from the solution of the associated RP;
(oQ/ot)t, (oQ/ot)r are time derivatives evaluated ahead of the waves and can

therefore be expressed in terms of initial spatial derivatives in view of (1.1), (2.3);
(oQ/Ot)o, (oQ/ot)*, (oQ/o)*, (aQ/o)* result from the solution of the GRP.

3. Resolution of a centered rarefaction wave (CRW). It is a well-known fact [5]
that a jump discontinuity in the initial data (for compressible time-dependent flow) is
resolved in terms of three types of waves, namely, contact discontinuities, shocks and
centered rarefaction waves. The first two are trajectories (in the (r, t) plane) along
which certain "jump conditions" are satisfied. In the context of the GRP these
conditions allow for a straightforward treatment of these singularities, as we show in
the next section. However, the centered rarefaction wave (CRW) is more difficult to
handle. It consists of a family of characteristic curves fanning out from the singularity
and covering a "triangular" area in the (r, t) plane. Due to the nonuniformity of the
data, those characteristic curves are not straight lines and do not carry constant values
of the flow variables. Thus, the features which facilitate the solution of the Riemann
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problem in the uniform case are lost and we are forced to take a closer look at the
behavior of flow variables near the singularity, in the region covered by the CRW.

This section is devoted to the study of the CRW, which constitutes the main
analytical tool used in this work. The basic idea is to use characteristic coordinates
throughout the CRW, so that the singularity is "blown up" into a "full segment" in
the characteristic plane, where the CRW is now represented by a rectangular zone.
The base of this rectangle corresponds to the singularity. The flow variables are smooth
in the rectangle. Their values at the base are related to a Riemann solution while their
first derivatives normal to the base correspond to directional derivatives in the (r, t)
plane. It turns out that these derivatives satisfy simple differential equations along the
base. Thus, knowing the derivatives at one endpoint enables us to determine their
values at the other (a "propagation of singularities" argument).

To fix the ideas we shall assume henceforth that the wave configuration is as
displayed in Fig. 1. (Recall that the nature of the wave pattern is already determined
by the associated RP.) In this and the next section we work solely with the Lagrangian
formulation (2.2), (2.3).

Let F be the characteristic families of (2.3), corresponding to the eigenvalues
+gA +Apc. At the singularity, the slopes of F- curves extend from -glA(O) at the
head to -g*A(O) at the tail of the rarefaction. Let us use characteristic coordinates
(a,/3) such that a const. (resp./3 const.) corresponds to a F+ (resp. F-) curve and
such that,

normalized slope of F- at the origin,

1 at the head characteristic,

value of : at intersection point of F/

with the curve/3 1.

In particular, the definition (3.1) implies,

(3.2) :(a, 1)= a, g(0, fl)= gift.

Thus, the CRW is parametrized by (a, fl) [-ao, 0] x [fl*, 1], where ao>0 is fixed and
/* g*lg-< 1. Any variable Q defined in this domain is represented as Q(a, fl) (and
this includes the coordinates , themselves). It follows readily from the definition of
a,/3 that the characteristic curves satisfy the equations,

(3.3)

Ot

Oct’

Observe that here A A(r) A( r(sc, t))= A( a, fl). In what follows we set A’(r)= dA/dr.
The characteristic relations along F are

ucgA’ OtOp ou
Oa goa A Oa

(3.4)
Op Ou ucgA’ Ot

A O
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Our objective in this section is to derive analytic expressions for all directional
derivatives oQ/oa(0,/) for the flow variables at the singularity (fl*-_<fl-<_l). As
mentioned in 1, our basic hypothesis here isthat all values Q(0, fl) are determined
by RL(p; V_, V+), where p=-g. Furthermore, we assume that Q(ce, fl) is smooth
up to the singularity a 0.

We start by deriving an asymptotic expression for the solution of (3.3).
LEMMA 3.1. The solution of (3.3), along with the boundary conditions (ce, 1)= ce

and (0, t(O, O, is given by

(3.5)
(,, t) ,#/:+ (,,/3),,

t(ce, )= -kcefl-1/2+ rt(ce, )ce2, k= (gtA(O)) -1,

where e (ce, fl), 1 (ce, fl are smooth functions (see Appendix for further details on e, ).
Proofi Differentiate the first equation of (3.3) with respect to fl, the second with

respect to ce and note that, at a =0, OA/O =or =0. Solving for Ot/Oce we obtain

O(Ot )Og Ot
2g(0, fl) (0, fl) +-- (0, fl). (0, fl) O.

From (3.2) and (3.3) we have that at/ace(o, 1)=-k and Og/O(O,)=g. Hence,
Ot/Oce (0, ) -k-1/2, O/Oce (0,/3) =/31/2, from which (3.5) follows readily. Q.E.D.

The characteristic relations (3.4) will now be used to determine Ou/Oce (0,/3). As
we shall see later, this leads easily to the determination of 0 V/Oa (0, ) (V as in (2.3)).
The following theorem is therefore the fundamental analytical result of this paper.

THEOREM 3.2. Let a(fl)=Ou/Oce (0, fl), fl*<-fl <-_ 1. Then a(fl) satisfies a differen-
tial equation of the form,

(3.6)
Ot

a’(/3) + H(/3) + T(fl) (0, fl) 0,

where H(fl), T(fl) can be determined explicitly from the equation of state and the initial
conditions ahead of the rarefaction (i.e., V, (0 VIOl)t). Furthermore, H(fl ), T(fl reflect,
respectively, the thermodynamic and geometrical nonuniformity ahead of the rarefaction.
In particular,

H(fl)O if (O) =O (S-entropy),

T(fl)O /fA’(O) O.

While the expression for H(fl is rather complicated and will be given in the process
of the proof, we have, with A A’(O)/A(O),

A 0
(3.7) T(fl) [u(0, fl )c(O, /3 )].

2

Equation (3.6) is supplemented by the initial condition,
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For a ),-law equation of state, (3.6) yields

a(/3) a(1) + c (/3 (3v 1)
gl(3 ), 1) 2

(3.9)7
A

),-3 A(O)-lp-f’[(),- l)Ul + 2Cl] (fl(’/-3)/2(+1)-1)

4Acl A(0)_lp_,. (/3<3r_.5)/2<v+l) 1).+3),-5
(Equation (3.9) must be modified for ),=, 3. See (3.21)7, (3.22)7.)
Proof We eliminate p from (3.4) by differentiating the first equation with respect

to /3, the second with respect to a, subtracting and evaluating at a =0 (where, of
course, Ot/O =0). This leads to

(3.10)

Og Ou Og
2g(0, fl)a’(fl)+-a (0, fl) - (0, fl)+ a() -- (0, )

Ot 0
-h--(0, fl) (u(0,/3) c(0,/3)g(0,/3)) 0.

Since the CRW is nonisentropic, it is impossible to compute g merely from p. So to
eliminate g we proceed as follows. Given a state (go, Po) let

(3.11) g=G(go, Po, p)

represent the location of all states (g, p) which have the same entropy as (go, Po). For
a < 0, let (a,/3) be as in (3.5) and let

(3.12) po(a, )=Pt+(O) )’ go(a, fl gl + (O)
be the initial values at s(a,/3). Since the flow is isentropic along the streamline
s const., we conclude from (3.11), (3.12), that,

(3.13) g(a,/3) G(go(a, ), po(a, ), p(a, )).

Differentiating this equation with respect to a and setting a 0 we have

O---g (O, fl)= [ Ggo(gt, pl, p(O, )) (O)Oot

(3.14)

a__p (0, t)+Gp(gt, pl, p(O, fl))

=1(/3)./3’/2+ Gp (gl, Pl, p(0,/3))

g(O, fl)a(fl)-Au(O, fl)c(O, fl)g(O, fl)-a (0, fl)

where 1(/3) is the expression in square brackets and we have made use of (3.4), (3.5)
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in the evaluation of oplOa and olOa. Inserting (3.14) in (3.10) results in

2g(0,/3)a’(fl) + E()a(fl)

+O--(O, fl) I()/-AGp(gu pu p(O, fl))u(O, fl)

(3.15) c(O, fl)g(O, fl) -a (0, [3)

Ot
(0, fl)=0,-xot-- (u(O, t)c(O, )g(O, t)) o

where
og ou

E()=-U-X (0, )+ Gp(g,, p,, p(O, fl))g(0,/3)= (0,/3).
op

But E([3)=------O. Indeed, from the second characteristic relation (3.4), evaluated at a -0,
we infer that

og o
E( -- (O, -- G(g,,

0
p,, p(O, fl)) =T-Z (g(O, fl)-

op
g(0, fl)) =0.

We have used here the fact that the limiting values Q(0,/3) are those of the associated
RP, hence isentropic with (gu Pt).

Turning now to the terms involving AOt/Oa (0,/3) in (3.15) we use once again the
second relation in (3.4) to get

Og0fl0t/ (0, fl)" Gp(gl, Pl, p(0, ))u(0, )c(0, fl)g(0,/3) -u(0, fl)c(0,/3) (0,/3).

Inserting the last equality in (3.15) we get (3.6) with T(fl) as in (3.7) and (since
g(O, gtfl

1 --1/2(3.16) H([3) = g-lfl 1(/3) (0,/3).

To show that H([3) vanishes identically if (OS/O)=O, we observe that under this
condition, keeping/3 fixed,

G(go(a, [3), po(a, fl), p(O, fl))-g(0,/3) O(32),
since the entropy at (go(a, fl), po(a, fl)) deviates only by O(a2) from that of (g, Pl).
Differentiation with respect to a leads to I([3)= O.

Equation (3.8) follows from (3.5) and (2.3) via the chain rule,

Ou Ou O Ou Ot Ou Op
a(1) =-a (0, 1) (0, 1)+ (0, 1) + A(0) k.

Finally, specializing to the ),-law case, (3.11) is replaced by

(3.17) v g= gO(oo) (+’)/2v

and the well-known solution of the Riemann problem in this case yields

p(O, fl) --pl[32v/(v+l) c(O, ) Cl(3’-1)/(3’+1) /9(0, fl) p/f12/(3,+l)
(3.18),

2 2 21 1)).U(0, )"- [Jl’- Cl-- C(0, fl)= Ul+ (1--fl (’/-1)/(v+
y-1 ),-1 3/-1
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It follows from the definition of 1(/3) in (3.14) that

(3.19)v 1(/3)= [(0)t _Y+12ct (0)]./3,
so that (3.16) becomes,

(3.20) H(fl)= [Y+ l (O)2c
Similarly, we have in this case,

pt(3’ + 1)/3

T(fl) oa (O, fl) (3"-1)u+ 2Cl -(+5)/2(’r+1)--4C! (v-7)/2(’r+l)

Equation (3.9) is now obtained by a straightforward integration. Observe that for
3’ , 3, we get

a(fl)=a(1)+(4gt)- c, -2 .(fl-1)
(3.21) r

-4plA(O) [(ut+Cl)lgfl-4c(fl/-l)]’ (7=3);

a()=a(1)+(2g)-1
cl -- ( --1)

(3.22) v

+4plA(O Ul + 2Cl 1) + c log fl r Q.E.D.

As was stated earlier, all other directional derivatives are now easy to compute.
We collect them in the following corollary, where, analogously to (3.11), we denote by,

(3.23) p J(po, Po, P),

the isentropic cue through (Po, Po).
COROLLARY 3.3. Given a()=u/a (0, ), the derivatives ofg, p, p are given by

(3.24) (0, fl)= gfl[a()+ Aku(0, fl)c(0, fl)fl-/2], k= (glA(O))-,

0a
0(0’ fl)= [ Gg(gl’ p" p(O’ fl)) (O) + G(g" pl’ fl))(0)],

(3.25)
op

+a(g,, p,, p(O, #)) . (o, #),

(3.26)
op

Specializing to the -law case, we have instead of (3.25), (3.26),

Og [{a y+l {a ] 3/2 4
y+l gt Op

(3.27) (o,#) [ko} ko] J (o,).
2el 2y p Oa

(3.28) (0,0)= t-c;2 O(+s)/2(v+’)+c(0,)-2(0,fl).0p
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Proof. Equation (3.24) follows from (3.4) and g(0,/3)= gfl. Equation (3.25) is
just (3.14) and (3.26) is its analogue, where Jp c-2.

To obtain (3.27) we use in (3.14) the expression (3.19) for I(fl) and (3.17) for
G. To prove (3.28) we see that in this case

(;o)
and c2 3’PIP. Q.E.D.

Remark 3.4. Note that given/3o [/3", 1], all the derivatives oQ/oa (0,/30) depend
only on data ahead of the characteristic/3 =/30 (i.e., initial data for : < 0 and values
for/30<=/3 <= 1). This, of course, is in accordance with the fact that this is really the
domain of dependence for this line, or, otherwise stated, that no sonic signals (i.e.,
characteristics) from earlier time impinge on the curve from the other side.

4. Time derivatives of p, u on the interface. We continue the discussion of the
previous section, assuming the configuration of Fig. 1. We seek here expressions for
(Op/Ot)*, (Ou/Ot)*, the time derivatives along the contact discontinuity : =0. As we
shall see,. these derivatives satisfy a pair of linear (algebraic) equations. Basically we
follow in this section the idea of van Leer [12].

In the present setup we have a shock travelling to the right. Using the conventions
of 2 we let Vr (resp. Vr*) be the pre-shock (resp. post-shock) values of V at the
singularity (obviously, the subscript is suppressed in u*, p*). The (Lagrangian) shock
speed Wr (i.e., initial slope of shock trajectory in :, coordinates) is given by the
well-known jump condition,

(4.1) Wr A(O) P*--Pr
U* tl

We may now state the following theorem (recall that h A’(O)/A(O)).
THEOREM 4.1. The derivatives (Op/Ot)*, (Ou/Ot)* are determined by a pair oflinear

equations,

(4.2) a + b d,

(4.3) ar +br =d,

where, with fl* g*/g and a(fl) as in Theorem 3.2,

(4.4) al 1, b (g,)-l, d, -A(O)(gg*l )l/Ea(fl*)- hu*c*.

As for ar, br, dr, they can be determined explicitly from the values of V*, Vr, (0
and the Hugoniot u, p) relation.

Specializing to the case of a T-law we have, with/x2= (),- 1)/3/+ 1),

1 P*ar= --2+--
2 p* + tZ2pr

2(p* +/x2pr) + A(O) w;l+ A(O)-’ Wr(g*r) -2,

dr Lu (t9) () (19f)+Lp +Lo +A. L.,
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where

L, A(O)(ur2 U*)( 2 g2r )-A(O)2W-lg2-W,fir + x
p*+/xZpr

2
U/ t/rLp 23(0)+--- W ,

p +/x2p

A(O) p*-p
L. 2 p

L, WA(O)-’u*(p* )-’

P*--Pr 2 p*p
Proo To establish (4.2) we note that the flow in the region (, *) N N 0 (i.e.,

between the tail characteristic of the rarefaction fan and the contact discontinuity) is
smooth. Using the chain rule at 0, * we get

oaOP (0, fl,) (Op) Oa (O) * O fl,(4.6) (0, *)+ (0, ).
0a

From (2.3) we have (Op/O) -A(O)-(Ou/Ot)*. Also, Corollary 3.3 with fl fl* yields

0___p ,) 3" u* (t3
Oa

(0, gfa( )+ A c*i A(O)-’ ,),/2

Using this expression and (3.5) in (4.6) gives (4.4).
Turning now to (4.3), recall that the Hugoniot (u, p) relation can be written in

the general form,

(4.7) K(u, p, u+, p+, p+) =0,

where (u, p) are the post-shock values, (u+, p+, p+) are the pre-shock values. The shock
trajectory in (, t) plane has the slope,

W+= A(r(, t)) P-P+,
U U+

so that by differentiation,

(4.8) (0+ W+0) K (u, p, u+, p+, p+) 0.

As t-)0, we have O/Ot Q+-)(oQ/ot)r for Q= u, p, p (see Table 1, 2), while (Ou/Ot,
Op/Ot)-((Ou/Ot)*, (Op/Ot)*). Similarly, o/oQ+(oQ/o)r while (ou/o, op/o)
((ou/O)*, (op/o)*). Now, using (2.3) we may write

(__) (_.) (__) (O(Au)) (O_t)Ou
-A(O)

Op Op -g2
\ O =--Or\ O

while

(4.9)

=_A(0)_10u *,

_A(O)_,(g,)_20p
*

A(O)-lu*
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Observe that it follows from the definition (2.2) of the coordinate : that,

P ’’ (P*)-’A’ g"
A(O)"

Incorporating these considerations in (4.8) we get a relation of the type (4.3), with the
dependence of a,., b,., dr as stated.

Specializing to the y-law case we have [5, 81],

tx
/

(4.11) K(u, p, u+, p+, p+) u- u+-(p-p+) p+(p--p+) Ix y+ 1’

and carrying out the computations in (4.8) we obtain (4.5).
Remark on regions ofsmoothflow. In such regions IV*- V_I, IV*- V+

are all O(Ax). Thus it follows easily from (4.4),(4.5) that within O(Ax),

(4.12) a 1, b g-l, d -A(O)ga(1)- utc,

(4.13) a=-l, b=g-, dr=-A(O) g -uc,

where in (4.13) we have used the approximation W A(0)g, Observe that in view of
(3.8) the case of "weak rarefaction" ((4.12)) is in complete agreement with the case
of a "weak shock" ((4.13)) (changes in signs are due to the reflection

Using the coefficients (4.12), (4.13) in (4.2), (4.3) the values of (Ou/Ot)*, (Op/Ot)*
are determined with an error which is again 0(Ax) and in this case we deduce from
(1 5) that the flux values F(U) n+l/2 n+l/2

+/, G(U) are evaluated with an error which isi+1/2

0(Ax) whereas the differences appearing in the right-hand side of (1.2) are 0(Ax3).
Hence, the scheme (1.2) retains its second-order accuracy in this case.

5. The Eulerian GRP, nonsonic case. In this section we take up our main goal in
this paper, namely, the solution of the GRP for the Eulerian system (1.1), in the sense
of (1.4). Our setup is again as shown in Fig. 1, with the jump located at r=0, and
flow variables linearly distributed on both sides. As was discussed in the Introduction,
we use a "local" Lagrangian coordinate, as defined by (2.2). The passage from
r-derivatives to :-derivatives is given by,

(5.1) (O-)=A(O)-p-i-I(OQ) (O) (O-r)-r l’
A(0)-’p-’

"(See the paragraph following (2.3) considering the consistency of the assumptions of
simultaneous linearity in terms of :, r.)

The results of 4 now serve to determine (Op/ot)*, (Ou/Ot)*, the time-derivatives
in the direction of the contact discontinuity. We are looking for derivatives (oQ/Ot)o,
Q u, p, p, in the direction of the grid-line r--0. Let sc :(t) be the representation of
this grid-line in (:, t). It is easily seen that

(5.2) d_ a(r(sC t))p(, t)u(, t), (0)=0.
dt

Indeed, this follows by differentiating the relation r((t),t)=O and noting that
O/or=ap.

The values in the right-hand side of (5.2) at :=t=0 are given by Uo
Rz(0; U, U), the solution of the associated RP (see (1.6)).
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In this section we consider the nonsonic case, namely, the line = (t) is not
contained in a rarefaction fan. From (5.2) and the chain rule we get

(5.3)
oQ

o =- Q(, t)t_-o-A(0)poUo-Q(,t),=o, Q=p,p, u.

In dealing with (5.3) one must distinguish among several cases, corresponding to the
various possible locations of r 0 relative to the wave system. We label them as k 1
to 4. Let We A(O)-p-Iw + Ur be the "Eulerian" shock velocity. Then:

k 1 if u- c, > 0. In this case Uo UI.
k 2 if u*-c* < 0 < u*. In this case Uo U.
k 3 if u*< 0 < We. In this case Uo U.
k 4 if We < 0. In this case Uo U.
The t-derivatives in the right-hand side of (5.3) are obtained directly from the

results ofthe previous section (note that, e.g., (Op/Ot) (c)-2(Op/Ot)* is the derivative
needed for the case k 3, etc.), or, in the cases k 1 and k 4, from (1.1).

The -derivatives in the right-hand side of (5.3) are, of course, equal to the initial
slopes for k 1, 4. For the case k 2 (resp. k 3) they correspond to (oQ/o) (resp.
(oQ/o)). See Table 1, 2. It follows from (2.3) that the derivatives of p, u, can be
expressed in terms of (Op/Ot)*, (Ou/Ot)*, (see (4.9)). The following lemma handles the
density.

LEMMA 5.1. Assume the setup of Fig. 1. en

(,)_/ oo op *
(, *+(-(-’(c-

+,, "[3(P)A(0) w;] +
Pr /

(O(Au))+
0

[-g(p)2A(0)2 W:3

+ [-2A(0)W’(p)] 2(p)eu*
OA *

Remark. Observe that (OA/O), (OA/O) are given by (4.10).
Proo To establish (5.4) we proceed as in (4.6) to obtain,

OO(o,,=(c_ (o,*+ (o,
Using (3.5) and solving for (Oo/O) we get (5.4). To prove (5.5) we use a procedure
similar to (4.8). Thus, using a well-known shock relation [5, (59.05)] we may write,



SECOND-ORDER SCHEME FOR COMPRESSIBLE DUCT FLOWS 759

As in the case of (4.8), pre-shock time derivatives are translated into spatial derivatives
whereas the post-shock derivatives (Op/O)*, (Ou/O)* are evaluated by means of (4.9).
Hence, the last equation can be solved for (Op/0)*, resulting in (5.5). In the process
of obtaining (5.5), use is made of the two expressions for the Lagrangian shock speed,

P* Pr U* UrWr- A(O)--g=A(O). Q.E.D.
/’/ Jr ’/’r "/’r

To sum up the present case, we see that the results of the previous section and
Lemma 5.1 enable us to implement (5.3) for all flow variables, thus concluding the
treatment of the GRP for the nonsonic case.

6. The Eulerian GRP, sonic case. In this section we assume once again the setup
of Fig. 1 and the same "local" Lagrangian representation. However, we assume now
that the grid line r-0 is contained in the F--rarefaction fan, for which we use the
(characteristic) notation and analysis of 3. Of course, the representation (5.2) of r 0
is of no use here since (5.3) is meaningless in the situation at hand. We are forced,
therefore, to replace the (, t) representation by a more refined characteristic parametriz-
ation.

Let (a(t), fl(t)) be the trajectory r=0 in the (a, fl) plane. We have (a(0),
/3(0))= (0, flo), where/30 is determined by,

(6.1) u(O,/3o) c(O,/3o).

For a T-law gas we obtain from (3.18)v,

y +
+1 T-1

In the domain covered by the rarefaction fan all flow variables are represented as
functions of a,/3 (see 3) and (5.3) is replaced by,

(aQ) 0O-- aO(6.3) o=-a (O, flo) a’(O) +- (O, flo) fl’(O).

In view of our basic hypothesis (1.6) all derivatives oQ/o (0,/3o) are evaluated from
the solution of the associated RP. Also, the values of oQ/oa (0,/3o) are all given in
Theorem 3.2 and Corollary 3.3. We are left with the problem of evaluating a ’(0), /3 ’(0).

LEMMA 6.1. We have

(6.4) a’(0) -A(O)gtfl/2,

1 [O(pc) O(pu)
(6.5) /3’(0) = /:a(o) (0, o)- (0, o)

L oa

Proof Equation (6.4) is easy. Simply regard as a function alLong (a(t), fl(t))
and use (6.3) to get,

ot ot
1 (0, flo)" a’(O) +_---y (0, flo)" [3’(0) -g-la(o)-ll/2a’(O).

On the other hand, (6.5) is much harder to establish and requires further details about
e(a, ), l(a, ) in the expansion (3.5). We prove it in the Appendix.

The description of the Eulerian scheme is now complete.
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7. Numerical experiments. As was mentioned in the Introduction, our scheme is
a straightforward implementation of the formulas (1.2), (1.5). Thus, we need to solve
one Riemann problem per point per time-step. In addition to that, the main bulk of
computations is involved in the evaluation of [(O/Ot)U]7/l/2 (see (1.5)). For simplicity
let us assume a 7-law equation-.of-state and that all points are nonsonic. Then the time
derivatives are determined by equations (4.2), (4.3) for the Lagrangian case and the
additional modification (5.3) for the Eulerian case. The evaluation of the coefficients
in (4.2)-(4.3) is given in (4.4)-(4.5)v. It is seen that the evaluation of a(fl*) forces one
exponentiation in the planar case, three exponentiations in the nonplanar case. Thus,
roughly, the computation of the time-derivatives requires one to three exponentiations
and the order of magnitude of 20 multiplications per point per time-step. Recall that
the solution of a Riemann problem involves iterations. Hence, the additional amount
of work needed for the computation of time derivatives does not usually exceed 50%
ofthat required by the Riemann solver. To summarize, without any attempt at efficiency,
the total amount of work involved is much less than two Riemann solvers per point
per time-step. As mentioned earlier, the monotonicity algorithm is of the simplest type
and requires virtually no additional computational effort.

Another contributing factor to the overall efficiency of the present scheme lies in
the fact that it turns out to be very stable numerically. We can use a CFL number
which is as high as 0.9 without affecting the results or, alternatively, use a constant
fixed At which is not required to be very small even at times of interactions (such as
reflection of a shock wave from a center of symmetry).

We present here the results of two test problems.
(a) A converging cylindrical shock. Initially a cylindrical diaphragm of radius

r-- 100 separates two uniform regions of gas (7- 1.4) at rest. We take p-- p --4 in the
outer region, p--p- 1 in the inner region. Removing the diaphragm at 0 leads to
a shock wave followed by a contact discontinuity, both moving inward, and a diverging
rarefaction wave. As is well known, the shock accelerates as it approaches the axis of
symmetry, is reflected from the axis, interacts with the (still converging) contact
discontinuity, which results in a transmitted shock, a contact discontinuity (converging),
and a weak reflected (converging) shock. This problem was treated by Lapidus [9],
Abarbanel-Goldberg 1] and Sod 11]. Before presenting our results we must refer to
the boundary conditions at the singularity r-0.

The analytic expressions derived above become singular as A(0)-0. Thus,
naturally, one obtains a solution U, using an approximating cross-section A (r), and
then. lets e - 0 in order to get the limit solution U. One possibility that comes to mind
is,

A(r)={A(r), r>=e,

In this case, however, A(r) is discontinuous, or, if ’smoothed" at r-- , requires A(r)
to grow indefinitely, contrary to our basic hypothesis that all functions are ’approxi-
mately linear". Hence, the following seems to be a better choice,

(7.1) A(r)--A(r)/e.
At r 0 we impose the condition u 0. This amounts to a "reflection procedure" at
r 0, or, equivalently, to the fact that equations (4.2)-(4.3) reduce to the single equation,

Note that the coecients in (7.2) depend on e. After determining (Op/Ot)* we may
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proceed as before to obtain the solution U(r). It is remarkable that the passage to
the limit e --> 0 can be effected by the application of the following simple rule.

CLAIM 7.1. Letp(O, t) lim_,o p(O, t) be thepressure at the singularity r=0, where
A(0) O. Then (Op/0 t)* p’(O, t)lt =o can be computed from (7.2) by setting,

p

Then, (Op/Ot)*= c-2(Op/Ot) *.
Observe that (Ou/Or)r, (Op/Or)r, are the slopes (with respect to r) of the initial

data at r 0 (and 0).
Proof. Consider (7.2) with A A(r). At r=0 we apply the condition ur u* =0

so that the solution of the RP there gives just an "acoustic wave", i.e., the characteristic
line with slope c(0). Thus, we are in the situation discussed in the remark at the end
of 4, and the coefficients in (7.2) are given by (4.13). Using that d:= Ap dr (see (2.2))
we replace A(O)(OQ/a)r by p-l(aQ/ar), Q= u, p. This leads to (7.3).

Turning back to the cylindrical shock problem described above, we used our
scheme with 200 points (i.e., Ar 1), applying (7.3) at r 0. There was no additional
dissipative mechanism, except for a simple monotonicity algorithm suggested by van
Leer 12, Fig. 3] and which says, roughly, that slopes are set equal to zero at extremal
points (of average values) and are so adjusted that cell-boundary values never go
beyond the average values of neighboring cells.

The results are shown in Figs. 2-7. In each figure profiles of the velocity, pressure,
density and entropy (=p/p) are given at the specified time-level. Let us discuss briefly

VEL.OCITY RT T- 54.000 PRE$5URE RT T- 54.000
1. 20.

10.

0. 200. 0.

DENSITY AT T- 54.000 P/ROC- AT T- 54.000
5,

200.

O.
O. 200. O.

FIG. 2. A cylindrical converging shock at 54.

2011,
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VELOCITY FIT T- 56.000 PRESSURE
20.

RT T= 56.000

200’DENSITY RT T= 56.000 P/ROO- FIT T= 56.000
5.

200.

o. 200. o. 20n.

FiG. 3. A cylindrical converging shock at 56 is about to hit the axis of symmetry.

each figure:
Fig. 2. At t- 54 the converging shock approaches r 0.
Fig. 3. At t- 56 the shock is about to hit the axis.
Fig. 4. At 58 the shock has been reflected from the axis.
Fig. 5. At t--70 the diverging shock (followed by a rarefaction wave) is headed

towards the converging contact discontinuity.
Fig. 6. At t- 90, interaction of shock and contact discontinuity.
Fig. 7. At t-- 110, as a result of the interaction we see, in addition to the original

shock and contact discontinuity, a weak converging shock. In previous calculations
this weak shock was detected only by Sod [11], using the sharp resolution of the
random choice method.

Overall our results here are in very good agreement with those of Abarbanel-
Goldberg 1] and Sod 11]. This includes the arrival time of the (main) shock at r 0,
as well as the shape and extremal values of the flow profiles.

(b) Quasi 1-D nozzle problem. We have calculated the steady-state solution to
the duct flow problem in Shubin, Stephens and Glaz 10]. The cross-section is given by

A(r) 1.398 +0.347 tanh (0.8 r-4), 0 -< r<_- 10,

and the boundary conditions are"

p(O, t) 0.3809, p(0, ) 0.502,

u(O, t)= 1.299, p(lO, t)= 0.776.
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VELOCITY RT T- 8.000 PRESSURE RT T- 58.000
210.

-I.
O,

DENSITY lqT T= 58.000
200. O.

P/ROO AT T- 58.000
5,

200

O, 200, O, 2on,

FIG. 4. At 58 the shock has been reflected from the axis of symmetry.

The results for the steady-state solution are given in Figs. 8 and 9, where 16 and
32 equally spaced mesh-points are used, respectively. The exact solution is plotted as
a solid line. This problem has been worked out by Colella [3] and Harten [8] using
their high-resolution methods. Observe that the finer mesh produces an improved
numerical result. In particular, there is no significant deviation at the shock (compare
with [3], where an undershoot is present in the finer mesh).

We emphasize once again that the scheme used here is precisely that used in the
previous test problem and we did not have to make any special adjustments.

Appendix. The sonic case, proof of (6.5). The expansion of :, in terms of the
characteristic coordinates a,/3 inside a rarefaction fan (as in Fig. 1) is given by (see
(3.5))

(,, )= fl,/+ (,,
(A.I)

t(a, ) -ka-’/2+ rl(a )a-, k= (g,A(O))-’,

where (a,/3) e [-ao, 0] x [/3", 1]. Our first objective here is to study e(a, ), rl(a, fl)
in some more detail. Recall that the functions :(a, ), t(a, ) satisfy the characteristic
equations,

a Ot
(A.2) aa a’
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VELOCITY I::IT T- 70.000 PRE$SURE
10.

liT T- 70.000

O.

DENSITY 4T T- 70.000
tO.

O.
200,

5.

O.

PIROO- AT T- 70.000
200

O. 2007" O.

FIG. 5. At 70 the shock is diverging while contact discontinuity is converging.

Inserting (A.1) in (A.2) and dropping all terms which are O(a2) we have,

(A.4)
fl,/:z+ 2ae(O, ,8)= -g(O, fl)A(O)[-kfl-’/2+ 2a’O (0, ,8)]

+O(gA). (0, fl) k-l/=a.
Oct

Using g(0,/3) gift we get,

ka(gA)
(A.5) e(0, fl)- Oa

(0, fl). fl-1/._ k-lilT/(0,/3).

Similarly, inserting (A.1) in (A.3) and dropping all terms which are O(o3) We get

SO that

1/2a,8-’/:z+ e(O, fl)a:z= g(O, ,8)A(O)[1/2ka,8-3/2+ ’q (0, ,8)a 2]
k a(gA)

(0, ,8)a2,8 -3/2t2 Oa

k O(gA)
(A.6) e(0, fl)= k-lflr/(0, fl)4

2 aa (0, fl). fl
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VELOCITY RT T= 90.000 PRES8URE FIT T- 90.000
113o-

O.

DENSITY RT T= 90.000
200. O.

B.
AT T= 90.000

00

FIG. 6. Interaction of shock and contact discontinuity at 90.

20N

Combining (A.5) and (A.6) we obtain

d k _/2 d [ _/23(gA)(o,B) ](A.7) - (/3-1/2(0,/3)) /3 /3 ac

supplemented with the initial condition (see (3.2)),

(A.8) e(0, 1) =0.

Next, we examine the trajectory ((t),/3(t)) which is the image of the grid-line
r--0.

Using the Lagrangian representation : :(t) for this curve, we get,

O ,(
(9

,( ,/_ ’(t)+1/2G,B-’ ’(:’(t)=-c t)+--/ t)=(/3 +2cee(c,/3))ce /2,B t)+O(c2).

On the other hand, from (5.2),

O(Apu)
’( t) -Apu -A(O)(pu)(O, rio) (0, rio)" or(t)

O(Apu)
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VE[.OCITY FIT T= 110.00 PRESSURE
10.

AT T= 110.00

tO.

O.

DENSITY RT T- 110.00

Oo
200. O.

P/ROQ RT T= Ii0.00
200

O. 200, O. 2on.

FIG. 7. At 110 the wave pattern after the interaction includes a weak converging shock, the original
(diverging) shock, and a contact discontinuity.

where flo is determined by (6.1). But (6.1) in conjunction with the characteristic relation
dp/gdu =0, which is valid for the solution of the associated RP along the F+-
characteristic a 0, implies

O(Apu) O(pu)
(0, flo)= A(O) (0, flo)= O.a a

Hence, equating zero order terms in the two expressions for ’(t) we have

(A.9) a’(0) -k-lfl/2,
which is exactly (6.4), while for first order terms (in t) we have

a’(O)fl’(O)fl;1/2+ fl/2a"(O) + 2e(O, flo)a’(O)2
O(Apu)

(0, flo) a’(O).

Similarly,

implies

dt a
’( t) + a ,(,B t)-=l

dt Oa -ka’(O)’(O)fi3/2 + 2a’(O)2r/(0, flo) ka"(O)-1/2 O.
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,VELOCITY. PRESSURE

O,

DENSITY
O,

10’

P/ROO

O,
O. 10. O.

FIG. 8. A steady-state flow profile in an expanding nozzle, using 16 mesh-points.

Let us write the last two equations in the form

(A.10) a’(0)/3l/Zfl’(0)+ fl/2a"(0) -2e(0,/3o)a’(0)2 a(Apu)
19ol.

(o, to). ’(o),

(A.11) fl -3/2a ’(0),1’(0) a"(O)fl -1/2 -2k-la’(O)2,q (0, ,/o).

Multiplying (A.11) by flo and adding to (A.10) we get

2,8-’/2,8’(0) -2a’(O)[e(O, ,80)+ k-l,8o (0, ,8o)]
O(Apu)

(o,/30).

The expression in square brackets can be evaluated by (A.5), so that, in view of (A.9),

2/-’/2/’(o) -k#’/=’(o) a(A) (o,o)-
O(Apu)

19(gA) 19(Apu)
(o, to) (o, to).

(o, o)

Finally, note that along sx(t), A(a, fl)=-A(O), hence, aA/19a a’(O)+19A/afl./3’(0)=
19A/19a. a’(O)=0, so that (6.5) follows from the last expression.
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.VELOC -r {.,: PRE,SSUiE

DENSIT’f

O,
I0. 0. 10.

PIRO,O

O,
O. I0 O. In.

FIG. 9. A steady-state flow profile as in Fig. 8, but using 32 mesh-points.
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ON GENERATING TEST PROBLEMS FOR NONLINEAR
PROGRAMMING ALGORITHMS*

RICHARD H. BARTELS- AND NEZAM MAHDAVI-AMIRI

Abstract. We present techniques for the generation of test problems which provide a way of constructing
nonlinear programming problems from a wide variety of given functions. These techniques permit one to
specify an arbitrary number of points, at each one of which the problem should satisfy some "interesting"
conditions (i.e. be optimal or stationary or degenerate), and to determine the characteristics of functions
and derivatives at these points (i.e. choose predetermined values for functions, gradients, Hessians and
Lagrange multipliers). Moreover, there is a limited capacity to create test problems with special structure.

We give a sample of results obtained by using these techniques to generate test problems for two
algorithms to solve problems having nonlinear-least-squares structure with nonlinear constraints.
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1. Introduction. During the last decade a number of methods have been developed
for minimizing general objective functions subject to general nonlinear constraints.
These methods are characterized by their properties of global convergence, asymptotic
superlinear rates of convergence, and formulation in terms of processes that can be
efficiently and accurately implemented as numerical algorithms. Examples would
include the following references: [5], [6], [15], [16], [25], [26], [29].

No case has to be made for the fact that, in translating these or other methods
into mathematical software, a ready supply of test examples can be extremely useful.
It is less often recognized that test examples can also be used to probe for oversights
in the theory, and can therefore be useful in earlier and more fundamental stages of
algorithm development. It was with the intention of exploring ways of making the
generation of test examples more flexible that the present work was done. The goal in
mind was that it should be easy to craft examples to probe an algorithm’s behaviour,
producing local "scenario" conditions that test the theoretical assumptions upon which
the algorithm is based or that exercise critical sections of the algorithm. We believe
that this work represents a step toward that goal.

In 2 of this paper we review the commonly given necessary and sufficient
conditions for a point to be an optimizer of a nonlinear programming problem. In 3
we propose techniques for perturbing any given function so as to impose upon it a
preselected value, gradient, and/or Hessian. These techniques permit the construction
of the Hessian in a partitioned form so that its "projections" onto given subspaces
can be specified. In 4 we apply the content of 2 and 3 for the construction of
nonlinear programming problems. The material of this section is suggestive rather than
comprehensive, and it is oriented toward the crafting of individual problems with any
number of "interesting" points" maxima, minima, saddles, degeneracies, etc. In the
last two sections we explore whether these techniques are at all amenable to the
automatic generation of problems as well as the individualized design of test examples.
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In 5 we give a brief survey of two constrained nonlinear least-squares programs that
were written to explore the usefulness of these techniques. In 6 we give some samples
of our experience in automatically constructing problems for these codes.

The idea of devising methods to generate test problems is not new. References
[2], [18], [20], [21], [23], [27], [31], [30], [35] provide a sampling of the literature.
We believe that this work represents the first one in which multiple points can be
specified for the test examples. An example of the specification process, as it might
be done by hand, is included for illustration. An automatic generator, using the material
to be presented here, has been prepared for the simple case of specifying single points
as optimizers, and the techniques had enough flexibility that we were able to impose
a special structure on the problems generated.

Test generation methods provide a supplement to collections of optimization
problems; e.g. [4], [9], [17], [32]. The following references provide some discussions
on software testing, and the reporting of test results, from a broader perspective: [7],
[8], [22].

It should be brought out that this paper proposes some tools for generating test
examples rather than a single, concrete method. The approach derives from some
observations about the chain rule coupled with some conditions of interpolation that
can be associated with objective and constraint functions in order to force one or more
given points to satisfy predetermined conditions of activity, stationarity, optimality,
degeneracy, or conditioning.

(2.1)

2. Optimality conditions. We are interested in solving problems of the form

minimize bo(X)

such that

j(x) O, j e J.,

6(x)-> 0, jeJ,,

where Je { 1,. , l} is the index set of equality constraints and J1 { + 1, , + m}
is the index set of inequality constraints. We will denote the combined index set by

a-ae U J,.

We denote the index set of the active inequality constraints at any point x by

JA(X)=- {j J,: (j(x) --O}.

Throughout this paper we will assume that all functions are twice continuously
differentiable. We first state necessary conditions for a given point to be an optimizer
for problem (2.1). In order that these conditions be applicable, constraint qualifications
must hold at the point. Appropriate qualifications, and their underlying theory, can
be found in [12]. In practice, the constraint qualifications given in this reference (or
any other of suitable generality) are difficult to verify computationally. In order to
implement algorithms, it is often assumed that the following more strict constraint
qualifications hold:

Nondegeneracy assumption. Letting g stand for the optimizer, as well as for any
point encountered by the algorithm, the vectors

(2.2) Vbj(), j Je [.J JA(:)

are linearly independent.
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This is more than enough to imply satisfaction of all ofthe constraint qualifications
given in 12].

First-order necessary conditions. Let x* be an optimizer for (2.1), and let an
appropriate constraint qualification be satisfied at x*. Then there exist Aft, j J such that

(2.3) V6o(X*)- E v6(x*)- E ’v6(x*)=o,
J-JE J-JA(x*)

A-->0, jJA(X*),

6j(x*) 0, j ,l,

4,(x*) _-> 0, jJ,

x(x*) 0, jJ,.

Second-order necessary conditions. Let x* be an optimizer for (2.1), and let an
appropriate constraint qualification be satisfied at x*. Suppose that there exist
satisfying the first-order necessary conditions. Then for all

zR" s.t. zrV4,(x*)=0, j6J,

zTVdp(x*) =0, j 6JA(X*)

we have

(2.4) zT[’2fDo(X*)--’" /’72j(X*) E i’2)j(X:)] ZO"
JJE jJA(X*)

For x* to be a strict local minimum of problem (2.1) we need the conditions
stated in the following result.

Second-order sufficient conditions. Let (x*, A*) satisfy the first-order necessary
conditions and an appropriate constraint qualification. If for every nonzero z R" such
that

zrV6(x*) 0, jJE,

zTfj(X:)’--O, j,Ja(X*) and h > 0,

zrV(x*) >_- 0, jIA(X*) and X=0,
it follows that

(2.5) zT"[V2o(X*)-JJE JJA(x*)

then x* is a strict local minimum of problem (2.1).
DEFINITION. The function

L(x,
jJ

is the Lagrangian of the problem.
If we regard V and 72 to be differentiation operators with respect to x alone, and

if the columns of the matrix Z form a basis for the orthogonal complement of the
space spanned by the vectors Vb(x*) for jJE [,-J JA(X*), then

(2.3) can be written as VL(x*, A*)= 0;
(2.4) says that zTVEL(x*, )*)Z will be positive semidefinite at an optimizer;
(2.5) gives us conditions under which ZrV2L(x*, A*)Z will be positive definite.
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The first-order conditions clearly imply that A 0 for all j E JI\JA(X*); hence at
(x*, A*) the function L can be written in the more explicit form indicated by the first-
and second-order conditions.

The idea to be presented for generating test problems is straightforward: the
functions 4)j(x), j E J(3 {0}, will be constructed from given functions qj(x) to which
perturbing functions are added. The perturbing functions are chosen so as to force
selected values, gradients, and/or Hessians to be taken on at selected points. It will
be seen that this choice is achieved by the introduction of simple conditions of
interpolation on the perturbing functions. The values, gradients, and/or Hessians of
all of the (h can, in their turn, all be selected in a coordinated way so as to force the
first- and/or second-order conditions to hold at a number of selected points. The choice
of the q(x) will be left open throughout the paper. Within limits, the choice may serve
to provide a desired characteristic or structure (e.g. exponential growth, oscillation,
boundedness below, sum of squares format, some degree of discontinuity, etc.).

3. Specifying values, gradients, and Hessians. Take a finite number, s >-1, of
selected points x(a), x(s). Let

and

be functions,

be scalars,

be vectors, and

be symmetric matrices.
Consider letting

q" R" -> R

otji R

dji hji R"

Dji R

(x) qj(x)+ {ol.jitji[djT(X--X(i))]+ yj,[hfi(x-x(i))]
i:1

(3.1) + .ji[1/2(x X( i)) TDji x X(i))]},

forjJU{0}and i=l,...,s.
The functions b will provide us, later on, with the objective and constraint

functions for a nonlinear programming problem of the form (2.1). The functions

qi(x), jeJ{O}

may be chosen at will to provide some behavioural properties for the bi.
We will see that the values of the bj can be determined through the selection of

the scalars and vectors

aji R and dji R",

that the gradients can be determined through the selection of the matrices
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and that the Hessians can be determined through the selection of the matrices

The process of imposing the desired values, gradients, and Hessians on the b will
require that the functions

satisfy conditions of interpolation to be discussed below.
We begin by establishing that the gradient of b is:

V dp(x) Vq(x) + ( r Wa.i,., d.i (x x’)]d, + yj/[ h, (x x’)]hi
k=l

(3.2) +,[(x- )]}
and the Hessian of is"

hji(x_x(i))]hjihji
i=1

(3.3) +j[)(x x ))D(x x )]D(x x )(x x )D

Let us introduce the following quantities"

O,(x) d(x- x

n,(x)= t)h, (x x’)), n n,(x’) h(x x’)),
,(x) (x x’))D,(x ’), ,(x’)) (x’- x’)*D,(x’ x’).

Note that 0)= )= rJ])= 0.
In terms of these quantities (3.2) and (3.3) become, respectively,

i=1

and

V2(x)= V’q(x)

i=1

+’[,(x)]D,(x x’))(x x’)TD, +,[z3,(x)
The vectors d and the functions may be exploited to define (x’), for all

j, t. The vectors h and the functions T may be used to specify the gradient of (x’)
for all j, t. The matrices D and the functions may be defined so that the Hessian
of (x) is specified for all j and t. To make these obseations more concrete, we
begin by pointing out how the quantities

6(x’), v6(x’), v6(x’)
depend upon the values of the functions

and their first and second derivatives at the argument values
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Some critical assumptions must be made about the points x(i), 1, , s in order
to proceed. For a fixed j the points must interact with the vectors dji, 1, , s so that

oP= d(x(’- x(’) 0

for all i, 1,. , s but t. Similarly, for hj and Dii, 1,. , s, we must have

r/J)= h.iri x ‘) x i)) 0

and

5=(x(’- x(’)D,(x(’- x(’) 0

for i, 1,..., s but iS t. These assumptions frequently hold for small s, even for
randomly chosen x’s, d’s, h’s and random nonsingular D’s. Should the assumption
fail to hold, it will be necessary to re-select an offending x, or alternatively revise a
d,h, orD.

Now, if a fixed index is selected, and if the functions 8i, yj, and have been
selected so that the following conditions hold

,[0;] 0 for all i t, i= 1,..., s,

62t[0)] 6t[0] 1,

y[J])] 0 for all i= 1,. ., s (including t),

and

ji[ (t)
r) ]=0 for all i= 1,..., s (including t),

then, from (3.1), d,b.i(x(t)) reduces to

(3.4) dpj(x

The above conditions on the functions 8, y, and f are the conditions of interpolation
mentioned previously. It should be clear from (3.1) why these conditions have their
particular form and why they lead to (3.4). Since the choice of these functions is up
to us, we may construct them so that the given values of 1 and 0 are taken on at the
given points 0, r/, and -. Using these observations, we see that the value of b(x(’)) can
be specified through the selection of

A similar discussion involving interpolated values of 1 and 0 derived from (3.2)
for 8j, 7j, fj will lead to the equation

(3.5) V bj(x

from which the choice of h, will serve to specify Vb(x(). Finally, a discussion
involving interpolated values of 1 and 0 derived from (3.3) for 8j’, y)’, and 12j, will
serve to specify V2t(x(0) as

(3.6) V2tj(X(t)) 72qj(x(t)) + D,.
It should be remarked that, if any functional value 4(x’)) is not to be set

specifically, then the corresponding function , may be set identically to zero. This
choice of , would not violate any conditions of interpolation that may arise from
other specifications, since those conditions only insist that the values, first, or second
derivatives of , are to be zero at other points. Likewise, y, or 12, may be set identically
to zero when the corresponding gradient or Hessian is not demanded.
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If all of the conditions of interpolation stated or alluded to above are collected
together, we find that the following must be imposed upon 8ji:

j,[0] 1,

6ji[ 0[)] 0 for all i t, and for all j such that bj is specified at x(’),
(3.7)

6i[ 0J/’)] =0 for all i, and for all j such that Vbj is specified at x(’),

6’][ 0[)] 0 for all i, and for all j such that V2b is specified at x(’).

All other values and derivatives of 6i are immaterial.
Likewise, for

y,[0] 1,

(3.8)
,,[ n(. =o

d finally for

OJ,[0] 1,

(3.9) [)] o

for all i, and for all j such that b is specified at x(’),
for all i t, and for all j such that V4 is specified at x(’),
for all i, and for all j such that V4 is specified at x(n.

for all i, and for all j such that bj is specified at x(n,
for all t, and for all j such that 7
is specified at x(’),

for all t, and for all j such that ’2b is specified at x(’).

Programmatically:

(1) Choose x(1), ., x(s).

(2) For each t= 1,. ., s

(2.a) To specify b at x(’), select a value for 4(x(t)), choose djt at will, and set

ay, bj(x(n) qy(x(’)).
(2.b) To specify at x(n, select a vector for V(x(n) and set

hit V 6j(x(t)) V q(x(t)).
(2.c) To specify V2& at x(t), select a symmetric matrix for V&.(x() and set

D, V:6(x(’)) Vq(x(’)).
(3) For all i, j, and #

(3.a) Determine the quantities

o)= aj(x(’)-

(t) r (t) x(i)),hj ,

)=(x(’)- x(’))O,(x(’)-
(3.b) Check that each of these quantities is nonzero. In the (infrequent) event

that a zero occurs for any i,j, i, either x() or x(‘) must be discarded,
or d, h, or D must be revised. Return to step (1).
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(4) Collect together from (3.7), (3.8), and (3.9) all ofthe conditions ofinterpolation
that are required by the specifications made in step (2) above, and construct
any functions ;i, Y;i, ;i satisfying those conditions.

This outline provides only the background for constructing test examples. The arbitrary
determination of values, gradients, and Hessians is not enough. We proceed in the
next section to suggest ways of determining bg(x’)), Vbg(x’)), and V2b(xct)) to take
account of the material in 2.

As a closing remark, it should be stressed that the functions 8, y, and can be
drawn from any class of functions for which it makes sense to set up and solve the
Hermite interpolation problems listed above. Reference 1 gives algorithms for doing
this in case we choose to use polynomials. Other function classes are possible, however,
such as splines, trigonometric functions, etc. If the functions q are also chosen from
the same class, the structure of that class, if any, may colour the problem as a whole.
We illustrate this in a trivial way at the end of the paper by arranging to generate some
least-squares problems.

4. Constructing test examples. The optimization problem (2.1) takes on the
following form when b is structured as in (3.1):

minimize 6o(X) qo(x) + {aoioi[di(x x(’))] + "),oi[ hi(x x(i))]
i=l

+ao,[1/2(x x(’)) Do,(x x(’))]},
such that

dp.(x) =- q.i(x) + { iiSii[ d.fi (x xi))] + /i[ hii (x
i=1

+ a,[1/2(x x’)) ’D,(x x(’))]} 0,

i(x) q.(x)+ {a.fii[ 7" x 7"=--- d.i(x- ’))]+ /i[h,(x- )]
i=1

+ f/,[1/2(x x’)) TDi(X X’))]} >-- 0, j J.

Let (xt), A ct)) be a chosen Lagrange pair, t{1,..., s}. The point xt) will be
"interesting" if this pair interacts in some substantial way with the first- and second-
order conditions given by (2.3), (2.4), and (2.5). Specifying that x<t), A <t) will satisfy
all of the equalities and inequalities of these conditions is, of course, the way of
specifying that x’) shall be one ofthe optimizers of (2.1), but there are other possibilities.
Lagrange pairs that violate some subset of the equalities or inequalities (or that satisfy
more than their fair share of these equalities and inequalities or that do not satisfy
enough of the inequalities in a strict sense) are also of interest in providing stationary
points, saddle points, problems with degeneracies, problems without feasibilities, etc.

In this presentation it is neither possible nor desirable to consider all of the
conditions that one might wish to impose upon an (x, A) pair. We will restrict ourselves
to a general discussion about how to cause x<t) to be an optimizer. Then we will close
with a concrete example in which we specify two points for a problem in two variables,
choosing one of the points to be optimal and the other to be stationary. Hopefully,
this will be sufficient to suggest other possibilities.

4.1. Specifying optimizers. For x<t) to be one of the optimizers of problem (2.1),
we are interested, primarily, in making sure that x) is feasible, that A <t) is "in kilter",
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that VL(x(t), h (t)) 0, and that Z 7-V2L(x(t), h (t))Z is positive definite for an appropriate
matrix Z. This will make it our primary concern to specify nonnegative values for
bj, j J, zero values for bj, j JE U Ja(x(’)), the zero vector for V L, and a specified
matrix for V2L. These last two specifications will be made on L indirectly by first
setting all of the b, j J, and then setting V bo and V-bo appropriately.

(1) Choose functions qo and q forjJLl{0}. Choose JE and J.

(2) For each t=l,...,s

(2.a) Choose JAO_J to be the index set denoting the active inequality
constraints at xt).

(2.b) Select x(t) and Act). The values ht), jJ are to be consistent with J,
J1, and JA,) in the sense that ht) =0, j J1\Ja,) and ht) >_-0, j Ja(,).

(2.c) Set

and

a., -q.(x< t)), j JE I,.J JA(X(t))

a.i > -q.i(x<’)), j C:. JI\JA(X(t)).

(2.d) Choose di so that 0’) T <,) X=di(x ))0foralljandallit.

(3) Functions 6 must be constructed for j J and 1, , s so that they satisfy
a simplified form of (3.7), namely"

6j,[0] 1 for all i,

6j,[ 0J‘)] 0 for all # t.

(4) Define

dp(x)- q.(x)+ a,6,[dfi(x-x’))].
i=1

(5) A gradient must be imposed upon bo so that VL(x),A))=0 for each
t=l,...,s. Set

hot=-Vqo(x(t))+ At)Vj(x(t)).
jeJ

(6) A Hessian must be imposed upon o so that V:L(xt), A )) is predetermined
for each t=l,...,s.

(6.a) Choose V2L(xt), A) as the desired Hessian of L.

(6.b) Set

Dot V2L(x<t), At))-Vqo(x<t))+ Z At)V2bj(xC’))
jsJ

(7) Determine whether

<’)= h(x<’) xo )) O,

’ (x’- x ’) 0o o)Do(X t) x

for all # t. If any of these quantities are zero, return to (2) to select new x’s.
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(8) Functions Yoi, foi must be constructed for i= 1,..., s so that

7, [0] 1,

7,[ r/(o’)] 0 for all t,

3,,[r/(o’)] =0 for all (including t),

l),[Z(o’i)] 0 for all i t,

1),[0] 1,

12,[ Z(ot)] 0 for all t.

(9) Define

bo(X) qo(x) + L
i=1

Remarks. (a) Vectors can be selected arbitrarily to define V ckj(x) for j e3. By
setting

hi, V6(x’)) -Vq(x’))
T .(t) x(i)and by checking that h, (. 0 for all j and t, functions y can be constructed

according to the conditions of interpolation given in (3.8) in order to impose the
desired gradients on the equality and active-inequality constraint functions. Degenerate
problems can be attempted by choosing gradient vectors which are linearly dependent.

The definition of each bj in step (4) above for which Vb is to be specified will
have to be expanded to include appropriate terms of the form

39i[ hfi x x(i))].

Similarly, symmetric matrices can be selected arbitrarily to define vEb;(x(t)) for j e J.
The definition of each bj in step (4) above for which V2b; is to be specified will have
to be expanded to include appropriate terms of the form

aji[1/2(X X(i)) TDji(X x(i))l"
(b) The A’ may be chosen arbitrarily, consistent only with the inequalities of

(2.3). The selection of A’ =0 for one or more j JA(X(’) often provides difficulty for
algorithms.

(c) If the matrix V-L s chosen to be positive definite, then the inequalities of
(2.4) and (2.5) will be satisfied automatically.

(d) Indefinite or ill-conditioned test problems can be obtained by letting

h;,=-Vq:i(x(’)) + wJ t), jJE UJA(,
where the vectors wJ t) form an orthonormal set. This will result in:

V6(x(’)) w), j - JE LJ ’JA’""
{’" let the vectors z’Let W{ stand for the matrix whose columns are given by the w

constitute a basis for the orthogonal complement of the space spanned by the w5,
and let Z{ represent the matrix whose columns are given by the z’}. Consequently

Z(t)rj[W(, Z(o]=[ 0I].
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Then let

,rV(2t) Z(t) T j

with positive-definite matrices V[t), i= 1, 2. The matrix 72L will be indefinite if and
only if one of (r or r is nonpositive. For any nonzero vector y R" we may write

Y Yl + Y2,

where Yl is in the space spanned by wJ t) and Y2 is orthogonal to this space. The equality

yrV b:(x(t)) 0, j JE U JA(’),

is equivalent to Yl =0 since Vbj(x(t)) wt). This leads to the equation

yTV2L(x(t), A (t))y "ry[ V(2t)y2,
which guarantees the satisfaction of the second-order conditions for all values of
provided that r > 0. For ill-conditioned examples, Vt) and V(2 can be chosen accord-
ingly. This scheme of generating 72L in a partitioned format in order to obtain
ill-conditioned projected Hessians is necessary in the light of the results contained
in [34].

4.2. Something specific. We close this section with a concrete example which uses
the material under discussion in a more ambitious way.

Let
qo(x) qo(xl, x2) -e-O’-x),
ql(X) ql(Xi, X2)-- 5- X31X32,

q2(x) q2(x,, x2) 2- Xl4- x.
We will use these functions to construct (ho, bl, and b2 for the problem

minimize bo(X)

subject to

I(X) - O,

(x)_->0

so that at the point

we will have

(I(X(1)) --’0,

V,(x(’)) [00],
h1) --"0,

A (21) 1,

VL(x(1), A(1)) 0
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and

72L(x()’ A(1))
2

The b’s are further to be constructed so that at the point

xpj

we will have

and

4,(x)) =0,

A z) 1,

A2) -1

VL(x:), A2)) 0.

The above (subject to post facto verification) should cause x1) to be a degenerate
optimizer and xz) to be a stationary point.

Since we wish to set the value of 41 at both x) and x2), and its gradient at x),
we need to set

6,(x) =- q,(x) + a,,6,,[a(x x(1))] -- 012612[d l(X x(2))] - Vll[h l(X x(1))].

Since only the value of b2 is to be set at both points, we need

thE(X)---- q2(x) + a2,62,[dfl(x-x’))] + a22622[df2(x-x:))]

Finally, the gradient of the Lagrangian is to be set to zero at both points, by setting
V4)0 appropriately, and the Hessian of the Lagrangian is to be set at x) by setting

V:bo. This means that

dpo(X) =- qo(x) + Tol[ h,(x x(’))] + "Yo2[ h2(x x(2))]-F Ol[1/2(x x(’)) TDo,(X X(’))].

It is convenient to begin by recording the values, gradients, and Hessians which
we might need from qo, q, and q2"

For x

Function Value Gradient Hessian

qo

ql 4 [:69
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For X(2):

Function Value Gradient

qo

q2

We begin by setting the values of )1 and b2. The value l(X(1)) "--0 may be set
by letting

c11 -ql(x{1)) -4.

The value 42(x{2)) =0 may be set by letting

022 --q2(X(2)) O.

To set b2(x(1)) > 0, we let

specifically"

To set l)l(X(2)) > 0, we let

specifically"

and

a2 > -q2(x{’)) 0,

012 > -q(x{2)) -4,

tX12 O.

Choose dl, d2, d2, and d "arbitrarily":

This will mean that

d2 d22 [-1 1"1
T (t)_x(dji(x O) -4

for j 1, 2, i= 1, 2, 1, 2, and # t. This (particularly economical) choice of d’s will
mean that the functions 6 must satisfy only the following conditions of interpolation:

for 6,1:

81(0) 1,

(-4) =0,

a,(o) =o;
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for 62:

for 621

and 622:

12(0)-- 1,

612(-4) =0,

32(-4) =0;

622(0) 1,

622(-4) 0.

These conditions will be satisfied if
2

611(t)=l-i-,
and

2

62(t) 1 ++i

621(t) 622(t) 1 +-.
4

The final stage in the construction of bl comes from the requirement that

71)1(1(1)) [00]

2

yl(t)=t+--.
12

Combining all of the above results yields"

--(XlX2 X22--2XlX2q"X2 Xl2+Xl+ 1)(])l(X) (])l(Xl, X2 3_

which will be satisfied for

This will mean that

In order to proceed, we must verify that h(x()-x(1)) is nonzero:

h(x(2)-x(l)=[3 3]-2 =-12.

It follows that the conditions of interpolation on Yll will be

3ql(O) =0,

3/11(--12) --0,

5I1(0) 1
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and

6(x) 6(x,, x)= 4x- x2+ 4x4-x- 10

We now tabulate the gradients and Hessians for b and (2 that we might need.

For

Function Gradient Hessian

For x

Function Gradient

To impose the conditions

and

we must set

and

Observe that

V2L(x()’ A(a))
2

ho ho2= _j

Dol [-8 -3]-3 -4

23h(x(2)- x()) ---[h(x( x() --
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and

1 (X(2)_X(1))Do,(X(2)_x(1)) 1
2

-3 -4 -2
=-360.

Therefore, to specify bo we must construct 3’01, 3/02, and -01 to satisfy:

’3/)1(0 1, y_(O) 1,

y1(15) =0, y2(-25) =0,

v;,(o) =o, ,(-25) =o,
")1(0) 1,

f/1(-36)-0.

These conditions will be achieved with
2

Ol(t) q
72
2

3’o2(t)
25

yol(t) t+
675

1,875’

Consequently,

o(X)--(XI, X2)

x xlx 367,429x3
eX2-X _F_l

18 6 540,000
2 225XlX2 284,221XlX22 1,583x x3x2

72 180,000 3,600 3

lO0,543x2x2 ll17XlX2 15x2 2x’q + -I-
60,000 1,800 8 9

530,021x31 7,417x2 23xl 199

540,000 3,600 8 24

The exercise above has a value if the behaviour of an algorithm is to be explored
under specific conditions, particularly in the early stages of development: How might
it perform in the neighbourhood of a degenerate optimum? What difficulties arise with
zero A’s? We feel that the techniques outlined above have their main value in the
flexibility with which they provide such "scenarios" for use as "scalpels" in dissecting
the local behaviour of algorithms on a microscopic level. However, less elaborate test
examples which are produced in a more automatic fashion are of interest, too, to test
the implementation of an algorithm at a later stage of development or to use for
comparing optimization systems. In view of this, we felt called upon to take a pre-
liminary look at the feasibility of using these techniques in some automatic manner.

Since the techniques present a vast number of possibilities, any automatic gener-
ation scheme will have to be made with some restrictions. We began with the simplest
subset of possibilities, that of generating problems with a single prescribed point chosen
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tO be an optimizer. Within this context we have experimented with problems having
a special structure (nonlinear least squares) and "difficult" optima (indefinite
Lagrangian Hessians with prescribed positive-definite projections).

The authors’ work in progress is aimed at extending our capabilities to the
automatic generation of problems with several specified points.

5. Algorithms. In order to have algorithms to motivate the automatic generation
of some problems, we have prepared two experimental codes to solve the constrained
nonlinear least-squares problem; i.e. problem (2.1) for the special objective function

minimize bo(x) 1/2F(x) 7F(x),

where

F(x)=[f(x),... ,L(x)].
It is worth noting that this structure in the objective function provides the following
structure to the gradient and the Hessian:

V 6o(X) J(x) 7"F(x),
where J(x) is the Jacobian of F(x) (the matrix whose ith row is Vf(x)T), and

p

V6o(X) J(x) J(x) + E f,(x)Vf,(x).
i=1

We took two of the currently popular methods for nonlinear programming, the
successive quadratic programming technique with the watchdog modification due to
Han, Powell et al. [15], [16], [26], and the exact penalty technique due to Coleman
and Conn [5], [6], and we made some modifications to these methods to take account
of the special structure of the objective function. Our modifications were along the
lines of those suggested by Dennis et al. in 11 ], extended to account for constraints.
Our reasons for not experimenting with (2.1) directly were twofold: (1) by treating a
problem for which there is not widely available software, we were forced to write
programs from scratch, which meant that we could code both methods in a reasonably
uniform manner--which we hoped would suppress artifacts arising from different
coding styles and put both methods on a nearly equal footing, giving us a model
situation for algorithm comparison; (2) by making changes to both methods to account
for the special nature of the problem, the blame for any poor showing of one method
over another could be laid to us for botching the jobnwe were interested only in the
mechanisms of test generation and of its utility to researchers and programmers, not
in making enemies by passing judgement on published methods; (3) we wished to
explore the capacity of these techniques to impose structure on the problems
generatedmthe least-squares structure was a simple enough one that it was evident to
us how it could be achieved.

We will give a brief summary on both optimization methods and indicate the
modifications that we made. The references above are to be consulted for further details
about unmodified aspects of these methods, references [5], [6], [26] being the most
pertinent.

For both methods a point x and an n x n positive-definite matrix B are needed
to begin. The starting point is user-provided and the initial choice of B, dependent
upon the technique being used, is some approximation to second derivative information.
From then on, a sequence of points {xk} and a sequence of positive-definite matrices
{Bk}(k 1, 2, 3,...) is generated iteratively.
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5.1. The successive quadratic programming method with watchdog. At the beginning
of the kth iteration, both X

k and Bk are known. A search direction d k is obtained by
solving the quadratic program"

minimize d TV0(Xk + 1/2d TBkd
d

subject to

(x) + dV(x) O,

(x) + dV(x) -> 0,

j=l,...,l,

j=l+l,...,l+m.

The solution of this quadratic program also yields Lagrange multipliers A k+l. The
search direction d k is taken with a step size O

k to yield a new point Xk+l= xk+ olkdk,
and Bk+l is defined by

Bk+l j(xk+l TJ(xk+l ..lt- Sk+l.

We have chosen Sk+l as a quasi-Newton approximation to"

p l+m

fi(xk+l)v2fi(xk+l) 2 ’+lv2tj(xk+I)
i-----1 j=l

The choice was made as follows"
In the first iteration set S0..
For all other iterations find Vo(Xk+) j(xk+)rF(xk+) and set

k+l
Y

l+m

[J(xk+’)--J(xk)]TF(xk+’) E
j=l

S
k+l <._ X

k+l
Xk.

Use yk+l and S
k+l in the BFGS formula (switching to DFP if using BFGS would

result in a division by zero-see, e.g. [10], for a reference to these) to update Sk

to Sk+l

In solving the above quadratic programming problem, the following techniques
presented in [13] were used:

At each step in finding the optimal value of d a working set of constraints is
determined, the gradients of which, ckj(xk), are taken to form the columns of a
matrix A.

The columns of the matrix Z are determined to form an orthonormal basis for
the null space of Ar.
A modification to the current d is found by solving a system of equations based
upon the matrix ZrBkz.
The equation-solving process involves using the Cholesky decomposition of

(5.1.1) zTBkz LDLr + E,

where E is a diagonal matrix of small norm chosen to make ZrBkZ positive
definite. (E is a zero matrix when zrBkZ is already positive definite.)
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After d k is determined from the quadratic model, the step size a k is chosen with the
aid of two merit functions. The primary of these is

q,,, oz ,t, x ’: + od ", z " 4,o X +
JJE

+ Y. t’lmin (0, (x +
JJ1

where the parameters/x .k for each j J were updated according to:

On the first iteration:
[J’j Aj
On other iterations"
If/x-l<
then/z IA/I,
else/x =/z-1.

The secondary merit function used is merely an approximation to the Lagrangian
function"

(x +d 6o(X +d- E x+6x + d).
jJ

Line searches, as needed, were performed on k(a) using the line search of [24] with
termination set by 0.9. This is a ve tight termination requirement that should
ensure satisfaction of the line search condition given in [26], namely

(5.1.a) .(x+ ).(x )- 0[.(x )-.(x+ )],
where 0 is a constant chosen from the inteal (0, ). To ensure that the choice a 1
is ultimately always made, we test whether taking the point xk + d as xTM will ensure
that either one of the inequalities (5.1.2) or

(x + d) < (x)
is satisfied. If so, we accept x + d k as xk+ without carrying out a line search on k(a).

All other details are identical to those laid out in [26].
The area in which it might be woh probing for a weakness of our implementation

of this method is in its use of estimates of Lagrange multipliers at all stages of descent.
At points far from any optimizer or stationary point these multipliers may not be valid
for use in setting the penalty parameters g. We expected to use the flexibility of our
techniques to try setting local conditions in which the quadratic model would yield
large multipliers. This proved unnecessary, as will be seen in the final section. Problems
which we generated to explore weaknesses in the second optimization method, to be
covered next, also proved to cause a diculty for the successive quadratic programming
method as well.

5.2. The exact penalty method. A single merit function is used by this method"

(x)=/Xo(X)- Y bj(x)+ Y sgn (bj(x))bg(x),
jJ’l(X) jJ2(X)

where for any x and e > 0 we define

J,,(x) {j: b(x) < -e and j + 1,. ., + m} the set of e-violated inequality
constraints,

J,=(x) (j: Ij(x)l > e and j 1,..., I} the set of e-violated equality constraints.
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Implicitly associated with these index sets there is an approximate Lagrangian, which
we will denote by

L(x, A) (x)- E Ab;(x),
ja.(x)

where J(x) complements the index sets J,,(x) and J,:(x) as follows"

(j: e and j l+ 1,. ., l+ m} the set of e-active inequality
constraints,

{j: and j 1,. ., l} the set of e-active equality constraints,

Jt(x) J,(x) U J,:(x).
The quantity e is a parameter of the method that is set positive initially and is (possibly)
revised downward at certain times during the course of the algorithm. Similarly/x is
set initially to 1.0, and it may be revised downward.

We started with x and

B J x)J(x).
We divided the technique for determining Bk and xk into a global, a dropping, an
intermediate, and a local mode, each characterized by the use of different quadratic
subproblems and/or a different selection of step directions.

The form of the quadratic subproblem is always given by

minimize Ve(Xk) rh +1/2h TBkh,
h

(5.2.1)
subject to Vbf(xk)h=O, jJA(xk),

but Bk approximates either V2(xk) or else VELe(xk, h k), depending upon which
mode is currently in force. The modes are determined by letting

Ak=-[...,Vqbj(xk), ...] forjJ(xk),

by selecting vectors z to form an orthonormal basis for the null space of Akr, by
constructing the matrix Zk with columns Zl, and then by inspecting the norm

(5.2.2) v,I, (x I1 .
our code was based upon the version of the exact penalty algorithm given in [3], and
our interpretation of that version is distinguished from the publication version in one
respect" by the presence of the intermediate mode, which serves to provide a more
cautious transition from the global algorithm of[5] and its asymptotic variant, discussed
in [6].

Global mode. Bk is taken to approximate V2(xk) for this mode--its updating
will be discussed later. Whenever (5.2.2) is greater than or equal to a tolerance ’1, then
the global mode is used, and a direction h k is found by solving (5.2.1). A new point

xk+l X
k akh k

is found by using the line search of [24] with /= 0.9 on

dA(Ot)= (xk+ akhk).
Dropping mode. If (5.2.2) is less than ’1, then
Lagrange multiplier estimates A k are obtained by solving

(5.2.3) minimize Ilakh--V(xk)ll2,
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then

otherwise

X
k+l

X
k -- otkh k.

e T1, and T2

are reduced, and the global mode is put in force.

kte(Xk + olkh k + Vk) is sufficiently smaller than il’e(Xk),

X
k+l

X
k -Jl" otkh k nt- O

k
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and a test is made to see whether any Ak exists satisfying

(5.2.4)
IAffl[0, +lJ, jkJa,(xk), or

k

In this event, h is found by solving the underdetermined linear equations

V6h ,
(5.:.5)

V6h 0, j J(x){j},

the sign being chosen to provide descent for . A tolerance 6 is used to accept or
reject h k as providing sufficient local descent"

[v.(x) + ov6(x)]h < ,
where Ok {--1, +1, 0} depending upon the membership ofjk in J or Jt and upon the
sign chosen in (5.2.5).

If no h satisfies (5.2.4), then the intermediate mode of the method is initiated.
Otherwise a new point

xk+ xk + akh k

is found as using the line search. If h k does not pass the test of sufficient decrease,
however, then e, r, and another tolerance r2 (used below) are reduced, the index sets
J are reassessed, and the global mode is put in force.

Intermediate mode. In the intermediate mode Bk is still taken to approximate

V:*(x),
and h k is determined by (5.2.1). (5.2.3) is solved at the beginning of each iteration of

kthe mode to provide values of h, and the conditions (5.2.4) are checked. To remain
in the intermediate mode, these conditions must fail to hold. (If any h k can be found
to satisfy (5.2.4), then the dropping mode is put into force.) Assuming that the
intermediate mode is permitted to continue, h k is determined from (5.2.1), and a line
search is made on (a)= ,(xk+ ahk). This yields the point xk+ akh k. The vector

(x+.h) [..., 6(x+.h),...]5 j J(x)
is formed; a direction v k is found by solving

(5.2.6) Av -(x + ah),
and the point

xk+akhk+vk
is considered. If a tolerance test (see [5], [6]) indicates that
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Local mode. If the norm (5.2.2) is less than a tolerance 7"2(’/’2 < 7"1), and if
xk+ akhk+ V

k has been accepted as xk+l on the intermediate-mode iteration step last
taken, then the local mode will be in force. In this mode Bk is maintained as a
quasi-Newton approximation to

VZL(xk, A k),

and a direction h k is determined from (5.2.1). The quantity a c k is set to 1 without
a line search, and the vector D

k is determined from (5.2.6) with this version of Bk.
The point

X
k+l

X
k "Jc" h k + l)

k

is accepted, provided a tolerance test indicates that /re(xk- hk+ I) k) shows sufficient
decrease over (xk). If this point is not accepted, then the intermediate mode is put
into force after

e, 7"1, and 7"2

have been reduced.
Updating. The quasi-Newton updating for

(x)r(x) + s
must take account of the fact that

s v-,I, (x) j(x)j(x)

in the global and intermediate mode, and that

s VL(x, ;t ) (x (x

in the local mode. This is attempted by setting

yk+l ,._ i.[j(xk+l)_ j(xk)]TF(xk+I)

2 k+l)[v j(xk+l) V 6j(xk)]
jJl(x

(5.2.7) + E sgn (j(xk+I))[Vj(xk+I))--Vj(xk)]
jsJ2(xTM)

+if {local mode} then aA+)(x A+[V(xk+) V(xk)]

and

else 0,

S
k+l <._ X

k+l
Xk.

The vectors yk+ and S
k+l are used in the BFGS formula to update Sk to Sk+l (switching

to DFP if division by zero is to be avoided).
In any event, the solution of (5.2.1), for Bk obtained in this fashion, is accomplished

in all modes (global, intermediate, and local) via the LDLT decomposition described
in (5.1.1). It is important to note in this context that we were maintaining and updating
the full B matrix, and then projecting it. This is not what is done in [5], [6]. There
the authors advocate the use of an approximation only to the matrix ZT"BZ. The
structure of our partial Hessian updates above, we felt at the time, mitigated against
dealing easily with an approximation to the projected Hessian alone.
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The decision was made to investigate the sensitivity of our interpretation of this
method to indefinite Hessians. The next section describes a number of problems which
were generated for least-squares problems with such Hessians.

6. Test results. The nonlinear programs to be considered here have the form of
nonlinear least-squares problems:

minimize 1/2F(x) TF(x) + fo(1/2(x x*) 7"D(x x*)) + 5,o((X x*) 7ho)

where

with

subject to

b.i(x q.(x) + h(x x*) + a.i O,

6j(x) q.i(x) + hjT(x x*) + a. >- O,

F(x)=[f(x),... ,f(x)]

where

and where

fi(x)= (X2kXi)-- i, i= l, p,
k=l

q(x)= Z (X2kX.i)--J,
k=l

j=l,’’ ", l+m,

flo(t)=5,o(t)-1/2(t+l)2 for R.

Note that this is consistent with the choice

t0 0

% identity forj > 0,

1" 0 forj 0.

We have arranged the form of 1"o and 5’0 so that the objective function will be a sum
of squares.

Test generator. A simple test-generating system (available from the authors) was
written for the above. In all cases it assigned values to the optimizer and its associated
Lagrange multipliers by uniformly distributed pseudo-random numbers. The com-
ponents of x* and the Lagrange multipliers A* of the active equality constraints were
chosen between -1.0 and 1.0, while the Lagrange multipliers of the active inequality
constiaints were chosen between 0.0 and 1.0.

The Lagrangian Hessian was set to be

V2L=[O’UU1 0 ]o vu
where U1 was a v + I) x (v + 1) upper triangular matrix.

Except for U111, 1], which was set to 2, all elements of U1 were generated by
using a random number generator and were in the range -1.0 to 1.0. U2 was also an
upper triangular matrix with elements all generated between -1.0 and 1.0.
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The scalar tr was under user control, and it dictated whether the generated problem
would be definite (tr>0) or indefinite (tr_-<0). A sequence of problems could be
generated in which all quantities (x* values, Lagrange multipliers, U1, etc.) were exactly
the same, and only V-L differed by having a different value of

A feature for attempting degenerate optimizers was built in. Normally the gradient
j(x*) was set to the jth column of the identity. A user-supplied option permitted the
last several Vb’s in sequence to be constructed as random linear combinations of the
initial V b’s.

The constants aj were set so that bj(x*) 0 for the active constraints, and thj(x*) 1
for the inactive constraints.

Problems. Five problems will be reported upon, the first three with tr 1, -1, and
-10, respectively, and the last two with tr 1 and -1. For the first three values of
each problem was constructed to be nondegenerate at the optimizer, and for the
remaining two values of r each problem was made to be degenerate. To obtain
degenerate problems, the gradient of the fourth active constraint was chosen to be
linearly dependent on the gradients of the first three active constraints. The point x*
was verified computationally to be a local optimizer for all problems.

For the problems reported upon below, we had

n 5renumber of variables
p--5--number of components in F(x)

2--number of equality constraints
m 3renumber of inequality constraints
, 2number of active inequality constraints

0.30467
0.62076

Optimizer x* I-0.80999
0.41441

\ 0.95425

Active constraints set { 1, 2, 3, 4}.

Lagrange multipliers A*
0.12629\

0.31597J"
\0.58508/

Implementations. All codes, those for the test generation as well as those for the
optimization methods, were written in ANSII FORTRAN, as verified by the PFORT
verifier [28], and were run on the Honeywell 66/60 of the Mathematics Faculty
Computing Facility at the University ofWaterloo. The basic linear algebra computations
(dot products, etc.) were carried out using the Basic Linear Algebra Subroutines of
19], and the more advanced linear algebra (e.g. forming QR factorizations and finding

the LDLT factorization of ampossibly nonnegative-definitesymmetric matrix) were
carried out by using or modifying programs from the NPL optimization library 14].
The quadratic programming code needed for the method of [26] was also obtained
from this library, which was made available through the courtesy of P. E. Gill and
W. Murray. The line search routine that was used in all codes comes from reference
[24] and was kindly provided by Michael Overton. All random numbers were produced
by [33] as modified for double precision.
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Employment. We illustrate the use of these test problems in two typical ways,
firstly in the "shotgun" mode of software testing, in which the problems are given to
the codes and the results are summarized in tabular or statistical format, secondly in
a "scalpel" mode, in which selected problems are followed, step-by-step, through an
algorithm to see what insights can be gained. For the former mode, the computational
results are given in tables that follow. Unless otherwise indicated, all tests were
terminated if more than 50 iterations were taken, in the interests of saving our computing
budget. For the latter mode, we include summary remarks after each table indicating
a few of the interesting features of the execution. Again, we remind the reader that
our remarks reflect studies of the methods of [5], [6], [26] as subjected to our
interpretation, for a problem of special structure, applying quasi-Newton updates of
our choice, and suffering under our blind spots in rendering these metttods into
computer code. It is the purpose of the test examples to indicate where we might have
fallen down on our task of implementing the methods.

Table headings:
EP--exact penalty method
SQP--successive quadratic programming method with watchdog
NI--number of iterations
SP--starting point:

starting point 1--x with all component equal to 1.0
starting point 2--x with all component equal to 10.0
starting point 3--x with all component equal to 100.0.

FE--number of objective function evaluations
(each evaluation of the objective function was counted as p + 2)

CEnumber of constraint evaluations
GFEmnumber of gradient evaluations in the objective function

(each Jacobian evaluation was counted as p+ 2)
GCE--number of gradient evaluations in the constraints
R--result:
C--Constructed optimizer found
A--Another point of termination
F---Failure, code aborted
M--Maximum iteration count reached

Tables:

TABLF
Nondegeneracy with positive-definite H (tr 1.0).

SP

EP

NI FE CE GFE GCE R

22 245 175 210 169 C

35 490 350 435 375 C

38 497 355 420 448 C

NI FE CE

19 147 105

10 98 70

47 434 310

SQP

GFE GCE

105 103

70 65

310 298

Remarks:
(1) In SQP with starting point 1 the first 4 penalty parameters were determined

by the Lagrange multipliers of the first quadratic subproblem, and the last penalty
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parameter was determined by a multiplier of the second quadratic subproblem. The
penalty parameters ranged from 51 to 350 and remained unchanged throughout iter-
ations 3-19.

(2) In SQP with starting point 2, the penalty parameters were set between 16,750
and 89,016 by the first quadratic subproblem. At iteration 6, a quadratic-programming
subproblem was encountered with Lagrange multipliers of the order of 109. This forced
the penalty parameters to become large as well. On the next two iterations, multipliers
became 1023 and 1036 respectively. The line search became unable to find lower merit
function values with the search directions produced, and the code was aborted.

(3) In SQP, with starting point 3, the penalty parameters had been set to numbers
of magnitude 106 by iteration 3. These values held throughout the subsequent iterations
without change.

(4) It is a general observation that the first few quadratic programs encountered
by SQP for all of our starting points and for all of our generated problems were
associated with large Lagrange multipliers. These, in turn, set the values of the penalty
parameters quite large, and subsequent quadratic programs, with their much more
reasonably sized multipliers, had no influence on the magnitude of the parameters.

(5) Each of the three executions of the EP method was characterized by an initial
number of steps in which all constraints were deemed active, causing (very large)
Lagrange multipliers to be computed. These generated "dropping directions", (5.2.5).
There followed an intermediate number of global-mode iterations in which steps were
obtained from (5.2.1), during which IIzTvI] decreased almost monotonically. These
steps gathered the activities that represented the optimal constraint manifold, and
ended when the intermediate mode was entered. After several intermediate mode
iterations, the local mode was begun. Although the theory of [6] only guarantees 2-step
superlinear convergence, convergence to the constructed optimizer appeared to be
1-step superlinear. For starting point 2, for example, the breakdown was: 7 iterations
of dropping steps, 16 of global steps, 3 intermediate steps, and 9 local steps. The
components of xk agreed with those at termination in the final 5 steps respectively to
3, 4, 7, 12, and > 15 digits.

TABLE 2
Nondegeneracy with mildly indefinite H(cr =-1.0).

SP NI

23

32

44

EP

FE CE GFE GCE R

252 180 205 159 C

455 325 385 334 C

518 370 395 347 A

SQP

NI FE CE GFE GCE R

22 182 130 130 126 C

10 98 70 70 65

50 672 480 480 464 M

Remarks:
(1) The SQP method failed in the same manner as for starting point 2 in the

previous problem--quadratic programs were encountered with large Lagrange multi-
pliers.

(2) For starting point 3, the EP method terminated on a point (not the constructed
optimizer) that satisfied the first-order necessary conditions. The code does not check
second-order conditions.
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TABLE 3
Nondegeneracy with strongly indefinite H(or 10.0).

SP

EP

NI FE CE GFE GCE

50 1,015 830 675 634

50 868 625 715 646

50 798 590 645 577

M

M

NI FE CE

19 140 100

10 98 70

33 238 170

SQP

GFE GCE

100 99

70 65

170 169

Remarks:
(1) The EP code arrived at a stationary point (a first-order point that was infeasible

for the given constraints) on iteration 30. Progress to this stage involved an initial
mixture of global and dropping steps, an attempted intermediate step followed by
several successful intermediate steps, and a final number of local steps. The stationary
point had constraints 2 and 4 active (1,2,3, and 4 are active at the constructed
optimizer), and was infeasible in constraint 1. The penalty parameter /z was
reduced to an eighth of its value, and the remaining 20 iterations brought con-
vergence to a point that satisfied the first-order conditions. This point was
[0.299, 0.610,-0.740, 0.407, 0.87], which is close to the constructed optimizer, but it
has only constraints 1, 2, and 4 active (values 10-2). Constraint 3, which is zero at
the constructed optimizer, has the value 0.0401 at this point. There is a good chance
that the projected Hessian of the Lagrangian---by the nature of the Hessian’s construc-
tion, by the proximity of this point to the constructed optimizer, and by the fact that
the gradient of constraint 3 is not included in the projection--is indefinite. Our code,
which maintains a full approximation to 72L rather than an approximation to ZTV-LZ
appeared sensitive to indefiniteness in the Lagrangian Hessian. This was further
emphasized by poor performance on the problem of Table 5.

(2) The EP method behaved much the same way on starting points 2 and 3, but
lagged enough behind its progress on starting point 1 that it was cut off at iteration
50 just on or after a reduction in/.

(3) SQP failure was as before.

TABLE 4
Degeneracy with positive-definite H(cr 1.0).

SP

EP

NI FE CE GFE GCE R

33 392 280 285 237 C

50 791 656 615 555 M

49 588 420 425 455 C

SQP

NI FE CE GFE GCE R

50 658 470 470 445 M

50 728 520 520 516

22 1,519 1,085 1,085 1,080

M

Remarks"
(1) With starting points 1 and 3, EP converged to the .optimizer. The Lagrange

multipliers at the termination point were in agreement with the first-order conditions,
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but they were different in value from those assigned due to the linear dependence of
the constraint gradients.

(2) For starting point 2, EP attained a stationary point, reduced Ix, and was making
normal progress when iteration 50 was reached.

(3) The failures of SQP were as above.

TABLE 5
Degeneracy with mildly indefinite H(r 1.0).

SP NI

50

50

5O

EP

FE CE GFE GCE R

623 445 485 391 M

1,645 1,195 1,245 1,137 M

623 445 565 456 M

NI FE

50 1,379

49 1,050

29 315

SQP

CE GFE GCE

985 985 926

750 750 746

225 225 225

M

Remarks:
(1) For starting point 1, the behaviour of the EP, which was noted above, was to

be seen. A stationary point was reached, Ix was reduced, and normal progress appeared
to continue as iteration 50 was reached. To verify the impression that progress was
normal, a second run was made with 100 iterations allowed. The method terminated
at the constructed optimum after 95 iterations.

(2) For starting point 2, the EP code reached a state at which only a minute
amount of change in x was made at every iteration. The code had, to all intents, stalled,
and it was aborted.

(3) For starting point 3, the EP code attained a stationary point around iteration
50. It was cut off before a reduction in tx could take place.

(4) The SQP method again developed large penalty parameters and ceased making
progress.

Summary. We make note of the fact that the problems were easy to generate, that
the generation process was flexible enough to handle a special request on the form of
the objective function (i.e. that it be a sum of squares), that problems could be generated
automatically, and that useful information pointing to the areas that need further study
was obtained.
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A COMPARISON BETWEEN SOME DIRECT AND ITERATIVE METHODS
FOR CERTAIN LARGE SCALE GEODETIC LEAST SQUARES PROBLEMS*

G. H. GOLUBf, P. MANNEBACKt AND PH. L. TOINTt

Abstract. The purpose of this paper is to describe and compare some numerical methods for solving
large dimensional linear least squares problems that arise in geodesy and, more specially, from Doppler
positiohing. The methods that are considered are the direct orthogonal decomposition, and the combination
of conjugate gradient type algorithms with projections as well as the exploitation of"Property A". Numerical
results are given and the respective advantage of the methods are discussed with respect to such parameters
as CPU time, input/output and storage requirements. Extensions of the results to more general problems
are also discussed.

Key words. Doppler positioning, geodesy, orthogonal transformations, preconditioned conjugate
gradient, sparse linear least squares

1. Introduction. In recent years, the numerical solution of high-dimensional over-
determined systems of linear equation has received much attention and development.
There are multiple reasons for this continuing interest but one can certainly single out
the strong influence of very large least squares problems arising from geodesy. Since
its origin, this branch of applied mathematics has promoted research in the area of
numerical analysis and many of the recent papers on the subject have been motivated
by it [7], [ 11 ]. This paper will pursue the same line and will discuss several numerical
methods that are relevant to the solution of a typical geodetic problem, Doppler
positioning. The authors nevertheless feel that many of the conclusions that will be
drawn in this context could also be of interest in other fields where large block-
structured, least squares problems do arise, such as in statistical computations and
earthquake predictions.

Doppler positioning is a geodetic technique that allows the determination of the
relative positions of several ground stations from the observations of Doppler shifts
on radio frequencies that are broadcast by artificial satellites. Each station observes
several satellite passes over the horizon, and then transmit the data to a central
computing center, where they are processed in order to compute corrections to the
relative position of the stations, but also to some orbital parameters of the broadcasting
satellites themselves. A more complete description of this problem may be found in
[14], where a method based on block orthogonalization decomposition was proposed
for reducing both the data transmission and the overall computing time.

This paper will focus on the solution of a linear least squares system that can be
interpreted as a first reduction of the general Doppler positioning problem. More
precisely, one wishes to compare in this context the respective merits of a direct OR
type and the iterative conjugate gradient type methods.

In 2, we will present the problem more formally, and in 3 we describe the
algorithms that are considered. Numerical results are displayed and discussed in 4.

2. The least squares problem. As mentioned in the introduction, we are concerned
with the solution of a linear least squares problem, viz. we would like to find the vector
x that achieves

(1) min Ax b -,

* Received by the editors November 1, 1984.

t Department of Computer Science, Stanford University, Stanford, California 94305. The work of this
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where A is a large sparse matrix and b is a given vector. We assume the rank of A is
equal to the number of columns of A.

We are especially interested in the case where the matrix A has a given block
structure defined by

C1

(2) A B C_
(B, C)

Bm
where

(3)

and

(4) Ci

nil

Bi- Bi2.

Ci
Ci2

Oo

Cm
In this description, the blocks Bj and Co (i= 1,. ., m; j 1,. ., n) are dense

and of dimension k +p) x k and k +p) x p, respectively, with k >= p. The overall system
(1) has therefore mk+np unknowns and mn(k+p) equations. Moreover, we will
assume that each matrix (Bj, C0) (i 1,. ., m; j 1,. ., n) is (k +p) x (k +p) upper
triangular, dense and nonsingular. This last assumption appears naturally in the
Doppler positioning problem described in [14]. We will nevertheless consider more
general structures in the final section. We exemplify the structure of A for rn 3 and
n 2 in Fig. 1.

(5) A

FIG. 1. Example of structure matrix A.
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In the context of our geodetic application, m is the number of satellite passes
that have been observed, n is the number of ground stations, k is the number of orbital
parameters to be estimated for one satellite and p is the number ofunknown coordinates
of a ground station. In the European network that will be discussed below, these
dimensions are

(6) m=152, n=34, k=6, p=3.

In practical cases, some block lines of (5) may be missing, indicating the fact that
all stations do not necessarily observe all satellites. This creates some irregularity in
the pattern, that can be exploited as we will see below. The system resulting from the
European network we have treated contains 2,317 blocks, with a total number of 20,853
equations and 1,014 unknowns. It is based on the second European Doppler Observa-
tion Campaign (EDOC-2) [3].

Each of these equations has less than 9 nonzero entries. As suggested by these
numbers, we consider rather large and very sparse systems.

Assume now, for the sake of exposition, that the normal equations

(7) ArAx=Arb

and formed, and the Cholesky factor R of ArA is computed. It can be readily seen
that significant fill-in will occur in the matrix AA and in the resulting upper triangular
factor R. In fact, one can check that R has the form

with

R(B,) 0

(9) R(B) "..
0 R(Bm)

where we have denoted by R(X) the upper triangular Cholesky factor of the matrix
XrX.

In addition, R is x rp dense, while R2 is np x np upper triangular.
Since most of the practical problems we have in mind are moderately ill condi-

tioned, and maximal accuracy is often required, we will not use the normal equations
approach (7). Instead we will work directly on the matrix A itself. The three methods
we have considered are described in the next section.

3. Description of the algorithms.
3.1. A direct orthogonalization method. Following a well established theory ([ 12]

for example), we may consider the orthogonal decomposition

where Q is orthogonal and R upper triangular, Qa is the first n columns of Q. This
factorization can be computed by using elementary orthogonal transformations (House-
holder transformations or Givens rotations) and problem (1) is then reduced to

(11) min IIRx- QAbI[2

whose solution can be obtained by a simple backward substitution. Furthermore, the
structure of A and R can be exploited to reduce the computational effort in forming

(8) R-
R

R2
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R, as discussed in [7], [11], and [14]. In particular, the last paper advocates the use
of a specific elimination procedure that will be called Algorithm D (for direct). Before
describing it, let us define

(12) Co= b)] (i=l,...,m;j=l,...,n)
"ij

where C is p xp upper triangular and C is k xp, and consider the part of the
right-hand side b corresponding to the block row of Co and partition it according to
(12) in

(13) bo \b)] (i= 1,’’., m;j= 1,...,n).

Now partition the vector of variables as

(14) xa, (xl),..., x(,1), x2))a,

where x1) has k components (i 1,. ., m) and x2) np components. Finally observe
that each B is of the form

where B is k x k upper triangular, and define

where Ba) now has nk rows.

ALGORITHM D.
Step 1: For i= 1,..., m, compute the matrix R(B,) by applying Householder

transformations to triangularize the matrix Ba), i.e.,

(17)

where Qf is the product of the transformations. Apply these transformations also to
the corresponding rows of C and of b to obtain

(18)

and

(19)

Step 2: Use Givens rotations, sequentially, row by row, to obtain the np x np upper
triangular matrix R2 in the system
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(20)

and compute also

(21)

(22)

and

(23)

T

b)
ll

(b)
ml

C(b)In

(b)

QT(bb).. ,(b)... b(b).., b(b),(d) b))T__ [b())\ln ml mnl \b)
Step 3" Solve successively the triangular systems

R2x(2) b(e)

R(Bi)xI1)= bc) C(C)(2) (i:1,’" .,m).

Observe that, in Step 1, orthogonal transformations do create fill-in in (18). Givens
rotations are used in Step 2 to avoid storing the matrix to be triangularized in memory
space which would require O(mn2pk) words. Instead, only R2 has to be stored.

Because of the fill-in in the matrices Cd) the operation count is dominated by
the elimination in Step 2, which requires

(24) O(mnap2k)

floating point multiplications. The number of additions is comparable and therefore
will not be discussed further. In core storage, the complete algorithm requires

(25) O(nEkp)

words where this cost is dominated by the fill-in occurring in (18).

3.2. A conjugate gradient type method. As we have just observed, the main costs
of Algorithm D are caused by the fill-in that occurs in the computation of the Cholesky
factor of A. This fill-in is clearly caused by the coupling of the two blocks B and C
in (2). One therefore feels motivated for considering an iterative technique that would
involve no fill-in, and, hopefully, would result in less computational effort. Amongst
the well-known methods ofthis type, conjugate gradient methods are natural candidates
[ 12], 15]. These procedures are implicitly or explicitly based on the bidiagonalization
procedure of Golub and Kahan [9], and we will see that this procedure can be used
to advantage for our particular structure.

Note however that other iterative schemes have been introduced for solving large
sparse least squares systems without forming normal equations [2], [5]. One problem
with iterative methods is the large number of iterations often needed. Bj6rck has
proposed in [1] to accelerate convergence of the block SSOR preconditioning by
conjugate gradient methods. The iterative methods presented in this paper belong to
this class of algorithms.

The outline of the algorithm that we will consider is of the LSQR type, as proposed
by Paige and Saunders in [15]. It is analytically equivalent to the standard method of
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conjugate gradients but is recommended for its numerical stability. It is based on the
transformation of problem (1) into a sequence of problems

(26) min

where each F, is a lower bidiagonal matrix of the form

(27) F
12 a2 0

3 3

i+1

This matrix is obtained from the original matrix A by the following procedure (Xo is
given.)

ALGORITHM B.
Step 1:

(28) /31ul b-Axo
(29) CelVl= ATUl

(3O)

(31)

Step 2: For i= 1,2,...

[3i+lli+ Ai OliUi

Oi+1i+ ATH/+ [i+li

The nonnegative scalars ai and /3i (i=1,2,...) are defined to enforce
Ilu, I1= IIv, I1_ 1.

As discussed in [15], the solution y, to these problems can be computed by
expressions of the form

(32)
d,

1
(vi 0,d,_l)

/9, (i=1,2,...)

Yi Y,-1 + bidi
where do and Yo are defined to be zero, and where p, 0, and b, are scalars computed
in the course of the recursion. The cost of this algorithm is then dominated by the
bidiagonalization procedure (which involves matrix-vector products), i.e., by Algorithm
B. It is therefore interesting to reduce this cost. One possible way of doing this is to
assume that the columns in B (and also those in C) are mutually orthogonal. It is
easy to check that this is equivalent to ArA possessing "Property A" in the sense of
Young 17]. Since this property is known to reduce the cost of computing the solution
to (7) when using a conjugate gradient approach [4], [16], one may expect a similar
reduction of the work for Algorithm B. This is indeed the case, and one can state the
following.

PROPOSITION 1. Consider a matrix A of theform A (A1, A2) and assume that the
columns ofA1 (and also those ofA2) are mutually orthogonal. Assume furthermore that
we use Algorithm B with (28) replaced by the choice of ul( 0) satisfying the condition

(33) AErUl =0.
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Then, if the vectors xi, vi are partitioned according to the partitioning of A into

(v(), v(2)) , we have that

(34) .2i’( --0, -2i-1u(2) --0,
and if ai # 0,

(35) O/2 "- i2+ 1

for i= 1,2,....
The proof of this statement can be found in the Appendix. It has the important

consequence that the matrix-vector products appearing in (30) and (31) are essentially
reduced by half because the zero components of v need not be computed explicitly.
This reduction is important since these products constitute the major cost in the
computation, as mentioned above.

However, the assumption of mutual orthogonality of the columns in the sub-
matrices B and C (or A1 and A2) is in general not satisfied. But, when considering
(2) and (4), it becomes apparent that the block-columns in B and C are mutually
orthogonal, so that we only have to care about orthogonalizing columns belonging to
the same block-column. This can be achieved by computing a QR factorization of
each one of these block-columns.

In practice, obtaining the desired orthogonality properties therefore consists in
preconditioning the matrix A suitably, i.e., in solving the equivalent problem

(36) min IIEz-bll2

where

(37)

(38)

with

E (El, E2) AM-1 =(BR(B)-1, CR(C)-)=(QB, Qc),

Mx z,

0 R(C)

Observe now that because of the natural orthogonality of the block-columns, we have

(40) R(B) R(B,)

and

(41)
j=l

where

(42) j=

Note also that these matrices are small (kxk for R(B) and pxp for R(C)) and
therefore cheaply computed. The least squares problem (36) has now the desired
orthonormality properties (i.e., EE has "Property A") and the above proposition
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applies. Moreover, it can be seen that

(i(43) ErE Kr

(44) K=QQc,

where Qa and Qc are defined by (37). Note that the singular values of K defines the
angles between the subspaces defined by B and C (cf. [12, pp. 428-429]). The rate of
convergence of conjugate gradient method will be related to the spectrum of the
singular values of K. The number of iterations will strongly depend on the geometric
configuration of these subspaces. A theoretical upper bound of number of iterations
is clearly given by

(45) 2 rank (K)+ 1 <_-2 min (ink, np)+ 1.

Hence, the conjugate gradient method applied to (43) will converge, in exact arithmetic,
in at most (2np+ 1) iterations. This upper bound carries out obviously over to the
LSQR algorithm of [15] when applied to (36).

If we now wish to obtain the computational benefits promised by our above
proposition, we have to compute a starting vector Zo such that

(46) lUl b- Ezo
and

(47) E2Tul =0.
This can clearly be achieved by choosing

(48)

where Zo2) is computed from

(49)

since

(50)

and Zo2) is the solution to

(51)

(0)Zo:)

,E2Tu1--" Effb- E2TE2z(02)

min IlE2z-bll2 min IIz-zo=)ll=.

In other words, the starting vector Zo is calculated by applying to the right-hand
side b the same orthogonal transformations that triangularize C.

We are now ready to describe the resulting algorithm.

(52)

(53)

ALGORITHM A.
Step 1" Compute R(B), R(C), and Zo2) from (40), (41), and (49).
Step 2: Compute
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Step 3" For 1,. ., nit
If is odd then

(54) fli+lu,+l Elv1)- aiui,

) Eu(55) a/./ i/-

If is even then

(56) ,+U,+l EEV2- a,u,,

(57) ( Eu,+
Compute the scalars bi, Pi and 0i according to the LSQR method [15] and update zi
using (32).

Step 4" Solve
(2)(58) R(B)x()=Z(1) and R(C)x(2)---zn,t

where nit is the number of iterations to reach sufficient accuracy.

In order to derive approximate operation counts for this algorithm, we will assume
that

(59) m>>n,k<< n and p<< n.

Furthermore, we will assume that n, is given by (45). Under these weak conditions,
the cost of the method, that is concentrated in (54)-(57), is

(60) O(mn2p(k + p)2) operations.

We observe that the storage requirements can be large if we want to store A in memory.
On the other hand, it can be quite convenient to store it on auxiliary storage, block-
column by block-column, at the cost of some input/output at each iteration. The
number of nonzero elements of A and b is given by

[AI= mn(k+p+ 1)(k+p)/2(61)
and

(62) Ibl=mn(k+p).
It is interesting to observe that Algorithm A is naturally suited to parallel computa-

tion. Indeed, the bulk of the computation is concentrated in the matrix-vector products
in (54)-(57). Since the matrices E1 and E2 are structured into independent blocks, the
products involving these blocks can be worked out in parallel, when several processors
are available. This would substantially reduce the cost of the main computational
effort. Observe also that, because of (40) and (41), the work involved in Step 1 of
Algorithm A can be shared between simultaneous processes. Similarly, the structure
of R(B) and R(C) also suggests a parallel implementation of (58). As we see, all steps
of Algorithm A lend themselves to parallel computation, and a substantial reduction
in overall cost would be expected using this approach.

3.3. A projection algorithm. In 10], Golub and Mayers proposed a method based
on the normal equations (7), which eliminates unknowns corresponding to the block
B before using preconditioned conjugate gradient. As before, in order to preserve
stability and avoid fill-in, we prefer to work on A directly, instead of working with ATA.

The procedure can be viewed as the solution of two successive problems

(63) min IlP(B)Cx(=-bll=,
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followed by

(64) min Ilnx’- (- C-)11=,

where (2) is the solution to (63) and

(65) P(B) I- B(BTB)-’Br

is the orthogonal projection onto range (B)+/-. Problem (63) is solved by using a
preconditioned LSQR method again, where the preconditioner matrix M can be chosen
adequately. We will choose here

(66) M U(C),

although this is not the only possible choice.
In practice, the matrix (65) is never computed explictly, but as

(67) P(B)=Q QT=I-QnQn

where

(68) QTB=(R(B))0

It means that P(B) is stored as a product of orthogonal transformations that triangular-
ize B. The solution of (64) is then given by

(69) R(B)x

The resulting computational procedure is then as follows.

ALGORITHM P.
Step 1: Compute R(B) and store the corresponding QT as a product of orthogonal

transformations. Compute also R(C).
Step 2: Compute

(70)

(71)

(72)

(73)

(74)

{lVl R(c)-TcTp(B)u,

Zo2) =0.
Step 3: For i= 1, 2,. ., nit, compute

i+lUi+, P(B)CR(C)-v,-

Oi+1i+ R(C)-TcTp(S)ni+l_fli+i"

Compute also the scalars , pi and 0i according to the LSQR method [15] and
update z2) using (32).

Step 4: Solve successively

(75)

and (69).

R(C)x(2) z,,,-(2)

If we form the normal equations for the problem (63), using the preconditioner
(66), we obtain

(76) ETE I- QQnQTQc.



LARGE SCALE GEODETIC LEAST SQUARES PROBLEMS 809

The expected number of iterations is then half of that for Algorithm A. Note however
that we cannot exploit Property A and that the cost per iteration is higher. In fact,
this algorithm can be viewed as a Gauss-Seidel type acceleration of the conjugate
gradient since the global preconditioning factor M can be computed as

(77) 1 (R(B) toR(B)-7"BT"C)0 R(C)

with to 1. It is therefore possible to generalize this algorithm by choosing the relaxation
parameter to between 1 and 2. This corresponds to the block-SSOR acceleration,
proposed in [1]. Note that, in this case, the splitting of the problem in (63) and (64)
is no more valid. The optimal value of to can be deduced from the classical SOR theory
and is given in [5]. This value is related to the maximum singular value of K.

Assuming (59) and that the number of iterations is given by np, we may analyze
the operation count for Algorithm P. The dominant cost is clearly located in (73) and
(74). The cost of one of the involved products is

(78) O(mn(kp+p(p+ 1)/2)+ mnk(k + 1)) operations

where the first term accounts to the product by C (or Cr), while the second covers
the applications of the orthogonal transformations stored to define (67). The total
operation count is then evaluated as

(79) O(mnEp((k+ p)2 + k2)) operations.

However, because of the freedom to choose the preconditioner M and a relaxation
parameter to, this work can possibly be reduced further. Finally, observe that (79) is
always greater than (60), so we expect Algorithm P to be less efficient than
Algorithm A.

Parallelism also appears naturally in Algorithm P, in a way similar to that already
described for Algorithm A.

3.4. Standard errors. For linear regression problems with a matrix A, n n2 and
n > n2, the standard error in the ith component of the solution x is taken to be si, where

2 0.2(80) s-- c,

(81) r= IlAx-bll/(nl- n),

and ci is the ith diagonal element of (ArA)-1. For direct methods, c can be computed
by the formula

(82)

where R is the upper triangular factor and e is the ith coordinate vector. Unfortunately,
an exact computation of c is not possible when iterative methods are used since R is
never formed. However an estimation of ci can be given as described by Paige and
Saunders 15]. Using LSQR on (1) with a preconditioning factor M, c is estimated by

(i)(83) c, r,,,
where

(84) y)= y)_,+([M-’dk](’))2, k= 1,"’, n,,, yo)=0,

where the superscript denotes the ith component of vector; dk is computed as in (32).

4. Numerical tests and discussion. In this section, we will present some numerical
experience and discuss the relative advantages of three methods described above. This
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comparison will be made by running the three algorithms on data arising from Doppler
positioning. This problem, described briefly above, has motivated this whole study.
Both simulated and real data will be used in the tests; the real data coming from the
European Network (EDOC2) [3].

All experiments were run in double precision on the DEC 2060 of the Facult6s
Universitaires de Namur (Belgium) using the FORTRAN 77 compiler without optimiz-
ation. This machine has a word length of 36 bits, and the mantissa of a double precision
number uses 63 bits. All CPU times will be reported in seconds, and we give the time
needed by an algorithm to obtain maximal accuracy, when an iterative procedure is
involved. Data volumes and storage requirements will be expressed in thousands of
double precision numbers.

In all the test problems, the parameters k and p were 6 and 3 respectively,
corresponding to 3 (positions)+ 3 (speed) components of the satellite orbits, and 3
position corrections for the ground stations. The nonzero coefficients were chosen
using a pseudo-random generator. The parameters m and n range for the simulated
problems between 10 and 60, and 5 and 30 respectively. Problems were also generated
where only 25% of the block-rows associated with the structure (5) appear. These will
be referred to as the "sparse" test cases, because this can be interpreted as a certain
sparsity structure in the m x n table describing the occurrence of the block-rows in
any given problem. The smallest of the simulated problems we have run had 450
equations and 75 variables (m 10, n 5) while the largest one had 10,800 equations
and 420 unknowns (m 60, n 20). The dimensions of the European network were
described by (6).

The first comparison we consider is that between Algorithm A and Algorithm P.
As observed above, the operation count is asymptotically higher for Algorithm P, so
that we expect it to be slower than Algorithm A. This can be checked by considering
Table 1.

10

15

30

40

TABLE
A comparison between Algorithms A and P.

n CPU (Alg. A)

4.0

10.4

23.7

CPU (Alg. P)

2.3

6.9

18.5

36.3

In these tests, the problems considered were well scaled, and both algorithms
produced accurate solutions.

Since Algorithm A is better than Algorithm P, both theoretically and experi-
mentally, no further tests will be described using Algorithm P. Before dismissing it
completely, it is worth mentioning that, possibly, a better choice of preconditioner
could reverse the present conclusion. Note also that the use of a relaxation parameter
as in [ 1 may improve Algorithm P. However, the reduction of the number of iterations
would have to be about three in order to compete with Algorithm A.

We now wish to compare more extensively Algorithms A and D. We first examine
their dependence on n, i.e., on the number of block-columns in (4). In the Doppler
positioning context, this amounts to the number of ground stations.
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TABLE 2
Algorithms A and D: dependence of CPU time on n.

m= 50

10

15

20

25

3O

CPU Alg. A

sparse

8.2

16.7

29.7

38.1

43.7

52.5

dense

17.3

31.3

79.3

88.5

180.2

183.6

CPU Al8. D

sparse

2.6

14.2

45.2

102.6

326.3

dense

21.7

111.7

338.0

724.9

1,299.0

2,069.4

A comparison is made in Table 2, on the basis of CPU time, excluding all the
input/output operations. It is important to observe that for the sparse problems, a
heuristic block-column ordering [13] was used in Algorithm D for exploiting the
sparsity. Results without this reordering are consistently about 20% worse, and are
therefore omitted. It is possible to adapt other column ordering strategies such as
proposed by George and Heath [6] or George and Ng [8] but, because of the relative
high density of the problems, one could not expect very significant savings in
computations using them.

Except for small n, i.e., n 5 and n 10, Algorithm A significantly outperforms
Algorithm D in execution speed. The observed behavior in O(n3) operations for
Algorithm D is expected from (24). On the other hand, Algorithm A exhibits a behavior
that is better than O(r12), as would be suggested by (60). This is due to the very slow
increase in the number of iterations, which, in these experiments, are substantially
slower than that predicted by (44). Although one may attribute this fact to a poor
choice of test problems, it should be observed that a similar behavior was obtained
on real data, which was rather poorly conditioned.

In order to complete our comparison on n, we should also examine the respective
amounts of file and memory storage and the amount of input/output operations for
the two methods. These amounts are summarized in Table 3 for the dense problems
and in Table 4 for the sparse counterparts.

In both tables, the columns "incore" and "outcore" under the heading ofAlgorithm
A refer to two extreme ways of manipulating the storage for this method. The "incore"
version keeps the entire matrix A in main memory, while the "outcore" version stores
it on auxiliary files and reads it in every time it is needed, i.e., on every iteration of
the LSQR process. As one can see, the "incore" version requires more memory but
much less I/0 operations. The file space is the same for both variants, since the matrix
is stored on file at least once (when computing the preconditioning factor).

Algorithm A "incore" seems a reasonable choice when possible. This may not be
the case if the machine memory is very small. In this case, one could choose Algorithm
A "outcore" if file space is also scarce but I/0 speed adequate, and Algorithm D in
the other case. Observe however that one has to balance the relative costs of a larger
number of arithmetic operations and a large volume of I/0. Observe also that the
I/0 counts for Algorithm D increase faster than those of Algorithm A "outcore". It
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TABLE 3
Storage and I/0 comparison for Algorithms A and D on dense problems with variable n.

m=50

10

15

20

25

30

MEMORY SPACE

Algorithm A Alg. D

incore

16.5

30.0

43.6

57.2

70.1

84.3

outcore

5.3

7.6

9.9

12.2

14.5

16.8

1.2

2.1

4.5

7.8

12.0

17.0

FILE SPACE

Alg. A Alg. D

13.5

27.0

40.5

54.0

38.5

121.0

248.5

421.5

538.5

901.0

INPUT/OUTPUT

Algorithm A

incore outcore

27.0

54.0

81.0

67.5

81.0

108.0

135.0

162.0

465.8

1,246.5

2,409.8

2,808.0

3,741.4

4,144.5

Alg. D

77.1

242.1

497.1

843.0

1,077.1

1,802.1

TABLE 4
Storage and I/0 comparison for Algorithms A and D on sparse problems with variable n.

m =50

5

10

15

20

25

30

MEMORY SPACE

Algorithm A

incore outcore

6.0 3.2

9.5 3.9

13.0 4.5

16.4 5.2

19.8 5.8

23.3 6.5

Alg. D

FILE SPACE

Alg. A Alg. D

0.8

1.3

1.9

3.9

3.3

6.7

10.1

13.5

6.0

14.8

28.5

38.5

INPUT/OUTPUT

Algorithm A

incore

6.7

13.5

outcore

132.4

367.9

710.2

972.0

4.7

6.3

16.8

20.2

55.8

70.0

20.2

27.0

33.7

40.5

1,156.9

1,458.0

Alg. D

12.1

29.6

56.9

77.1

111.5

140.1

is also obvious that, in practice, some compromise could be worked out between the
two variants of Algorithm A, in order to use all the available memory space to advantage.

It is fortunate that time and a lack of suitable hardware did not allow the authors
to test the inherent parallelism of Algorithm A. The authors nevertheless feel that this
experimentation is worthwhile and should be carried out. As discussed above, substan-
tial savings can be expected when the number of available processors increases.

We now compare the same two methods, but when varying m, the number of
block-columns in (3). This is the number of satellite passes in the Doppler positioning
problem.

Table 5 shows the CPU times (exlcuding I/0 again) for both methods and both
dense and sparse cases. Algorithm A is again better on this ground. Tables 6 and 7
report the storage and I! 0 for the corresponding problems.
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TABLE 5
Algorithms A and D: dependence of CPU time on m.

n= 20

20

30

40

50

60

CPU Alg. A

sparse

15.9

23.5

28.8

38.1

42.8

dense

35.0

52.1

67.9

88.5

138.5

CPU Alg. D

sparse

37.1

56.4

68.4

102.6

118.5

dense

301.5

446.9

540.4

724.9

812.5

These three tables show again that, when it is feasible, Algorithm A "incore" is better.
When the machine does not allow it, the choice between Algorithm A "outcome" and Al-
gorithm D is again dependent on the relative cost of arithmetic and I/0.

TABLE 6
Storage and I/0 comparison for Algorithms A and D on dense problems.

n=20

20

30

40

50

60

MEMORY SPACE

Algorithm A

incore

22.9

34.4

45.8

outcore

5.0

7.4

9.8

57.2 12.2

68.6 14.6

Alg. D

7.8

7.8

7.8

7.8

7.8

FILE SPACE

Alg. A

21.6

32.4

43.2

54.0

64.8

Alg. D

168.4

252.6

336.8

421.5

505.3

INPUT/OUTPUT

Algorithm A

incore outcore

43.2 1,033.2

64.8 1,468.8

86.4 2,210.4

108.0

129.6

2,808.0

3,423.6

Alg. D

336.8

505.3

673.7

843.0

1,010.5

TABLE 7
Storage and I/0 comparison for Algorithms A and D on sparse problems.

nx20

20

MEMORY SPACE

Algorithm A

incore outcore

2.9

Alg. D

2.8

30

40

50

60

6.8

10.0

13.2

16.4

3.2

4.2

5.2

6.1

3.1

3.5

3.9

3.9

FILE SPACE

Alg. A

5.4

8.1

10.8

13.5

Alg. D

15.4

23.1

30.8

38.5

46.3

INPUT/OUTPUT

Algorithm A

incore

10.8

16.2

21.6

27.0

outcore

370.8

556.2

759.6

972.0

1,139.419.6 16.2 32.4

Alg. D

30.8

45.3

61.7

77.1

92.5
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Finally, Table 8 shows the results obtained by running both algorithms on the
European network.

In this table, d =0.45 stands for the proportion of block-rows present in the
structure (5). The density is therefore intermediate between the dense and the sparse
problems considered above. In our experience, and although the I/0 was programmed
very crudely in our test code, Algorithm A outperformed Algorithm D in overall cost.
We expect this to be reinforced when a more careful coding is done that will compromise
between the "incore" and "outcore" approaches more adequately.

m

152

TABLE 8
Results on the European network.

n d CPU Alg. A

34 0.45 438.8

CPU Alg. D

3,516.9

MEMORY SPACE

Algorithm A Alg. D

incore outcore

133.5 29.2 17.3

FILE SPACE

Alg. A

125.1

Alg. D

981.6

INPUT/OUTPUT

Algorithm A

incore

250.2

outcore

9,529.8

Alg. D

1,963.1

It is also worth noting that the standard errors estimates produced by Algorithm
A were usually rather poor (about one significant digit) in contrast to results obtained
by Algorithm D. This can provide an incentive to use Algorithm D, when accuracy on
these quantities is very important.

Finally, we may now consider the case where the matrices (Bij, C0) (i= 1,. , m,
j 1, , n) are no longer triangular but generally rectangular. Most ofthe conclusions
still apply since it is advantageous, in most cases, to reduce these matrices to upper
triangular form first before applying the algorithms developed here (see [14]). One
should also observe that B and C in (2) could be exchanged if mk < np, yielding a
system with a similar structure after a trivial column permutation.

5. Conclusion. According to our numerical tests, an iterative technique for solving
the linear least squares problem (1), structures in dense blocks as described in the
second section, is often useful and can produce significant savings in overall execution
time, especially when the main memory of the computer is sufficiently large, or when
the input/output operations are fast.

Appendix. We consider here the proof of Proposition 1. From the initialization
step (29) and hypothesis (33), it is straightforward that

(85) 011
0

Assume now that, for ai O,

(86)
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Then, from (30), we have that

(87) 32,+I =v1)ara
By the hypothesis of orthogonality (AA1 I), it follows that

(88) /3i+1 1

Now consider equation (31). We have

V
(1)(1). A(Ui+l i+l(89) ai+lVi+

(2).(90) ai+lV,+

Replacing u+a by its expression in (30) and using (86), we obtain when + 0

(1). 1 2 .(1) 1)(91) /+lVi+I ,+, (l-a,)., i+lV{ O.

We have thus proved that using Algorithm B with A(A I, the following"

(a) a++1 1

(92) aivi= [(b) 2Ri+I

since the corollary result,

(93)

assuming AA I, is clearly deduced, and hence Proposition 1 is demonstrated.

elegems. The authors wish to thank P. Pquet who introduced them to
the problem and who provided data of the European network and Ch. Murigande for
helpful discussions. Thanks are also due to ke Bj6rck who provided very useful advice.
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GENERALIZATIONS OF DAVIDSON’S METHOD FOR COMPUTING
EIGENVALUES OF SPARSE SYMMETRIC MATRICES*

RONALD B. MORGANf AND DAVID S. SCOTT

Abstract. This paper analyzes Davidson’s method for computing a few eigenpairs of large sparse
symmetric matrices. An explanation is given for why Davidson’s method often performs well but occasionally
performs very badly. Davidson’s method is then generalized to a method which offers a powerful way of
applying preconditioning techniques developed for solving systems of linear equations to solving eigenvalue
problems.

Key words, eigenvalues, eigenvectors, sparse matrices

AMS(MOS) subject classifications. 65, 15

1. Introduction. The Lanczos algorithm is a powerful technique for computing a
few eigenvalues of a symmetric matrix A. If it is practical to factor the matrix (A-r)
(which is the notation which will be used for the matrix (A-trI)) for one or more
values of r near the desired eigenvalues, then the Lanczos algorithm can be used with
the inverted operator and convergence will be very rapid. Otherwise the Lanczos
algorithm can be used with the original matrix A but convergence can be very slow.

Slow convergence can also plague the conjugate gradients method for solving
systems of linear equations which is an analog of the Lanczos algorithm. Convergence
of the conjugate gradients algorithm can be accelerated by computing and using an
approximate inverse (preconditioner). Much work has been done developing effective
preconditioning techniques ([3], [5], [8], [1]). Unfortunately preconditioning cannot
be directly applied to eigenvalue problems. If the preconditioner multiplies both sides
of the equation Az Az then the problem becomes a generalized eigenvalue problem
which is no easier to solve. If only A is multiplied by the preconditioner, then the
eigenpairs are changed.

One approach for using preconditioners on eigenvalue problems is to convert
them to linear equation problems by using inverse iteration or the Rayleigh quotient
iteration and then use preconditioned conjugate gradients (actually SYMMLQ [6]
since the matrices involved will be indefinite). This approach was investigated by Szyld
[9]. A different approach is Davidson’s method [2] which can be interpreted as a
method for using diagonal preconditioning in solving eigenvalue problems. This paper
analyzes Davidson’s method from this point of view and then generalizes it to obtain
a method which uses more powerful types of preconditioners.

2. Davidson’s method. Davidson [2] introduced a new method for computing a

few eigenvalues of sparse symmetric matrices arising in quantum chemistry calculations.
The standard solution technique for such problems is the Lanczos algorithm [7, Chap.
13] which is a clever implementation of the Rayleigh-Ritz procedure applied to a

Krylov subspace (that is, a space of the form span (s, As,..., Aks)). Davidson’s
method also uses the Rayleigh-Ritz procedure (see [7, p. 213]) but on a non-Krylov
subspace. Formally Davidson’s method is as follows.

* Received by the editors October 31, 1984, and in revised form April 26, 1985.

" Mathematics Department, University of Texas at Austin, Austin, Texas 78712., Intel Scientific Computers, Beaverton, Oregon 97006. The work of this second author was partially
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Davidson’s Method.
Initialize" Let A be the matrix of interest and let D be the diagonal of A. Choose

an initial trial space Pk span (Pl, P2," ", Pk) and compute (Yk, 0k) the
best approximation to the eigenpair of interest using the Rayleigh-Ritz
procedure and compute the residual vector

rk Ayk ykOk.

Then FOR j k / 1, k / 2, until convergence DO 1 to 4
1. Compute p (D 0_1)-r_2. Set P span (P_1, P)
3. Compute (y, 0) from P using the Rayleigh-Ritz procedure
4. Compute the residual r (A 0)y

Convergence is measured by the norm of the residual vector.

Thus the new trial vector is just (D- O)-(A O)y. Except for the cost of forming
the matrix vector product (which is the same for either method), this algorithm is
much more expensive per step than the Lanczos algorithm since a full Gram-Schmidt
process is needed to compute an orthogonal basis for the space H and a full (rather
than tridiagonal) reduced matrix is generated by the Rayleigh-Ritz procedure. Despite
this higher overhead, Davidson reported favorable results for his method compared
to the Lanczos algorithm for problems arising in molecular energy calculations. In one
example of dimension 372, Davidson’s method reduced the residual norm to le-6 in
10 iterations while 28 iterations of Lanczos reduced the residual norm to only 2e-2.
The improvement is due entirely to the premultiplication by the matrix (D-0)- in
step 1, since without this perturbation, Davidson’s method would just reduce to a very
expensive way of implementing the Lanczos algorithm (provided k- 1).

The new trial vector obtained by Davidson’s method is the correction which would
be obtained by one step of the Jacobi method for solving the system of equations

(A-O)x=O

with yj as the initial guess for x. This looks a little strange since in general A-0 is
not singular and the only solution to the system of equations is x 0. A more satisfying
explanation of the algorithm is as follows. Let (y, 0) be the current approximation to
the desired eigenpair. For a given coordinate i, the best improvement which can be
made in y by perturbing its ith component can be determined by the Rayleigh-Ritz
procedure. Let X be the n x 2 matrix with y as its first column and ei (the ith coordinate
vector) as its second column. Then the best approximations to eigenpairs of A obtain-
able from the space spanned by the columns of X are obtained by solving the 2 x 2
generalized eigenvalue problem Hi-aW where

Hi=XrAx=[yrAy yrAei" =[ 0 (Ay)i]efAy eAei. (Ay)i aii

e y eei
and Yi is the ith component of the vector y. If (s, a) is an eigenpair of this system,
then a is the approximate eigenvalue (called Ritz value) and z Xs is the corresponding
approximate eigenvector (Ritz vector).

If we are near convergence then the residual of y will be small and one of the
c’s will be near O. The corresponding eigenvector can be approximated by examining
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the matrix
0

Hi- OW (Ay- yO), (Ay-yO)i] =[Oa, 0 ri di- 0

where ri is the ith component of the residual vector and di is the ith diagonal element
of A. The eigenvector is (approximately)

s=(1,-(d,-O)-lr,).
The corresponding Ritz vector is

z Xs y-(di-

Davidson’s method just lumps all of these perturbations into one vector and adds this
composite vector to the trial space. (The dropping of the minus sign is of no account
since only the trial space is important for the Rayleigh-Ritz procedure not the particular
basis chosen.)

Example 1. To compare Davidson’s method to the Lanczos algorithm, the smallest
eigenpair of a symmetric matrix A of order 20 was computed using both methods. A
was (unreduced) tridiagonal except that aln and an1 were nonzero, a, for all while
all other nonzero elements were 1. The starting vector was Pl (1, 0.1, 0.1,. ., 0.1)7"
which is moderately but not exceptionally accurate. Table 2.1 illustrates the behavior
of the methods. The Ritz value for Davidson’s method was accurate to 9 decimal digits
at step 10 while the Lanczos value at step 10 was accurate only to 2 digits. This behavior
is very similar to that reported by Davidson [2]. Note that the Lanczos algorithm has
better global convergence than Davidson’s method (better for the first five steps).

TABLE 2.1
A comparison of the Lanczos and Davidson methods.

Davidson Lanczos
Step Ritz value Residual norm Ritz value Residual norm

3.23529 5.27 3.23529 5.27
2 3.17006 3.17 1.21302 1.83
3 1.65718 1.80 .784054 1.34
4 1.48600 1.78 .476551 1.07
5 .291006 .953 .320862 .664
6 .223536 .0764 .2603809 .423
7 .222866 .01177 .2352622 .264
8 .222847 .00241 .2263713 .149
9 .222846 .000229 .2237563 .0783
10 .222846 .0000249 .2230518 .0381

In the next section we examine our derivation of Davidson’s method in more detail.

3. Local analysis of Davitlson’s method. One major assumption in the derivation
of Davidson’s method is the form of s, the eigenvector of interest of the 2 x 2 problem
Hi a W. Let ri ri/(di O) be the components of the Davidson vector p. If I,1 < 1
then the eigenvalue near 0 and corresponding eigenvector can be expanded in a power
series in

t 0 r,Tr,- 2rviTr,2- + O(r,

and normalizing the first component of s to be 1,

s (1, -Tri- y,Tr,2- + O(
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(It is interesting to note that the lowest order terms do not depend on Yi.) Thus
Davidson’s method does implement the correct first order perturbation correction
provided that 17ril < 1.

Asymptotically ri converges to zero while d- 0 converges to d- A, where A is
the desired eigenvalue. Thus 7h converges to zero for all unless A is equal to some
diagonal element of A. If A d for some then the behavior of 7h depends on whether
or not the corresponding eigenvector is ei. In any case 0, the Rayleigh quotient of y,
will satisfy

d,- 0 o(11 rll
(see [7, p. 222]). If z ei then yi 1, h will be just (d-O)y and 7h will approach 1.
Otherwise ri will be some constant times Ilrll and 7h will diverge to infinity. In either
case Davidson’s method may perform badly.

Example 2. The matrix A from Example 1 was modified so that a12 a21 a,
a, 0. This made the smallest eigenvalue of A equal to 1 with el as the corresponding
eigenvector. The next smallest eigenvalue is 1.2538.... The same starting vector was
used. By step 8 of the algorithm the second smallest eigenvalue had been computed
to 8 decimal places but no approximation to the smallest eigenvalue had appeared at
all. On step 9 a poor approximation to the smallest eigenvalue appeared (1.21315) but
by step 16 it had only converged to 1.0285.

Example 3. To obtain an example of the other kind of unusual behavior, the
matrix A from Example 1 was modified by deleting its last row and column. The
resulting matrix has 10 both as an eigenvalue and as a diagonal element but the
eigenvector of 10 is not a coordinate vector. The starting vector had all equal components
except the tenth which was ten times larger. By step fourteen the desired eigenvector
approximation had a residual of .000587. This is almost as fast as Example 1 and much
faster than Example 2. This difference in behavior will be examined in the next section.

4. Convergence of Davidson’s method. Despite the dramatic results reported by
Davidson for molecular energy calculations, Kalamboukis [4] reported that Davidson’s
method converged no faster than Lanczos on nuclear modeling problems. Since the
overhead is much higher in Davidson’s method, Kalamboukis recommended that
Lanczos be used for this type of problem. Kalamboukis also suggested that the differing
behavior of Davidson’s algorithm could be explained by the degree of diagonal
dominance of the matrices involved--the more diagonally dominant the matrix was,
the better Davidson’s method worked. This is not entirely true. If the diagonal of A
is constant, then Davidson’s method is equivalent to Lanczos regardless of the degree
of diagonal dominance. More distressing is the fact that Davidson’s method fails
completely when A is a diagonal matrix since the new trial vector will just be y and
the trial basis will become linearly dependent.

The best way to understand the behavior of Davidson’s method is to analyze the
operator N(O) (D- O)-(A 0). Each new trial vector is N(O) times some vector in
the space. If 0 were constant, the trial space would just be the Krylov space generated
by N. (Unfortunately since N is nonsymmetric in general, it would not be possible to
use the symmetric Lanczos algorithm on it.) Of course 0 is not constant but it does
converge to the desired eigenvalue A and so the properties of N(O) for values of 0
near A are crucial to the behavior of the algorithm. N(0) is just the operator obtained
by applying diagonal scaling to (A-O). It is well known, from studying diagonal
scaling as a preconditioner for conjugate gradients, that this diagonal scaling will tend
to compress the spectrum of (A- 0) so that it is centered on 1. For conjugate gradients,
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this is the goal in itself since the compressed spectrum will have a lower condition
number and conjugate gradients will converge faster. For eigenvalue problems we are
interested in how rapidly the Krylov subspace generated by N will contain good
approximations to the desired eigenvector.

The dominant term in the convergence rate for Krylov subspaces depends on the
gap ratio of the desired eigenvalue which measures the relative separation ofthe desired
eigenvalue from the rest of the spectrum (see [7, p. 244]). Convergence to interior
eigenvalues is also possible but usually implies earlier convergence to all of the
eigenvalues on one side of the desired eigenvalue. Compression of the spectrum by
itself is not sufficient to insure rapid convergence. Two additional conditions must be
met:

1. The desired eigenvalue (the smallest eigenvalue of (A- 0)) must be moved less
than the rest of the spectrum so that the gap ratio of the desired eigenvalue is increased.

2. The preconditioning must not greatly perturb the desired eigenvector so that
convergence to the eigenvector of N implies convergence to the desired eigenvector
of A.

If the desired eigenvector is a coordinate vector, ei say, then ei is also an eigenvector
of N(O) for all 0 and the second condition is satisfied. Unfortunately the diagonal
preconditioning makes the corresponding eigenvalue exactly 1 which lies right in the
middle of the compressed spectrum and so convergence is very slow. In the special
case of a diagonal matrix A, all the eigenvalues of N are 1 and the method breaks
down. Table 4.1 shows the spectrum of N(1.0001) for Example 2. Note that the desired
eigenvalue lies in the middle of the spectrum.

The situation is rather different in Example 3. For 0’s near the desired eigenvalue,
(D-O) is nearly singular and N(O) will have a very large singular value. After one
matrix multiply a vector very close to elo will be in the trial space. Essentially one step
is wasted obtaining the approximation to elo and then the process proceeds as if the
large singular value did not exist.

TABLE 4.1
Spectrum of N(1.0001) for Example 2.

0.1683 0.6377 0.7689 0.8304
0.8661 0.8902 0.9128 0.9392
0.9688 0.9999 1.0000 1.0311
1.0608 1.0872 1.1098 1.1339
1.1696 1.2311 1.3623 1.8317

In the regular case, (D-19)-1 remains bounded as 19 approaches A, the desired
eigenvalue of N becomes zero, and the corresponding eigenvector of N converges to
the desired eigenvector of A. Thus the method does converge to the desired eigenvector
with a better (and perhaps much better) convergence rate. In Example 1 the gap ratio
of the desired eigenvalue ()t l) for the original matrix A is

(A2 A 1)/(A2o- A2) (1.854160-.222851)/(20.41594-1.866517)

.087943.

For different values of 19, Table 4.2 gives the smallest eigenvalue of N(0), its gap ratio,
and the sine of the angle between the corresponding eigenvector of N(19) and the
smallest eigenvector of A.
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TABLE 4.2
Gap ratios and sines for different values of O.

0 Eigenvalue of N Gap ratio Sine

0.9 -2.16723 0.722 0.3776
0.5 -0.30592 0.499 0.1010
0.3 -0.06670 0.447 0.0246
0.22 0.00227 0.431 0.0009
0.2 0.01788 0.427 0.0069

It is clear from Table 4.2 that the effectiveness of N is not very sensitive to changes
in 0. The gap ratio for N for 0 anywhere near A is fives times the gap ratio for A.
Since the convergence rate depends exponentially on the gap ratio, this change makes
an enormous difference in the convergence rate of the algorithm. Furthermore the
eigenvector is hardly perturbed. Thus rapid local convergence is to be expected. The
first value of 0 encountered in Example 1 is 3.23529. This lies between the third
eigenvalue (2.95594) and the fourth eigenvalue (3.99522) of A. Some of the eigenvalues
of N(3.23529) are complex (which is not disastrous by itself) but the desired eigenvector
is not well represented in the extreme eigenvalues of N. This explains why the first
few Davidson steps in Example 1 were not as effective as the first few Lanczos steps.
Davidson’s method was happily trying to converge to the wrong eigenvector. It is only
after 0 is closer to the desired eigenvalue than to any of the others that the method
starts converging rapidly.

5. Generalizing Davidson’s method. Unfortunately Davidson’s method does not
always increase the gap ratio. If the diagonal of a matrix A is constant, then Davidson’s
method reduces to the Lanczos algorithm. If the diagonal is almost constant then
Davidson’s method may be slightly faster than Lanczos but it will probably not be
worth the higher overhead. This was the conclusion of Kalamboukis [4] when he
investigated using Davidson’s method on nuclear modeling problems.

Interpreting the operator (D-Oj_I)-1 as a preconditioner for (A-Oj_l), the
obvious way to improve Davidson’s method is to use a better preconditioner. The
generalized algorithm requires modification of only step one of the original algorithm
as follows:

1. Compute p (M 0_1)--1 rj_ 1,

where M-Oj_ is some easily inverted approximation to (A-Oj_). One potential
advantage of this use of preconditioners over conjugate gradients is that here there is
no requirement that the preconditioner be positive definite. This allows the precon-
ditioner to more closely approximate the indefinite matrix (A-tr). In what follows
the generalized algorithm will be referred to as the GD algorithm.

As before, the effectiveness of the GD algorithm depends on the nature of the
operator N (M- 0)-I(A 0). If M A then N is the identity matrix and the method
breaks down Oust as ordinary Davidson’s method fails when A is a diagonal matrix).
Otherwise the same two conditions on N for Davidson’s method must also be satisfied
here. 0 is chosen so that the desired eigenvalue of A-0 is near zero. This in turn
means that the preconditioning is likely to compress this eigenvalue less than the others
and leave it better separated than before. It is this tendency which makes the method
successful.
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The GD algorithm was applied to Example 1 using the preconditioner (T-0)-1

where T is the tridiagonal part of A. Table 5.1 gives the sequence of eigenvalue
approximations obtained by the GD algorithm (starting with the same vector).

TABLE 5.1
Behavior of the GD algorithm on Example 1.

Step 0 Residual norm

3.23529 5.274
2 2.58389 3.777
3 1.54362 1.286
4 1.49082 1.121
5 .38969 1.024
6 .22286 .0151
7 .22285 .le-7
8 .22285 .6e-13

As can be seen from Table 5.1, the first four steps are very similar to the behavior
of the original algorithm with convergence to the wrong eigenvalues. Once 0 is closer
to the desired eigenvalue than to the rest of the spectrum, convergence is almost
immediate. As before the behavior of the algorithm can be understood by examining
the spectrum of N(O)= (T-O)-(A O) for values of 0 near the desired eigenvalue.

TABLE 5.2
Gap ratios for different values of 0 for GD.

0 Eigenvalue of N Gap ratio Sine

.9 1.0+.171i 1.0 .4761

.2 0.2388 1.0 .0165

.222846097 .494e-7 1.0 .839e-6

As before, for all values of 0 near the desired eigenvalue there is a well separated
eigenvalue of N(O) with a corresponding eigenvector which is nearly parallel to the
desired eigenvector of A. The extremely rapid convergence obtained with the tridiagonal
preconditioner is due to more than just the increased gap ratio. For all values of 0
near the desired eigenvalue, the spectrum of N(O) with tridiagonal preconditioning
consists of a cluster of 18 eigenvalues within l e-16 of 1 and two other eigenvalues
symmetrically located around 1. This distribution guarantees convergence after only
3 steps.

6. Global convergence. As seen above, both Davidson’s method and GD do not
converge rapidly to the desired eigenvalue as long as 0 is far away. If the desired
eigenvalue is specified as the eigenvalue of A closest to a given number tr, then it is
possible to modify the algorithm to improve the global convergence. Instead of using
(M-O)- as the preconditioner, (M- tr) -1 can be used until 0 has started converging
to the desired eigenvalue. In these examples the switch from tr to 0 was made when
the residual norm bounded 0 away from tr. Tables 6.1, 6.2, and 6.3 give the behavior,
for different values of tr, ofboth diagonal preconditioning and tridiagonal precondition-
ing on Example 1 when the preconditioners are fixed at tr until 0 has settled down.
As can be seen from the tables, this modification significantly improves the global
convergence of the algorithm and does not require a particularly accurate value for
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TABLE 6.1
0"--9

Diagonal Tridiagonal

Step 0 Residual norm 0 Residual norm

3.2352 5.2740 3.2352 5.2740
2 .9007 1.3130 .5190 1.5320
3 .3321" .5493 .2276* .2001
4 .2347 .2184 .2229 .0331
5 .2236 .0613 .2228 .0002
6 .2229 .0130 .2228 .3813e-ll

* Switch from r to 0.

TABLE 6.2
tr o5

Diagonal Tridiagonal

Step 0 Residual norm 0 Residual norm

3.2352 5.2740 3.2352 5.2740
2 .7455 1.1730 .2911 .9275
3 .3055 .4406 .2229* .0168
4 .2318" .1978 .2228 .0022
5 .2234 .0494 .2228 .1154e-5
6 .2229 .0117 .2228 .3836e-13

* Switch from tr to 0.

Diagonal Tridiagonal

Step 0 Residual norm 0 Residual norm

3.2352 5.2740 3.2352 5.2740
2 .7054 1.1160 .2493 .7077
3 .2987 .4254 .2230 .0294
4 .2308 .1854 .2228* .7790e-4
5 .2233 .0462 .2228 .2244e-7
6 .2228* .0109 .2228 .4518e-13

7. Conclusions. The success of Davidson’s method on some types of eigenvalue
problems shows the potential power of diagonal preconditioning. Generalizing David-
son’s method allows for more powerful preconditioners to be used which makes the
method effective for a much wider class of matrices. Using (M-tr)-1 instead of
(M- 0)-1 as the preconditioner shows that it is possible to force global convergence
to a particular eigenvalue. If the formation of a matrix-vector product is very cheap
then the overhead required in the GD algorithm will not be cost effective, but if the
matrix-vector product is expensive then the GD algorithm will significantly reduce the
number of matrix-vector products required and thus will be significantly cheaper than
the Lanczos algorithm.
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LINEAR LEAST SQUARES WITH BOUNDS AND LINEAR CONSTRAINTS*

RICHARD J. HANSON

Abstract. An algorithm is given for solving linear least squares systems of algebraic equations subject
to simple bounds on the unknowns and (more general) linear equality and inequality constraints.

The method used is a penalty function approach wherein the linear constraints are (effectively) heavily
weighted. The resulting system is then solved as an ordinary bounded least squares system except for some
important numerical and algorithmic details.

This report is a revision of an earlier work. It reflects some hard-won experience gained while using
the resulting software to solve nonlinear constrained least squares problems.

Key words, linear least squares, linear systems, bounds, equality constraints, inequality constraints

1. Introduction. Solving the least squares algebraic system

(1) Ax b, AMROWS by NCOLS,

is fundamental in the solution of many problems in applied mathematics. Excellent
numerical methods exist for solving (1), such as Householder’s method (employing
elementary orthogonal matrices), [1, pp. 9-10], Givens’ method (employing plane
rotations), [1, pp. 10-11], and the singular value decomposition, [1, pp. 18-21].

Frequently the solution of the system of (1) has additional requirements or
constraints that might derive from physical meanings for the unknowns, x. Here we
consider a special class of constraints which we write in the form of simple bounds

cej _-< xj -</3, j 1,. -, NCOLS,
and linear equality and inequality constraints cx f, cfx >= gi, cfx <- hi or gi <= cfx <= hi.
We write these general linear constraints in the compact form y Cx, CacoN by NCOLS,

with bounds on the components

(t ii--Yi---[3 i= 1 MCON

(For example, the constraints ex=f and cfx-> g amount to the respective choices
a =/3 =f and a gy, flj +o.) This method of writing the linear constraints is more
concise than describing each constraint individually. It also provides a useful framework
for replacing an infeasible problem (in which no values of x exist that satisfy all
constraints) by a nearby feasible problem. We summarize the statement of the linearly
constrained problem:

Problem BNDCLS. Solve
Ax b, AMROWS by NCOLS,

subject to constraints in the form of simple bounds

and linear constraints
j= 1,. ., NCOLS,

Cx y, CMCON by NCOLS,

subject to simple bounds

(2) a<-y,<=fl, i=1,.--, MCON.

The simple bounds on the x are a special type of linear constraint that could be
included in the constraints Cx=y. For reasons of computational efficiency and
economy of storage it is important to consider such constraints separately.

* Received by the editors April 12, 1983, and in final form September 20, 1984.
t Applied Mathematics Division, Sandia National Laboratories, Albuquerque, New Mexico 87185. This

work was supported by the U.S. Department of Energy.
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Other related algorithmic work on the linearly constrained least squares problem
is that of [7] based on the work of Stoer and Schittkowski [8]. A quite different
approach is taken in our work--a penalty function method (also see [8]) as opposed
to a feasible direction method. The work of Zimmermann [6] is concerned with the
least squares problem constrained by simple bounds only. There is a restrictive assump-
tion in [6] that the least squares matrix is of full column rank. This restriction is
apparently present in the work of [7] also, but it is not explicitly stated. The present
work has no such restriction.

This paper gives some of the required background for the development of a robust
computer program to solve Problem BNDCLS. The software package developed by
the author will be published elsewhere.

An early version of the software had two deficiencies. One was numerical and
another was conceptual. The numerical deficiency involved translations of bounds. At
first glance, it seems reasonable to normalize the bounds of Problem BNDCLS so that
variables are translated and possibly reflected so that all lower bounds are zero.
Numerically, this can be a disaster. Consider an example with a single least squares
equation x a and bounds -b =< x <-b. Assume that the quantity b is large relative to
a, so that b+ a is computed as b. If we translate by letting y-b =x, the working
equation for y is y b. All dependence on a is now gone, so the solution for x can
have no accuracy at all. Thus the algorithm given in 3 avoids translating variables
that include the value zero as an interior point in their bounds. This fact also complicates
the algorithm because there is a need to distinguish variables which have hit a bound
during the course of the solution process and those that have not hit a bound.

The conceptual deficiency arose because it seemed important initially to note
whether general linear constraints are inconsistent. In fact, the subroutine package of
[4] contains a code LSEI that solves a constrained least squares problem with linear
constraints. If the problem is infeasible, only an error flag is returned. That seems to
be an undesirable feature in the design of the software. Suppose, for example, that

NCOLS NCOLS
two constrmnts Lj--1 xj 1 ana L#=I x# =0.99, (x# >=0), are specified by a user.
That user may not want to distinguish between 0.99 and 1.00, but the code LSEI surely
will. This, and other reasons not stated here, forced the author to take a fresh approach
regarding the inconsistent linearly constrained problem. In fact, the method presented
below for resolving such constraints will replace the above example by the feasible,, NCOLSregion #__ xj < 0.995, 0.995 < vNCOLS=z,= x =<1.0, (x>=0)

There are two important differences between the present work and the work of
[3] and its published algorithm [4]. The most significant one is the new capability for
upper and lower bounds without writing these bounds as rows of C. This new capability
combines conveniently with the technique of expressing the other linear constraints
as Cx=y, where bounds are present on the components y. The second primary
difference is the technique for dealing with infeasible constraints.

2. Reduction of the linearly constrained problem to a bounded least squares prob-
lem. In this section we consider the general case where the number of linear constraints,
MCON> 0. The methods presented here are based on a two-phased approach.

Phase 1. Solve the constraint equation Cx-y 0 in a least squares sense subject
to the bounds on x and y of (2).

In case the constraints are infeasible we "cooperatively" make them feasible by
Specifically we compute C, where is the firstperturbing values of cr’i and fl i.

NCOLS components of the solution vector (xT, yr). Then we enlarge the bounds on
the y:

or" min (a’i, Yi), /,’-’ max (fl’
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Note that a’i --ai’ and/’i ---i,t i= 1, MCON, if the constraints are feasible. In
the alternate (infeasible) case this algorithm provides one particular solution to the
problem of enlarging the bounds on y so that solutions to the equations Cx-y-0
will exist. One could solve this least squares system for its unique minimum length
solution and then enlarge the bounds on y as described. Obtaining this minimum length
solution could be done as in [3]. The simpler method outlined above is often to be
preferred because the computation of the minimum length solution is relatively expen-
sive. Also, uniqueness ofthe new constraint region is not an issue for many applications.

It also seems that the approximate solution of linear constraints, as shown here,
can be motivated just as the approximate solutions of linear algebraic equations. For
example, the least squares solution of a linear system can be regarded as replacing the
right-hand side vector by its projection into the column space of the matrix.

Phase 2. Solve the weighted least squares problem

(3)

with bounds

aj xj -< flj, j 1,. ., NCOLS,

a=yi=fl" i=1 MCON.

The small weighting parameter z is chosen so that the scaling of the resulting problem
is balanced:

--(IICII/IIAII), C 0 and A # 0,

n(1/llAII), C 0 and A # O,

1, ifA -0.

Here /- relative arithmetic precision, i.e., the largest machine number such that
1 + /has the value 1. The use of /in the definition of " is arbitrary; in fact, z has no
positive lower bound. An upper bound is (effectively) /1/2. See [1, Chap. 22] for
further details, and also [3].

Use of the penalty function was made for two reasons. The first reason involved
the fact that the problem with simple bounds but without general linear constraints is
straightforward. In fact, C. L. Lawson developed a code (unpublished) about 1976 for
this problem. With simple bounds, feasibility of the bounds is resolved simply by
checking whether a <_-/3. With general linear constraints the issue of feasibility is more
complicated. The author chose to bypass this question by the preprocessing steps
previously outlined. Thanks to this preprocessing step the constraints are made con-
sistent. The second reason the penalty function was used is that it has been known for
some time [1, pp. 148-149] that penalty or weighting methods for equality constrained
linear least squares (no simple bounds present) are effective. Existing least squares
algorithms can often be used as long as row and column pivoting is used. One must
avoid mixing weighted and nonweighted rows in such a way that essential information
about the problem is lost. Because penalty function methods work well in this context
and existing algorithms had been developed for the case of simple bounds, the author
was led to investigate the combined approach to solving Problems BNDCLS presented
below.

It is helpful to precede the detailed description of algorithm NNLSB of 3 with
an informal discussion of how a solution is computed.
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The basic idea amounts to a systematic choice of subsets of the columns of A.
Using these columns, an unconstrained least squares solution is computed by
triangularizing the matrix with an orthogonal decomposition, 1, pp. 5-7]. The variables
not in the subset are either at their bounds or at the value zero. The choice of the
subset (called B in the algorithm) is made so that the corresponding unconstrained
least squares residual vector length is decreasing with each step. (Systematic
examination of all subsets is out of the question for anything but small problems.) To
be robust, the algorithm for solving the unconstrained least squares problem must test
for linear independence of the columns of that subset.

Our suggested test for linear independence uses a norm that effectively removes
the small weight applied to rows MCON+ 1, , MCON/MROWS of the matrix in
(3). This weighted norm is defined as

I1" [(" )= +"" + (’) + -(’)’-+"" + -(" )]’/

MCON MROWS
The columns of A corresponding to indices in set B are triangularized. The variables
in B are chosen so that the columns are linearly independent and the unconstrained
least squares problem (with these columns) yields a solution that satisfies the bounds
in the strict sense.

In the choice of a new subset, a candidate column is adjoined to this upper triangle
to form a new partitioned matrix"

k

k

Using the weighted norm, we define the new columns as linearly dependent with respect
to a parameter el if Ilvll <- ellull. (The value of the parameter e can be varied by the
user of the software; el- ql/2 is the default value.) Otherwise the candidate column
[ur vr] T is linearly independent. Mathematically the test for linear dependence of
the candidate column is simply "llvll 0." In computations one replaces this test by
"llvl] is small." A particular (inexpensive but reliable) choice is the one given above.
Note that this test is independent of column scaling of the data matrix. The test requires
that the weighted norm be used because a norm with unit weights would always imply
that Ilvll was small whenever k >_-MCON. This is due to the fact that the small weight
r applied to the least squares equations in (3) persists throughout the algorithm.

Completing the triangularization of the new column is done by means of plane
rotations to eliminate the entries below the main diagonal. A second important
implementation detail associated with the use of the small weight z involves a type of
pivoting step when eliminating (to entry k / 1) the components of column k / 1 in any
of the entries k / 2,..., MCON/ MROWS. One must avoid a numerically unstable
situation where an elimination is performed on two entries (]) where ui is small (relative
to the norm of the column) and vj corresponds to a row weighted by z. This would
yield an essentially random plane rotation that mixes the weighted and unweighted
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rows and might result in the loss of essential information about the problem. The
pivoting step is accomplished, in our implementation, by eliminating the entries in the
order MCON+ MROWS, , MCON+ 1; MCON, , k+ 2; and finally eliminating
between the planes MCON+ 1 and k + 1. In order to guarantee that entry k + 1 is not
small, prior column interchanges are performed (the pivoting choice is discussed in
[3, p. 103]). Table 1 may help the reader follow the sequence of eliminations. For
k-> MCON only the "first sweep" is performed. For k < MCON all the steps are
required.

We close this section with comments about the working storage required for this
algorithm. To highest order terms MCON x (MCON+MROWS) additional memory
locations are needed beyond that required for the data matrix [C r Ar] r. There are
options provided by the software so that the matrix A can be pretriangularized, a few
rows at a time, using the process of sequential accumulation [1, p. 210]. Thus the user
can organize the computation so that (in terms of storage required), MROWS-"
NCOLS. This is particularly important when the number of rows is large compared
to the number of variables. Since we solve a bounded variable least squares problem
followed by a computation of a reachable point = C, it is necessary to store (or
regenerate) the matrix C. In fact (the transpose of) C is stored in the space indicated
by the block of zeros in (3) before any processing is performed. This block of zeros
may fill in completely after the eliminations are performed. The point of this discussion
is that the amount of extra storage can be kept near MCON x (MCON+ NCOLS); it
does not have to depend on MROWS.

TABLE

Row k+ x x

x x 0

x

Row MCON+ x <-q x
x (R)-J 0 0

Row MCON+MROWS : ) t
START FIRST SECOND LAST

SWEEP SWEEP SWEEP

3. An algorithm for the heavily weighted least squares problem with simple
bounds. In this section we present a method for solving Problem BNDCLS of (1)-(2),
by performing the computations described in Phase 1 and Phase 2 of 2. The core
algorithm is, therefore, a linear least squares problem with simple bounds on the
variables, cj-<xj-< fl, j 1,..., NCOLS. The algorithm must be supplied with the
value of MCON together with the data for the weighted least squares problem.

The user of the software specifies bounds for each variable according to one of
the four cases of (2). If the variable is classified Case 1, 2 or 3, it is restricted.

Case 1. c <- x,
Case 2. x <- , < +o.
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Case 3. a <= x <= fl, -< a <= < +.
Case 4. x is unrestricted orfree.

By adjoining missing bounds to Cases 1, 2 and 4, we normalize the problem so that
for each j, -b _-< a <= x <- fl =< b, where b largest floating point number in the machine.

We further normalize the problem so that if a < 0 </3, then al -<_/3, or 0 =< a =</3.
(This may require a change of sign for x. The normalization step may change the
values of a and /3, but this should present no confusion for the reader.) These
conditions partition the variables into two disjoint sets L and T: j T if 0 -< a-</3;
otherwise j L. The sets L and T change during the algorithm. The elements of L
move to T whenever a variable moves to a bound. One can think of T as designating
those variables that have ever "touched" a bound. The variables in L are those that
have remained between bounds.

For those variables in T we translate the lower bound so that it becomes zero,
x =xj- aj. (The normalization 0_< a _-</3, j T, makes this numerically safe to do.)

Note that column scaling x dwj, d > 0, does not alter the partitioning { T, L}.
It does affect the choice of the variable that is chosen to become (possibly) uncon-
strained in Steps 4-5 of Algorithm NNLSB. It can also affect the particular solution
chosen by the algorithm when the data matrix has rank less than NCOLS. Our software
package performs column scaling so that the maximum magnitude norm of nonzero
columns has the value one. An option is provided so that the user can override our
particular choice of scaling. Steps 1-19 of the algorithm are comprised of a main loop
or outer iteration consisting of Steps 2-16. This loop contains two inner loops 4-7 and
14-15. The algorithm begins with the feasible point x- 0. In the main loop, elements
of the set B are dropped and added in such a way that the residual vector length
Ill}-Axll is decreasing (in the weak sense). The proof of finite convergence of the
algorithm consists of noting that the number of iterations between a strict decrease in
the residual vector length, or termination of the algorithm, is at most NCOLS.

The integers I {1,. , NCOLS} are naturally partitioned by the algorithm into
two pairs of disjoint sets {Z, B} and { T, L}. The partitioning {Z, B} is determined by
whether or not a variable is at the value zero. The array IP(.) effectively contains
counts of the number of times a variable has hit an upper bound. This information is
used in Step 3 to determine if allowing a variable to decrease from an upper bound
would achieve a decrease in the residual norm. It is also required to reflect variables
from an upper bound when computing the solution in Steps 17-19. In summary, the
algorithm is a feasible direction, descent method. In fact, Steps 10-12 amount to
choosing a step length and defining a new feasible point in this descent direction, and
Steps 14-15 involve updating the Set B so that the corresponding unconstrained least
squares problem has a solution that satisfies the bounds but is not at a bound.

ALGORITHM NNLSB.
1. Set Z := {1, , NCOLS}, B := NULL, x := 0, IP(j) := 1, j 1,. , NCOLS.
2. Compute the NCOLS vector w A’(b Ax).
3. For j 1,. ., NCOLS set wg := -w if IP(j) 0 (rood 2).
4. Find an index Z such that w, max {w/j Z f) T, wj > O, x is restricted}.
5. Find an index s Z such that w max {I wl’j Z L}.
6. Find the larger of w,, Iw and the corresponding subscript u. (If neither nor

s is defined by Steps 4 and 5, exit to Step 17.).
7. If column u is linearly independent of the columns in set B then move the

index u from set Z to set B. Otherwise set w := 0 and go to Step 4.
8. Let An [1," NCOLS], where g column j of A if j c B; g 0 otherwise.
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12.

15.

16.
17.
18.
19.

Compute the NCOLS vector z as the least squares solution of the system Asz b.
(Only zj, j B, are defined; define zj 0 for j Z.)
Set a := 1,/3 := 1.
For each j define y 0 ifj T. Otherwise y a. If z -< yj for j B, find an index
q B such that ot (Xq "yq)/ (Xq-- Zq) min ((Xj Tj)/ (Xj Zj)’. j B, Zj ")Ij).
If z _->/3 for somej B, then find an index p B such that (tip Xp)/(Zp Xp)
min [3 x / zj x j B, z >= [3
Update the vector x := x+ min (a,/3)(z x).
Move from set B to set Z all indices j such that x-<_ yj. If j L, then update
the bound/3 :=/3j-aj and move j from set L to set T.
Move from set B to set Z all indices j such that x >-fl. If j 6 T, reflect the
variables by the update step x :=/3- x, and update the polarity of these x,
IP (j) := IP (j) + 1. Otherwise change the sign of x, fl := flj a, aj := -fl, and
move j from set L to set T.
Loop on Step 2.

For j 1,. ., NCOLS, set x := fl xj if IP (j) 0 (mod 2).
For j 1, , NCOLS, set x := x + a if j T.
For j 1, , NCOLS, set x := -x for each j corresponding to a variable with
a sign changed during the algorithm.

Remarks on Algorithm NNLSB.
The algorithm converges. This is proved by noting that the residual norm lib-Axll

is weakly monotone decreasing, with respect to the number of iterations of the loop
between Steps 2 and 16. As in the discussion of Algorithm NNLS [1, Chap. 23], the
norm strictly decreases or the Set B loses members at each iteration. Suppose the Set
B becomes empty. At that point, if a column is moved from Set Z to Set B in Steps
4-5, then the residual norm strictly decreases, because min (a,/3) > 0 in step 13, or
min (a,/3) 0. From Step 11 and the fact that a > 0, it follows that min (a,/3) 0
implies that/3 0. In that case the corresponding w > 0 chosen in Step 4 will now be
negative and thus will not be chosen again in Step 4 while/3 0. Thus, in this most
extreme case, the number of positive w decreases. This completes the proof of finite
convergence of the algorithm.

At Steps 14 and 15, the variables should mathematically satisfy the bounds x _>- yj
and xj-< fl respectively. Due to the finite precision arithmetic, there may be an x that
violates the bounds and it is essential that such indices be moved from Set B to Set
Z. (The index corresponding to the choice of a or /3 in Steps 11-12 is always so
moved.) There remains the prospect that variables satisfying x > 3’ or x </3 are
misclassified; they should really be classified as x =cb or xj =/3. Fortunately this is
not serious due to the fact that members of Set B satisfy a < x </3 at Step 2 because
of the action taken in Steps 14 and 15. Thus xj-z.>O in step 11 and z-x>
0 in Step 12 at later outer iterations of the algorithm. This implies that misclassified
variables will be ultimately moved from Set B to Set Z if required.

The test for linear independence in Step 7 plays a crucial role in the success of
the algorithm. This matter was more thoroughly considered in 2.

The least squares problem of Step 9 is solved by applying plane rotations (Givens
transformations) to the data matrix, [A:b]. These transformations are applied in a
certain order discussed in 2. Those columns corresponding to indices in B are moved
to the left. Thus when a new column is added to B the processed matrix As is upper
triangular with a spike in the last column. Plane rotations are then applied to reduce
this matrix to upper triangular form. When indices are dropped from B in steps 14
and 15 the resulting matrix As is upper Hessenberg, [2, p. 23]. This matrix is again
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reduced to upper triangular form using plane rotations. When eliminating the entry
between rows MCON and MCON/ 1, column pivoting may be required to avoid
mixing the weighted and nonweighted rows. This pivoting step may result in the loss
of upper Hessenberg form, so that reducing the system to triangular form once again
requires triangularizing a full rectangular matrix, since only premultiplying plane
rotations are allowed in this algorithm. (This large amount of work is the price for
numerical stability; fortunately, this seems to occur rarely.)

An important computational matter, especially for the problem of general linear
constraints, is the selection of the order of the planes of rotation. The specifics were
given in 2.

4. An example. A problem considered in [5] and [6] has problem dimensions

NCOLS 5,

MCON =4,

MROWS 6.

This problem is used as a test case here because it is easy to describe and has been
treated by others. The general linear constraints were used in [5] and the bounds were
used in [6]. Here we have both the linear constraints and the bounds in our problem
statement. The constraint matrix is given by

1 1 1 1 1

10 10 -3 5 4.C=

-1 2 5

The bounds on y Cx are Yl -< 5, Y2 -> 2, Y3 <- 30, 11 _--< Y4 <- 30. (Note that bounds on Y4
require two inequalities in [5].) The least squares matrix and two separate right-hand
side vectors are

80 18 -11 -4

-69 21 28 0

-72 -5 7 1

66 -30 -23 3
8 -7 -4 1

-12 4 4 0

--74
14
66

A=
-12

3
4

bl--

51

-61

-56

69

10
_-12

-5
-9

708

4,165
-13,266

8,409

We also use two sets of upper and lower bounds, from the work of [6], on the
components of x:

a’)=-l, a(2’)=O, a(3’)=-3, a(41)=1, a’)=-6,
fll)=3, /3(21)=4, fl(3’)=l, /3(41)=5, fll)=-2,

In each of the four problems with bounds tS[
(l) X (/), 1, 2, and right-hand sides

bin, m 1, 2, the true solution is (1, 2, -1, 3, -4)r, (1, 32, 30, 31) r. Table 2 shows
the accuracy obtained with each of the four problems on a CDC CYBER 172/855
computer using r/-" 7.1 x 10-15 relative precision. Table 3 shows the computed residual
vector length.
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TABLE 2
Maximum error vector lengthfor Stoer-Zimmermann

problems.

m=l 2.0 x 10-12

2.7 x 10-*

2.5 x 10-l

4.2 x 10-9

TABLE 3
Residual vector length for Stoer-Zimmermann problems.

l’-"

m=l 9.7 x 10-3

1.6264444933658 x 104

2.3 x 10-3

ditto

To illustrate a result where the constraints are infeasible we (arbitrarily) added
an additional constraint that is equivalent to y >- 6. Then the minimum residual vector
length for the constraints is 21/2 The residual vector length for the least squares
equations is 83.170006612968 and an approximate solution is

= (1.5, 2, 1, 3, -2)T, = (5.5, 39, 24, 33, 5.5).
Thus the first and last of the constraints have been resolved as Yl -> 5.5 and y5 <- 5.5,
or y Y5 5.5.

Acknowledgments. The author wishes to thank Drs. C. L. Lawson and F. T. Krogh
of Jet Propulsion Laboratory for valuable suggestions that improved the algorithm
over its original version, [9]. Lawson pointed out the potential numerical disaster
associated with a normalization step that made the lower bounds all equal to the value
zero. He also noted that one must be prepared to do column pivoting during the
retriangularization of the upper Hessenberg matrix. Krogh pointed out that one could
use column pivoting, in the heavily weighted problem, to maximize the resulting size
of the matrix entry where the plane rotation will be applied.
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A GENERALIZATION OF THE FRANK MATRIX*

J. M. VARAH’

Dedicated to James H. Wilkinson on the occasion of his 65th birthday.

Alstraet. In this paper, we give a generalization of the well-known Frank matrix and show how to

compute its eigensystem accurately. As well, we attempt to explain the ill-condition of its eigenvalues by
treating it as a perturbation of a defective matrix.

Key words, eigenvalues, condition, sensitivity

1. Introduction. Over twenty-five years ago, Frank (1958) introduced two matrix
examples as tests for an eigenvalue routine. The first, with

aij n+ 1-max (i,j),

was the discrete Green’s function matrix arising from the standard three-point difference
approximation to dEy/dx2. The inverse of this matrix is tridiagonal and its eigenvalues
are known explicitly, so the computed eigenvalues could be checked.

Frank had little trouble getting good approximations to the eigenvalues, so he
tried a variant of this matrix by truncating it to upper Hessenberg form, producing

n n-1 n-2 1

n-1 n-1 n-2 1

Fn 0 n-2 n-2 1

He had much more difficulty with this matrix (with n 12), and in the years since,
this matrix has come to be recognized as a good test case for eigenvalue routines: the
eigenvalues are real and positive, are extremely ill-conditioned for moderate values of
n, yet can be calculated accurately by other means. For example, F has eigenvalues
ranging from 32.2 down to 0.031 (approximately) with condition numbers 1/Is(1)
increasing to more than 10+ for the smallest few eigenvalues. Here we define, for a
real distinct eigenvalue I with left and right eigenvectors and , the sensitivity

s(A) --Ilwll _llzll=
As is well known (see e.g. Wilkinson (1965, p. 68)), Ilnll/l (x)l is a bound for the first
order perturbation coefficient in the expansion of the eigenvalue A (e) in a power series
in e, when the original matrix A is subjected to a perturbation A+ eB. Thus Is(A )l < 10-7

means that a change in an element of F2 of order 10-7 can result in a change in the
eigenvalue A of order 1.

In this paper, we shall give a generalization of this matrix, show how to accurately
compute its eigenvalues and eigenvectors, estimate the condition numbers of its
eigenvalues, and attempt to explain the seemingly pathological ill-condition which
ensues. We feel it is important to fully understand this matrix, as it illuminates the
difficulties inherent in computing the eigenstructure, or invariant subspace structure,
of general unsymmetric matrices.

* Received by the editors September 3, 1984, and in revised form March 4, 1985.
f Computer Science Department, University of British Columbia, Vancouver, British Columbia, Canada

V6T 1W5.
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2. The generalization. Start with the symmetric tridiagonal matrix

0

(2.1) S= IIbo_O b2

with bi > 0. Then S has real eigenvalues/ ->_. >-_/, with/,+l-i- -/i, and these are
all well conditioned. Let the corresponding eigenvectors be x(i).

First form T-/)-1S/), with

This gives

(2.2)

/)_diag(11 1 1 )’hi’ bib2 ’bib2"

Now consider T-/I for each , and relate/ and h-> 0 by

h-a
(2.3) /,=

for a ->_ 0. Then A -/,- a 0 and hence

(2.4) A(/) + +a

Each > thus gives two a’s, say a+(/), a_(/). However since (-/) generates the same
pair of a’s, we can make the identification for positive/, of +/ with a+(/) and -with a_(/). Now form G(A) =x/D-(T II)D, where D diag (1, a 1/2, A, A3/2, ).
Then

G(A)
b

and hence G L(F-hi), with

1 -1

and FL=
-1

(2.5)

2 2a+b] a+b2_ a+b,_l

b a+b2
b

+ a"q’b _l

Since F-AI=x/-XL-1D-I(T-tzI)D, then (except possibly at h =0) the eigenvalues
{hi} of F and {i} of S are related as h and/z are related above. Thus if Sx =/zx, then

Fz hz, z D-1/)-x,

wTF XWT wT--xT)DL.
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Thus given a matrix F as above, with any a, {bi}, we can find its eigenvalues
and eigenvectors (z(, w(i) using the above technique. The {Ai} will be accurate, and
so will the vectors as long as the {/xi} are well-separated. Notice that for a > 0, we get
all Ai>0 and in pairs (A+, a2/A+), with an extra root A =a (/x =0) for n odd. And for
a 0, we get pairs A_ 0, A+ =/x2, with an extra root A 0 (/x 0) for n odd. In this
latter case, the formulas above for z and w do not hold for A 0. The following special
cases are of particular interest:

1. b x/n i, a 1, giving F F, (the Frank matrix). In this case, the matrix

/n-1

which is (apart from a constant factor x/) the tridiagonal matrix arising using the
recurrence relations for the Hermite polynomials H,(x). Thus the eigenvalues {} of
S are x/ times the roots of H,(x).

2. b- x/-, a 1. This gives S with eigenvalues j 2x/- cos (jcr/(n + 1)), and

(2.6)

n+l n+l n+l 1
n n+l. n+l 1

F---if’.= n’I+1 II
n 1

3. Estimating s(A). Given a matrix F as in (2.5), and corresponding tridiagonal
matrix S with eigenvalues {/}, we can find F’s eigenvalues {Ai} using (2.4), and for
each A the corresponding eigenvectors z and w by forming / (A-a)/x/- and the
corresponding eigenvector x of S. Then

Zi

i-1 bj) xiJ (i-1)/2
Xi_l(i-2)/2x,(H,

--’T -2A(,_,)/2 w,
H1 bj H1 bs

We are interested here in the sensitivity s(h)=wrz/llwli2llzll2,, for the smaller
eigenvalues h. First, wrz=xrDLD--x xar/_x, where

1 -b,/x/

Thus wrz =xr((+ r)/2)x, and since +r= 2I-S//-2,

Also,

x sxwTz xTx 2----- 1

n- hi)Ilzll=>lz.I Ix l(1-ll
/ (n-l)/2

and [[,,ll= Iw l Ix l. This gives

(3 1) Is(A)[ .-1 b)"21x111x.l(II,
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For the Frank matrix El2 this bound gives [s(h)l--< 1.2 x 10-7 for the smallest h. For
the matrix/312 (with a 1 and bi x/]-), this gives. Is(A)[-<_ 2 x 10-12 for the smallest h.
In fact, the smallest few eigenvalues of F12 and F12 are as follow in Table 1"

TABLE

(F) s() h() s()

.08122 3.8 x 10-8 .03465 1.6 10-12

.04950" 2.6 x 10-8 .02524. 7.8 10-13

.03102 5.5 x 10-8 .02117 1.3 x 10-2

4. Understanding the poor condition. To see why these matrices F have such poorly
conditioned (small) eigenvalues, one can consider F as the sum of two matrices:

(4.1) F=H+aT,

bl bE b2n_l 0 1 1 1

H= b2 T=

0 b.2,_1 0

and treat a as a small parameter. Note: in the examples used, a 1 does not appear
to be small, but both F, and F, can be scaled by 1/n so the elements are O(1) rather
than O(n), and the eigenvalues will be scaled by the same amount. This is equivalent
to using, for F,, bi=x/(n-i)/n, a= l/n, and for/3, bi= 1, a= 1/n.

With a as a small parameter, F can be viewed as a special perturbation of H, and
H has a well defined eigenstructure: if we assume n is even, then H has n/2 eigenvalues
at h 0, corresponding to one Jordan block of order n/2, and the other n/2 eigenvalues
at h =/z,2., where {/z} are the eigenvalues of S (recall these are in (+,-) pairs).

Notice that F is a very special perturbation of H; the eigenvalues remain real,
and look asymptotically as follows, using the formula (2.4) for h(/x):

h+(,) =/x,2. + 2a + O(a2) (perturbed from/x,2.),
,_() a:/ -t- O(a3) (perturbed from zero).

An arbitrary perturbation of H of order a, would result in generally complex eigen-
values, with h O(a2/) perturbation from zero, whereas these are O(a2). However,
the sensitivities Is(A)[ are still very small for these h’s" s(h) O(a "-1) again using the
formulas given earlier.

For the special examples, a 1/n implies s(h) O(1/n"), and this is independent
of any constant.scaling. These very small values for s(h) can be seen in the smaller
eigenvalues of F12; for the larger eigenvalues, and for F12, the other constants involved
serve to increase the actual values obtained.

We feel this matrix F serves as a very instructive example in connection with the
general computational problem of resolving eigenspaces, or more generally invariant
subspaces, of unsymmetric matrices. Although all the eigenvalues of F are distinct, as
long as a > 0, the smaller ones are remarkably ill-conditioned, and the corresponding
eigenvectors are not well-determined. Thus one should treat F as a matrix with an
invariant subspace of order n/2, corresponding to the n/2 eigenvalues perturbed from
zero in H. However it is not easy to discern this, given only F, since the amount of
the perturbation (a) from H is much larger than the machine precision r/. Indeed, all
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those matrices which differ from F by O(r) look much like F, and the canonical
matrix H which is strongly influencing F, is a much greater distance away.

As a final comment on the ill-conditioning of F’s eigenvalues, it should be
mentioned that Wilkinson (1983) shows that any h, 0-< h -<_ 0.1, is an eigenvalue of
Fn + En (h) with E(A)ll very small, even for moderate n.

5. A note on computing eigenvectors. In the course of checking the eigenvectors
of these matrices, the author had occasion to return to the standard "inverse iteration"
algorithm for computing eigenvectors. Even with a matrix like F, with poorly condi-
tioned eigenvalues and thus poorly determined eigenvectors, we should at least expect
each computed eigenvectors (corresponding to computed eigenvector to give a
small residual: I[F-ll O(r/)). This in fact occurred using the EISPACK routines,
which however do not use inverse iteration explicitly, but instead perform a back-
substitution, using the triangularized form of the matrix.

If inverse iteration is used (normally with the Hessenberg form) for F and
computed eigenvalue , one solves (F-I)y=v for some vector v. Almost always,
using a reasonably clever choice of v, Ilyll so that the normalized vector y/
gives a small residual. However it can happen that Ilyll is not "large enough", and one
is tempted to do another inverse iteration, solving (F I)z y. For badly conditioned
eigenvalues, this is not a good idea: the computed z vector will not give a small residual,
because the vector y is not a good choice of "initial" vector for the inverse iteration.

Because of this phenomenon, it is much safer (although a little more expensive)
to iterate with the matrix (F-I)7(F-I) (with transpose replaced by conjugate
transpose in the complex case), as mentioned in Wilkinson (1979). The enforced
symmetry avoids the possible embarrassment of large residuals when more iterations
are used, essentially because we are now dealing with the orthogonal singular vectors
not the eigenvectors of F. The algorithm is"

1. decompose F- XI PLU.
If F is upper nessenberg, IILII and ILL-111 are not large, so the near-singularity
of (F-AI) is reflected in U; so

2. perform a (double) inverse iteration" solve UTUz v, for v your favorite initial
vector; in the very unlikely case that Ilzll/llvll << r/-1, do another iteration.

3. get the left-hand eigenvector wT as well: solve UUy v (and again if necessary
as in 2) with finally w(PL) =y.

4. finally, compute s(A) using the computed wr and z.

We cannot emphasize the last step enough; most eigenvalue routines do not
compute s(A), and it really is a reliable estimate of the accuracy of the computed
eigenvalue.
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Abstract. We present an iterative method for solving large sparse nonsymmetric linear systems of
equations that enhances Manteuffel’s adaptive Chebyshev method with a conjugate gradient-like method.
The new method replaces the modified power method for computing needed eigenvalue estimates with
Arnoldi’s method, which can be used to simultaneously compute eigenvalues and to improve the approximate
solution. Convergence, analysis and numerical experiments suggest that the method is more efficient than
the original adaptive Chebyshev algorithm.

Key words, iterative methods, Chebyshev methods, conjugate gradient methods, adaptive methods,
nonsymmetric matrices, sparse matrices

1. Introduction. The adaptive Chebyshev algorithm of Manteuffel 11 ], 13] is an
iterative method for solving large sparse real nonsymmetric systems of linear equations
of the form

(1) Ax- b,

where the coefficient matrix A has positive-definite symmetric part. Starting from an
initial guess, Xo, the method generates a sequence of iterates {xj} whose residuals
{ rj b Axj} satisfy

r 8(A)ro,(2)

where

(3)

T is the jth Chebyshev polynomial of the first kind

T(z) cosh (j cosh-1 (z) ),

and c and d are iteration parameters that depend on the convex hull of the spectrum
of A. Two properties of the Chebyshev polynomials make this algorithm effective.
First, for an appropriate choice of the iteration parameters, the residual polynomials
P(A) decrease rapidly in norm, so that the algorithm is rapidly convergent [13].
Second, the three-term recurrence for Chebyshev polynomials induces an inexpensive
recurrence for the computation of each iterate x.

Because the iteration parameters depend on the convex hull of the spectrum of
A, estimates of the extreme eigenvalues of A are needed. Manteuffel’s algorithm
computes these estimates dynamically 11]. It starts with a (possibly arbitrary) guess
for the required parameters and monitors the convergence of the iterates generated.
If convergence is deemed unsatisfactory, then information produced during the iteration
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is used to compute eigenvalue estimates. These, in turn, are used to compute new
iteration parameters, and the Chebyshev iteration is restarted with the new parameters.
This adaptive procedure is repeated until good iteration parameters are found, after
which the Chebyshev method can proceed with no further adaptive steps.

The eigenvalue computation makes use of the residuals generated by the previous
Chebyshev iteration. The underlying numerical method is a modified version of the
power method. If the values of the iteration parameters used by the Chebyshev iteration
are inaccurate, then the residuals generated may diverge. Although divergent residuals
may enhance the ability of the adaptive procedure to obtain accurate eigenvalue
estimates and iteration parameters, the residual norms may increase by several orders
of magnitude before good iteration parameters are found [5], [7]. Thus, the adaptive
Chebyshev method may do a considerable amount of work to compute iteration
parameters before it makes any improvement in the accuracy of the approximate
solution of the linear system.

In this paper, we present an alternative to the eigenvalue computation part of the
Manteuttel algorithm that decreases the sensitivity ofthe Chebyshev method to iteration
parameters. We replace the modified power method for computing eigenvalues with
Arnoldi’s method 1 ], 18], a generalization of the Lanczos method 16] that estimates
the eigenvalues of a nonsymmetric matrix A by reducing it to upper-Hessenberg form.
An advantage of this method comes from its relationship to conjugate gradient-like
iterative methods for solving nonsymmetric linear systems [5], [17], [20]. At relatively
little extra expense, information provided by Arnoldi’s method can be used to perform
several steps of an iterative method that improves the quality of the solution iterate
prior to restarting the Chebyshev iteration with new parameters. The hybrid method
combines the basic Chebyshev method with this conjugate gradient-like iteration, which
is performed whenever new eigenvalue estimates are computed.

In 2, we briefly describe the original adaptive Chebyshev method. In 3, we
describe Arnoldi’s method and its relationship to conjugate gradient-like iterative
methods for nonsymmetric linear systems, and we present a convergence result for
one of these iterative methods. In 4, we define the hybrid method and discuss its
advantages, and in 5, we present the results of some numerical experiments comparing
the performances of the hybrid method, the adaptive Chebyshev method and the
CG-like method Orthomin [4], [5], [23], [25] in solving some discretized non-self-
adjoint elliptic partial differential equations.

2. The adaptive Chebyshev method. In this section, we give a brief overview of
Manteuffel’s adaptive Chebyshev method. For given iteration parameters c and d, the
basic Chebyshev iteration is [13].

ALGORITHM 1: The Chebyshev method.
1. Start: Choose an initial guess Xo, compute ro=b-Axo and po=(1/d)ro
2. Iterate: FOR j 0 STEP 1 UNTIL convergence DO:

Xj+ Xj -l- pj

r+ b Ax+
2d/(2d2-c2), j=0

aj+l [d-(c/2)aj]-1, j>= 1

j+l d%+1-1
p+ %+ r+ +/3+p.
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The cost is one matrix-vector product plus 2N multiplications per step. The storage
required is 4N words for xj, Axj, r, and p. The residuals {r} satisfy (2) and (3), and

Ps is a member of

(4) P {real polynomials of degree j such that P(0)= 1}.

The parameters c and d define the center, d, and foci, d + c, of a family of confocal
ellipses in the complex plane. There is a smallest member of this family, the smallest
ellipse, that contains the spectrum of A. If the closure of the smallest ellipse does not
contain the origin, then Algorithm 1 converges. Moreover, convergence is nearly
optimum in the sense that as j increases, P rapidly approaches the polynomial in P
with minimum uniform norm over the smallest ellipse.

If the spectrum of A lies in the right half plane, then there is an infinite number
of smallest ellipses, each of which uniquely corresponds to a set of Chebyshev iteration
parameters. For any particular choice of parameters, the rate of convergence of the
Chebyshev iteration is [13], [22], [24]

(5)

where

(6)

-og (mx)s()),

s()= &(z)=
d-z+[(d-z)-c]/

d + d2 C2] 1/2

The iteration count for convergence is (approximately) proportional to the reciprocal
of the rate of convergence. Hence, the best ellipse is defined to be that smallest ellipse
for which the rate of convergence is greatest. The adaptive Chebyshev method starts
with (possibly arbitrary) initial values for the iteration parameters and monitors the
convergence of the Chebyshev iteration (Algorithm 1). If convergence is deemed
unsatisfactory (i.e. the residuals are diverging or converging less rapidly than (5)
suggests) after step s, then the adaptive procedure

1. estimates eigenvalues on the convex hull of the spectrum of A [11], and
2. computes the iteration parameters for the best ellipse containing these eigen-

value estimates 13].
The Chebyshev iteration is then restarted with the new parameters. The adaptive
procedure is repeated as often as is deemed necessary, until good parameters are found,
after which the Chebyshev iteration is performed until convergence.

The second step of the adaptive procedure, the computation of iteration para-
meters, requires negligible machine resources, and we omit a discussion of it here.

The eigenvalue estimates are computed by a modifiedpower method, which is based
on the fact that, asymptotically,

P(z)-- S(z),
so that

t S(A)Jro,

where S(A) is the linear operator induced by S(z). That is, the residuals resemble the
vectors generated by the power method for S(A). If, for given iteration parameters,
some eigenvalue of $(A) has modulus greater than one and ro has a component in
the corresponding eigenvector, then the residuals will diverge but will eventually
become rich in that eigenvector. If there are m such eigenvalues, then eventually the
sequence of m + 1 residuals

{r, r+l," "’,
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will be nearly linearly dependent. Estimates for m eigenvalues of S(A) are then given
by the roots of the mth-degree polynomial

Ol " OI2Z "]"" OlinZ
-1 "" Z

whose coefficients { j}j=l are the solution to the least squares problem

(7) min II[r , , +
where Jrs,""", rs+m_l] denotes the matrix with columns {-rt+m-lj= and a denotes the
vector whose jth component is ag[ 11 ]. Estimates for eigenvalues of A can be computed
from the relationship

between eigenvalues {/} of S(A) and {A} of A.
Hence, the modified power method consists of m Chebyshev steps to generate

r .s+mthe residuals { J=+l, followed by the computation of the least squares solution to

(7), and the computation of new eigenvalue estimates and iteration parameters. The
Chebyshev steps require m matrix-vector products and 2mN multiplications. If (7) is
solved using the normal equations, then [(m2+3m)/2]N multiplications are needed
to compute the inner products

(8) (r+,rs+k), O<--j<--m--1, O<=k<=m.

Therefore, the dominant cost is m matrix-vector products plus [(m2+7m)/2]N addi-
tional multiplications. The storage requirement (over that of the Chebyshev iteration)

ris mN words to save the vectors { +j}=l.
Note that an "unmodified" power method could be used instead of the modified

power method by replacing {r+}"_-i with {Ar}"=l in (7) [11]. We will examine a
technique that is mathematically equivalent to the unmodified power method in 3.

3. Arnoldi’s method and its relation to iterative linear solvers. In this section, we
describe Arnoldi’s method for computing eigenvalues of nonsymmetric matrices, show
how it can be used as the basis for iterative methods for solving linear systems, and
derive a convergence bound for one of these linear solvers.

Given an arbitrary vector )1 such that ][/)1]]2 1, Arnoldi’s method [1], [18] is a
Galerkin method on the Krylov subspace Km=span{vl, AVl, ",Am-Iv1} for
approximating the eigenvalues of A. That is, it finds a set of eigenvalue estimates
{A1," , A,,} such that there exist nonzero ui K,,, 1,. , m, for which

(9) (Aui- Aiu, v) 0, 1, , m
for all v K,,. It accomplishes this by constructing an orthonormal matrix Vm
IV1,’’’, Vm] whose columns {vj}m=l span Kin, and then computing the eigenvalues of
VTmAVm

ALGORITHM 2: Arnoldi’s method.
1. Start: Choose an initial vector Vl such that
2. Iterate" FOR j- 1 STEP 1 UNTIL m DO

1, and a step number m.

hi.i (Avj, vi), 1,
J

+I=AVj Z hovi
i=1

...,j

hj+ l,j

Dj+ j+l/ hj+ l,j.



844 I-I. C. ELMAN, Y. SAAD AND P. E. SAYLOR

Notice that this method is essentially a Gram-Schmidt process for orthonormaliz-
ing the Krylov sequence {vl, AVl,’", Are-iv1}. In a practical implementation, it is
usually more suitable to use a modified Gram-Schmidt process. The orthonormal
matrix V, is such that VAVm H,,, where H, is the m x m upper-Hessenberg matrix
whose (i, j) entry is the scalar hij. The method generalizes the symmetric Lanczos
algorithm to nonsymmetric matrices. Recall that in the symmetric case, H, is symmetric
and tridiagonal 16].

In an implementation, it is not necessary to compute the normalized vectors {vj};
it suffices to compute and save the norms 11/3j112. It is also not necessary to compute
V+l. With these conventions, the cost of Arnoldi’s method is m matrix-vector products
and (m+ m)N multiplications. The storage requirement is (m + 1)N words for {v}l
and Av [20].

Suppose now that Xo is a guess to the solution of (1), with residual ro b- Axo.
Let Km =span {ro, Aro," ", Am-lro}. One way to solve (1) iteratively is to compute an
approximate solution Xm XO+ K,. such that the Galerkin condition

(10) (r,, v)=0, v K,

holds. But if vl ro/ll oll=, then the Arnoldi vectors {v}l span K,,, so that

x,, Xo + V,,y,

r ro- az roll=v aV,y,

for some y, R". Since the Arnoldi vectors are orthonormal, (10) is imposed by
computing

Y,, nnIII rolle,
where ej is the jth unit vector in Rm. Hence, the algorithm [ 17] follows.

ALGORitHM 3" The full orthogonalization method (FOM).
1. Start" Choose an initial guess Xo, compute ro b- Axo and Vl ro/II roll=.
2. Iterate" Perform m steps of Algorithm 2 starting with
3. Form the solution"

Solve n,.y,,= Ilroll=e,
compute Xm XO+ VmYm,

where Vm and H, are determined by Arnoldi’s method.

Algorithm 3 is also referred to as Arnoldi’s method for solving linear systems. It
is theoretically equivalent to the ORTHORES method developed by Young and Jea
[25], which is modelled after a version of the conjugate gradient method described by
Engeli et al. [8].

A drawback of Algorithm 3 is that the approximate solution Xm does not satisfy
an optimality property. An alternative is the generalized minimal residual method
(GMRES) developed by Saad and Schultz [20], which uses the Arnoldi basis to compute
the point Xm XO+ Km whose residual norm b Ax 112 is minimum. Let v to roll=,
let/3 I1o11=, and let ,, denote the (m + 1)x m matrix obtained by appending to
a row with single nonzero entry h,+l., in column m. Then the Arnoldi basis matrices
V,, and Vm+l IV1,’’’, Vm/l] satisfy

(11) AV,,= V,,+IH,..
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The GMRES iterate is given by Xo+ z, where z is the solution ofthe least squares problem

(12) min IIb-a(xo+z)ll- min Ilro-azll- min IIv,-aVmYll.
K K yR

Using (11) and the fact that V.+I is orthonormal, the last expression in (12) is equal
to

(13) min [[/3V+e- V,.+l.yll2 min 1l/3el-.yll2.
yR yR

Hence, the GMRES iterate is given by Xo+ V,,y,, where y,, is the solution to the
upper-Hessenberg least squares problem on the right-hand side of (13).

ALGORITHM 4: The generalized minimal residual method.
1. Start: Choose an initial guess Xo, compute ro b-Axo and v ro/llroll2, set

2. Iterate: Perform m steps of Algorithm 2 starting with v.
3. Form the solution" Find .y,, minimizing 11/3el-/yll= and compute

Xo/ V,y,,, where V,, and H,, are determined by Arnoldi’s method.

GMRES is a generalization of the MINRES algorithm presented by Paige and
Saunders [15]. It is mathematically equivalent to Young and Jea’s ORTHODIR [25],
for arbitrary nonsingular matrices A. For matrices with positive-definite symmetric
part, it is also equivalent to the generalized conjugate residual method [4], [5] and a
method of Axelsson [2]. For large step numbers, it requires one third the multiplications
and one half the storage of these methods [20].

For both FOM and GMRES, once {vj}j"=l and H,, are computed, the dominant
cost of computing x,, is mN multiplications. Hence, the cost of both methods is m
matrix-vector products plus (mE/2m)N multiplications. In addition to storage for xj,
(m / 1)N words are needed for the Arnoldi computation. We remark that for both
methods, the residual norm IIb-Ax,,ll2 can be monitored during Step 2 without
explicitly computing Xm, SO that Step 2 can be stopped as soon as the approximate
solution is sufficiently accurate [20].

An error analysis of GMRES can be found in [20]. We derive a new result here
that will demonstrate its effectiveness in the hybrid method. Note that the residual
r,, b Ax,, satisfies

112 min (A) roll 2,
Pm Pm

where Pm is defined by (4). Assume that A is diagonalizable,

(14) A- UAU-1,

where A is the diagonal matrix of eigenvalues {Aj}I and U=[Ul,’", uv] is the
matrix of eigenvectors of A. Note that U and A may be complex. Suppose that the
initial residual is dominated by m eigenvectors, i.e.

(15) ro E au+e,
j=l

where Ilell= is small in comparison to IIE= ull=, and that, moreover the sum in (15)
satisfies

(16) if some complex I/k appears in au, then its conjugate tk appears also.
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(In general, this might require including small components in the sum, with a corre-
sponding increase in m.)

THEOREM 1. IfA is diagonalizable and the initial residual satisfies (15)-(16), then
the residual norm after m steps of GMRES satisfies

IIrl12 -< UIIII U-llcllell,
where C., maxk>, Hj=I I(Ak--Aj)/ajl

Proof. Let Um-’-[Ul, u,,], Am =diag (A1,’’’ ,Am), and a=(al,’’’, am) r, so
that (15) is equivalent to

Consider the polynomial
ro= U,a + e.

Pm Z =H
which satisfies Pro(hi) O, 1 <=j <-- m, P,(O) 1. Hence

P,.(A) U. U.P.(A,) O,

so that

/5,.(A) ro =/5,(A) U,,a + ,,(A)e m(A)e.
Moreover, by (16), Pm has real coefficients so that

Ilrm[I2-- min IlP,.(A)roll=<-_ll/;(A)ell_
P,,,eP,,,

where m =diag (A,+I,""", A). The assertion then follows with

(17) C [1/3,,(,,,)112 max I/3,,(Ak)l. Q.E.D.
k>m

Note that the constant Cr, does depend on {Aj}i"=I, and it may not be small if, for
example, these eigenvalues are small relative to the others. However, suppose {Ay}ym=,
are the m dominant eigenvalues of A (i.e. IAI-> IAI for j-< m, k > m). Then

for k > m, so that

c,, -<2".

AMoreover, if { }y= are large relative to the remaining eigenvalues, then typically

Similarly, let a =/zj + ivy, a tZk + ivy. Then

hk--hJ2(7)2 (PJ /k)2----< 1-/*k + 2 2,

which is less than one if a and ak are real, and will typically be of order one if their
imaginary parts v, vk are small. In all these cases, c,, will be of order one, and the m
steps of GMRES reduce the residual norm to the order of Ilell,_ provided that the
condition number of U is not too large. Finally, the possibility that c,, may be large
is really only a problem if the bound of the theorem is sharp. But in that case, the
polynomial used in the proof is nearly optimal, and therefore Ilel12 is very small.
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4. The hybrid method. The hybrid method combines the approaches ofthe previous
two sections. It uses the basic Chebyshev iteration of Algorithm 1, but replaces the
modified power method for computing eigenvalues with Arnoldi’s method, from which
information is also used to improve the solution iterate. Either FOM or GMRES could
be used for the solution update; we favor GMRES because of its minimization property.
In the following implementation, the convergence of the Chebyshev iteration is
monitored by examining the norms of the generated residuals, and the adaptive
procedure is invoked if the residual norm exceeds a specified tolerance r relative to
the norm of/’min /’min( , d), the smallest residual encountered with the current iteration
parameters. In addition, the adaptive procedure is invoked periodically, after at most
s Chebyshev steps, and it is used to generate initial eigenvalue estimates from which
initial iteration parameters are obtained.

ALGORITHM 5: The hybrid method.
Choose Xo. Compute ro b- Axo.
UNTIL Convergence DO
Adaptive Steps: Set Vl=the current normalized residual, perform m

Arnoldi/GMRES steps (Algorithm 4), and use the new
eigenvalue estimates to update (or initialize) the iteration
parameters.

Chebyshev Steps: Set jrnax j d- S.

WHILE (11 jl[2/[] rminll2 r andj+ 1 jmax)
Compute Xj+l by the Chebyshev iteration.

The Chebyshev step requires one matrix-vector product and 2N multiplications per
iteration, and the adaptive step requires rn matrix-vector products and (m2+2m)N
multiplications. As with the modified power method, the eigenvalue estimates provided
by Arnoldi’s method lie in the field of values of A but not necessarily in the convex
hull of the spectrum of A, so that the hybrid method is only rigorously applicable to
linear systems with positive-definite symmetric part. The storage requirement for the
adaptive step is mN words, the same as for the modified power method, since the first
Arnoldi vector can share storage with the residual of the Chebyshev iteration.

There are two main differences between the original adaptive Chebyshev method
and the hybrid method:

1. Different eigenvalue computations" the adaptive Chebyshev method uses the
modified power method based on the operator S(A), whereas the hybrid method uses
Arnoldi’s method, which is based on a Krylov subspace in A.

2. Purification: the hybrid method uses the GMRES steps to improve the approxi-
mate solution.

A third difference is that in the hybrid method, the initial eigenvalue estimates
provided by Arnoldi’s method can be used to compute initial iteration parameters; the
original Chebyshev method requires an initial guess.

We do not know whether the use of Arnoldi’s method alone offers any advantage,
i.e. whether Arnoldi’s method provides more accurate eigenvalue estimates than the
modified power method. Arnoldi’s method is mathematically equivalent to the
"unmodified" power method discussed by Manteuffel [ 11 ], who observed no significant
difference between the unmodified and modified methods. Numerical experiments
comparing the two techniques are described in 5.

Manteuttel’s method [13] for computing iteration parameters from eigenvalue estimates is still used.
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The effect of the GMRES steps can be explained by a heuristic analysis based on
Theorem 1. Assume that A is diagonalizable as in (14). If the initial residual for the
hybrid method has the form

N

j=l

then after s Chebyshev iterations, the residual is approximately equal to [13]
N

(19) = Y. r}/juj,
j=l

where

=s(x)=
d ij-- d -1j)2- c2] 1/2

d+[d2-2]1/2

and c, d are the iteration parameters used in the Chebyshev step. Suppose that these
parameters are inaccurate, so that the components in the directions of some eigenvectors
are not being damped out. This means that some of the {} satisfy I1> 1, so that
I’]] >> 1 and the terms with these coefficients dominate (19). Note that 1[ I 1, so that
if some complex eigenvector is not being damped out, then neither is its conjugate.
For some m, therefore, F satisfies (15) (with aj -;yj) and (16). If the corresponding
eigenvalues {Aj} of A are the dominant ones, then Theorem 1 suggests that the m
GMRES steps purify the residual of the eigenvectors whose coefficients had been
growing during the Chebyshev iteration. Moreover, since F is the starting vector for
the Arnoldi computation and is presumably rich in these eigenvectors, the new eigen-
value estimates will be good approximations to the corresponding eigenvalues. Hence,
the new iteration parameters will produce Chebyshev polynomials that continue to
damp out these components.

Although the correct value of rn to use in the adaptive step is not known in general,
this analysis still shows that m GMRES steps will tend to damp out the rn dominant
components of (19). The analysis applies as well even if the iteration parameters are
accurate but not optimal, i.e. the Chebyshev iteration is damping out all components
but better parameters exist. In this case, some components will not be damped out as
rapidly as others during the Chebyshev step, and these will eventually be dominant
in (19).

Since the purification step seems to provide the important advantage of the hybrid
method, it is natural to ask whether a similar idea can be implemented with the modified
power method, which uses {rs+j S(A)S+Jro}=o to compute eigenvalue estimates. One
such procedure consists of computing

(20) xs+,, +span {rs," ", rs+m-1}

for which 11=---lib- AII= is minimum. This requires the solution of the least squares
problem

rn--1

(21) min [Its+m-- cejars+j 2.
j=0

To solve (21) using the normal equations, it is necessary to compute the inner products

(22) (Ar+, Ar+k), 0 <=j <--_ k <-_ m 1,

(23) (rs+m, Ars+j), O<--j<=m-1.
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Note that the recurrence for the Chebyshev iteration induces a three-term residual
recurrence

(24) Ar= r_l+
1 + flJ r r+.

Therefore, except when j 0, all the quantities of (22) can be computed in terms of

(rs+,, rs+,), t=j-l,j,j+l, u=k-l,k,k+l,

which are available from the modified power method (see (8) above). Similarly, except
when j=0 and j= m-1, the terms of (23) are available from the modified power
method. Moreover, the same trick can be used for j =0 in (22) if r-i is saved and
{(rs-1 r+k)}_

__
are computed; and for j=0 and j= m-1 in (23) if (r_, r) and

(r+,,, r+,,) are computed. Hence (21) can be solved with a total of m + 3 inner products.
The computation of Y requires an additional mN multiplications, so that purification
can be added to the modified power method with (2m + 3)N multiplications. Combining
this with the [(m+7m)/2]N multiplications and m matrix-vector products required
for the modified power method, the cost of this adaptive procedure is m matrix-vector
products plus [(rn + 11 m + 6)/2]N multiplications. This contrasts with m matrix-vector
products and (m2+ 2m)N multiplications for the hybrid method. Thus, the number
of matrix-vector products is the same as for the hybrid method, but the number of
additional operations is different. The coefficient of N for the additional operation
counts of both methods, for several values of m, is shown in Table 4.1. The storage

r and r_ which is N greater than for therequirement is (m + 1)N words, for { s+j}=l
hybrid method.2

TABLE 4.1

Coefficient ofN in multiplication count ofpurification adaptive steps.

Hybrid

Modified power with purification

rn 2 4 6 8 10

8 24 48 80 120

16 33 54 79 108

Finally, we note that similar methods for annihilating eigencomponents have been
developed in slightly different contexts by Saad and Sameh [19] and by Jesperson and
Buning 10].

5. Numerical experiments. In this section, we describe the results of numerical
experiments in which the methods discussed above are used to solve some nonsymmetric
linear systems arising from the discretization of non-self-adjoint elliptic boundary value
problems. We examine four methods based on four choices for the adaptive procedure:

(A) CHEB: the modified power method with no purification;
(B) HYBRID: Arnoldi’s method with purification by GMRES;
(C) CHEB-MIN: the modified power method with purification added by solving

(21);
(D) CHEB-ARNOLDI: Arnoldi’s method without purification.

Note that the space in (20) does not contain the most recent information available, since rs+,, is
excluded. We exclude it to avoid the computation of Ar,, in (21). Also, a less expensive purification, with
no reference to rs_l, could be performed if r were excluded. The given method is a compromise between
these two alternatives.
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The experiments were run on a VAXll-780 in double precision (55 bit mantissa). The
Chebyshev iterations were based on a slightly modified version of Manteuttel’s Cheby-
shev code [12]. The eigenvalues of the upper-Hessenberg matrix H, generated by
Arnoldi’s method were computed using EISPACK [21].

Table 5.1 summarizes the work and storage requirements for the adaptive pro-
cedures of each of the four methods. The matrix-vector products are denoted by Av.

TABLE 5.1
Work and storage requirements for the adaptive procedures.

Work

Storage

CHEB

mAv+(m2+7m)N/2

mN

HYBRID

mAv+(m2+2m)N

mN

CHEB-MIN

mAv+(m2+ llm+6)N/2

(m+l)N

CHEB-ARNOLDI

mAv+(m2+m)N

mN

As in Algorithm 5, the adaptive procedure of each method is invoked if

(25) r, li= > ll rminll=,
where /’min is the smallest residual encountered for the current parameters, and r 2.
For HYBRID and CHEB-MIN, it is also invoked after at most s 20 Chebyshev steps
so that the purification step is performed periodically. Since no purification occurs in
CHEB and CHEB-ARNOLDI, these techniques allow the Chebyshev iteration to
proceed if the convergence seems to agree with the predicted rate of convergence.4

HYBRID and CHEB-ARNOLDI compute initial values for the iteration parameters
c and d from eigenvalue estimates provided by Arnoldi’s method applied to the initial
residual. CHEB and CHEB-MIN use c 0 and d 1 as the initial iteration parameters.
Following [11], we use m 4 as the size of the Arnoldi and modified power bases in
an effort to identify the dominant and subdominant complex eigenvalue pair. Table
5.2 contains the work and storage costs of the adaptive procedures for this value of m.

TABLE 5.2
Costs of the adaptive procedures, m 4.

CHEB HYBRID CHEB-MIN CHEB-ARNOLDI

Work 4Av + 22N 4Av +24N 4Av + 33N

Storage 4N 4N 5N 4N

4Av+20N

For the test problem, we use the elliptic partial ditterential equation

(26) --(e-XYux)x--(eXYuy)y+y[(x+y)Uy+((x+y)u)y]+[1/(l+x+y)]u=f,
where y is a real scalar parameter and the right-hand side f is chosen so that the
solution is

u(x, y) x exy sin (rx) sin (ry).

CHEB and CHEB-MIN make this test only if is a multiple of m 4. This convention is taken from
the Chebyshev code and may slightly enhance the modified power method by allowing greater residual
growth than indicated by (25).

4 If j is the index of the first Chebyshev iterate corresponding to the current iteration parameters, then
asymptotically Ilrj+,ll2/llrjll2 is bounded by max s(IAI)’ for A tr(A) 13]. The heuristic, built into the original
code [12], is to compute new parameters only if II"+,ll=/llrll=> 2S(d)’.
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We pose (26) on the unit square {0<=x, y_<-1} with homogeneous Dirichlet boundary
conditions and discretize using the five-point second order centered finite difference
scheme on a uniform 47 x 47 grid, producing a linear system

(27) Ax b

or order N 2209. We use the values 3, 5 and 3, 50. In addition, we precondition
(27) with incomplete factorizations. We use both the incomplete LU (ILU) and modified
incomplete LU (MILU) factorizations with no extra fill-in (see [3], [5], [9], [14] for
the details concerning these techniques). The actual linear systems on which the various
iterative methods are tested have the form

: [AQ-’][ Qx] b ,
where Q is the preconditioning matrix. We thus have four test problems:

Problem 1: 3, 5, ILU preconditioning,
Problem 2: 3’ 5, MILU preconditioning,
Problem 3: 3, 50, ILU preconditioning,
Problem 4: 3, 50, MILU preconditioning.

The eigenvalue estimates (computed by all four methods) are real in Problems 1 and
2, and have imaginary parts of order one in Problems 3 and 4. For all tests, the initial
guess is Xo=0 and the stopping criterion is IIr, ll /llroll: < 10-.

Table 5.3 shows the number of iterations required to satisfy the stopping criterion,
where an iteration for the four adaptive Chebyshev methods is defined to be either a
Chebyshev step or an Arnoldi step. Thus, one iteration does not correspond to a fixed
amount of work, although each iteration contains one matrix-vector product.

TABLE 5.3
Iterations to convergence.

Problem

Problem 2

Problem 3

Problem 4

CHEB

90

35

36

33

HYBRID

60

27

42

27

CHEB-MIN

64

34

31

31

CHEB-
ARNOLDI

77

44

59

34

ORTHO-
MIN(1)

78

32

32

21

Figures 5.1-5.4 show the performance ofthe methods on each ofthe four problems.
The coordinates are residual norm IIr, ll= (on a logarithmic scale) vs. multiplications.
As a benchmark, for each problem we also include the performance of the conjugate
gradient-like method Orthomin (1) [4], [5], [23], [25]. Note that numerical experiments
indicating that Chebyshev methods (as well as Orthomin) are more effective than the
conjugate gradient method applied to the normal equations and the biconjugate gradient
method are presented in [5], [6], [7].

In examining this data, we consider three main issues:
1. the effect of the purification steps in HYBRID and CHEB-MIN;
2. the effect of the different eigenvalue estimators: Arnoldi’s method in HYBRID

and CHEB-ARNOLDI vs. the modified power method in CHEB and CHEB-MIN;
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FIG. 5.1. Problem 1" 7 5, ILU preconditioning.
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FIG. 5.2. Problem 2" 3/= 5, MILU preconditioning.

3. the different choice of initial parameters: an initial Arnoldi computation in
HYBRID and CHEB-ARNOLDI vs. initial guesses of d 1, c=0 in CHEB and
CHEB-MIN.

The first issue is clearcut: for all four problems, the method with purification is
superior to its analogue without purification. This is explained by the analysis of 4"
if the residuals from the Chebyshev steps are diverging, then the purification essentially
annihilates the eigenvector components that are growing, at relatively little extra cost.
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FIG. 5.3. Problem 3:7 50, ILU preconditioning.

FIG. 5.4. Problem 4: /= 50, MILU preconditioning.

A direct comparison between the two techniques for estimating eigenvalues is
somewhat difficult because of the different roles of the growth tolerance parameter r.

In the modified power method, four Chebyshev iterations are performed after the
condition (25) is violated, so that the residuals will become very rich in the needed
eigenvectors. In contrast, Arnoldi’s method is performed as soon as (25) is violated,
so that the residuals will probably not be dominated as much by these eigenvectors.
Without purification, Arnoldi’s method (in CHEB-ARNOLDI) does not seem as
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ettective as the modified power method (in CHEB). However, the combined
Arnoldi/GMRES step of HYBRID appears to be more effective than the purified
modified power step of CHEB-MIN. It is both less expensive (for m =4), and it
strongly limits the growth of the residual.

For the third issue, note that inaccurate initial iteration parameters cause the
residuals generated by CHEB and CHEB-MIN to diverge by several orders of magni-
tude in Problems 1, 2 and 4 (the missing eigenvalues take some time to assert themselves
in Problem 1). This difficulty is avoided by HYBRID in Problems 1 and 2, where fairly
accurate initial eigenvalue estimates combine with the strict growth tolerance r 2 to
prevent divergence. HYBRID does not handle Problem 4 as well. This is because the
initial Arnoldi estimates determine a domain ofconvergence for the Chebyshev iteration
that just misses one eigenvalue, and the next Chebyshev iteration diverges too slowly
for the adaptive procedure to be invoked until the maximum number of 20 steps is
performed. In Problem 3, the eigenvalues are clustered near 1 so that the initial
parameters for CHEB and CHEB-MIN are accurate, whereas Arnoldi’s method has
some difficulty identifying them. The use of Arnoldi’s method for initial eigenvalue
estimates tends to make the overall performance somewhat smoother, although it may
not be necessary if good initial parameters are available.

Finally, note that the performances of Orthomin (1) and the Chebyshev methods
are very close. The slopes of the Chebyshev curves are steeper, reflecting their lower
cost per step [4], [5], [13], but the overhead of the adaptive steps increases their total
cost.

Acknowledgments. The authors wish to thank Tom Manteuffel for providing us
with a copy of his Chebyshev code, without which this project would have been nearly
impossible, and Martin Schultz and Stan Eisenstat for several helpful suggestions
during the preparation of this paper.
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GMRES: A GENERALIZED MINIMAL RESIDUAL ALGORITHM FOR
SOLVING NONSYMMETRIC LINEAR SYSTEMS*

YOUCEF SAAD’ AND MARTIN H. SCHULTZ"

Abstract. We present an iterative method for solving linear systems, which has the property ofminimizing
at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the
Arnoldi process for constructing an /2-orthogonal basis of Krylov subspaces. It can be considered as a

generalization of Paige and Saunders’ MINRES algorithm and is theoretically equivalent to the Generalized
Conjugate Residual (GCR) method and to ORTHODIR. The new algorithm presents several advantages
over GCR and ORTHODIR.

Key words, nonsymmetric systems, Krylor subspaces, conjugate gradient, descent methods, minimal
residual methods

AMS(MOS) subject classification. 65F

1. Introduction. One ofthe most effective iterative methods for solving large sparse
symmetric positive definite linear systems of equations is a combination ofthe conjugate
gradient method with some preconditioning technique [3], [8]. Moreover, several
different generalizations of the conjugate gradient method have been presented in the
recent years to deal with nonsymmetric problems [2], [9], [5], [4], [13], [14] and
symmetric indefinite problems [10], [3], [11], [14].

For solving indefinite symmetric systems, Paige and Saunders [10] proposed an
approach which exploits the relationship between the conjugate gradient method and
the Lanczos method. In particular, it is known that the Lanczos method for solving
the eigenvalue problem for an N x N matrix A is a Galerkin method onto the Krylov
subspace Kk =- span{v1, AVl,"" ", Ak-lvl}, while the conjugate gradient method is a
Galerkin method for solving the linear system Ax =f, onto the Krylov subspace Kk
with v to/II roll. Thus, the Lanczos method computes the matrix representation Tk of
the linear operator PkAII, the restriction of PkA to Kk, where Pk is the 12-0rthogonal
projector onto Kk. The Galerkin method for Ax =f in Kk leads to solving a linear
system with the matrix Tk which is tridiagonal if A is symmetric. In general, Tk is
indefinite when A is and some stable direct method must be used to solve the
corresponding tridiagonal Galerkin system. The basis of Paige and Saunders’ SYMMLQ
algorithm is to use the stable LQ factorization of T. Paige and Saunders also showed
that it is possible to formulate an algorithm called MINRES using the Lanczos basis
to compute an approximate solution Xk which minimizes the residual norm over the
Krylov subspace K.

In the present paper we introduce and analyse a generalization of the MINRES
algorithm for solving nonsymmetric linear systems. This generalization is based on the
Arnoldi process 1 ], 12] which is an analogue of the Lanczos algorithm for nonsym-
metric matrices.

Instead of a tridiagonal matrix repregenting PkAIr, as is produced by the Lanczos
method for symmetric matrices, Arnoldi’s method produces an upper Hessenberg
matrix. Using the 12-0rthonormal basis generated by the Arnoldi process, we will show
that the approximate solution which minimizes the residual norm over Kk, is easily
computed by a technique similar to that of Paige and Saunders. We call the resulting

* Received by the editors November 29, 1983, and in revised form May 8, 1985. This work was supported
by the Office of Naval Research under grant N000014-82-K-0184 and by the National Science Foundation
under grant MCS-8106181.

f Department of Computer Science, Yale University, New Haven, Connecticut 06520.
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algorithm the Generalized Minimal Residual (GMRES) method. We will establish that
GMRES is mathematically equivalent to the generalized conjugate residual method
(GCR) [5], [16] and to ORTHODIR [9]. It is known that when A is positive real, i.e.
when its symmetric part is positive definite, then the generalized conjugate residual
method and the ORTHODIR method will produce a sequence of approximations Xk
which converge to the exact solution. However, when A is not positive real GCR may
break down. ORTHODIR on the other hand does not break down, but is known to
be numerically less stable than GCR [5], although this seems to be a scaling difficulty.

Thus, systems in which the coefficient matrix is not positive real provide the main
motivation for developing GMRES. For the purpose of illustration, consider the
following 2 x 2 linear system Ax =f, where

-1 0 f= x=0"

The GCR algorithm can be briefly described as follows:

1. Start: Set Po ro f Axo
2. Iterate: For 0, 1,... until convergence do"

Compute a, (r,, Ap,)/(Api, Ap,),
Xi+ Xi nt" otiPi,

ri+l ri
+ (.p.Pi+=ri+ j=o

chosen that (Ap+1, Ap) O, for 0 <j _-< i.where {i)} are so

If one attempts to execute this algorithm for the above example one would obtain
the following results:

1. At step 0 we get ao 0 and therefore Xl Xo, rl ro. Moreover, the vector

Pl is zero.
2. At step 1, a division by zero takes place when computing a and the algorithm

breaks down.
We will prove that GMRES cannot break down even for problems with indefinite
symmetric parts unless it has already converged. Moreover, we will show that the
GMRES method requires only half the storage required by the GCR method and -fewer arithmetic operations than GCR.

In 2 we will briefly recall Arnoldi’s method for generating /2-orthogonal basis
vectors as it is described in [13]. In 3, we will present the GMRES algorithm and
its analysis. Finally, in 4 we present some numerical experiments.

2. Arnoldi’s method. Arnoldi’s method [ 1] which uses the Gram-Schmidt method
for computing an /2-orthonormal basis {Vl, v2,"" ", Vk} of the Krylov subspace Kk
span {vl, AVl,.’’, Ak-lvl} can be described as follows.

ALGORITHM 1: Arnoldi.
1. Start: Choose an initial vector Vl with IIv ll- 1.
2. Iterate: For j 1, 2,. , do:

hi, Avj, v, i= 1, 2,. j,
j+ avj Y=
hj+ lj j+ ll, and

In practical implementation it is usually more suitable to replace the Gram-Schmidt
algorithm of step 2 by the modified Gram-Schmidt algorithm 15]. If Vk is the N x k
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matrix whose columns are the g_-orthonormal basis { vl, v2," ,/)k}, then Hk VIAVk,
is the upper k x k Hessenberg matrix whose entries are the scalars hia generated by
Algorithm 1. If we call Pk the /2-orthogonal projector onto Kk, and denote by Ak the
section of A in Kk, i.e. the operator Ak PkAI:k, we notice that Hk is nothing but the
matrix representation of Ak in the basis { vl, v2, , Vk}. Thus Arnoldi’s original method
[1] was a Galerkin method for approximating the eigenvalues of A by those of Hk
[1], [12].

In order to solve the linear system

(1) Ax =f,

by the Galerkin method using the /-orthogonal basis Vk, we seek an approximate
solution Xk of the form Xk Xo + Zk, where Xo is some initial guess to the solution x,
and Zk is a member of the Krylov subspace Kk=span {ro, Aro,’’’, Ak-lro}, with
ro =f-Axo. Suppose that k steps of Algorithm 1 are carried out starting with v,
ro/i[ro[[. Then it is easily seen that the Galerkin condition that the residual vector
rk =f--AXk be /2-orthogonal to Kk yields

Zk Vkyk where Yk-- n-’llrolle
and e is the unit vector e (1, 0, 0,. , 0)r 13]. Hence we can define the following
Algorithm 13].

ALGORITHM 2: Full orthogonalization method.
1. Start: Choose Xo and compute ro=f-Axo and Vl ro/llroll.
2. Iterate" For j 1, 2,. , k do:

h,,i (Avj, v,), i= 1, 2,.
3,+1 Av, .,{= hiovi,
hj+l,j j+l II, and
v+ +l/ h+,O.

3. Form the solution"
x Xo + VV, where y

In practice, the number k of iterations in step 2 is chosen so that the approximate
solution x will be sufficiently accurate. Fortunately, it is simple to determine a posteriori
when k is sufficiently large without having to explictly compute the approximate
solution because we can compute the residual norm of x thanks to the relation 13],
[141"

(2) IIf Axll hk+l,kle Tykl.

Note, that if the algorithm stops at step k, then clearly it is unnecessary to compute
the vector vk+l.

Algorithm 2 has a number of important properties [14]:
Apart from a multiplicative constant, the residual vector rk of Xk is nothing but

the vector Vk+. Hence, the residual vectors produced by Algorithm 2 are/2-orthogonal
to each other.

Algorithm 2 does not break down if and only if the degree of the minimal
polynomial of Vl is at least k and the matrix Hk is nonsingular.

The process terminates in at most N steps.
Algorithm 2 generalizes a method developed by Parlett [11] for the symmetric

case. It is also known to be mathematically equivalent to the ORTHORES algorithm
developed by Young and Jea [9].
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A difficulty with the full orthogonalization method is that it becomes increasingly
expensive as the step number k increases. There are two distinct ways of avoiding this
difficulty. The first is simply to restart the algorithm every rn steps. The second is to
truncate the /2-orthogonalization process, by insisting that the new vector Vi+l be
/2-orthogonal to only the previous vectors where is some integer parameter. The
resulting Hessenberg matrix Hk is then banded and the algorithm can be implemented
in such a way as to avoid storing all previous but only the most recent vi’s. The
details on this Incomplete /2-orthogonalization Method (IOM (l)), can be found in
14]. A drawback of these truncation techniques is the lack of any theory concerning

the global convergence of the resulting method. Such a theory is difficult because there
is no optimality property similar to that of the conjugate gradient method. In the next
section we derive a method which we call GMRES based on Algorithm 1 to provide
an approximate solution which satisfies an optimality property.

3. The generalized minimal residual (GMRES) algorithm.
3.1. The algorithm. The approximate solution of the form Xo+ z, which minimizes

the residual norm over z in Kk, can in principle be obtained by several known
algorithms:

The ORTHODIR algorithm of Jea and Young [9];
Axelsson’s method [2];
the generalized conjugate residual method [4], [5].

However, if the matrix is indefinite these algorithms may break down or have
stability problems. Here we introduce a new algorithm to compute the same approxi-
mate solution by using the basis generated by Arnoldi’s method, Algorithm 1.

To describe the algorithm we start by noticing that after k steps of Arnoldi’s
method we have an 12-orthonormal system Vk+ and a (k+ 1)x k matrix Hk whose
only nonzero entries are the elements ho generated by the method. Thus Hk is the
same as Hk except for an additional row whose only nonzero element is hk+l,k in the
(k + 1, k) position. The vectors vi and the matrix Hk satisfy the important relation:

(3) AVk Vk+Hk.

Now we would like to solve the least squares problem:

min [Iro- Azll.(4) zmin,, Ilf- a[xo+ z]ll
z,,

If we set z Vky, we can view the norm to be minimized as the following function of
y:

(5) J(y)= IIv-aV,,Yll
where we have let/3 Ilroll for convenience. Using (3) we obtain

(6) J(Y) Vk+,[fle- II.
Here, the vector el is the first column of the (k + 1) x (k + 1) identity matrix. Recalling
that Vk/l is 12-orthonormal, we see that

(7) J(Y) IIte- nv II.
Hence the solution of the least squares problem (4) is given by

(8) x Xo+ Vy
where Yk minimizes the function J(y), defined by (7), over y Rk.
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The resulting algorithm is similar to the Full Orthogonalization Method, Algorithm
2, described earlier, the only difference being that the vector Yk used in step 3 for
computing Xk is now replaced by the minimizer of J(y). Hence we define the following
structure of the method.

ALGORITHM 3" The generalized minimal residual method (GMRES).
1. Start" Choose Xo and compute ro=f axo and Vl ro/llroll.
2. Iterate" For j 1, 2, , k, , until satisfied do"

hid--(Avj, v,), i= 1, 2, ,j,
j+l avj-=l
h+l./= +111, and
tj+l j+l/hj+lj.. Form he approximate solution"
xk xo+ Vk, where minimizes (7).

When usin the GMRES algorithm we can easily use the Arnoldi matrix H for
estimatin the eienvalues of A. This is particularly useful in the hybrid Chebyshev
procedure proposed in [6].

It is clear that we face the same practical difficulties with the above GMRES
method as with the Full Orthogonalization Method. When k increases the number of
vectors requiring storage increases like k and the number of multiplications like 1/2k2N.
To remedy this difficulty, we can use the algorithm iteratively, i.e. we can restart the
algorithm every rn steps, where rn is some fixed integer parameter. This restarted
version of GMRES denoted by GMRES(m) is described below.

ALGORITHM 4: GMRES(m).
1. Start: Choose Xo and compute ro =f- Axo and Vl ro/
2. Iterate" For j 1, 2, , rn do:

h,o (Ave, v,), i= 1, 2, ,.h
j+l av-,:l hiovi,

II, and
j+ j+l/ hj+ ld.

3. Form the approximate solution"
x= Xo+ Vmy.. where Ym minimizes IIel-lmyll, Y e R =.

4. Restart"
Compute r f- Ax,; if satisfied then stop
else compute Xo := x,, vl := r/II and go to 2.

Note that in certain applications we will not restart GMRES. Such is the case for
example in the solution of stiff ODE’s [7] and in the hybrid adaptive Chebyshev
method [6].

3.2. Practical implementation. We now describe a few important additional details
concerning the practical implementation of GMRES. Consider the matrix Hk, and let
us suppose that we want to solve the least squares problem:

min Ilflel-
y

A classical way of solving such problems is to factor Hg into QkRk using plane
rotations. This is quite simple to implement because of the special structure of Hk.
However, it is desirable to be able to update the factorization of Hk progressively as
each column appears, i.e. at every step of the Arnoldi process. This is important
because, as will be seen, it enables us to obtain the residual norm of the approximate
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solution without computing xk thus allowing us to decide when to stop the process
without wasting needless operations.

We now show in detail how such a factorization can be carried out. In what
follows, we let F represent the rotation matrix which rotates the unit vectors ej and
ej+l, by the angle 0"

rowj+l

where c --- cos (0), s sin (0).
Assume that the rotations Fi, i= 1,...,j have been previously applied to Hj to

produce the following upper triangular matrix of dimension (j + 1) xj"

X X

X

X X

X X

X X

X

X X

X X

X X

X X

X X

X

0

The letter x stands for a nonzero element. At the next step the last column and
row of/-/+ appear and are appended to the above matrix. In order to obtain Rj+ we
must start by premultiptying the new column by the previous rotations. Once this is
done we obtain a (j + 2)x (j + 1) matrix of the form

X X X X X X

X X X X X

X X X X

X X X

X X

X

0 0

0 0

X

X

X

X

X

X

r

h

The principal upper (j + 1)xj submatrix of the above matrix is nothing but R, and h
stands for h+2j+ which is not affected by the previous rotations. The next rotation
will then consist in eliminating that element h in position j + 2, j + 1. This is achieved
by the rotation F/ defined by

Cj+ r/(r2+ h2) 1/2,

Sj+l=- -h/(r2 + h)/2.
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Note that the successive rotations F must also simultaneously be applied to the right
side

Thus, after k steps ofthe above process, we have achieved the following decomposi-
tion of Hk"

QkHk Rk
where Qk is (k-4-1)x (k / 1) and is the accumulated product of the rotation matrices
F, while Rk is an upper triangular matrix of dimension (k / 1) x k, whose last row is
zero. Since Qk is unitary, we have"

(9) J(Y) II/e,- II--II Qk[fle,-
where gk - Qk[3el is the transformed right-hand side. Since the last row of Rk is a zero
row, the minimization of (9) is achieved by solving the upper triangular linear system
whch results from removing the last row of Rk and the last component of gk. This
provides Yk and the approximate solution Xk is then formed by the linear combination
(8).

We claimed earlier that it is possible to obtain the residual norm ofthe approximate
solution x while performing the above factorization, without explicitly computing x.
Indeed, notice that from the definition of J(y), the residual norm is nothing but J(Yk)
which, from (9), is in turn equal to ]]gk--RkYkl]. But by construction of Yk, this norm
is the absolute value of the last component of gk. We have proved the following.

PROPOSITION 1. The residual norm of the approximate solution Xk is equal to the
(k + 1)st component of the right-hand side gk obtained by premultiplying fie1 by the k
successive rotations transforming Hk into an upper triangular matrix.

Therefore, since gk is updated at each step, the residual norm is available at every
step of the QR factorization at no extra cost. This is very useful in the practical
implementation of the algorithm because it will prevent us from taking unnecessary
iterations while allowing us to avoid the extra computation needed to obtain Xk
explicitly.

Next we describe an efficient implementation of the last step of GMRES. If we
can show that we can obtain the residual vector as a combination of the Arnoldi vectors
)1, /)m and Av,, then after step m we do not need )m+l. Note that computing m+l
and its norm costs (2m / 1)N multiplications, so elimination of its computation is a
significant saving. Assume that the first m- 1 Arnoldi steps have already been per-
formed, i.e. that the first m- 1 columns of H, are available as well as the first m
vectors vi, i-1,..., m. Since we will not normalize vi at every step, we do not have
explicitly the vectors vi but rather the vectors w J,i)i where/xi are some known scaling
coefficients.

All we need in order to be able to compute Xm is the matrix Hm and the vectors

vl,..., Vm. Since the vectors v, i= 1,..., m, are already known, we need compute
only the coefficients hi,,, 1, , m + 1. Noting that h,, (Av,,, v), for _-< m we
see that these first m coefficients can be obtained as follows"

1. Compute Av,,, and
2. Compute the m inner-products (Av,,, vi), 1, , m.
Clearly, the scaling coefficients/x must be used in the above computations as

i- 1,. ., m, are only available as w =/xvi, where/x- w]]. This determines the mth
column of H,,, except for the element h,+,m. We wish to compute this coefficient
without having to compute w,+l. By definition and the orthogonality of the vi’s

(10) h2 Al)m h,,,,,v, IlAvll : ., h2m.+ l,m
i=1 i=1
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Hence the last coefficient can be obtained from the hi,,,’s, 1,. ., m, and the norm
of Arm.

Now we will show how to compute the residual vector r,, =f-Ax,, from the vi’s,
i= 1,. ., m and Av,,. This computation is necessary only when restarting. From (6)
the residual vector can be expressed as

(11) rm Vm+l[[3el- HmYm].

If we define tl, t2," ", t,,+l] r =/3el ,,y,,, then

rm ti)i + tm+l l)m+l Ill) "F tm+l Al)m.-- hi,ml)
i=1 i=1 hm+l,m

tm+l Avm + E (t, tm+lhi.m/h,,,+l.m)Vi.
hm+l,m i=1

It is to be expected that for large m, the alternative expression (10) for
would be inaccurate as the orthogonality of the vectors v, on which it is based, is
likely to be lost [11]. Moreover, in the restarted GMRES, the computation of r,, by
(11) may be more time consuming than the explicit use of r, =f-Ax,,. Therefore, it
is not recommended to use the above implementation when m is large.

3.3. Comparison with other methods. From the previous description of GMRES,
it is not clear whether or not this algorithm is more ettective than GCR or ORTHODIR.
Let us examine the computational costs of these three methods. We will denote by
NZ the number of nonzero elements in A. We will evaluate the cost of computing the
approximation xk by GMRES. There are several possible implementations but we will
refer to the one described in the previous section. If we neglect the cost of computing
Yk, which is the solution of a least squares problem of size k, where k is usually much
less than N, the total cost of computing xk by GMRES can be divided in two parts"

The computation of the Arnoldi vectors vj/l, for j 1, 2, , k. The jth step in
this loop requires (2j + 1)N + NZ multiplications, assuming that the vectors v are not
normalized but that their norms are only computed and saved. The last step requires
only (k + 1)N multiplications instead of (2k + 1)N, i.e. kN fewer multiplications than
the regular cost, as was shown in the previous section. Hence, the total number of
mutiplications for this part is approximately k(k + 2)N+ kNZ kN
k(k+l)N+kNZ.

The formation of the approximate solution Xo+ VkYk, in step 3 requires kN
multiplications.

The k steps of GMRES therefore require k(k + 2)N+ kNZ multiplications. Divid-
ing by the total number of steps k, we see that each step requires (k+2)N+ NZ
multiplications on the average. In [5], it was shown that both GCR and ORTHODIR
require on the average 1/2(3k + 5)N+ NZ multiplications per step to produce the same
approximation Xk. Therefore with the above implementation GMRES is always less
expensive than either GCR or ORTHODIR. For large k savings will be nearly 1/2.

The above comparison concerns the nonrestarted GMRES algorithm. Note that
the notation adopted in [5] for the restarted versions of GCR and ORTHODIR differs
slightly from ours in that GCR(rn) has m + 1 steps in each innerloop, while GMRES(m)
has only m steps. Hence GMRES(m) is mathematically equivalent to GCR(m-1).
When we restart GMRES, we will need the residual vector after the m steps are
completed. The residual vector can be obtained either explicitly as f-Ax, or, as will
be described later, as a linear combination of Av, and the v’s, 1, , m. Assuming
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the latter, we will perform (m + 1)N extra multiplications. This will increase the average
cost per step by (1 + 1/ m)N to (m / 3 + 1/m)N+ NZ. The corresponding cost per step
of the restarted GCR and ORTHODIR is 21-(3m + 5)N+ NZ. Thus GMRES(m) is more
economical than GCR(m-1) for m> 1. Note that the above operation count for
GCR(m- 1) and ORTHODIR(m- 1) does not include the computation of the norm
of the residual vector which is required in the stopping criterion while for GMRES,
we have shown earlier that this norm is available at every step at no extra cost. This
remark shows that in fact the algorithms require the same number of operations when
m-1.

For GMRES(m), it is clear that all we need to store is the vi’s, the approximate
solution, and vector for Avi, which means (m + 2)N storage locations. For large m,
this is nearly half the (2m + 1)N storage required by both GCR and ORTHODIR. The
comparison of costs is summarized in the following table in which GCR(m- 1) and
GMRES(m) are the restarted versions of GCR and GMRES, using m steps in each
innerloop. Note that the operation count of ORTHODIR(rn- 1) is identical with that
of GCR(m 1) [5].

TABLE

Method

GCR(m 1)
GMRES(m)

Multiplications

[(3m+5)/2])N+NZ
(m+3+I/m)N+NZ

Storage

(2m+l)N
(m+2)N

3.4. Theoretical aspects of GMRES. A question often raised in assessing iterative
algorithms is whether they may break down. As we showed in the introduction, GCR
can break down when A is not positive real, i.e. when its symmetric part is not positive
definite. In this section we will show that GMRES cannot break down, regardless of
the positiveness of A.

Initially, we assume that the first m Arnoldi vectors can be constructed. This will
be the case if hj+l 0, j 1, 2,..., m. In fact if hj+2j+l 0, the diagonal element
rj/l//l of Rj+I obtained from the above algorithm satisfies:

2 /2ii+l,j+l---(Cj+lr--sj+lhj+2,j+l)-(r2/ hj+2j+l)

Hence, the diagonal elements of R,, do not vanish and therefore the least squares
problem (9) can always be solved, establishing that the algorithm cannot break down
if h/ 0, j 1,. , m.

Thus the only possible potential difficulty is that during the Arnoldi process we
encounter an element h+l equal to zero. Assume that this actually happens at the jth
step. Then since h+j 0 the vector v/ cannot be constructed. However, from Arnoldi’s
algorithm it is easily seen that we have the relation AV V/-/ which means that the
subspace Kj spanned by V is invariant. Notice that if A is nonsingular then whose
spectrum is a part of the spectrum of A is also nonsingular. The quadratic form (5)
at the jth step becomes

J(Y) IIvl-mVYll II/Vl- VMy II: v[/3e- ny] II- [I/el-ny II.
Since is nonsingular the above function is minimum for y= Hflfl81 and the
corresponding minimum norm is zero, i.e., the solution x is exact.

To prove that the converse is also true assume that xj is the exact solution and
that x, i- 1, 2,...,j-1 are not, i.e. r 0 but ri 0 for i- 0, 1,...,j- 1. Then r- 0
and from Proposition 1 we know that the residual norm is nothing but sge-lg-l, i.e.
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the previous residual norm times ss. Since the previous residual norm is nonzero by
assumption, we must have ss 0 which implies hs/lj 0, i.e. the algorithm breaks down
and 3S/l 0 which proves the result.

Moreover, it is possible to show that 3s+1 =0 and i rs 0 1, 2, ,j is equivalent
to the property that the degree of the minimal polynomial of the initial residual vector

ro v is equal to j. Indeed assume the degree of the minimal polynomial of Vl is j.
This means that there exists a polynomial Ps of degree j, such that ps(A)Vl 0, and
is the polynomial of lowest degree for which this is true. Therefore
span{vl, AVl,..., AJ/)l} is equal to Ks. Hence the vector j+l which is a member of

Ks/l Ks and is orthogonal to K is necessarily a zero vector. Moreover, if t3i 0 for
-<j then there exists a polynomial pi of degree such that p(A)Vl 0 which contradicts

the minimality of p.
To prove the converse assume that t/ =0 and 3 0 1, 2,. ,j. Then there

exists a polynomial Ps of degree j such that ps(A)Vl 0. Moreover, Ps is the polynomial
of lowest degree for which this is true, otherwise we would have t3i+ 0, for some
<j by the first part of this proof which is a contradiction.

PROPOSITION 2. The solution xs produced by GMRES at step j is exact if and only
if the following four equivalent conditions hold"

(1) The algorithm breaks down at step j.
(2) V+l 0.
(3) hs+,j=0.
(4) The degree of the minimal polynomial of the initial residual vector ro is equal

toj.
This uncommon type of breakdown is sometimes referred to as a "lucky" break-

down in the context of the Lanczos algorithm. Because the degree of the minimal
polynomial of v cannot exceed N for an N-dimensional problem, an immediate
corollary follows.

COROLLARY 3. For an N Nproblem GMRES terminates in at most N steps.
A consequence of Proposition 2 is that the restarted algorithm GMRES (m) does

not break down. GMRES (m) would therefore constitute a very reliable algorithm if
it always converged. Unfortunately this is not always the case, i.e. there are instances
where the residual norms produced by the algorithm, although nonincreasing, do not
converge to zero. In [5] it was shown that the GCR (m- 1) method converges under
the condition that A is positive real and so the same result is true for GMRES (m).
It is easy to construct a counter-example showing that this result does not extend to
indefinite problems, i.e. that the method may not converge if the symmetric part of A
is not positive definite. In fact it is possible to show that the restarted GMRES method
may be stationary. Consider GMRES (1) for the problem Ax =f, where

A=
-1 0 f= 1

x=0’

which we considered in the introduction. The approximate solution x minimizes the
residual norm IIf-Azll where z is a vector of the form z= af. It is easily seen that

Xl 0. Therefore the algorithm will provide a stationary sequence. Note that this is

independent from the problem ofbreakdown. In fact GMRES will produce the solution
in two steps but GMRES (1) never will.

Since the residual norm is minimized at every step of the method it is clear that
it is nonincreasing. Intuitively, for rn large enough the residual norm will be reduced
by a sufficiently small ratio as to ensure convergence. Thus we would expect
GMRES (m) to be convergent for sufficiently large m. However, note that ultimately
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when m N, the result is trivial, i.e. the method converges in one step. Thus, we will
not attempt to show that the method GMRES (m) converges for sufficiently large m.
On the other hand it is useful to show that if A is nearly positive real, i.e. when it has
a small number of eigenvalues on the left half plane, then m need not be too large
for convergence to take place.

In order to analyse this convergence, we let P,, be the space of all polynomials
ofdegree -<_ m and let tr represent the spectrum ofA. The following result was established
in [5] for the GCR algorithm and is a simple consequence of the optimality property.

PROPOSITION 4. Suppose that A is diagonalizable so that A XDX-1 and let

(12) e")= min max
pe Pm,p(O)=

Then the residual norm provided at the ruth step of GMRES satisfies

r,.+,ll-<-
where ,, (X) X X-’II.

When A is positive real with symmetric part M, the following error bound can
be derived from the proposition, see [5]"

r,, II--< 1 a //3  o11,
with a (Amin(M))2, fl ,.max(ATm). This proves the convergence of the GMRES (m)
for all m when A is positive real [5].

When A is not positive real the above result is no longer true but we can establish
the following explicit upper bound for e (’).

THEOREM 5. Assume that there are t, eigenvalues A 1, A2, , A ofA with nonpositive
real parts and let the other eigenvalues be enclosed in a circle centered at C with C > 0
and having radius R with C > R. Then

(13) e(") < max Ix,Ij=v+l,Ni=

where

D max IA,-Ajl and d min IA,I.
i= l,t,;j= t,+ l,N i=l,t,

Proof. Consider the particular class of polynomials defined by p(z)= r(z)q(z)
where r(z)=(1-z/A1)(1-z/A2)... (1- z/A) and q(z) is an arbitrary polynomial of
degree <=m- t,, such that q(0)= 1. Clearly, since p(0)= 1 and p(Ai)=0, i= 1,- ., ,,
we have

e(")_-< max Ip(xj)l-< max Ir(Aj)l max Iq(mj)l.
j= t,+l,N j= t,+l,N j= t,+l,N

It is easily seen that

max [r(Aj)] max <
j=u+l,N J=t’+l’Ni=l" i’ i"i --(D/d).

Moreover, by the maximum principle, the maximum of Iq(z)[ for z belonging to the
set {,j}j=+.u is no larger than its maximum over the circle that encloses that set.
Taking the polynomial q(z)= [(C- z)/C] whose maximum modulus on the circle
is (R/C) yields the desired result.

A similar result was shown by Chandra [3] for the symmetric indefinite case. Note
that when the eigenvalues of A are all real then the maximum of the product term in



ALGORITHM FOR NONSYMMETRIC LINEAR SYSTEMS 867

the second part of inequality (13) satisfies

max I Ih’- hjl I [h,-hv[

where A is the largest eigenvalue of A. A simple consequence of the above theorem
is the following corollary.

COROLLARY 6. Under the assumptions of oposition 4 and eorem 5,
GMRES (m) converges for any initial vector Xo if

m>Log[r(X’1/]/Log[]
A few comments are in order. First note that, in general, the upper bound (13) is

not likely to be sharp, and so convergence may take place for m much smaller than
would be predicted by the result. Second, obsee that the minimal m that ensures
convergence is related only to the eigenvalue distribution and the condition number
of X. In paicular, it is independent of the problem-size N. Third, it may very well
happen that the minimal m would be larger than N, in which case the information

provided by the corollary would be trivial since the method is exact for m N.

4. Numerical experiments. In this section we repo a few numerical experiments
comparing the performances of GMRES with other conjugate gradient-like methods.
The tests were performed on a VAX-11/780 using double precision corresponding to
a unit round off of nearly 6.93 x 10-18. The GMRES (k) algorithm used in the following
tests computes explicitly the last vector Vk+ of each outer iteration, i.e. it does not

implement the modification described at the end of 3.2.
The test problem was derived from the five point discretization of the following

paaial differential equation which was described in H. Elman’s thesis [5]:

-(bu)x -(cu)x + du + (du)x + eur + (eU)y +fu g

on the unit square, where

b(x, y) e-xy, C(X, y) erd(x, y) fl(x + y),

e(x,y)=r(x+y) and f(x,y)=l./(l+x+y)

subject to the Dirichlet boundary conditions u 0 on the boundary. The right-hand
side g was chosen so that the solution was known to be xexy sin (Trx)sin (ry). The
parameters/3 and /are useful for changing the degree of symmetry of the resulting
linear systems. Note that the matrix A resulting from the discretization remains positive
real independent of these parameters.

We will denote by n the number of interior nodes on each side of the square and
by h 1/(n + 1) the mesh size. In the first example we took n 48, /= 50 and/3 1.
This yielded a matrix of dimension N 2304. The system was preconditioned by the
MILU preconditioning applied on the right, i.e. we solved AM-I(Mx)=f where M
was some approximation to A-1 provided by an approximate LU factorization of A
see [5]. The process was stopped as soon as the residual norm was reduced by a factor
of e 10-6. The following plot compares the results obtained for GCR (k), GMRES (k),
and ORTHOMIN (k) for some representative values of k.

The plot shows that ORTHOMIN (k) did not converge for k 1 and k 5 on

this example. In fact, we observed that it exhibited the same nonconverging behaviour
for all values of k between 1 and 5. Another interesting observation is that GMRES (5)
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performed almost as well as GCR (1). Note that the value k 5 yielded the best possible
result that was obtained for all reasonable choices of k and similarly GCR (1) correspon-
ded to the best possible performance for GCR (k).
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It is worth pointing out that for moderate accuracy (e->_ 10-2), GMRES (5) was
slightly better than GCR (1). Finally, we should indicate that the reason why
ORTHOMIN performed so badly in this example is that the preconditioned system is
not positive real. The MILU preconditioning seems to be more prone to such
peculiarities than the simpler ILU preconditioning. In fact for this example
ORTHOMIN (1) performed very well when the ILU preconditioning was used.

In the next test we took n-18 which yielded a matrix of smaller dimension
N 324, and y 50.,/3 -20. The main purpose of this experiment was to show that
there are instances where using a large parameter m is important. Here again we used
the MILU preconditioning and the stopping tolerance was e 10-6. This example was
more difficult to treat. ORTHOMIN (k) diverged for all values of k between 1 and
10. Also GCR (1), GCR (2) and GCR (3) diverged as well as their equivalent versions
GMRES (k), k-2, 3, 4. The process GMRES (k) started to converge with k- 5 and
improved substantially as k increased. The best performance was realized for larger
values of k. The following plot shows the results obtained for GMRES (5), GMRES (20)
and ORTHOMIN (10). In order to be able to appreciate the gains made by GMRES (20)
versus its equivalent version GCR (19), we also plotted the results for GCR (19). Note
that we saved nearly 25% in the number of multiplications but also almost half the
storage which was quite important here since we needed to keep 22 vectors in memory
versus 39 for GCR (19).
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A SECOND-ORDER ACCURATE PRESSURE-CORRECTION SCHEME
FOR VISCOUS INCOMPRESSIBLE FLOW*
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Abstract. A pressure correction method for (time-dependent) viscous incompressible flow is presented
that is second order accurate in time and space. The order of accuracy is proved for a model scheme and
demonstrated for a numerical example. A practical application is given.
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1. Introduction. Pressure correction methods have been introduced as a useful
way to significantly reduce the computational cost of explicit and implicit calculations
of time-dependent incompressible viscous flow in the velocity-pressure formulation.
(see [1], [3], [5], [8] and [12]); the method is called by various names, such as fractional
step method or Chorin’s method. So far, little attention has been paid to improving
the accuracy of this method, which in earlier works is O(At + (Ax)2).

Goda [5] presents a method for 3D calculations that has this accuracy and only
Braza [1] hints at the possibility of improving the accuracy in time to O(At2). The
reason she does not succeed in achieving O(At2) accuracy is, that in the ADI scheme
she developed, she did not approximate the convective terms to O(At2) accuracy.

In this paper we shall present an ADI scheme with pressure correction which is
second order consistent in both space and time. Ordinarily one would expect O(At2+
Ax2) accuracy in the solution under these circumstances and we shall present practical
calculations that make second order accuracy in time plausible. We shall show that
our proposed pressure correction method in a system of "constrained" ODE’s similar
to the Navier-Stokes problem under consideration under reasonably weak assumptions
lead to a solution with O(At2) accuracy. We also show that in a linearized simplified
case pressure correction does not affect the unconditional stability of the underlying
scheme. Finally we shall present a practical application of the presented schemes.

2. Development of a pressure correction scheme. We consider the 2D Navier-Stokes
equations for incompressible viscous flow

0u
--+(u. V)u +Vp Re-lAu,
Ot

(2.1)
div u 0,

in which u () is the (scaled) velocity, p the (scaled) pressure and Re- Ud/v the
Reynolds number, with U a reference velocity, d a reference length and v the kinematic
viscosity.

In the first stage ofthe development we will take a time centered or Crank-Nicolson
type scheme

u"+l-u" 1 1 +1+ [(un+l un+l u" "+ Re-lA(u + u"),.v) .v) +Vp +Vp"]

(2.2)
div u"+1 0,

in which superscripts denote levels in time.

* Received by the editors February 14, 1985.
f Technische Hogeschool Delft, Delft University of Technology, Delft, the Netherlands.
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For the space discretization we use a staggered grid as introduced by Harlow and
Welch [8]. For simplicity the mesh-size is taken as uniform. The velocities and pressures
are calculated in positions indicated in Figs. 2.1 and 2.2. Define the following operators"

b+, b-l, 2 b+l, 24,, + b_,
Dxb, 2Ax Dxb, (Ax)2

2Ay
Dyti,j (Ay)2

(i+l,j (]i,j (i,j (i-l,jV,
Ax A, ZXx

VydPi, Ay Ayb, Ay

l,i,j -[ Ul,i,j+I "- Ul,i,j -" Il l,i-- l,j -- Ul,i--I,j+I],

2,i,j --[ U2,i,j "- U2,i,j--1 -" U2,i+I,j + U2,i+I,j--1]"

FIG. 2.1. Staggered grid with (i, j)th tile.

112,

Pi, (
ul,i,j

FIG. 2.2. (i,j)th tile.
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A space discretization of (2.2) is, putting a--(i, j),
n+l

Ul,t Ul, ]_1 [un+l i1 n+l + ,,+,’., "+ + UAt 2 1, ,--xu, u2, ,yU,

n+l+ tlE,Dytll,ct dr" Vxpa + Vxp]
2 n+ln+l+U )+Dy(u +u )],Re-[D2(fi, ,, , 1,

(2.3)
12,t /’/2,c

___
[/,/n+l n+l n+l n+l

1,or Dxtl2,a + lgE,a Dytl2,a + l,aDxu2,aAt 2
n+l+ tl2,aDytl2,a +Vypa +Vypa]

1
LU2, + U2,)+ D2y( n+lu, + u,)],

2
Re-[ .-.-..+

Axl,ln+l n+l
1,c -{-

It is a straightforward exercise to show that this scheme has O((At)+ (Ax)2+ (Ay)2)
consistency.

We introduce the following operator notation for brevity:

)A’,, u,,Dx+ u2,,Dy,
the convection operators,

A,,= fil,,Dx+u2,,Dy,J
B Re-l[DZ + D2y], the diffusion operator,

and rewrite (2.3) to obtain

n+l_+_l n+l n+l n+l -1/2At{[A’,, B]u +Vxp},ul, At{[AI, -B]Ul, +Vxp }= u, 1,

(2.4) n+l n+l n+
u2,, +1/2At{[A% B]-u2.an+l _[_ Vxpa 1} u2,, -1/2At{[A., B]u:,o +

Ax//n+l n+l O.1,a -"
Scheme (2.4) requires each time step the solution of a nonlinear system of a structure
shown in Fig. 2.3.

A direct solution method (using some linearization for the convective term) would
result in an enormous fill-in and is not feasible for this problem. We therefore use the

FIG. 2.3. Sparsity pattern of scheme (2.4).
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pressure correction method. First the pressure at time tn+l is replaced by the pressure
at tn and later on we correct the velocities, requiring that the discretized divergence
will be zero. This reduces the complexity of the problem to that of Fig. 2.4.

FIG. 2.4. Sparsity pattern of remaining problem.

Next, we construct an ADI type scheme for the remaining problem by splitting
the operators AI,, A2,, and B (contrary to Braza 1 ], who only splits the operator B).
This then will result in an ADI scheme with the accuracy claimed.

3. Approximation of boundary values. For simplicity we restrict ourselves to rec-
tangular regions, and we suppose that at a boundary u0 or Ouo/On is prescribed for
/3 1, 2. For the pressure there are no physical boundary conditions and the method
we shall derive will not need them numerically either. As has been remarked in [2]
this is easy, straightforward and correct, yet in the literature one often sees artificial
boundary conditions for the pressure, which may easily degrade the accuracy. Fortu-
nately, the effect on the velocities is an order lower, so that in practice one will often
get away with it. If we are to obtain O(At2) accuracy however, we shall have no option
but to let the boundary conditions for the pressure follow from those for the velocities.

If a prescribed velocity at a boundary has no point on that boundary (i.e. u on
horizontal boundaries and u2 on vertical boundaries) the approximation is as in
Fig. 3.1, using a virtual point

(3.1) UE,wall-- 1/2( UE,0,j -" /’/2,1,j)"

tt’’J f
U2,0,j

UI’I’J--
U2,1,j

/’/I ,2,j

FIG. 3.1.

The normal derivatives are approximated as follows, again using virtual points,

(3.2) Ou
Ox wall

Du,,,
Ox wall

AxU2,1,j.
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It will be noted that both approximations (3.1) and (3.2) are O(Ax2) consistent. The
approximation of the boundary values is somewhat more complicated in the ADI
schemes when the inflow conditions are time dependent. This problem shall be dealt
with in due course.

4. A Crank-Nicolson scheme with pressure correction. The pressure correction idea
is conveniently explained using as an analogue to the Navier-Stokes equations the
following system of ordinary differential equations with constraints

(4.1) : =f(x) + L’p, Lx g(t), X(to) Xo,

in which x Rk,f Rk -> Rk with appropriate smoothness properties, p
R with appropriate smoothness properties, L(Rk, Rm), m < k. If we discretize
(2.1) in space but not in time (method of lines) we obtain a system of type (4.1). The
term g(t) is caused by the (time-dependent) boundary conditions.

Equation (4.1) is equivalent to

(4.2) = Pf(x)+ LT(LLT)-’,
provided that (LLT)- exists, and if we define the projection operator P as follows"

P I- LT(LLT)-L.
A Crank-Nicolson type scheme for (4.1) would be

(4.3a)
x"+ x 1

At = {f(x"+l)+f(x")}+l Lr(p"+I +P")’
2

(4.3b) Lx,+= g,+l,

(4.3c) x= X(to), pO= (LLr)-((to)_f(xo)).
Elimination of the term 1/2L(p"+ +p") yields

g’+ g"x"+-x 1 p{f(x,,+)+f(x,,)} + L(LL)_(4.4)
At -2 At

which is of course an O(At.) consistent approximation to (4.2).
The nonlinear equations (4.3) are similar to scheme (2.4) and we now describe

the pressure correction idea with respect to scheme (4.3), because this will show how
to graft a pressure correction step onto the Crank-Nicolson scheme (2.4).

We first calculate an approximatio.n "+ that does not necessarily satisfy (4.3b),
using only p""

: + x" 1 : + LTp(4.5a)
At {f( +f(x")} +

We calculate x"+1 and p"+ as follows:

x"+-’*+ 1 LT(p,,+t_p,,),(4.5b)
At

(4.5c) Lx,,+= gn+l.

If we multiply (4.5b) by L we obtain using (4.5c)

(4.6)
g"+-L’+ _1 LLT(p,+ _p,).

At 2

From this we can calculate p"+ (that is if LLT is invertible) and finally on substitution
of this result into (4.5b) we obtain x"/. The first remark that is in order is that if (4.3)
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represents a space discretization of the Navier-Stokes equation with boundary condi-
tions for the velocities, then (4.6) represents a discretization of a Poisson equation for
the pressure that already includes boundary conditions.

The second remark is that we have to investigate the effect of pressure correction
on convergence and stability. For clarity we will treat those subjects for system (4.1).
This will show the effect of pressure correction on the underlying scheme.

5. The effect of pressure correction on consistency and global accuracy. We consider
the system of ODEs (4.1) and we call the numerical solution of the CN scheme (4.3)
at time to+nAt v" (Rk) and q" (eRr") and the solution of the PC scheme (4.5)
u" ( Rk) and p" ( Rm).

We shall give a presentation that will finally result in a global accuracy of the
solution ofthe PC scheme of O(At2) at the same time resolving the consistency question.
We adopt two hypotheses:

(5.1a) Uniform boundedness in finite time. We integrate up to T. Then ]]u]l and
v (and consequently lip and q II) are assumed to be bounded uniformly

in n and At with nat <= T. Say u and < M.

(5.1b) f(u) is uniformly Lipschitz (with constant K) for Ilull <M" IIf(u)-f(v)ll <
K u v if u < M.

Hypothesis (a) is effectively a stability requirement. We shall prove stability in
the linear case (see 6). Unless otherwise stated the norms on Rk and R will be the
Euclidean norm for vectors and the induced operator norm for matrices.

Before we state our results we first reformulate (4.5) slightly by adding (4.5b) to
(4.5a) to obtain

(5.2)
t/n+l 1 t.+l) u"

1 .+1=[/( +f( )]+LT"[P +p"].

Next we define the difference between the CN and PC solutions

(5.3) e" u" v", r/" p" q".

We can obtain the following global estimate for
THEOREM 5.4. There exists M independent of At and n such that

2e3rMAtml Yj=o uj- tJll, /n such that nat < T, /At such that At < 1/2M1.
Proof Subtracting the equation for the CN solution given by

on+l--o 1 n+l)
1 n+l

At =[/(v +f(v")]+ Lr[q + q ],

(5.5)
Lv"+I g"+1

from (5.2) we obtain

e n+l’- ti +1/2At[f("+l)-f(v"+l)+f(u")-f(v")]+1/2AtLr(rl"+l+
(5.6)

Le "+1 =0.

From (5.2), (5.5) and Lu"+l g.+ we may deduce

(5.7a) p"+ +p" -(LLT")-1 [L{f(fi"+)+f(u")}-2
(5.7b) q,+l+ q. _(LLT)-I [L{f(v,,+l)+f(v,,)}_2

k

gn+l--gn1At
n+lg -g
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From this we get

(5.8) Lr(*/"+1+ 7")= -Lr(LLr)-lL[f("+l)+f(u’)-f(v"+l)-f(v")],
hence, with P-I-Lr(LLr)-IL we obtain by substitution of (5.8) into (5.6)

e "+1= e" +1/2AtP[f("+)-f(v"+)+f(u")-f(v’)]
e" +1/2AtP[f(u"+)-f(v"+)+f(u")-f(v")+f("+)-f(u"+l)].

By the Lipschitz condition this yields

/ll __< IIll /AtllPIIK{ll/lll / / II/-
and since [[PII 1, we have for At < 2/K, putting //1--" 1/2K
5.9) 1 AtM1 )ll / -<- 1 + AtM )ll ll / tM / /ll.
We shall show by induction that

AtMz - II,(5.10) I111< c Ilu1 AtM
with c (1 + AtM1)/(1 A tM1).

The assertion is obviously true for n 1, since e= 0. Suppose it were true up to
n; we would have by (5.9) that

1 AtM1
and by substitution of (5.10) that

(5.11)

which proves (5.10).
Now observe, that

AtM c-+ u + u+’ +11 }j=l

AtMI 11 AtM j=l

Cn -j+lll lj lJ II,

1 --] <
1 -AtM1]

and if At < I/2M, c" can be bounded by e3rM,. ((l + AtM1) r/A’ < e TM,
(1 AtM) -r/a’ < e2r1%.)

This concludes the proof of Theorem 5.4. To conclude anything from this result,
we need an estimate of I[u"-’[[. This estimate will be the subject of the next two
lemmas. The difference u"+1- 5"+1 is given by (4.5b) hence it can be expressed in the
difference p’+-p". If we can prove that this last difference is O(At) then by (4.5b)
u"-5" will be O(At2) and Theorem 5.4 then gives a global estimate of the error of
O(At2). Unfortunately it is only possible to estimate the difference p"+-p" in terms
of u"-’, which leads to a circular argument. This complication makes the following
two steps necessary.

1. Estimate the quantity

LLTR"+ Lf(5")-,

which can be done in terms of uj- t, j < n plus a term of O(At2).
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2. Deduce from an estimate of u"-" in terms of uj- gJ, j < n (obtained from
a global estimate of u"-g". This final estimate then will yield a global estimate for
Steps 1 and 2 will be the subject of the next two lemmas.
LEMMA 5.12. If g C4 [0, T] then

n-1

LLTp" -Lf(5")- L E (-1)"-J-l(f(uj) -f(tJ)) +" + O(At2),
j=l

Proof. We have LLTp=-Lf(u)+ g and

1 LLr(pl+pO)= 1
1- -- L(f( )+f(u))+

At

1
1

At2=-lL(f(ffl)+f(u))+-2
+)+ h’

24

n-->_l.

in which h is a vector R" that is given componentwise by

g(to+ O)At), 0< 0 < 1,

as is easily verified by Taylor expansion of g and gO.
We then have

Atz
hLLTp= -Lf(tl)+ ,l +

12

which proves the formula for n 1.
Suppose the following formula holds up to n

(5.13) nl At- (-1) "-Jhj,LLrp -Lf(a")- L (_l),,--l[f(u)_f(a)]+n -t--- j=lj=l

in which the kth component of h is given by

.d
hk -5 gk t + OkA 0< 0k< 1.

We have by Taylor expansion

(5.14)

1 LLr(p.+l+p.)= 1 t.+- -- L(f( )+f(u ))+
gn+l gn

At

1 At2_1 L(f(,,+l)+f(u,,))+.(,,,+ + ,,,)+2 24

Induction hypothesis (5.13) implies

1 LLrpn+l

2
1 , + +1 ,n=-- L(f( )+f(u "))

2
Lf(

+- L E (-1)"--l[f(u:i)-f(:i)]--2"--2 Z

1At2

YI= (- 1 n-JhJ
2 12

1 At2-- + .+. -- -- h +
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1 )_1=-- Lf(’*+

" L (-1)’*-s[f(uO)-f(s)]
j=l

1 1 At2 ._+1
gn+l +_ E (- 1) .-s+ hj.+2 2 12 S=l

Hence (5.13) holds for all n.
,n+l n_j+l hJWe claim that the term ,-,S=l (-1) is uniformly bounded as n--> c for

nat < T. To see this note that two subsequent terms have opposite sign and component-
wise typically look like

d d
dt--3 gk(tj-1 + OkAt)--- gk(tj + 0Jk+lA t), 0< 0Jk, 0Jk+1 < 1,

which is equal to

d4

-At(1 + 0+1- 0k)- g(r),

in which is some intermediate point.
Since g C4[0, T], gO is uniformly bounded by a constant G, say, and component

wise the absolute value of the sum may be overestimated by (n / 1) At G, if n + 1 is
even or by n At G+ G3 if n / 1 is odd, G3 being a uniform bound on the third derivative
of g. This proves the lemma.

COROLLARY 5.15.

Ilttp"/’+ Lf(a"/’)-"/111 nK sup Ilu

IILLTp" + tf(u")-"ll nK sup Ilu- all + o(at=).
jn

K is the Lipschitz constant of
The first result follows immediately, the second follows from (5.14). The next

lemma gives a global estimate for U"--
LEMMA 5.16. Let Ilu-all =0 and let there exist a constant K1 R+ independent

of n and At such that

u a" < g (at)2 + at us- a11
j=0

then

Ilu" t"ll _< K,(At)(1 + KIAt)"-’.

Proof. The result is obviously true for n 1. Suppose it is true up to n. Since

[/A n+l

we have by the induction hypothesis

Ilu"/’-a"/*llgl (At)=+At E KI(At)2(I+K1At)-’
j=l
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KI(At)2/|1 + K1At
(1-+- K1At)n- 1|\
I+K1At-1

K(At):(1 + KAt)",
proving the lemma.

These results lead to the following global error estimate:
THEOREM 5.17. Let hypotheses (5.1a) and (5.1b) be satisfied and let g C4[0, T].

Then the difference of the pressure correction solution u" of (5.2) and the Crank-Nicolson
solution v" of (5.5) is O(At2) globally, whereas p" and q" differ by O(At) globally.

Proof. If we can show the existence of a constant K2 independent of n and At
such that Ilu"-ll <-K2(At)2 for nat<-_ T the theorem would follow from Theorem
5.4 and Corollary 5.15. By (4.5b) we have

At
__pn-1u" a --<- LT lip" II.

Furthermore, by (5.13)

lip"-p"-’ll--< II(LLT)-III Iltll [[f(a")-f(u"-’)
(5.18)

+ 2 E (-1)"-J-’[f(uj) -f(tV)]ll + I1" "-’ll + O(At=).
j=l

We also have using (4.5a) and the uniform boundedness of u" that

IIf(a")-f(u"-’)ll <- gila" u"-’ll-<- g3At
uniformly for nAt <= T. (K is the Lipschitz constant, K3 is a constant involving K, M
and a constant bounding p" + p,-1, which follows essentially from (5.14)). Furthermore,
I1"-"-11--< g4At by the uniform boundedness of dg/dt2 and finally

2 Z (--1)n-J-l[f(uJ)--f(aJ)] <=2K Z Ilu-all
j=l j=l

uniformly. Putting all this into (5.18) we have the existence of Ks such that

,,u "]I K, [(At)2 + At "j=lBy Lemma 5.16 this implies the inequality

u
and since nat = T we have

(1 + Kst)n-l= (1 + KsAt)
and this gives us

Ilun- an _-< K2(At)2 for all n such that nat <- T

(K2 K5 eKT). This proves the theorem.
Remark 5.19. By using somewhat more smoothness for f and using the fact that

in expression (5.13) the signs alternate in the sum it is possible to sharpen the results
in such a way that p" also is O(At2) accurate.

Remark 5.20. When the solution v" of (5.5) by (4.4) is an O(At2) approximation
of the exact solution, so is the PC solution. Anyway the PC algorithm does not spoil
the accuracy of the CN scheme.
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Some predictor corrector schemes spoil stability and now we turn our attention
to that question.

6. The effect of pressure correction on linear stability. In order to study the effects
of pressure correction on linear stability we consider the linearized problem

ft Au+ LTp,
(6.1) Lu =0,

uRk, Ae..(Rk, Rk), peR", L(Rk, R’), m<k.

We shall make the assumption that A is dissipative, that is

(6.2) (u, Au)<-O VuRk.

System (6.1) describes for example the error propagation in the so-called Oseen
approximation with periodic boundary conditions and a space periodic convective
velocity field. For this test problem we have the following theorem:

THEOREM 6.3. Problem (6.1) with Assumption (6.2) integrated with the pressure
correction method is unconditionally stable in the following sense

u"/1112 q-1/4At2llLTpn+lll2 <__ u- = /AAt21iLTp"II2

(6.5) La"+=I LLT(p"+I-p").
At 2

We take the inner product of (6.4a) and t"++ u" and obtain

[I/,n+1112 tin[[2_i_1/2At( an+l + tn, a(ln+l+ tin))+ At(an+l+ n, Lrp,).

Since (x, By)=(Brx, y) and Lu"=O, this yields by hypothesis (6.2),

(6.6) n+1112 U" 2 + At(L"+, p"),

and by (6.5)

The inner product of (6.4b) with u"++ "+ gives

(6.7) llu"+’[l [l"+ll+t(u"+ + "+a, Lr(p"+-p"))
and since Lu"+ 0 this reduces to

u"+lllZ a-+ill= +at(L"+’, p"+

Substitution of this result into (6.6) yields

I1."+1 I1= Ilu"ll=+t(Lp", Lp")-t=(Lp"+,

and since Lu"+l 0

(6.4b)
un+l-- tn+l_--! LT(pn+l _pn),

At 2

independent of At.
Proof Applying (4.5) to (6.1) we get

(6.4a)
t"+x-u" 1 An+

At =[ +au ]+Lrp",
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whence

(6.8) Ilu"+llz+1/4At=l]Lp"+]l=<=
This proves the theorem.

Remark. As can be seen the result of Theorem 6.3 implies Hypothesis (5.1a). So
for the linear case we have shown that the Lax theorem ("stability implies convergence")
also holds for PC methods. This is not entirely trivial: it needs introduction of the
specific Lyapunov functional

7. Towards a second order pressure correction scheme for the Navier-Stokes
equations. The first step towards a second order PC scheme for the Navier-Stokes
equation is to graft formulae (4.5a)-(4.5c) onto scheme (2.3) to obtain (a (i,j))

/n/ 1l,ot--I’ll,a+ [_’_n+l l~n+l__"n+l l_-_n+l Du" +-" u ]+Vxpt/1,a Oxttl,a U2,a Oytll,a -{-Ul,a 1,a UE,aOy 1,aal
At 2

1
Ul, + lgl,a) -{- Dy(Ul, -- lgl,a) ],

2
Re-I[D( ~n+l 2 ~n+l

~n+l 1 rla2 u2, UE,a
_

[ =n+l rl ~n+l "n+lrl ~n+l

__
Oxu2, + u ] +/’/1,or Llx/’/2,ot "/’/2,ct /y/’/2,ot 1,ct 2,ot/.-,y/,/2,ot VyPo,

At 2

1
u:,o, + u,o,) + Dy(u:,, + uz,,)],(7 1)

2
Re-l[D2x( ~n+l 2 ~n+l

n+l /n+l
bl Ul, 1, 1

V (p.+l p.)
At 2

n+l ~n+l

(pn+lb2 u2, u2,,, =-1 Vy -p)
At 2

C Axun+l n+l 0.

In order to obtain an efficient method two modifications are applied to (7.1). The first
modification in this scheme is to linearize the equations by approximating a term of
the form ,.[’"+ 4q’ dt by 1/2At[4.q,,+l+ q,4.+l]+ O(At) instead of Al[n+ltn+ +
q.4.] + O(t), as in (7.1).

This enables us to calculate u and solving only linear systems of equations.
So we can calculate p"+ and u "+1 by the procedure explained in 4. Note that the
set of equations c contains the boundary conditions for u and u_ and therefore in
matrix form is something like

Lxu+l + Lytl’+l gn+l.

Also note that substitution of c into b results in a Poisson equation for the pressure
that already includes its boundary conditions. There is no checkerboarding thanks to
the staggered grid. A word of warning is in order: the literature abounds with methods
that solve this Poisson equation approximately ([2], [5] and [12]). This is good enough
for an accuracy of O(At) in the velocities, but for an accuracy of O(At2) one should
solve this Poisson equation almost to machine accuracy by a fast Poisson solver like
preconditioned conjugate gradients (PCG), multigrid (MGD) or discrete Fourier type
methods (FTM). In our experiments we used FTM and MGD.

Scheme (7.1) even with the modification just introduced cannot be solved efficiently
with a large number of nodes. We therefore introduce as a second modification an
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ADI formulation using only tridiagonal systems. Let
2 2A’x u1,Dx Re-1Dx, Air 2,c,Dy Re- Dy,

2A fi’,D Re-1D2, ay u2,Dy Re- Dy,
and define A"+1 and A* analogously.

We now give an ADI formulation of the modified version of (7.1)a.
Modified Crank- Nicolson

_n+l 1
al

u, Ul,o -I" [/x+lUl,a "l- ~n+l rn+l _n+lAIUl. +/air u,+Alru. ]+Vp" =0,
At 2

(7.2)
12,c’-n+l 2,otn 1 n+l n+l "n+l ~n+l’a2 --[2, u2, + Azxu2. + A2y u, + ZzyU2,At 2

The ADI version of this scheme is

all
At At rg,,+l

(7.3)

a12

a21

~n+l At n+l At

At At %.+IU*z,--f+ [A2xu*,] u2. -- 2y u2., + Vrp],

a22

In every step we only have to solve tridiagonal linear systems. However the
"n+l ’n+l ’n+l ’n+l n+l and _n+l

operators Al,y, AI,, A2,y ano/2, need the values Ul, u2, on moments that
they are still not known. We shall return to this problem in a few moments. First we
show that (7.3) has also O(At2) consistency if the solutions are sufficiently smooth.

,+1 and a12 by (1 +(At/2)A’/x) and get, usingWe multiply all by (1-(At/2)l
the fact that A+1= A + O(At)

At ] ...+1 +- [Alxq- Aly
]

/n+l
At2

1,or "+’T AlxAlyI I’a

(7.4)

I--- t.-,. +--,y Ul,+,x ,y u,,-AtVxp+ O(At3),

=O(at),and since 6, u

(Atn1 +T [a,x+ aly] an+’ AtVp + O(At

This proves our consistency claim.
With respect to the bounda conditions for u, and u2,* in scheme (7.3) it will

be clear, that if the bounda conditions are time-independent one can take u as
boundary condition for u* (or au/an for au*/an). en the boundary conditions are
time-dependent we have from (7.3) following, an idea of Fairweather and Mitchell [4],

(7.5) 2u*, -,+1 At
u ~n+l %n+lU* _AlxUl,,]---"l,a "’"I,a--T[/kIY l,a 4-1y " l,a -" lx l,a
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The simpler boundary condition

(7.6) u 1".,
n+l

1,/1, 1,/1,

would result in an extra error of O(At2/Ax2) on back substitution into 7.3. This effect
can be noticed when Ax tends to zero while At remains constant. In order to make

~n+l n+l(7.3) workable we have to have an approximation to Ua, and u2, when they are
needed in the right-hand sides of equations all-a22. To obtain such an approximation
we first use a prediction step with the old values u;’ and u, obtain values Ul and u,
presumably off by O(At2) locally and using those in the correction step to obtain a

~n+lfinal value ,+a and u
Summing it all up we have"

Prediction step:

a11p
At At

P*+ P* [A" u +V,,p ],Ul’a T [alxul"]-- Ul" T ly 1,a

a12p
At

AlyUl,a] p, At
[/1,a TUlV,,,+__[ v [A" p* +V,,p,],

a21p
At At

P* + [A2xuP*"2,,, T 2,a_l "2,,, T [A2y"2" + vyp]’

(7.7)

At
a22p up +--[ PA2yu2,t] v U2,tp:2, 2 t/2, -- [A2x +VP].

Correction step"

At At
allc u,+T[Axu,]=u,-T[Ayu,+Vxp],

al2c n+l+At -n+l] Ua
At

At
a21c u+at[Axu,] u,-T[Ayu2,+VyP],2

.+1 At At
2y2,a Ja22c u2, + [-- -.1 u [Axu, +Vyp ].

Pressure correction step"

bl
n+l n+ll,a 1,a =--1 Vx(p.+a__p.)

At 2

b2
n+l n+l

U2, --lg2,a _---lVy(pn+l--p).
At 2

Divergence freedom:

C Axun+l n+l
1,a -F" ---0./-yU2,a

In the now familiar way c is substituted into bl and b2 giving a discrete Poisson
equation for the pressure correction. The solution of this Poisson equation is back
substituted into b l and b2 and this ends one time cycle.
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One may ask the question whether we should not make (up, up) divergence free.
It appears, however, that the correction for incompressibility is only O(At2) and (Ulp, u)
is no more accurate than that anyway.

Again we note that the boundary values for the discrete Poisson equation are
already incorporated in the equations. This will be apparent when they are recast in
vector form.

A significant improvement in terms of efficiency of scheme (7.7) is possible, and
we actually put it to the test. For a comparison of the results see 8. A different
approximation of the convection terms is taken, and by use of the order in which the
variables are calculated the predictor step is eliminated as follows"

At At
all u*+T[AlxU*,,] u,, - [A,yu,,, +

At At
u, +A,u,] u, -Vp,a21 u *2,, +- A*zx * ,

(7.8)
-_n+ At At

uz, u*z, T [a*xu*,, + Vypa],a22 uz, +T [A2*y _n+,

~n+l At an+l _._n+l At
a12 u, +--[’+u*,+y u. ]=u*,--Vp2,

followed by the pressure correction steps b l, b2 and c as in scheme (7.7).
Note that A* contains Ul*, which is known once (7.8)-all has been calculated

and one may easily check, that (7.8)-a11, (7.8)-a21, (7.8)-a22, (7.8)-a12 in that order
are sets of linear equations.

By elimination of Ul*, and u2*, from (7.8) one may verify that (7.8) is an O(At3)
approximation of the following equations:

1 +T A’x’k-T’IY u,, 1--T,lx --T A,y Ul,a-Atfxpn,

At
A,2x + A*2y ""+’1+

2 T u2, 1 T A*2x-T A*2y u2,-AtVyp,

which in itself is a local O(At3) approximation of (7.1).

8. Experimental verification of second order accuracy in time. The second order
accuracy in time of schemes (7.7) and (7.8) was experimentally verified on the following
test problem:

Navier-Stokes equation, Re= 10 on the square (0, 1) (0, 1) with a 5 5 grid in
space. The Poisson equation for the pressure was solved by a Fourier method for
scheme (7.7) and by the multigrid program mgdl of Wesseling [14] for scheme (7.8).

(8.1) III

IV
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The boundary conditions were taken as follows:
(a) I and IV: fixed no slip walls: Ul- u2-0.
(b) II prescribed inlet: u-0, v--sin (Tr(xa-3xE/3x))el-1/t
(c) III outlet. We experimented with prescribed boundary conditions and

"natural" boundary conditions

r,-p =0, -0.
Ox Ox

We will deal with the physical significance of these boundary conditions later on. For
the convergence it made little difference which boundary condition we took. (It may,
however, make a difference for large Reynolds numbers.)

Initial value:

(8.2) Ul U2 0o

We integrated this equation with time steps 1/8, 1/16, 1/32 and 1/64 from =0 to
1. In scheme (7.8) the number of multigrid iterations per time step was 3.
Denoting the quantity

Ilu(At)--u(1/2At)ll
u(1/2At)-

by K(u, At) we obtained the following results" (llxll--(Y x)’/2) (see Table 1).

TABLE

Scheme (5.7) Scheme (5.8)

K(u, 1/8) 4.1 4.0
K(u, 1/16) 4.0 3.9
K(u2, 1/8) 3.9 4.0
K(u:, 1/16) 3.8 3.7

This is in complete agreement with the theoretical results. For the pressure the results
appeared to be less trustworthy. However, once the velocities are known with prescribed
accuracy it is a simple matter to calculate the pressure with the same accuracy by solving

LLT"p" -Lf(u") + ".

9. Numerical simulation of a flow problem. We simulated a flow problem (some-
what related to the flow in a glass furnace) with schemes (7.7) and (7.8) for various
Reynolds numbers. It was found that the results of (7.7) and (7.8) are very similar so
that it is hardly necessary to calculate both. It is to be noted that (7.8) uses half the
computer time of (7.7).

The configuration is shown in Fig. 9.1. The boundary conditions at the free slip
wall are

c3u
--0, bl2 --0.oy

At the no slip walls both velocity components are zero. In the first experiment we
calculated the stationary solution using (7.7) as a relaxation method. At the inlet we
prescribed the velocities

/’/1 "--0, /’/2-- -432(x 0.25)2x
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no slip

0.5 inlet 0.25

0 no slip

free slip

FIG. 9.1

no slip

0.125

outlet

and at the outlet we also prescribed the velocities

(9.1) u2=0, Ul 432(0.125- y)y.

As may be easily checked these values satisfy the compatibility condition

u.n d Of=O.

Calculations were performed on a 12x24 grid with time step At=0.1 until
convergence was obtained. Results are plotted for Re-numbers 100, 500 and 1500. See
Figs. 9.2-9.41 As might be expected the numerical boundary layer at the outlet caused
wiggles in the stationary solution. These wiggles disappeared when the grid was locally
refined in such a way that the mesh P6clet number (ul Re Ax) was so small that the
numerical boundary layer at the outlet could be represented by the grid. The results
of this can be seen in Figs. 9.5-9.6. The observed behaviour of numerical wiggles is
completely analogous to and explained by what has been found for a simple convection-
diffusion equation by Segal [10]. Note that wiggles are absent, although central

FIG. 9.2. Re 100, I/max 1.4, equidistant grid, scheme (7.7).

In all vector plots the velocity is scaled to the maximum occurring velocity. The magnitude of this
velocity is given as t/ma
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FIG. 9.3. Re- 500, Uma 1.8, equidistant grid, scheme (7.7).

FIG. 9.4. Re 1500, Uma 1.7, equidistant grid, scheme (7.7).

FIG. 9.5. Re 500, Urea --2.1, slightly refined grid at outlet, scheme (7.7).

differences are used and the mesh P6clet number is much larger than two in a large
part of the flow. This is in accordance with the study of Gresho and Lee [6]. It was
considered not very satisfactory to use a large number of gridpoints to represent a
boundary layer that has no physical significance and we experimented with various
other boundary conditions at the outlet. As Gresho and Lee [6] remark the physical
natural boundary condition at the outlet is: no viscous normal and tangential stresses,
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FIG. 9.6. Re 500, l/ma 1.6, very refined grid at outlet, (scheme (7.7)).

in other words,

(9.2) -p+2v--=0, -0.
Ox Oy

These boundary conditions do not fit in easily in the finite difference scheme and we
modified (9.2) a little to obtain

(9.3) -p/ =0, -0,
Ox Oy

which can be considered to be a sort of "natural" boundary condition for the second
order part of the Navier-Stokes equation. This procedure did not totally eliminate the
wiggles, but as can be seen from Figs. 9.7 and 9.8 it takes considerably less grid
refinement to eliminate them. This is in accordance with the findings of Gresho and
Lee [6] and Segal [10].

The alternative approach to eliminate the wiggles which is advocated in much of
the literature (for example, 11, Chap. 5.2.2]), namely to replace the central differences
in the convective terms by so-called "upwind" differences, is one which we did not
want to adopt. There is an increasing amount of evidence that elimination of the
wiggles by this method also corrupts the solution by introducing a very big cross-stream
viscosity. See [7], [9], [10] and [13].

For Re= 1500 we could no longer obtain convergence with At-0.1 both for
scheme (7.7) and scheme (7.8) and this is probably due to nonlinear instability that

FIG. 9.7. Re 500, Umax 1.3, equidistant grid, scheme (7.8) with boundary conditions (9.8).
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FIG. 9.8. Re= 500, I/max 2.1, slightly refined grid at outlet, scheme (7.8) with boundary conditions (9.8).

plagues Crank-Nicolson methods in the high frequency domain. We also calculated
with scheme (7.8) a real time-dependent problem. The prescribed velocity at the inlet
was multiplied by a factor (1-cos 27rt)/2, and the outflow condition was given by
(9.3). All other data remained the same. The problem parameters were set to: At 1/16,
Re 100 and we integrated from 0 to 4.

For the time cycle starting at 3 and ending at 4 see Figs. 9.9-9.13. Remark
that the velocity profiles at 3 and =4 are identical. (In fact they differ by 10-3.)

FIG. 9.9. Re= 100, Umax-- 0.19, 3.0.

FIG. 9.10. Re= 100, Umax=0.62, t=3.25.

10. Concluding remarks. The practical computations of 8 and 9 indicate that
schemes (7.7) and (7.8) are very useful to calculate the transient solutions of the
Navier-Stokes equations with a time accuracy of O(At2). As far as stability is concerned
it is evident from the practical computations that the schemes are not unconditionally
stable. We found that schemes (7.7) and (7.8) were unstable at Re 1500 and At =0.1
with refined grid at the outlet, the theoretical result of 6 notwithstanding. However,
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FIG. 9.11. Re= 100, Umax-- 1.2, 3.5.

FIG. 9.12. Re= 100, Umax=0.65, t=3.75.

FIG. 9.13. Re= 100, Umax--0.19 =4.0.

this result was obtained under simplifying assumptions of periodicity and only said
something about the effect of pressure correction on a scheme that in itself was
unconditionally stable (Crank-Nicolson) whereas it is not sure, that the ADI schemes
of Chapter 7 are unconditionally stable. It is probably true (though by no means
proved) that pressure correction does not deteriorate the stability of the underlying
scheme. Unconditional stability of the ADI schemes, however, is usually proved under
the assumption of commutativity of the split operators and this assumption is surely
not satisfied in our practical examples. Another source of instability might be the
nonlinearity of the convective terms and the fact that instability occurred at high Re
numbers makes it probable that this is the main source. The equations will then be
almost hyperbolic, giving an amplification factor for the Crank-Nicolson scheme of

(10.1) ((I-1/2Atlx)-1/2iAt,)/((1 +Attx)+iAt,).
For high Reynolds numbers/x will be very small and high frequency components (,
large) will almost have amplification 1. Nonlinear effects may let the amplification
grow above 1 for high frequency components. It is debatable whether a construction
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such as

(10.2) A
4- e f(u 4- e f( (e small, positive)

which cures this problem should be advocated, because it probably introduces so much
artificial viscosity, that we solve a different problem. What could be done however is
make e depend on At, something like e cat. This does not change the order of
accuracy and probably has better stability properties. So far we have no experience
with this scheme.

Ackaowledgmelats. The author is indebted to his students C. R. J. Kieboom and
A. van Ommen for performing most of the calculations reported here. The latter
was also responsible for the improvement of scheme (7.7) which finally resulted in
scheme (7.8).
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AN APPLICATION OF SYSTOLIC ARRAYS TO LINEAR DISCRETE
ILL-POSED PROBLEMS*
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Abstract. The application of systolic arrays to linear, discrete ill-posed problems is considered. The
regularization method of Tikhonov-Phillips is used, and a new systolic array is proposed for the case when
the matrix is banded. The array implements a QR-decomposition by plane rotations, and it consists of
approximately k2/2 processor elements, where k is the bandwidth of the matrix. The computation time for
the QR-decomposition is O(n) (n is the dimension of the problem). A generalization of the array is also
mentioned. The reduction to banded form is briefly discussed.
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1. Introduction. In this paper we discuss the application of systolic arrays to linear
discrete ill-posed problems, i.e., linear systems of equations

(1.1) Kf=g,
where K is a very ill-conditioned m n matrix, m->_ n. Such problems arise when
Fredholm equations of the first kind are discretized. Because of the ill-conditioning
the problem of solving (1.1) is unstable; small perturbations of the data will lead to
very large errors in the solution, which usually show up as large oscillations.

One way of stabilizing the problem is to introduce a penalty on nonsmooth
solutions. Then (1.1) is replaced by

(1.2) min {11 gf g 2 + A =11 tf =},
f

where [1. denotes the Euclidean vector norm, and the matrix L is equal to the identity
matrix or a discretization of a differentiation operator. This is the regularization method
ofTikhonov 18], Phillips 14]. The smoothness ofthe solution is controlled by choosing
a suitable value of the regularization parameter A. For a discussion ofill-posed problems,
see [19], [4], [13]. Numerical algorithms are surveyed in [1], [20].

Systolic arrays 11 are highly parallel computing structures specific to particular
computing tasks. The designs consist of one- or two-dimensional arrays of identical
processor elements. Communication of data and control signals occur only between
neighboring elements. There are a number of papers dealing with the application of
systolic arrays to algorithms in numerical linear algebra. Of special interest here are
the following: [2], [3], [7], [10], [15].

In 2 and 3 we consider the case when L is equal to the identity matrix. If K
is a square band matrix, then (1.2) can be solved efficiently using the algorithm given
in [6]. This algorithm is based on a QR-decomposition computed by plane (Givens)
rotations. A new systolic array, which implements this algorithm, is described in 2.
The array consists of approximately k2/2 processing elements, and the time required
is O(n + k) (n is the number of unknowns and k is the bandwidth of K).

Numerical algorithms for solving (1.2), when K is a dense matrix, are usually
based on a reduction of K to compact form, such as the singular value decomposition
(SVD) [8], or a bidiagonalization [5]. In the context of systolic arrays it turns out to

* Received by the editors January 24, 1984, and in revised form April 26, 1985.
t Department of Mathematics, Link6ping University, S-581 83 Linkfping, Sweden.
Department of Computer Science, Stanford University, Stanford, California 94305.
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be advantageous to reduce K to upper triangular band form The array, which has
been described earlier [15], consists of kn processor elements, and the time required
is O((m+ n)n/k). The reduction to band form is discussed in 3.

The algorithm in [6] treats the case when both K and L are band matrices. The
systolic array given in 2 can be generalized to cover this case. This generalization is
described in 4.

If L I and K is dense, the method of Eld6n [5] must be used to transform into
a problem for which L L This transformation involves QR factorizations and can
also be handled by a systolic array.

It is also possible to further develop the ideas of this paper to treat more general
problems with band structure. This is done in a paper by one of the authors [16].

2. A systolic array for banded K, and L I. We first give an outline ofthe algorithm
for the solution of (1.2), when K is an n n upper triangular band matrix, and L is
equal to the identity matrix. Later in this section we consider the case when K is not
upper triangular. (1.2) is solved by reducing the matrix of coefficients

K g 2
where A AL-- diag (A, A2, , A), (it turns out to be more instructive not to assume
that the diagonal elements are equal), K is an upper triangular band matrix with the
same bandwidth as K, and 0 is orthogonal. The solution of (1.2) is then obtained by
solving Kf- (a systolic array for this computation is described e.g. in 11, p. 272]).
The orthogonal transformation in (2.1) is made up of a sequence of plane rotations.
We explain the algorithm in terms of a small example, with n 9 and the bandwidth
k equal to 4. For more details, see [6]. We denote nonzero elements by . Elements
zeroed in the present transformation are represented by 0, and new nonzero elements
by /.

The rows of the matrix (2.1) are reordered according to the maximum column
subscript of nonzero elements:

x

x x x

x x x

x x x

x x x

x x x

x x
x

x
x
x
x
x
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The elements in the 5th row are zeroed by a sequence of rotations in the (1, 5), (2, 5),
(3, 5), and (4, 5) planes"

+ +
+ +
x +

0 0 0 0

x x x

x x x

x x x

x x x

(2.2)

x
x

x
x x
x x
x x

x

The row of zeros is moved to the bottom of the matrix, and the sixth row is zeroed
by a sequence of rotations in the (2, 6), (3, 6), (4, 6), and (5, 6) planes"

X x
x x
x x

x

x x x

"x x x
x x
x x

x

0 0 0

(2.3)

+
+
+
x
0

All the subsequent steps but the last few (the last three in our example) are identical
to that illustrated in (2.3). A k x k upper triangular submatrix is used to completely
annihilate a row consisting of k nonzero elements. Fill-in is created only along the
right edge of the submatrix. Note that no rotations are needed to zero the elements
from the diagonal matrix A in (2.1).

Before the last three rows in (2.2) are processed, we have the following picture:

x x x

x x x
x x

x
x x x

x x
x
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If we introduce zeros and augment the matrix

(2.4)

x x x
x x x 0

x x 0
x 0

0
x x x 0

x x 0

x 0 0

0

we see that we can use the same algorithm as before to zero these last rows. Note,
that no fill-in is created.

The case when K is not upper triangular can be treated analogously. Assume e.g.
that K is a lower triangular 9 x 9 matrix with band width 4. Make K upper triangular
by introducing extra zeros at the top left corner, and augment A correspondingly. The
reordered matrix then becomes

x
0 0 0 x

x
0 0 x x

x
0 x x x

x x x

x x x

x x x

x x x

x x x

x x x

and it is immediately seen that the above algorithm is applicable.
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2.1. The processor elements. To realize this algorithm, we need two types of
processor elements: the boundary cell, which generates a plane rotation, and the internal
cell, which applies and propagates a rotation (the reason why we call them boundary
and internal cells will be apparent in 2.2). These cells are defined in Fig. 2.1.

if y 0 then
begin

end
else
begin

end;

BOUNDARY CELL

c:= 1.
s:=0;
X’:’- X

x’

(c,s)

X’ :-- (X -- y2)1/2;C :-- X/X’"
s:=y/x’

INTERNAL CELL

x’:= c* x+s* y"
y’:=-s * x+c, y;

(c,s) (c,s)

FIG. 2.1. Cell definitions.

It is assumed that the cells are connected in a synchronized network, where the
time between the clock pulses is long enough to perform the required operation. In
the absence of input, data lines will assume the value 0. The cells defined here are
almost identical to those in [10], cf. also [7].

2.2. The array. The new array is illustrated in Fig. 2.2, for the case when the
bandwidth k is equal to 4. There is a correspondence between the upper triangular

k34 g2

k33 k25
k24

k23 gl

k22 k14
k13

k12
kll

FIG. 2.2. Systolic array for the band algorithm, k 4.
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matrix in (2.3), and the triangular array of processor elements, in the sense that the
rotations applied to a certain row in (2.3) are constructed and propagated along the
corresponding row in the systolic array.

It is assumed that the elements of K and the right-hand side g are coming in the
the top, and the elements of the diagonal matrix A from the bottom, so that kll meets

A1 at the top left boundary cell. This is the start ofthe transformations illustrated in (2.2).
The result, i.e. the elements of K and 1, come out at the top (by the data lines

pointing northwest). The organization of the output is illustrated in Fig. 2.3.
To illustrate the data flow, we give a partial trace of three consecutive time steps

in Fig. 2.4 (the numbers in the cells denote indices of the elements in K that are being
operated on).

It is seen from Fig. 2.2 that before A1 meets kl at the top boundary cell, and the
actual computations start, the A’s have to be propagated from below. This takes k time
steps. At every time step two-thirds of the cells are inactive. Therefore, to compute the
decomposition (2.1) takes k + 3n + k time steps, where the last term is due to the fact
that the rows of K are output in skewed order. Note, however, that three problems
can be solved during the same time, if the matrix elements are interleaved. This is

FIG. 2.3. Output from the array

45

44 36

35

34

FIG. 2.4(a). Trace of the data[low during, three consecutive time steps.
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46

45

44 36

FIG. 2.4(b)

55 47

46

45

44 36

FIG. 2.4(C)

useful in the context of regularization, where it is necessary to solve (1.2) for several
values of the regularization parameter A. Thus interleaving becomes especially simple
here: The elements of k are repeated three times, and only the A’s have to be exchanged.

3. Reduction to Iantl form. In this section we discuss the reduction of the problem

(3.1) min {11 Kf g = + A =11f 2},
f

where K is assumed to be a dense m x n matrix, m >- n, to an equivalent problem with
a square band matrix.
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If we decompose

(3.3a)

where

where S is an n x n matrix, and U and V are orthogonal rn x rn and n x n matrices
respectively, we get the equivalent problem

mjn {11 sf- = + A =11 s =},
f

w g,(3.3b)

(3.3c) f= Vrf.
The decomposition (3.2) is chosen so that it is faster to compute the solution of (3.1)
from (3.3) than using the original form (3.1). Remember that it is usually necessary
to solve (3.1) for several values of

Note, that the closer to a diagonal matrix we choose $, the cheaper and simpler
(in terms of computation time and hardware) it becomes to solve (3.3a). For example,
if S is diagonal, then we can solve (3.3a) in one time step using n processor elements,
or in n time steps using only one processor. On the other hand, the closer to a diagonal
matrix we choose S, the more expensive and complicated it becomes to compute the
decomposition (3.2). We want to solve (3.1) using systolic arrays in such a way that
these costs are balanced, both in terms of computation time and complexity.

If S is chosen to be diagonal, then we have the SVD [9]. Using this, we can write
down the solution of (3.1) explicitly [13], and it can be computed very eciently.
Several methods for computing the SVD using systolic arrays have been examined.
Some are based on Hestenes method, and one almost linear time method has recently
been proposed [3]. This method requires O(n) processor elements.

Schreiber 15] has proposed a method for computing the SVD, which is a variant
of the standard algorithm [9]. The matrix K is first reduced to upper triangular banded
form. Then follows an iterative procedure, where the band matrix is reduced to diagonal
form.

In the preceding section we saw that it is possible to eciently solve problems
with band structure. Therefore we can avoid the iterative pa of the. SVD algorithm,
and still have an ecient method of solving (3.1). The same idea was used in [5],
where, in connection with standard computer architecture, S was taken bidiagonal.

In the rest of this section we give a brief outline of the reduction to upper triangular
band form using systolic arrays. A more detailed description is given in 15], 17]. For
simplicity we here assume that m n.

The systolic array is organized in trapezoidal form, with k- 1 rows and n columns.
If we send the matrix

K [ Kll g12]kK K
where Kll is (k-1)x (k- 1), through the array, the output is

U1TK [ Sll C12]
0 C2.1’

where g is orthogonal, and $11 is an upper triangular (k-1)x (k-1) matrix. Thus
the array applies an orthogonal transformation, realized by a sequence of plane
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rotations, which zeros the first k-1 columns below the main diagonal. Then if we
send C2C2] through the array we get

VI[C C2]=[T /1o /(:.’
where T12 is (k- 1) x (k- 1) lower triangular. The result of these two transformations
is

S(1) [Sll T12 0]0 K22 K23
Now continue the process using

K(1) g22 23]
in place of K. After J [n/] such steps, we have produced a k-diagonal, upper
triangular matrix

S1 TI

S S22 T23

sj

such that K USV It is necessary to apply the left-hand rotations to the right-hand
side (cf. (3.3b)), and accumulate the right-hand rotations to form the matrix V (cf.
(3.3c)). This can be done by the array.

The total time for computing the band matrix S and the ohogonal matrix V is
O(n2/k).

4. An array for the ease of banded L. In some applications it is necessary to choose
L equal to a discretization of a differentiation operator. Then L is usually a p x n band
matrix, p < n. In this case (1.2) can be transformed to the standard form (3.1) in spite
of the fact that L- does not exist [5]. The problem can then be solved using the
methods described in the preceding sections. However, if K is also a band matrix, this
transformation destroys the band structure and should therefore be avoided.

The algorithm given in [6] for the computation of a QR-decomposition

where both K and L are band matrices, can be implemented in a systolic system. This
application is described in a general setting in [16]. We here give a brief description
of a simple special case, where it is assumed that K and L are upper triangular band
matrices with bandwidths 4 and 3 respectively. The dimensions are assumed to be
nxn and (n-2)xn.

In a typical step of the algorithm we make the transformation (see [6])
X X X X "X X X X

X X X X X X +
x x x x +

x x +
x x x x 0 0 0 x

x x x 0 0 0
"."’’_ "_
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Comparing this to (2.3), we see that here two extra matrix elements have to be zeroed
by rotations. Therefore, in the systolic array two extra boundary cells are needed to
generate these rotations.

The general idea in 16] is to interleave two arrays ofthe type of 2. The appropriate
array for this example is shown in Fig. 4.1. There is a 4 x 4 triangular outer array that

k33 134
133 k25

k24
k23 124

k22 123
122 k4

k12
k11 112

111

k13
113

FIG. 4.1. Systolic array for banded K and L.

zeros elements of K, and a 3 x 3 triangular inner array, nested within the outer array,
that zeros elements of L. Note that a new cell type, shown as a triangle, is used. This
is a delay cell that simply holds its input for one clock cycle, then transmits it. Remember
that in the absence of input, data lines will assume the value zero.

In general it is essential that, if the outer array is q q, then the inner array be
(q- 1) x (q- 1) or q x q. If the bandwidths of K and L differ by more than 1, the
thinner must be expanded by including additional zero diagonals in its band. Thus if
r is the bandwidth of K and s is the bandwidth of L, we require that r-sl--< 1. If
s > r we send L into the outer array, while if r-> s we send K into the outer array.
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5. Conclusions. We have shown that discrete ill-posed problems of the form (1.2)
can be efficiently solved., for several values of A, when K is either dense or banded
and L-I or L is banded, using systolic arrays (see Fig. 5.1). When L= I, the array
of 2 can be used. If K is dense it must first be reduced to a band matrix as shown
in 3. If L I and both K and L are banded, the array of 4 is used. If L I and
K is dense, however, the method of Eld6n [5] must be used to transform into a problem
for which L I. This transformation involves QR-factorizations and can also be handled
by a systolic array.

L- I L banded

K dense 3 [5]

K banded 2 4

FIG. 5.1. Strategy for the solution of (1.2).
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DATA STRUCTURES FOR ADAPTIVE GRID GENERATION*
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Abstract. This paper describes data structures and algorithms for the automatic generation of adaptive
subgdds, a technique used with adaptive mesh refinement for solving partial differential equations. Our
algorithms generate a nested sequence of finer and finer grids on an underlying coarse grid. There are two
aspects to the data structures. Trees are used to do the grid management for this type of grid structure.
Secondly, the automatic grid generation algorithms use data structures with special nearest neighbor
properties. Examples of grids from actual adaptive numerical computations are shown.
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1. Introduction. In this paper we discuss the use of data structures in tackling an
adaptive grid generation problem. These grids are to be used in the solution of partial
differential equations (pdes) by finite difference schemes using adaptive mesh
refinement. In this approach, a nested sequence of locally uniform fine grids is
superimposed on an underlying coarse grid until a given accuracy criterion is attained.
These methods were originally developed for the solution of hyperbolic pdes (see [3],
[7]), but we believe that our algorithms and data structures have a wider applicability.
For example, we have extended our adaptive hyperbolic method to handle steady-state
transonic flow [5]. Even in this steady-state case, the grid management methods need
to be dynamic, however, since the regions needing refinement (for example the shock
location) are not known in advance. Our grid generation package is also currently
being used in a mesh refinement program for solving elliptic pdes [8]. It is natural to
use these adaptive grids in conjunction with multigrid methods 16]. Indeed, we have
begun such work for the steady Euler equations [6].

There are two aspects to the use of data structures in this context. The first is
storing and manipulating grids. We use trees and linked lists to keep track of this
irregular grid structure. The data structures themselves are not uncommon; it is their
application to the numerical solution of pdes that is new. The second aspect is our
method of automatic grid generation, which is based on data structures with special
nearest neighbor properties. Our grid generation is at most a two pass algorithm which
clusters grid points and fits locally regular rectangles for the fine grids.

Before describing our data structures, we justify our use of locally uniform, possibly
rotated, rectangles as the building blocks of a general adaptive mesh refinement method.
Rectangles have the simplest user interface. The same integrator for the coarse grid
may be used to integrate all the fine grids too. By separating the integrator from the
adaptivity strategy, an off-the-shelf integrator can be used without modification, as
was done in the transonic flow calculations of [5]. This simplifies the programming
for each new application and allows an easier front end. For rotated rectangular grids,
it is easy to automatically transform the difference equations into the rotated coordinate
system. If the area needing refinement is diagonal to the grid, a smaller total area is
refined if we allow the rectangles to rotate too. Moreover, in some calculations it is
numerically advantageous to use a coordinate system which is approximately locally
normal and tangent to a front in the solution. Using multiple oriented subgrids allows

* Received by the editors March 22, 1983, and in final revised form May 20, 1985. This research was

supported in part by the U.S. Department of Energy under contract DEAC0276ER03077-V.
f Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
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this to happen. This would also permit refinement in only one coordinate direction.
However, there is additional overhead associated with rotated grids, in both the
interpolation procedures and the interface equations needed between the grids, par-
ticularly if the interface conditions need to be conservative. This overhead will be
discussed later. Our algorithms can, therefore, be used to create rotated as well as
nonrotated subgrids. For example, in Fig. l a we show a coarse grid where the grid
points which need refinement are marked with an X. Fig. lb shows some typical fine
grids our grid generation package produces in this situation. If we do not permit
rotation, the subgrids our package produces are shown in Fig. l c.

FIG. a. Coarse grid with grid points needing
refinement marked with an ’X’.

d dddd., bbV

FIG. lb. Grid generation example using rotated
rectanglesfor thefine grids that enclose the marked
grid points.

bbb
bbb

FIG. lc. Grid generation example using unrotated rectangles for the fine grids.

In either case, this use of locally embedded fine grids should be contrasted with
moving grid points, where regions of a grid are refined by "attracting" points into the
region at the expense of resolution in the rest of the region (see [15] and references
there). Such methods often have difficulty in controlling grid skewness, which can
degrade accuracy. This will be even more of a problem for three-dimensional calcula-
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tions. However, they do not have the problem of internal interfaces found in our
method of refinement.

We wish to make two points about the grid structure. These fine grids are not
merged into the underlying coarse grid, but are kept separately defined, each with its
own solution storage vector. In this way, we take advantage of the local uniformity of
each grid. The coarse grid points underneath a fine grid are in some sense wasted,
unless they participate in the solution process itself, as in multigrid methods. However,
even if this is not the case, we believe this is a smaller price to pay than alternatives
which involve cell by cell or column oriented refinement and use much more storage
overhead for pointers. Such methods typically have difficulties with multiply connected
regions and inhibit the vectorization of integration algorithms.

The second point we make about our grid structure is the following. It may happen
that many levels of refinement are needed to get sufficiently fine local resolution. This
is no problem for the grid generation routines, only for the data structures that keep
track of the grids. The grid generation algorithm is applied to the flagged points at
each grid level to create the next finer level of grids. Fig. 2 illustrates an initial grid

FIG. 2. There are two levels of refinement around the circular expanding shock, inside the coarse grid.

configuration with 3 levels of grids for a radially symmetric expanding shock problem.
An error estimator applied to the coarse grid at level 0 yields 7 level 1 grids, each
approximately 5 coarse mesh widths wide. When these grids have their error estimated,
the grid generation algorithm yields 11 level 2 grids. Now, the level 2 grids are
approximately 5 fine mesh widths wide. In this figure the reader can also see how one
level 2 grid can be (partially) nested in one or more level 1 grids.

Given this nested hierarchy of finer and finer rectangular subgrids, we can now
describe the two main roles that data structures play. In 2, we describe the trees and
lists used to store and access grid information in one and two space dimensions and
to manage the one large array where the solution vector for each grid is stored. The
more unusual way that data structures play a role is in the grid generation algorithms.
Given a list of flagged grid points, any one of us can take a pen and draw in good
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grids by eye. It is not so easy to get the computer to do it. We have been able to draw
on some ideas from the pattern recognition literature in designing our grid generation
package. However, most of these scene analysis programs make many passes over the
data from one scene. Since for a time-dependent pde our grid generation method will
be used every few timesteps, we need a faster algorithm. In 3, we describe our two-part
grid generation algorithm and the graph structures on which the algorithm is based.
This is a more important and difficult problem, and we believe that more work will
yield methods substantially better than the preliminary heuristics discussed here.

2. Data structures for grid management. In this section we describe the trees and
linked lists used to store and access information for a grid structure. The one-
dimensional structure is described first; a generalization of it is used in the two-
dimensional case. We assume the reader is already familiar with linked lists and the
usual ways to implement trees. A good reference for this is 1].

In one space dimension, the data structure we use to keep track of the grids is a
tree structure. Each grid in the grid hierarchy corresponds to a node in the tree. When
a fine grid is nested in a coarse grid, we say the corresponding node in the tree is an
offspring of the parent node corresponding to the coarse grid. Two subgrids in the
same coarse grid are said to be siblings. Fig. 3a shows a grid structure with one coarse
grid, three fine grids at level 1, and three fine grids at level 2. The corresponding tree
structure which details the relationships between the grids is shown in Fig. 3b. The
only nonstandard links in this tree are indicated by the dashed lines. These additional
pointers make the operation of finding all grids at a given level easy.

G2,1 G2,2 G2,3

(b)

,1

FIG. 3. A one-dimensional grid structure and its associated tree data structure.

To implement the tree, we would like each node to have a fixed number of items
of information describing the grid. Since a grid can have an arbitrary number of
subgfids, the tree is implemented by having each node point only to its first offspring,
and the offspring points to its next sibling.
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The information that is stored in a node for each one-dimensional grid is:
1) grid location,
2) Ax, At, t,
3) number of rows and columns,
4) parent grid pointer,
5) first subgrid pointer,
6) sibling pointer,
7) solution storage pointer.

Even in the unlikely event of a calculation having 50 fine grids, with 15 pieces of
information per grid, this is only 750 words of storage. This is a very small amount of
storage overhead compared to the amount of storage needed for the solution itself.
By using locally uniform fine grids, we save the storage overhead found in irregular
mesh refinement approaches, which is typically proportional to the number of grid
points. (For a discussion of the CPU overhead in this approach to adaptive mesh
refinement see [3].)

We emphasize two things about the tree data structure. Most integration algorithms
(in particular, .in [3]) have an information flow which follows path links in the tree,
so there is no processing time overhead associated with them. For example, the fine
grid typically gets boundary values from an underlying coarse grid. This information
is directly available from the fine grid node, without having to traverse the entire tree.
The second point about the data structure is that it needs to be dynamic in an unusual
way for trees. Fine grids will be created and/or removed as needed during a calculation.
This will occur more frequently for the finest level grids than the coarser grids. The
data structure is changed by creating a new bottom half of the tree and joining it with
the old top half of the tree. The nodes from the old bottom half are added to a list of
free nodes.

There are several complications in the two-dimensional version of a grid structure
that lead us to generalize the tree structure. First is the possibility of more than one
coarse grid, and thus, more than one root node of the tree. Secondly, a grid may be
nested in more than one coarse grid and thus have several parents in the tree. The
parent slot can be replaced by a pointer to a short linked list of parent grids. Third,
in two dimensions, grids at the same level of refinement may overlap, and so we add
a pointer to a list of intersecting grids to the information which is stored for each
node. In addition, for rotated grids we also store sin (0), cos (0), where 0 is the angle
of rotation of the grid. Fig. 4a shows a sample two dimensional grid structure, with
two grids at each of the three levels; Fig. 4b shows the corresponding data structure.
Conceptually, it can still be thought of as a tree.

At this point we discuss some of the overhead associated with the use of rotated
rectangular subgrids. In any operation between grids that are rotated with respect to
each other, each indexing operation will involve an extra calculation. Suppose we need
the coordinates of point (i, j), for example to interpolate an initial solution value for
a point in a newly created fine grid. If the grid is not rotated, the typical calculation
looks like

/xo c+(i-1)
\Yo/ cy + (j 1) Ay

where (c, Cy) are the coordinates of the lower left hand corner of the fine rectangle.
In the rotated case, the calculation looks like

y! c + sin (O)(i 1) Ax + cos O)(j 1) Ay
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(a)

G0,1

G0,2

(b)

FIG. 4. A two-dimensional grid structure and its associated graph.

This amount of overhead is not bad. The mathematically difficult problem concerns
the boundary conditions for a fine grid. In cases where the solution to a pde is
discontinuous, the numerical method should be conservative. This rules out straightfor-
ward bilinear interpolation, and requires much more difficult interface equations (see
[4] for a discussion of this problem). In such cases we use nonrotated grids, since the
interface between grids then degenerates to a one-dimensional interface which is much
more mathematically tractable. However, this is an active area of research today, and
we do not believe that final conclusions can be drawn now.

The final data structure in our problem allocates storage for the solution on each
grid from one long solution storage array. This array is managed by keeping a list of
free chunks of storage, sorted by their location in the array. When a grid is created,
its request for a certain number of words of storage is satisfied by taking contiguous
storage from the first free block which is big enough. This is a first-fit algorithm. Such
algorithms have been shown [13] to be preferable in most cases to best-fit algorithms,
in which storage is allocated from the block that is closest in size to the requested
amount.

3. Algorithms to generate the grid structure. In this section we present the
algorithms used to generate the fine grids. We describe the algorithms in two dimensions,
but they generalize immediately to higher dimensions. The algorithm starts with a
rectangular coarse grid. Based on estimates of the error, grid points are flagged as
needing to be in a grid with finer mesh width. The problem is this" given a list of
flagged grid points, how should (rotated) rectangular subgrids be created to minimize
the total area of the refined grids, so that each flagged point is interior to a fine grid
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unless it is on the boundary of the physical domain. Since the work of integrating the
solution on a fine grid is proportional to its area, it is clear that we would like to
minimize the area of the coarse grid which is unnecessarily refined.

This is a difficult problem, and it is difficult to find a foolproof algorithm which
works in all cases. Our approach is to use a simple grid generation first and then
evaluate the resulting grids to try to detect when it fails. We then use a safer but more
expensive grid generation algorithm. The complete procedure consists of:

1) a clustering algorithm to decide which flagged points go together in one fine grid;
2) a grid fitting algorithm, which fits a rotated rectangle to each cluster;
3) an evaluation step, which detects the failure of the simple clustering algorithm

by measuring the area of the proposed fine grid which is unnecessarily refined. We
would also like as few grids created as possible, since there is computational overhead
associated with the integration of the boundary of each fine grid.

We describe the first pass through the clustering procedure and then the alternate
algorithms used in the difficult cases. Using either clustering algorithm, the fitting of
the rectangle is the same. In the nonrotated case, the new grid is defined by finding
the dimensions of the rectangle enclosing the cluster. The procedure for finding the
orientation for rotated subgrids is discussed at the end of this section. (For time
dependent adaptive calculations, the grids are then enlarged to include a buffer zone
of a few mesh widths, to lengthen the interval between regridding operations. How
this buffer zone is added can affect the amount of overlap between the grids.)

The clustering algorithm serves two purposes. The first is to separate the flagged
points which come from spatially separated phenomena (see Fig. 5a). This is simple
to do using a nearest neighbor algorithm. Start with one flagged point in a cluster.
Add flagged points if the distance between the point and the point nearest to it in the
cluster is small enough, typically two mesh widths or less. Since the flagged points
come from a regularly ordered grid, this algorithm runs in time approximately linear
in the number of flagged points n, rather than the worst case O(n2).

The second purpose of the clustering algorithm is to break up one nearest neighbor
cluster if it leads to an inefficient grid. In Fig. 5b, if the entire cluster were fit with one
grid (the dotted rectangle) an unacceptably large area would be refined. Instead, the
cluster should be divided in two. Step 3, the evaluation step, would detect this using
the simple approximation of taking the ratio of the number of flagged grid points to
the total number of coarse grid points in the new fine grid. If the ratio falls below a
cutoff, typically between 1/2 and , the points must be reclustered.

(a) (b)

FIG. 5. The clustering algorithms dioide up the flagged grid points that shouM go together to make a new
fine grid.

The nearest neighbor clustering works well when entire regions of the domain
need to be refined, and each such region is separated from the next. This occurs in
transonic flow, for example, where the leading and trailing edges of the airfoil typically
need refinement. If nearest neighbor clustering does not work, the assumption is that
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the points needing refinement lie along either a long curved front (as in Fig. 2), or
several intersecting fronts (as Fig. 1 indicates). Since there may be a lot of scatter in
the flagged points, it is difficult to sense their direction or distribution. For this reason,
we next use data structures to organize the flagged points to understand how they are
related, so that a smart subdivision of the points can be made.

We first connect the flagged points into a minimal spanning tree (MST). A MST
is the connected acyclic graph connecting all the points so that the sum of the lengths
of the edges is a minimum [1]. In this graph, each flagged point is connected to its
nearest neighbor. The hard part now is deciding how to break the graph into different
subclusters. An iterative algorithm immediately comes to mind. Start with a cluster of
one point at the end of the MST. Add neighboring flagged points into the cluster if
the resulting grid is still acceptable. Since the grid fitting part of the algorithm is easy
(discussed next), this algorithm is feasible even though it is iterative. Fig. 6 shows a
sample set of points, their MST and the three rectangles this iterative algorithm
produces, starting at the left.

FIG. 6. Three subgrids are generated from the MST connecting the flagged points.

In practise, there are two changes made in the above algorithm. First it is less
expensive to start with several points in a cluster rather than one. We take the original
cluster and (inefficient) rectangle formed by the nearest neighbor algorithm, and
repeatedly bisect it in the long direction until the component grids are acceptably
efficient. The components are then put back together (if possible) in the iterative
merging step based on the MST. Fig. 7a illustrates a "worst case" example which still
works well. The flagged points make a cross pattern. Bisection makes the least obvious
cuts, yielding 8 clusters. However, in Fig. 7b the merging step puts them back together
nicely.

The second change we make in the algorithm as stated comes from the fact that
the MST is not unique. Figs. 8a and 8b give two MST’s for the same point set. The
problem in Fig. 8 is the long path length between neighboring points. Since our flagged
points come from a regular grid structure, this problem can occur frequently. We
therefore generalize the MST by connecting a point to All its Nearest Neighbors, to
make an ANN graph.

In constructing the MST or ANN connecting clusters of points, a little care must
be taken in the definition of the location of a cluster of points. For example, in Fig.
9 the mean of the points would suggest that rectangles A and B be connected, but
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(a)

(b)
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FIG. 7. Bisection of the originally proposed rectangle yields 8 clusters. The merge step produces 4 fine grids.

(a) (b)

FIG. 8. Two different MST’s for the same point set.

FIG. 9. Rectangles A and C should merge, even though rectangles A and B are closer.

clearly it is better to merge A and C. Other measures, such as corner separation, must
be used. There are other graphs that provide useful structures with which to think
about these problems. For example, clusters AB and AC in Fig. 9 would both be
connected in a Relative Neighbor Graph [17], where two clusters are connected if no
other cluster is closer to them both. We do not actually construct an RNG however,
and admittedly, only approximate MST and ANN graphs are really needed in this work.

Returning to the grid generation algorithm, we now discuss how to generate a
rotated rectangle to enclose all flagged points in one cluster. In addition, if flagged
points have an orientation, the subgrid should have that orientation too. Let xi, yi,

1 =< =< n be the coordinates of the flagged points, and , )7 their mean. Consider the
symmetric matrix

x xy
MtM

xiYi--’’-fiy /y/2--)72 ]
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where

M xi- yi

This matrix determines an ellipse with the same first and second moments as the flagged
points [9]. The axes of the ellipse are the eigenvectors of the 2 by 2 matrix MtM,
which we use to determine the orientation of the rectangle. The most expensive parts
of this algorithm is the determination of the dimensions of the rectangle, given its
orientation, so that all flagged points are included.

It turns out that this algorithm is related to a total least squares fit [11] of the
data points in the following way. Suppose we look for a linear fit to the flagged points
by a line through the mean,

(y- fi) rn(x- ),
so that we have

Xl- el Yl-fi rl

x, y,

The slope of the line m is determined so that the Frobenius norm of the perturbation
vectors e (el, e2," , e,,) and r= (rl, rE,’’’, r,,) is a minimum. Rewrite (3.1) as

(Ix zly y] + elr])
1

For the smallest perturbation, take the perturbation matrix C [e[r] to be the smallest
singular value of the matrix Ix ly Y]. This matrix is just the matrix M of the flagged
points. The solution vector (m, -1)t is the singular vector corresponding to the smallest
singular value. This singular vector of M is one of the eigenvectors of the matrix MtM
above, and so both derivations give the same rectangle orientation. By using the total
least squares derivation, we see that we are finding the slope of the line through the
mean of the points which minimizes the sum of the squares of the distances from each
point to the line.

One of the goals in grid generation is to create subgrids with total area as small
as possible. In two dimensions it is computationally feasible to construct the minimum
area rectangle enclosing a set of points. We will briefly describe how to do this and
compare it with our procedure above. To construct a spanning rectangle, first find the
convex hull of the set of points. In two dimensions, this may be done in O(n log n)
operations, where n is the number of flagged points to be enclosed 12]. The next step
makes use of a theorem by Freeman and Shapira 10] proving that the minimum area
rectangle has a side collinear with the convex hull. It remains to check each side of
the hull for the rectangle with the minimum area. For each line segment on the hull,
the area of the spanning rectangle may be determined in time O(h), where h is the
number of vertices on the boundary of the convex hull, by carefully figuring which
vertices on the boundary anchor the rectangle. Finally, choose the rectangle with the
minimum area.

This algorithm does not generalize easily to higher dimensions, where the convex
hull takes O(n2) operations to compute. Even in two dimensions, it is much more
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expensive than using the ellipse method. Since the minimum spanning rectangle
depends only on the convex hull of the set of points, it will be aligned with the points
only if the clustering algorithm aligns the points first. In experiments comparing the
minimum area spanning rectangle with moment generated rectangles, the latter typically
has only 5 to 10% larger area than the former.

This performance of the ellipse algorithm has been heuristically explained in [2]
in the following way. Suppose the sides of the rectangle are oriented in the directions
of the orthonormal unit vectors rl, r2. The length of the side parallel to rl is max Arl-
min Arl, where A is the n by 2 matrix of the flagged points,

A=
Xn

and similarly for r. The max and rain are taken componentwise over the vector. If
the points are clustered so that there are no extreme outlying points, (which we certainly
expect the clustering algorithm to accomplish), the length of a side is

max Ar min r 2 At111.
Thus we consider the maximum norm problem of minimizing the area of the enclosing
rectangle,

(3.2) min Ilarllllar=[[.
rl,r2

rirj O

If (3.2) is approximated using the 2-norm, this problem can be easily solved using the
fact that

ar l12211Ar211 ratAr ratar2,

but for the orthonormal vectors rr2,

rA’Arl + r_AtAr2 constant.

The problem again becomes that of minimizing IlArll2 over unit vectors r, giving the
same orientation vectors that the moment generated ellipse gives. The area of the
enclosing rectangle is related to the area of the minimum enclosing rectangle as the
2-norm is related to the maximum norm. In general there can be a large difference
between those two norms. However, if we use a smart clustering algorithm, this will
not be the case.

We end with examples of the grid generation package on several point sets which
illustrate the ettect of the efficiency parameter in the final step. In Fig. 10a, approxi-
mately 85% of the points in each of the six fine grids are flagged. In Fig. 10b only
45% were required to be flagged, and so larger grids were created. Figs. l la and 1 lb
illustrate a similar phenomenon on a different set of points.

There is still much more that could be done to come up with a fast, reliable grid
generation package. For example, in Fig. 1 l a, the higher-efficiency-rated grids do not
have a smaller total area refined, since the fine grids overlap more than in Fig. 1 lb.
Other measures for evaluating grids might thus be beneficial. There are also alternative
grid generation algorithms which seem reasonable but have not been tested. For
example, based on the MST one could use the diameter of the graph to indicate the
layout of the points. In problems with a discontinuous solution, if we assume that the
flagged points follow the front, the diameter should approximate the shape of the
front. Clusters can now be formed by segmenting the diameter. This is similar to an
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(b) efficiency 45%

FIG. 10. (a) 85% of the coarse grid points in the fine grid are flagged; (b) only 45% are flagged.
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FIG. 11. (a) 75% of the coarse grid points in the fine grids are flagged; (b) only 50% are flagged.
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algorithm in [14] which was used to recognize curved objects in the plane. Although
the algorithms presented here are still experimental and under development, they have
already been incorporated into adaptive mesh refinement programs for the solution
of pdes. Although not optimal, they have been proven successful and efficient in the
automatic generation of adaptive subgrids.

Acknowledgments. I would like to thank Doug Baxter for his participation in the
development of the grid generation algorithms. I also thank William Gropp for his
participation in the early stages of the development of the mesh refinement program.
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THE APPLICATION OF CELL DISCRETIZATION TO A
"CIRCLE IN THE SQUARE" MODEL PROBLEM*

MARK COFFEY, JOHN GREENSTADT AND ALAN KARP

Abstract. The Cell Discretization (CD) algorithm is applied to several elliptic p.d.e.’s with Dirichlet
boundary conditions. To demonstrate the generality of CD, we use a "Circle in the Square" geometryma
square domain with an imbedded circle of arbitrary location and size. By this choice, we can illustrate the
ability of CD to incorporate arbitrarily shaped interfaces without approximation, and coordinate systems
and basis sets that may vary from cell to cell.

We discuss the solution of three problems: (1) Laplace’s equation with the boundary values of a known
harmonic function, (2) the calculation of the Green’s function for the square and (3) Poisson’s equation
with discontinuous diffusion coefficient and source term. Each problem illustrates an important feature of
CD. The results are compared either with analytic or fine-mesh finite difference solutions. The convergence
properties of CD are demonstrated by these comparisons.

We conclude that Cell Discretization is a convenient, accurate method for solving elliptic partial
differential equations even when unusual domain shapes or solution representations are involved.

Key words, cell discretization, elliptic partial differential equations, moment collocation

AMS(MOS) subject classifications. 65N30, 65N35

1. Introduction. In past applications of the Cell Discretization method for solving
elliptic partial differential equations 1 ], [2], several very large problems were attempted
and solved; the method proved to be robust and efficient. Because of the necessity to
simplify the logistics for programming purposes, only rectangular domains were treated.
The potential of the CD method for handling quite general geometries has never been
exploited.

We have now had the chance to test a small model problem with a geometrical
structure which is quite different from these purely rectangular ones. It is a simple,
two-domain problem, consisting of a circle in a square, as shown in Fig. 1. The plane
is partitioned into three "cells"; the first is l)o, the exterior of the square, the second
is l)l, the square itself minus a circular hole (making it a nonsimply connected domain),
and the third is 1)2, the circular disc with center at (Xo, Yo) and radius ro.

As usual, the boundary of the square is regarded as the interface Flo between gll
and the exterior cell o. Strictly speaking, Flo is a single "interface," but for purposes
of better approximation, it is advantageous to consider it as consisting of four segments
(the sides), which we label {Flo}, with tr= 1, 2, 3, 4. The interface consisting of the
circle itself is denoted by F12 and is made up of only one segment. Although we shall,
of course, be seeking only an approximate solution to each specific problem within
this geometrical configuration, it is important to note that we are treating the geometrical
entities exactly, i.e., we are not approximating the circle by a polygon, etc.

Within each cell, a simple elliptic, inhomogeneous p.d.e, is to be solved with a
Dirichlet condition on the boundary of the square. Each such equation has the form:

-V (akV)+ bk Ck

with k- 1, 2 (all coefficients and solutions are assumed to vanish identically in 1o).
The quantities a, b and c are assumed to be functions of the coordinates with whatever

* Received by the editors January 16, 1984, and in revised form June 4, 1985.
IBM Corporation, Palo Alto Scientific Center, Palo Alto, California 94304.
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge,

England CB3 9EW.
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(Xo,Yo)

I,I

FIG. 1. Geometry of the Circle in the Square model problem. The square domain 1) is partitioned by means
of a circle of radius and center at (Xo, Yo). The boundary of lI is denoted by Fo. The circular interface is
denoted by F2 and the disc which it encloses by II2. The cell 1)-1) is denoted by tl t.

continuity properties are necessary, and is the unknown solution function which
we wish to approximate with the CD procedure.

For conciseness of notation, when the point whose coordinates are (x, y) lies in
the interior of one of the cells fk, we shall label this point simply with the letter x;
but when the point lies on one of the interfaces between contiguous cells, we shall
label it with the letter s. Thus, the boundary conditions can be written concisely as"

(1.2) (s) =f(s); s e ro
where f(s) is a given function defined on the boundary.

There is also a corresponding continuity condition across F12 which, for the
classical problem is understood implicitly, but which must be considered explicitly
when the cell discretization is brought into play. This condition may be expressed
conveniently if we define:

’tI-/1 (X) xX.t (X), X t "1
(1.3)

)_(x)= Xtt(x), x e lI2
in which case, the interface continuity condition across I12 can be written concisely as"

(1.4) ,(s) 2(s), s e r,2.

The sections that follow describe the application of the Cell Discretization method
to the problem just described. In 2, we outline the basic features of the algorithm.
In 3, the particular choices of the intracell basis functions and the interface weight
functions characterizing the discretization are described. In 4, we describe how the
S, U, T and W arrays, whose elements are integrals of various combinations of these
functions and their derivatives, are evaluated. In 5, detailed descriptions of our test
problems are given, as well as the numerical results for them, mostly in the form of
graphs. Finally, in 6, these results and their implications are discussed.
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2. Summary of the cell discretization algorithm. Although Fig. 1 shows the case
we are considering here of two cells only, it is no more complicated to describe the
CD method for the more general case of K cells, so we shall do so. In what follows,
the labels 0, 1, 2, k, m, etc. shall mostly be written as if they were the arguments of a
function, rather than being written as subscripts. We shall maintain this convention
for quantities associated with each cell or interface. Although this makes for somewhat
odd-looking expressions at times, it reduces the number of subscripts, and makes the
equations easier to read.

The CD method is variationally-based, so we must start with the "bare" (i.e.,
without interface constraints) functional:

(2.1) o=-1/2 f (a(V)2+bxF2-2c) d.

We next partition into K subdomains {’k: k 1, , K} and we call each subdomain
a cell. Within each cell, we approximate by a function q(x, 0; k) of predetermined
form, but with a set of parameters {0(k);/-1,..., M(k)} with values as yet
unknown. For conciseness, we shall consider this set of O’s as forming a vector O(k).
When we replace the unknown function (x) by its system of approximations (or
representations) {q(k)}, the functional o has the value:

(a(k)[Vd/(k)]2/ b(k)[q(k)]E-2c(k)q,(k)) dk.(2.2) --=1/2k (k)

In partitioning , we have detached the various intracell approximations
{q(x, 0; k)} of the single function from one another. It is therefore necessary to
"reconnect" them by some means so that, collectively, they represent in some useful
way. In 1], it was shown how this is done in the CD method by interface moment
collocation, which requires the selection of a set of weight functions {w (s; k, m); c-
1,..., L(k, m)} for each interface. Note that L(k, m), the total number of weight
functions associated with the interface Ikm, may differ from one interface to the next.
The discrepancy A(s; k, m), in the continuity of the representation across Ikm is defined
by:

(2.3a) A(s; k, m)-= q(s; k)-q(s; m).

In order to cover the case of inhomogeneous Dirichlet boundary conditions while still
retaining the symmetry of the interface constraints, we introduce extra interface "source
terms" into the definition of the discrepancy as follows:

(2.3b) A(s; k, m) (q(s; k)-R(s; k, m))-(b(s; m)-R(s; m, k)).

These will be used later to specify boundary values; for an interior interface, the R’s
are usually set to zero. Note again that the variable s stands for the variable x when
it is evaluated on an interface. It is also important to take note at this time of certain
symmetries in the indices k and m, which label contiguous cells. Obviously, A(k, m),
by its definition (2.3), is antisymmetric in k and m and, also by definition, the labeling
of the w’s and the F’s makes them symmetric in k and m. We therefore have:

A(s;m,k)=-A(s;k,m),

(2.4) w(s;m,k)=w(s;k,m),

dI’,k =- dI’km
the last relation holding because we ignore the orientation of dF.
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Clearly, it is not possible, in general, to make A(s; k, m) vanish identically over
the whole of Fk, as in (1.4), because A, being the difference between two approximate
representations, is fixed in functional form and contains only a finite number of degrees
of freedom. These are contained in the vectors O(k) and 0(m), which together have
M(k) + M m elements. Therefore, it is necessary to weaken the continuity requirement
by asking only that the L(k, m) moments of A(k, m) (equal in number to the weights
defined on Fk,,), vanish on Fkm. We therefore require:

(2.5) f A(s; k, m)w,,(s; k, m) dr =0
dr(k,m)

for a 1,. ., L(k, m). (In the future, for the sake of conciseness, we shall omit the
cell labels attached to integral signs, and rely on the labeling of the elements of
integration to carry this information). Note that when one of the labels in (2.5) is zero,
it represents a boundary moment collocation.

There is more than one way to incorporate the interface constraints (2.5) into the
variational formulation. For large problems, the solution of the discrete equations is
rendered much more efficient ifthe constraints are turned into identities by a pretransfor-
mation of the O’s, as was done in (1) and (2). For our purposes here, however, this
rather elaborate technique is not necessary, and would perhaps obscure the basic
simplicity of the calculation. We shall incorporate the interface constraints in the
simplest possible way, viz., by the use of a set of Lagrange multipliers {ha(k, m)}. We
alter 0 by adding the appropriate terms to form the composite Lagrangian function

for the problem, which is:

(2.6) =o+ As(k, m) f A(s; k, m)w,(s; k, m) dry,,.
km dr

Because of the symmetry relations (2.4), the integral over F is antisymmetric in k
and m; therefore only a set of h’s which are antisymmetric in those indices will
contribute to the summation. When, for simplicity, we assume {h (k, m)} to be antisym-
metric, each nonvanishing term is repeated, with k and rn interchanged. Because the
sum in (2.6) is over contiguous neighbors only, k and rn are always distinct; this should
be borne in mind for all equations to come.

For linear equations and boundary conditions such as (1.1) and (1.2), the most
sensible choice for the form of O(x, 0; k) is a linear combination of predetermined
basis functions {bix(x; k)} with the O’s as coefficients:

(2.7) d/(x, O; k)=- Oix(k)qbix(s; k)

with/z 1,..., M(k). When this expression is substituted into (2.6), we obtain,

(2.8)
=k (1/2 Oix(k)S,,(k)O,,(k)-, Oix(k)Tix(k)) + ., A,,(k, m)

IX’ Ix km

where S, T, U and W are defined below. The various index ranges in these summations
can be "adjusted" to include the exterior cell with label 0, if we bear in mind that all
quantities in fo vanish. It is really not necessary to extend the index range in the
cellwise summation, because of this fact, but since we wish to deal with the boundary
segments as if they were interfaces, we can do this most conveniently by assuming that
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k=0,..., K and m=0,..., K. (There are still K interior cells in the problem.)
However, k and rn are still restricted by antisymmetry in the double sum as described
above. Also,/x 1,. , M(k), v 1,. , M(m) and a 1,. , L(k, rn). We can write
(I), for conciseness, in terms of the vectors 0, A, T, and W, and the matrices S and U.
These are defined in terms of their components as follows (with the appropriate index
ranges):

O(k) {0,(k)}, /z 1,..., M(k),

X(k, m)-= {A(k, m)}, a 1,..., L(k, m),

S(k) {S,(k)}, /x, ,= 1,..., M(k),
(2.9)

T(k)={T(k)}, /x= 1,...,M(k),

U(k, m)=-{U,(k, m)}, /x- 1,..., M(k); a 1,..., t(k, m)

W(k, m)=- { W(k, m)), a 1,..., t(k, m).

The O’s and the A’s are the discrete unknowns of the problem, and the elements of
the various coefficient matrices are given by"

(2.10a) S,(k)=- fa {a(k)[Vdp,(k). Vth(k)] + b(k)c,(k)dp(k)} dfk,

(2.10b) T,(k)=- fa c(k)qb,(k) dfk,

(2.11a) U,(k, m)= f b,(s; k)w(s; k, m) dFk,.

and

(2.11b) W(k,m)=fr[R(s;k,m)-R(s;m,k)]xw(s’k,m)dFk,,.
In line with our earlier remark (and (2.3b)), the elements of W have been written in
this rather elaborate form (which departs somewhat from the definition used in [1])
to preserve its antisymmetry, but the values of R in our Circle in the Square problem
are very simple, being given by:

R(s; 1,2)= R(s; 2, 1)= R(s; O, 1)=0,
(2.12)

R(s; 1, 0)=f(s).

In fact, the only W-vector appearing in our calculation is W(1, 0), and it consists of
just the moments of f(s), the boundary function.

With these abbreviations, can be written"

=Y (1/20T(k)S(k)O(k)-OW(k)r(k))
k

(2.13)
+ , A T(k, m)( UT(k, m)O(k)- UT(m, k)O(m)- W(k, m))
km

from which we will obtain the discrete equations of the problem by differentiation
with respect to O(k) and A (k, m). It may easily be verified by checking in the component
form that the results are:

(2.14) S(k)O(k)+ E U(k, m)A(k, m)= T(k)
re[k]
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and

(2.15) Ur(k, m)O(k)- Ur(m, k)O(m)= W(k, m).

The notation m[k] in (2.14) indicates that the summation is over the cell labels m of
contiguous neighbors of l]. This notation follows that of [1] for the general problem.

For the very simple geometry of the problem we are now considering, it is clear
that mill= {0,2} and m[2]= {1}. In fact, the discrete equations may be written out
explicitly without much trouble. Specializing (2.14) gives"

S(1)0(1)+ U(1, 0)Z(1, 0)+ U(1, 2)A(1, 2) T(1),
(2.16)

S(2)0(2) + U(2, 1)A(2, 1)= S(2)0(2)- U(2, 1)A(1, 2) T(2).

The change of sign in the second equation is a consequence of the antisymmetry of
A(k, m). Equation (2.15) reduces to:

UT(1, 0)0(1)= W(1, 0),
(2.17)

U(1, 2)0(1) U7(2, 1)0(2)=0.

The missing terms result, of course, from the assumption that everything in fo vanishes.
These equations may be arranged as one matrix equation, which exhibits in a

perspicuous way the structure of the equation system. It has the form:

[ S(01 0 U(1, 0) U(1, 2)100’(1) rl’
(2.18) 1U7(1,0) 0 0 h(1,0 W( ,0

[.Uar(1,2) -Ur(2,1) 0 h(1,2

In this form, the symmetry of the coefficient matrix is manifest.
The reader may note that in an S(k) matrix, the gradient terms multiplied by a(k)

correspond to the so-called stiffness matrix in applications of the Finite Element
Method (FEM). On the other hand, the integration of the term bb which multiplies
b(k) corresponds to the mass matrix in the FEM. For the special case b =0, the S
matrix in the CD method would be identical with the stiffness matrix in the FEM if,
instead of a piecewise polynomial representation which might be discontinuous across
interfaces, a globally continuous one were used. The upper left-hand corner of the
coefficient matrix in (2.18), i.e., the matrix

(2.19) (S(1) 0 )0 S(2)

is the analogue of the sum of the global stiffness and mass matrices in the FEM for
the case of two subdomains. Furthermore, T(k) is the CD analogue of the generalized
force vector in the FEM, as can be seen from the definition (2.10b).

For the simple problems considered here, the system of equations (2.18) will be
solved directly by elimination. The condition number of the matrix varies with the
number of interface constraints on both interfaces, with the numbers of degrees of
freedom M(1) and M(2), and with the particulars of the geometry (such as the size
and location of the circle within the square).

This treatment of the discrete equations is satisfactory for a very small model
problem, such as the one we are considering to illustrate the geometric flexibility of
the CD method. However, for larger problems, involving many more variables than
we would generate here, it is neither stable enough nor efficient enough. For large
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problems, it is preferable to use the technique of pretransformation described in 1 ],
which has the effect of removing all the h’s, all of the explicit interface constraints,
and some of the degrees of freedom (the 0’s) from the problem. Moreover, the resulting
system of equations has a positive-definite coefficient matrix, so that various iterative
methods can be used, thereby removing the necessity to use direct methods for its
solution.

3. Choice of basis functions and weight functions. For ’1, the square with a disc
punched out, the most natural coordinate system is the Cartesian one with x and y as
the coordinates. In this system, the most convenient basis set consists of the monomials
consisting of products of nonnegative powers, viz., {xiyS}. These functions are not the
most desirable from the point of view of numerical stability and accuracy, but all of
the integrations involving them are relatively easy to do analytically. The individual
monomials are ordered in the usual way, viz., {1, x, y, x2, xy, y2, x3, xEy, xy2, y3,...},
so that, for example, 45(x, y, 1)= xy. This ordering may be regarded as a mapping of
the powers and j into the sequence number for the basis functions, viz.:

(3.1a) 4,.j)(x, y; 1)-- xiy

or, conversely, as a mapping of/z into and j, viz."

(3.1b) b,(x, y; 1)--

(We remind the reader again that the argument "1" refers to the fact that we are
defining the basis functions in

The weight functions on Fo, the outer boundary, are chosen for the maximum
convenience consistent with reasonable approximative properties. By this, we are
referring to the fact that, although Fo is a single interface, it is preferable to partition
it into segments {Fo; tr 1, 2, 3, 4}, as described in 1. The segments are numbered
counterclockwise, starting with the (bottom) horizontal face (x [-1, 1], y =-1). The
supports of the weight functions are distributed accordingly, so that w(s; 1, 0)= 1 on
segment 1 and vanishes on the other three segments, w(s; 1, 0)= 1 on segment 1 and
vanishes on the other three, ws(s; 1, 0)= x on segment 1 and vanishes on the other
three, w6(s; 1, 0)=y on segment 2 and vanishes on the others, etc. With these weights
all the interface integrals can also be readily evaluated analytically.

Within the disc, on the other hand, the most appropriate coordinate system is the
polar one, involving the variables r and 0, where r is measured from the center of the
disc, located at (Xo, Yo). The basis functions consist of products of nonnegative powers
of r with the trigonometric functions {1, sin 0, cos 0, sin 20, cos 20,...}. If we denote
the jth function in this sequence by z(O), we have the relation"

(3.2a) z(O)=(1- t) sin (pjO)+ t cos (pO)
where

(3.2b) p [1/2j], t =j(mod 2)

and the bracket indicates that the integer part of- is being used. Clearly, we are
assuming that j 1, 2, 3,..., while if we denote the power of r by i, we also have
i=0, 1,2, ..

There is one restriction on the combinations of and j. When 0, we do not
allow j to exceed unity because the basis functions with 0 would be discontinuous
at the origin, and we do not wish to permit this in the problems we shall solve. More
precisely, the basis functions with 0, viz., sin 0, cos 0, etc. are not elements of the
Sobolev space H(-2), which they are required to be in the selfadjoint formulation
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of the cell method described here. Use of these basis functions would cause tlae iategrals
(2.10a) needed for S,(2) to diverge. This problem does not arise for i> 0. Thus, the
basis functions in 122 may be displayed as follows:

1,

(3.3) r, r sin 0, r cos 0, r sin 20, r cos 20,. ,
/,2 /,2 /,2r2, sin 0, cos 0, sin 20, cos 20,

The labeling by the index/z in 122 follows the obvious sequence shown in (3.3),
i.e., term-by-term on each row, and one row after the other. Since we are dealing with
finite approximations, we must obviously terminate each row as well as the sequence
of rows. Let the maximum value of be denoted by/, the maximum value of j by J,
and the maximum multiplier of 0 by Pmax (hence, as is clear from (3.3), J 2pmax + 1).
A function tz(i,j), which gives the value of the index/z in terms of those of and j
may be defined as follows:

/x(O, 1) 1,

(3.4) (O,j> i) undefined,

/x(i > O,j)= J(i- 1)+j+ 1.

Using this function, expressions for the basis functions in [2 may be written in concise
form, interpreting, as before, the mapping between indices to go in either direction"

(3.5)
ch’(i’J)(’;2)= r" ’(0),

b,(r, 0; 2)= ri’) ,)(0).
The most reasonable choice for the system of weight functions on F12 is just the

set {(0)}. With this choice, the moment collocation integrals over F12, involving the
basis sets of both cells 121 and II2, may be done analytically.

4. Evaluation of matrix quantities. In this section, the computation of the various
arrays necessary to set up (2.18) is presented. We will discuss the nature of the
integrations needed for evaluating the S matrices, the U matrices, and finally make
note of the integrals needed in finding the T’s and W. The description of finding T(k),
k= 1,2 and W will be given for a particular choice of c(k) in (1.1) and specific
boundary conditions. It will be seen that, because of the particular choice of basis and
weight function which was made, all of the necessary integrations can be obtained as
finite sums, and that elementary functions appear throughout. This means that no error
is introduced by truncation of series, the use of asymptotics, or numerical integration.
Hence, all computations are exactto machine precision, so that any discretization
errors are those of the CD method itself.

4.1. The S matrices. According to (2.10a) and the choice of monomial basis
functions in the subdomain 121, the matrix S(1) is given by

(4.1) S(1)=II {a(1)(OdP’OdPt-OdP’O-dP]+b(1)d,(x,y;1,dp,,(x,y;1)}dxdy\ Ox Ox Oy Oy /

where/x, u 1,. ., M(1) and the derivatives are understood to have the same argu-
ments as the functions below them. We remind the reader that the region of integration
is the set 1)1 12-122, or, more explicitly: the set

(4.2) fl, {-1 <--_x, y<-- l}-{(X-Xo)Z+(y- yo)2<- r}.
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For the problems to be discussed here, we will only be interested in the case where
a(1) and b(1) are constants. Under these circumstances, when the basis set in fl
consists of the monomials defined in (3.1), each term of the integrand in (4.1) will be
a monomial. Hence, the evaluation of S(1) may be accomplished as an integration of
monomials over the square region f minus the integration of the same monomials
over the circular disc

The integration of monomials over the square involves only the trivial generic
integral

f 0, orj odd,
(4.3) Gs =- I i xiy dx dy l 4

-1 -1 (i + 1)(j + 1)’
and j even.

As mentioned above, the contribution from the circular disc 2 is subtracted from
to form the S(1) matrix. In order to integrate monomials over 12, we need to evaluate
the generic integral

(4.4) Gd(1)--= IIa x’yJdxdy.

To do this, we substitute for x and y"

(4.5) x Xo+ r cos 0, Y Yo/ r sin 0 (O<- r<-_ ro)(O<-_ O <-_2r)

and the integral can be expanded by the binomial theorem into a finite sum of integrals
of the following simple form (see [3, p. 21]):

(4.6) cos 0 sin" 0 dO

O,

m!n!
2 "+’-1 (m/2)!(n/2)!((m+ n(/2)!’

m and n even,

m or n odd.

Thus, by evaluating expressions of the type (4.3), (4.7) and (4.6), the integrations
necessary for S(1) can be performed.

In contrast to formula (4.1), the use of polar coordinates in f2 results in the
expression for S(2):

(4.7)
S(2) a(2) 7; +

r2 O0 O0 ]

+ b(2)b,(r, 0; 2)the(r, 0; 2)} r dr dO

where /x, v 1,..., M(2). (Again, the derivatives are understood to have the same
arguments as the functions below them). In computing S(2), we only allow for constant
a(2) and b(2). In this case, using the basis set {r. rj(0)}, it is clear that integrals of
the following type are required to find S(2):

fo’=ff   jtfcos 0]f=os 01(4.8) Ga(2)= r’sinpOsin qO drdO.
1



926 M. COFFEY, J. GREENSTADT AND A. KARP

The notation

means that one of the functions is a possible factor in the integrand. These integrals
are easily evaluated by using the orthogonality of sines and cosines on the interval
[0,2].

4.2. The U matrices. Before proceeding with our discussion of the U matrices in
the Circle in the Square problem, we recall that the calculation of any U(k, m) matrix
follows the procedure of restricting the basis functions b(x; k) to the interface ’km,
multiplying by weights w(s; k, m), and performing a surface integration with respect
to the variable s. For the Circle in the Square geometry, we have

dx, -l <-_x <- 1, y= +1,
drlo(S)=

dy, -l<_-y_-<l, x=+l,
(4.9)

dF12(s) ro dO, 0 <- O<-2r.

Of the three U matrices arising in the Circle in the Square problem, U(1, 0) and
U(2, 1) require very simple integrations for evaluation of their entries. However,
computing U(1, 2) requires a substantially new class of integrals beyond those encoun-
tered in finding the S matrices, so that we will give a rather detailed description of
this calculation.

The calculation of U(1, 0) reduces to trivial integrations because the basis functions
in 121 are monomials and the weight functions on Flo are either powers of x or of y.
Hence, the integrals required for U(1, 0) are of the type (see 3 and (4.9)):

(4.10) x’x’y dx or y dy
--1 y=+l --1 x=+l

where or m is the degree of the weight function, and i, j are the exponents appropriate
to a generic monomial basis function.

For the calculation of U(1, 2), it is possible to make use of the angular integrations
in (4.8). This results from the fact that both the basis functions in "2 and the weight
functions on 1-’12 include sines and cosines.

In order to calculate U(1, 2), we first restrict the basis functions in fl to the circle

F12 by setting r= ro in (4.5). Next, we multiply by the set of weight functions {(0)}
and integrate with respect to 0, using (4.9). Therefore, the calculation of U(1, 2)
involves integrals of the form:

(4.11a) Gl=-ro (xo+rocos O)(yo+rosin O) sinpO dO.
t cos pjO J

Using the binomial theorem gives

()() Io’{ sinpj0}i--m "--m_ m+n(4.11b) G12=ro Xo o ro cosm0sinm0d0.
m=0 n=0 COS pjO

The double summation is necessary when Xo and Yo do not vanish.
It is known [4, pp. 375, 477] that the angular integrations in (4.11) can be written

in terms of the Beta-Function. However, for integral values of m and p, these reduce
to finite sums of binomial coefficients. Hence, G12 can itself be represented as a finite
sum of elementary algebraic terms. We shall not pursue the details further.
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4.3. The T and W matrices. We will describe the generation of the T and W
arrays for a specific right-hand side and boundary condition for equation (1.1). We
make no attempt to describe the most general c(k) and boundary condition which can
be treated by our computer program. Instead, we will only mention the cases relevant
to the model problems.

In 5, we will be concerned with finding a numerical approximation to a Green’s
function for the square domain [l. We will be interested in the case where the right-hand
side of (1.1) is a delta-function with singularity at the center of the circle F12:

0, (X, y) [’1,
(4.12) c

6(x Xo, y Yo), (x, y)

The Green’s function will be subject to a homogeneous Dirichlet boundary condition,
i.e.,

(4.13) @(+1, y)- ,(x, +1) =0, -1 _-<x, y_-< 1.

We will show that when a delta-function, as in (4.12), is the only inhomogeneity in
(1.1), the only contribution to the right-hand side of (2.18), in the case of zero boundary
condition, is that of the first component of T(2), which is equal to 1.

Using definitions (2.12) and (2.11b) for W(1, 0), it is obvious that the boundary
condition (4.13) results in W(1, 0)-0 for a 1,. ., L(1, 0). Similarly, applying
definition (2.10b) for the case c(1) 0 immediately gives T(1) 0 for v 1,. , M(1).

In order to illustrate the calculation of T, (2) for the case (4.12), let us first consider
the situation when

(4.14) c(2) 8(x- , y-.9)

where (x, y) and (,)7) are in 1)2. According to the definition (2.10b), we have

(4.15a) T,(2)

r(r, O;2)ri(’)’j(,)(O)rdrdO, =1 M(2)(4.15b) / .,
where we have used the notation of 3 for the basis functions in [12. In order to
perform the integrations in (4.15b), we can make use of the change of variable formula
(from rectangular to polar coordinates) for the delta-function [5, p. 551 ],

(4.16) 6(x-Y., Y -.9) =1 6(r- )6( O
r

where r= (x:ZWy2) /2, 0 =tan- (y/x) and , flare similarly related to , )7. Then, we have

(4.17a) T,(2) -6(r-)6(O-)r’(’)’(,)(O)rdrdO
r

(4.17b) i<")%<,)(). / 1,..., M(2).

This concludes the calculation of T,(2) for the case that 0.
We recall that the placement of the delta-function singularity as in (4.12) means

that =0 for the (polar) coordinate system of [l. Although there is no obvious
interpretation of formula (4.16) when f 0, we can nonetheless perform the calculation
(4.15) in the following way: We take the limit in formula (4.17b) as --> Xo, )7--> Yo,
i.e., in terms of the polar coordinates in 1), -->0. Therefore, for the case that
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c(2) 8(x Xo, y Yo) we have

1, /x =0,(4.18) T,(2)
0, /x 0,

i.e., we get zeros for all the elements of T(2), except for the index/x 1, because that
element alone does not contain a positive power of r as a factor. Hence, with
homogeneous Dirichlet data and c(2)= 5(x-Xo, Y-Yo), only T1(2) "drives" the linear
system (2.18).

For the first problem studied, c(k)= 0 in equation (1.1). Then, by formula (2.10b),
the only contribution to the right-hand side of (2.18) is from W(1, 0). We further
specialize to a boundary condition which we use in 5, namely,

X
(4.19) ff(l,y)=0, (x,-1)=0, O(x, 1)=cos (for -l x, y l).

This boundary function has suppo on segment 3 of the boundary Flo. Hence only
the sequence of weights w3(s; 1, 0) 1, WT(S; 1, O) x, w(s; 1, 0) x2, , when
integrated against (x, 1) can possibly give a nonzero result for W(1, 0). Since, however,
(x, 1) is also an even function of x, only "hal’ of these boundary moments will be
nonzero. The nonzero moments of if(x, 1) will lead to integrals:

(4.20) x cos dx u(cos u) du
-1 d--/2

tbr even.
The integrals (4.20) can be computed by recursion. If we define

(4.21) F u cos u du

and integrate by pas, we can obtain:

(4.22) F=2 -m(m-1)F_

with Fo 2. This recursion formula was used for even m to compute W(1, 0), for the
boundary condition (4.19).

In 5, we will also make use of the following choice of the source term c in
equation (1.1):

0, (X, y) e al,
(4.23) c

1, (x, y) e O
along with the homogeneous Dirichlet boundary condition (4.13). For the case defined
by (4.23) and (4.12), only T(2) is nonzero on the right-hand side of (2.18). As for the
Green’s function problem, W(1, 0) is again identically zero, due to the homogeneous
boundary condition. The array T(1) is of course zero, since c(1) 0 according to
definition (2.10b).

For the calculation of T(2), using (2.10b) and (4.23), we have

T, (2) [ c(2), (2) dO2
(4.24)

[ 0, j() 1,
2r()+2
i()+2’

J(g 1



CELL DISCRETIZATION 929

where

(4.25) th,(2) r’")rj,)(0).
5. Description of test lroblems and numerical results. Three model problems which

we have treated in detail will be described. These problems illustrate the handling of
a Dirichlet problem, the calculation ofan approximation to a singular function (Green’s
function), and the solution of a problem with discontinuous coefficient and source
term. For the last problem, the exact solution was not available, so a fine-mesh finite
difference solution was used as a reference standard. All computations were performed
in IBM/370 double-precision arithmetic (about 16 decimal digits).

5.1. Lalflaee’s equation. The first model problem requires the solution of Laplace’s
equation in the whole square f( fl kJ f2), with continuous Dirichlet data on the
boundary:

if(x, -1)= (-1, y)= (1, y)=0/
(5.1) 7rx l for-l_<--x, y_--< 1.

(x, 1) cos

With this boundary condition Laplace’s equation separates, and the exact solution e
is easily seen to be:

where

/e (X, y) cos -- A cosh + B sinh

A= 1/2 cosh (7r/2) and B 1/2 sinh (7r/2).

The circle was centered at the origin, with radius ro =0.5. The approximate
computed solution $c was compared with Se using the Loo and L2 norms. More
particularly, we used the maximum norm

(5.3a) Ilerrorll(a) max [l/e(X y)-gc(x, y)l
--lx, yl

evaluated over a uniform mesh covering the full square 2. The values of at 400
points were examined to estimate Ilerrorlloo(f). (A close investigation indicated that
this mesh was sufficiently fine to yield an error estimate good to at least two figures).
We also used the root-mean-square norm, defined by:

(5.3b) Ilerrorll(a) (,(x, y) 4,(x, y)) dx dy
-1 -1

where the integral is approximated by the trapezoidal rule in two dimensions, using
the same mesh used to compute the maximum norm.

We have determined the dependence of the error on some of the parameters of
the problem by finding an optimal" solution and varying each parameter from its
best" value, one at a time. The optimal solution is defined in terms of roundott error.
With to, xo and Yo fixed, the numbers M(1), M(2), L(1, 0) and L(1, 2) were increased
until the solution deteriorated due to roundott error. In other words, the optimal
solution was that solution at which Ilerrorl]2(12) could not be reduced by increasing
any parameter value. An examination of the reciprocal condition number of the
coefficient matrix in (2.18) showed no significant decrease for parameter values less
than those for the optimal solution. In this sense, the optimal solution is a stable one.
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A plot of the CD solution with the optimal cell parameters appears in Fig. 2. Notice
how smoothly the solutions in 111 and 122 match on the circle.

0 0.5

X0 0.0

YO 0.0

FIG. 2. A perspective view of the CD solution of (5.1) with cell parameters (5.4). Although CD solutions
are in general discontinuous, with the size of the mesh employed here (for display), no jump in solution values
across the interface is perceptible.

In Figs. 3a-3c, we have plotted the common logarithm of I[errorll2(f/) versus the
number of weight functions per boundary segment (=L(1, 0)/4), versus the number
of weight functions on the circle (=L(1, 2)), and versus the maximum power of r(=l)
used in the basis set for f/_. The optimal solution was found at

M(1)=78, L(1,0)=32, L(1,2)=19,
(5.4)

J=19, I=5,

with Ilerrorll2(fl)=2.1 x 10-7. The approximate reciprocal condition number of the
coefficient matrix, which we shall denote by RCN, was 2.5 x 10-9. The onset ofdominant
roundoff error can be clearly seen in each figure.

The reader will note that the total number of weight functions on the boundary
is a multiple of four. Although it would be possible to provide each side of the square
with a different number of weight functions, we chose to keep the number of weight
functions on each boundary segment the same. This approach has the advantage of
reducing the number of parameters in the Dirichlet problem, and allows us to focus
on the difference in the dependence of the error on the boundary weights and on the
weights on the circle. As for the number of weights on the circle, we always take L(1, 2)
to be an odd integer. In this way, the functions cos Pmax 0 and sin Pmax 0 are included
simultaneously in the set of weights.

As can be seen in Figs. 3a and 3b, the rate of decrease of Ilerror[l() as a function
of L(1, 2) is almost constant (until roundoff dominates), while the dependence on
L(1, 0) "alternates" according to whether the number of weight functions is an odd
or an even multiple of four. This effect is very likely related to the fact that as 1/4L(1, 0)
goes from an odd to an even integer, the additional moments of the boundary function
are all zero.
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Observe that with the number of weight functions fixed, the number of basis
functions cannot be varied arbitrarily, due to the collocation conditions (e.g., the
former cannot be less than the latter). Moreover, it seems desirable to use only those
values of M(1) which correspond to a full set of monomials up to a given degree. In
view of these limitations, we give in Fig. 3d a plot of log lierrorll2(f) versus the degree
of q(1), for three values of M(1) only. These cases correspond to M(1)-66, 78 and
91. The coefficient matrix for the case M(1)-55 was found to be singular (this is
related to the so-called degeneracy described in [1]).

A geometrically asymmetric version of the above model problem chosen for study
had (Xo, Yo) (0.25, 0.6) and ro 3. Although the boundary condition is symmetric with
respect to the y-axis, with this location, the circle is not symmetrically placed with
respect to any line of symmetry of the square. The optimal solution was found to occur
for

M(1)=78, L(1,0)=32, L(1,2)=15,
(5.5)

J=lS, I=5,

with Ilerrorll2(O) 2.2 10-7. The approximate reciprocal condition number RCN was
2.8x 10-1. The increase of the condition number over that of the previous case is
probably due to the powers of r0, Xo and Yo that enter into the various integrals by way
of equations (4.7) and (4.11). In Figs. 4a-c, a semilog plot is again given of Ilerrorll=( )
versus the number of weight functions per boundary segment, versus the number of
weight functions on the circle and versus the maximum power of r used in the basis
set for

5.2. The Green’s function. The next problem we considered in depth was that of
obtaining an approximate Green’s function for Laplace’s equation. That is, we solved

(5.6a) -V2G(x, y; x’, y’) (x- x’, y- y’), -l <- x, y, x’, y’ <- I

subject to

(5.6b) G(+ 1, y; x’, y’) G(x, +/- 1; x’, y’) 0

with the same set of basis and weight functions as described previously. Here the
geometry is such that the circle is centered at (Xo, Yo) (x’, y’). This placement of the
circle would be useful in those applications where maintaining radial symmetry about
the point source is important. The circle provides an interface for "matching" the
singular behavior at (x’, y’) to the rest of the square.

For (5.6a), it is well known that the solution of the 2D problem near (x’, y’)
behaves like the negative logarithm of the radial distance from the point source. A
closed form solution by Fourier series expansion (cf. [5, p. 523]) is

y,)=2 sinh (mTr(1 +y)/2) sinh (mTr(1-y’)/2)
G(x, Xy;

r ,= m sinh
(5.7)

sin (mrx/2) sin (mTrx’/2) for m even,
X

cos (mrx/2) cos (mTrx’/2) for m odd

for y < y’. The same expression, with y and y’ interchanged, is used when y > y’. We
have used this form of the exact solution to compute the error of the solution obtained
by using the cell method. The solution is infinite at (x’, y’)--the series diverges
there--and we must discard this point in computing the maximum error. More will
be said of the error computation further on.
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We bring the reader’s attention to the fact that an unmodified logarithmic function
log (r) is not in the Sobolev space H(12), although it does belong to H(12)=
Rather, log (r) belongs to any Sobolev space H-(m for any e > 0. The elliptic boundary
value problems which we may hope to solve exactly with the present CD method (in
the limit as L(k, m) -, M(k, m) and h 0---where h is the maximum cell
diameter) are well-posed problems in Hl(fl). Hence, log (r) is not an admissible basis
function for the variational formulation of the CD method.

As we cannot include an unmodified log function in the basis set for 122 in the
present scheme, the CD method must give, at best, only an approximation to the
Green’s function. The basis set we have used in 122 does not contain a function which
is singular at any finite point, so that the numerical solution cannot become unbounded
on any subregion of 12. In particular, the numerical Green’s function must have a finite
value at (x’, y’).

In light of the above discussion, a measure of pointwise convergence at or near
(x’, y’) is not meaningful. For this reason, we have not tried to evaluate ]]error][oo(12)
as previously defined. The numerical approximation of []error]]2(fl) also involves careful
handling of the region near the singularity. We have not attempted the numerical
approximation of the singular integrals needed for finding [[error[[(fl) even though,
mathematically, the exact Green’s function is in L2. We have chosen to compute the
maximum error of the numerical solution in the region 1) with a small disc of radius
r deleted. We will denote the maximum error of the numerical solution over the region

1’----- lI- {(x- x’)2 + (y y’)- <-- r}

by [lerrorlloo(fl’). That is, we evaluate the maximum difference between the exact and
computed solution over the square 12, deleting the disc of radius r centered at (x’y’).

In using (5.7) as the exact solution, two computational considerations come into
play. The first is that when m is sufficiently large, the arguments of the hyperbolic
sines in (5.7) will be large and lead to overflow of the computer arithmetic. We avoided
this problem by rewriting the series in terms of exponentials with negative arguments.
The second computational consideration is when to truncate the series in (5.7). A
numerical comparison of the summation of (5.7) with 500 terms versus 1000 terms
indicated convergence to at least four decimal places for points (x, y) at a distance r
of more than 0.012 from (x’, y’). Four digits of precision, as a result of summing (5.7)
to 500 terms, turned out to be more than enough for our purposes.

By the symmetry of the Green’s function problem, when x’= y’= 0, it is sufficient
to calculate the maximum error in a quadrant in order to find the maximum error in
all of [l. The particular quadrant used was the one described by: y [0, 1 ], x I-y, y].
The maximum error was also computed on the line: y 1, -1 =< x-< 1, which again by
symmetry is sufficient to evaluate Ilerrorl[ on all of the boundary of fl (which we have
denoted by Flo). We use the notation ]]errorlloo(Fo) for the maximum error on the
boundary of fl, computed in this way.

We give numerical results for the Green’s function problem when F2 is centered
at (x’, y’) (0, 0), using a circle with radius ro 0.5. The numerical as well as theoretical
aspects of this model problem differ markedly from the first. In distinction to the first
model problem, the maximum error outside of a disc of radius .012 could not be
reduced past a value of roughly .044. That is, Ilerrorlloo(fr) could not be diminished
indefinitely (until roundoff error dominated) by increasing the number of cell para-
meters. The first solution at which this minimal error within fl’ occurred was character-
ized by:
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M(1) 21, L(1, 0) 12, L(1.2), 7,
(5.9)

I=4, J=7

with RCN= 5.0x 10-7 and Ilerrorll(l-l’)= .044. The maximum error on the boundary
was found to be: Ilerrorll(Fo)=.013, comparable with the maximum error outside
rl .012.

A block-centered finite difference calculation for the Green’s function problem
(5.6) was also performed. An examination of the maximum error outside the circle of
radius rl .012 showed a behavior in Ilerrorllo(fl’ similar to that for the CD solution.
For the finite ditterenee solution, the maximum error remained on the order of 10-3,
with a significant increase in grid dimensions having little effect.

In order to obtain high accuracy near the singularity in (5.6), both the finite
difference and finite element methods have needed to introduce modifications in their
respective algorithms. A brief description of alternatives for these methods is given in
[6]. One approach in FEM work has been to augment the basis set with a logarithmic
function. Although the details of these methods vary, the CD method has a similar
treatment of delta-function singularities. A discussion of various approaches for CD,
their implementation for the Circle in the Square geometry, and their relation to other
numerical methods will be taken up in a forthcoming paper.

Although the maximum error of the CD solution in 1’ could not be reduced below
a certain value, the maximum error on the boundary of 1 could be decreased by
increasing the numbers of weight and basis functions. (This improvement is possible
because I]error]loo(fl’ tends to be found at points closer to the deleted disc of radius
r for increasing parameter values). For instance, for the solution with the parameter
values:

(5.10)
M(1) 78, L(1, 0) 32, L(1, 2) 19,

1=8, J= 19.

[lerror]](Fo) has a significant decrease from the above case, while [[error[Ioo(l-l’) has
a slight increase. These errors are: [[error[[oo(Flo)= 8.8 x 10-4, [[errorll(fl’ =.048 and
RCN 7.1 x 10-5.

We believe this behavior in [[error[]oo(l-l’) is the result of attempting to fit the log
function with the set of functions {r. (0)}. The nature of this approximation seems
to be quite similar to a least-squares fit. Having performed a least-squares fit of
polynomials in r to a log function on the interval [0, ro], we can note the following
points which tend to substantiate this claim. First, the resulting least-squares coefficients
alternate in sign and second, they grow in magnitude in a manner similar to the
coefficients of the CD solution of the Green’s function problem. In particular, we
obtain numerically, for the case when (x’, y’) (0, 0) (ignoring a small angular depen-
dence), an approximation to the Green’s function of the form

(5.11 c a ar + br2 cr + dr4

where a, a, b,. are positive constants. In practice, we typically find values of a, a,
and b on the order of 1, 10, and 100, respectively. Third, the maximum norm of the
error between the least-squares approximant and the fitted function on the interval
[.01, ro] is comparable to the errors Ilerrorlloo(’) reported above.

A plot of a typical Green’s function obtained with the cell method is given in
Fig. 5. This case had cell parameters L(1, 0) 32, L(1.2) 13, J 13, I 6, M(1) 78,
ro .3 and (Xo, Yo)= (.25, .6). The finite "peak" and the decreased angular dependence
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FIG. 5. A perspective view of a typical Green’s function obtained with the cell method. The circle F12 is
centered at (Xo, Yo)= (.25, .6), with radius ro =.3. The CD solution has a "peak" value of qc(Xo, Yo)=.91.
Some irregularity in the solution near and within the circle can be seen, where the solution attempts to approximate
a logarithmic singularity and to "match" it to a monomial representation in .
as compared with the first model problem are obvious features. The "peak" value of
the CD solution is qc(Xo, Yo)= .91. Some irregularity of the solution near and within
the circle can be seen where the solution attempts to approximate a logarithmic
singularity and to "match" it, at F12, to a monomial representation in fl.

5.3. Poisson’s equation. The third test problem which we have solved by the cell
method is given as follows:

(5.12) -V. (aVd/(x,y))=c, -l<-x,y<-I

where a and c are constants within a given cell. The specific choice of a and c is:

{1, (x,y)ef,, {0, (/,y)f,
(5.13) a=

2, (x,y) ef2.
c=

1, (x,y)eO2.

The boundary condition is homogeneous Dirichlet:

(5.14) t)(+l, y) qt(x, +1) 0, -l <--x, y<--l.

As far as we know, an analytic solution of the above problem has not been given, even
though a and c are piecewise constant.

Since an analytical solution of (5.12) was not available, we compared the results
of our CD calculations to a fine-mesh finite difference solution. It was found that the
difference between the CD solution and the finite difference solution was on the same
order as the CD solution’s departure from the value of zero on the boundary. The cell
geometry used for this calculation was determined by ro .5, Xo Yo 0. Using the cell
parameters (5.4) of the optimal solution of the first model problem gave a CD solution
differing from the finite difference soliation in the fourth decimal place.

The coefficient a and source term c are bounded but discontinuous functions of
x and y. As such, we should expect the convergence of the cell method solution of
this model problem to be no faster than that for the first model problem, and no slower
than that for the Green’s function problem. Although we have not performed an
exhaustive study of the convergence properties of the CD solution of (5.12), this
expectation is confirmed by the cases we have examined. As an example, using the
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cell parameters (5.4) results in a solution with an error on the boundary of
[lerrorl[o(FlO) =6.9 x 10-4. This value is greater than the maximum error of the optimal
solution of the first model problem. In addition, this error value is comparable to the
smallest maximum error obtainable on the boundary for the Green’s function problem,
using a larger number of parameters. These results tend to confirm that the CD solution
of the third model problem is intermediate in its rate of convergence when compared
to the other two problems.

In Fig. 6, a plot of a CD solution of (5.12) is presented. The approximate value
of the computed solution at the origin is 0.127.

FIG. 6. A perspective view of a CD solution of (5.12). The convex "dome" results from the nonzero
constant source term within the circle. The solution within l’l is smoothlyjoined across F,2 to that in l’l,, where
the boundary condition is homogeneous Dirichlet. The approximate value of the computed solution at the origin
is 0.127.

6. Conclusion. We have presented here the first treatment of a p.d.e, by the CD
method where a nonrectangular domain is involved, in this case, the circular disc in
the square. We have shown in detail how easily the use of two subdomains, each with
a different coordinate system, fits into the CD scheme. We recall that the interior and
interface integrations have been performed exactly, i.e., the circular interface has not
been approximated in any way, and all the integrations have been performed analyti-
cally. Furthermore, the particular choice of weight and basis functions was made on
the basis of the convenience with which the various integrals could be evaluated, and
of programming convenience, but not as a result of constraints placed by the CD
method.

Although this work cannot pretend to be a general-purpose implementation of
CD, we have nonetheless investigated some special cases with a certain claim to general
interest. We will briefly review some of the numerical results of our treatment of the
model problems.

As described in 5, for the first model problem (5.1), it was found that accurate
solutions could be obtained. The numerical L2 and Loo errors of the solution (the two
errors are comparable for this problem) appear to behave continuously as functions
of various cell parameters. This result is consistent with the well-posed nature of the
variational formulation of the problem.

On the other hand, the Green’s function problem (5.6) is not well-posed in the
Sobolev space Hl(fl). Hence, for the version of the CD method used here, we can
expect the solution to have difficulty converging to the logarithmic singularity. It was
observed that the maximum error for the Green’s function problem was never less
than the maximum error for the first model problem, when using a similar number of



938 M. COFFEY, J. GREENSTADT AND A. KARP

cell parameters. This situation prevailed whether Ilerrorl[oo(Fo) or Ilerrorll(f’) was
used as a measure of the error in the Green’s function problem. Thus, the numerical
behavior of the maximum error seems to reflect the difficulty of convergence to the
logarithmic singularity.

Despite the difference in the convergence properties of the solutions of the first
two model problems, the CD formulation may be a viable alternative for treating the
Green’s function problem. Inasmuch as special handling is called for in any numerical
treatment of a singularity such as appears in case (5.6), and keeping in mind that the
basis set in fl2 does not contain a logarithm, the results suggest that the cell method
performs satisfactorily away from the singularity and in particular, in fl. By modifying
the cell geometry or the basis set used, it may be possible to obtain accurate results
near the singular point. A similar procedure has, of necessity, been used in the finite
difference method, and analogous techniques are known in the FEM [6].

The third model problem is a simple example of a true interface problem, in that
the coefficient a is not smooth (or even continuous). The classical formulation of the
problem would be to require that (5.12) hold separately in Ill and f12, and that g, and
a Off/On be continuous across F12, n being the normal to the interface F2. The weak
form of (5.12), on which the CD formalism is based, remains posed in
Numerically, we found the problem (5.12) to be intermediate in ease of solution by
the CD method, when compared to the first two model problems.

In order to give the reader an idea of the amount of computational effort required
using the cell method, we can compare the size and nature of the discrete equation
systems for the CD solution--with and without pretransformation--to that for a finite
difference solution. Since we have already discussed the finite difference solution to
the third model problem, we shall make the computational comparison for that problem.

For the Circle in the Square geometry (which has only two subdomains), the total
number of basis functions is M(1)+ M(2) and the total number of weight functions
is L(1, 0)+L(1.2). Hence, the total number of unknowns (including the Lagrange
multipliers) is M= M(1)+ M(2)+ L(1, 0)+ L(1, 2). In general, the matrices in (2.18),
aside from the zero blocks, are full and we have a linear system of order Mx M.
The value of M is usually smaller than that for the optimal solution (5.4), where
M 225. A direct method of solution can be used in this case where there are a small
number of unknowns.

With the pretransformation technique [ 1 to variables {O’km, Pk; k 1, 2; m m[ k]},
the total number of unknowns for the Circle in the Square problem can be reduced
to well below M. To be precise, the total number of unknowns will be M=
M(1)+M(2)-L(1, O)-L(1,2), of which there are L(1,2)r(1,2)’s, N(1)p(1)’s and
N(2)p(2)’s, where N(1) M(1) L( 1, 0) L( 1, 2) and N(2) M(2) L( 1, 2). Also as
a result of the pretransformation, the equations for the r’s and p’s are uncoupled so
that, as shown in [1], each set of these variables can be solved for independently of
the others. These features facilitate the solution of very large problems [2].

For the third model problem, CD solutions with Ilerrorlloo(I’o) on the order of
10-4 could be obtained. For such CD solutions without using pretransformation, a
linear system with an M of about 225 had to be solved. If pretransformation were
used, the solution of three uncoupled linear systems of orders L(1, 2) x L(1, 2), N(1) x
N(1) and N(2)x N(2) would be required. As an example, for the cell parameters
(5.4), we have L(1,2)= 19, N(1)=27 and N(2) =77.

The finite difference calculations for the third model problem required a grid of
50x 50 unknowns for Ilerror[lo()= 1.6 10-3, and a grid of 100x 100 unknowns for
Ilerrorll(f) 2.9x 10-5. (The quantity I[errorll(la) is here the maximum difference
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between the finite difference solution to which it applies and a "standard" finite
difference solution using a 120 x 120 grid.) To solve the system resulting from the use
of a 100 x 100 grid, a total of 170 conjugate gradient iterations were needed. A finite
difference solution based on a grid somewhere between the 50 x 50 and 100 x 100 cases
would have an estimated Ilerrorll(f) comparable with the Ilerrorll(FlO), for a CD
solution, on the order of 10-4

Thus, a finite difference system of equations for roughly 5,000 unknowns has to
be solved in order to obtain the same accuracy as that of a CD solution which requires
solving three systems, consisting of 19, 27 and 77 equations respectively.

In conclusion, we find Cell Discretization to be a convenient and accurate method
for solving elliptic partial differential equations. It can handle domains of general
shape, general basis and weight sets, and discontinuous coefficients and source terms
in p.d.e.’s Work is in progress to extend this method to nonself-adjoint, time-dependent
and nonlinear problems.
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Abstract. A general strategy for formulating numerical schemes for solving boundary value problems
(BVP) and initial BVP (IBVP) is presented. Using this strategy it is possible to formulate three point
numerical schemes for a BVP which are accurate to any order of the spatial interval. It can be shown that
when this idea is applied to a general IBVP, schemes which are one step in time and three points in space
can be obtained to any order of accuracy. Although this paper deals mainly with the linear case, this method
can be extended to any nonlinear IBVP. One of the important features of this approach is that usually it
has some free parameters and therefore the numerical scheme can be adjusted or tuned according to some
additional requirements or restrictions. Some new schemes are derived and applied to linear equations, with
different types of boundary conditions.
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1. Introduction. This is the first paper in a series of two, describing a new strategy
for deriving numerical schemes for solving two point boundary value problems (BVP).
Many numerical methods have been proposed to solve BVPs. Today it can be said
that most of these methods have shown good performance over a wide range of
problems. Of course there are still many BVPs which are difficult to solve numerically
(especially nonlinear cases) a difficulty which is usually associated with the (proofs
of) uniqueness and existence of the solution. It should be noted that many of the
methods were formulated primarily for iteratively solving (by lines, say) elliptic partial
differential equations.

Roughly speaking, apart from initial value (shooting) methods 18], there are two
classes of schemes for solving BVPs that appear frequently in the literature: the first
class contains methods which are based on finite different (FD) schemes, and the
second class contains methods which are based on the finite element (FE) approach.
Usually the FE methods depend on the Ritz or Galerkin criterion with some specific
shapes for the local basis functions [5]. These standard FE methods were recently
improved by some other techniques, like the H-1 technique, the hybrid and the mixed
techniques. However, these methods are very slow in convergence although now they
are closer to the FD methods [15]. Many of the comparisons between the FE and the
FD methods have shown superiority of the FE methods over the FD methods [5]:

the standard FD method is analogous to the FE method with linear basis
functions for the Dirichlet problem.

unlike the FD method the FE method exactly satisfies boundary conditions of
the Neumann type.

In the spirit of these arguments, which have been found to be incorrect, a general
strategy for deriving a three point FD approximation for a BVP to any accuracy level
is presented in this paper. The FD approach for numerically solving BVP’s is well
established and widely used. In a recent survey 1 ], for example, it is emphasized that
the most efficient numerical schemes for solving a general BVP are based on either
finite differences or (multiple) shooting schemes. Another commonly used approach

* Received by the editors May 17, 1983, and in revised form April 15, 1985. This research was supported
by the Technion Research Foundation under grant 121-606 (1982).

t Computer Science Department, Technion Israel Institute of Technology, Haifa, Israel, 32000.
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is the collocation method [2]: it was shown, for example, that the technique based on
the Lobatto quadrature points is very accurate and highly efficient. However, it was
argued 1] that using the Keller box scheme with Richardson extrapolation is superior
to the collocation method. A numerical method based on cubic splines was also
suggested [3], giving a high numerical accuracy with reasonable storage requirements.
Interval methods have been used with standard versions of finite difference techniques
to solve ill-conditioned BVP’s [4].

The present paper suggests a new high order FD numerical scheme for a BVP. It
is well known that many efforts have been made already to get high order solutions
for a general. BVP and some of them will be mentioned in the present paper. The
COLSYS Fortran code [15] uses piecewise polynomials (B-splines) and collocation
(at Gaussian points) for discretizing the BVP. Although this method is of the FE type,
it is worth mentioning here since by its special implementation it is very competitive
with the FD methods in terms of speed and stability. The NONREF code [16] is in
principle also a FE scheme based on the Galerkin approach. One of the schemes most
closely related to the present work is the PSVAV3 code [17]. Here the BVP is given
by a system of first order ODEs, and is solved by employing trapezoidal or midpoint
rules for the derivatives while utilizing a deferred correction based on the truncation
errors to get high order accurate solutions. The theory behind this code goes back to
1967-68 where deferred corrections were first used and proved to be more effective
than Richardson extrapolation for getting high order accurate solutions. Later this
scheme was improved by incorporating a dynamic nonuniform mesh adaptation pro-
cedure, and automatic variable order and variable step size selection which are
monitored by the equidistribution of the norm of the local truncation error [13], [17].
Another related scheme is the GAP method [19] where analytic formulas have been
used for the second order derivatives with improved accuracy by the use of Hermite
polynomials. An interesting approach is the improved accuracy scheme of [10], that
also deals with first order ODEs, where the improvement is based on an interpolation
scheme for the function’s values and its derivatives at points inside the interval under
consideration. The scheme in [10] is based on a well-documented approach which is
different than the present one. With the approach in [10] the accuracy of the schemes
previously mentioned can be improved; the possibility of improving the present scheme
will be discussed later. However the present approach is more general than [10] since
solutions obtained with the present method can be accurate to any order. The general
basis of the FD analogue for a BVP will be presented in the following section. Then
highly accurate boundary condition approximations are derived and illustrated.
Although only linear cases will be discussed here, the conclusions can be extended to
the nonlinear general case, as will be shown in a subsequent paper [12]. Finally, this
strategy is used to get numerical solutions for one-dimensional parabolic equation
(initial BYP) in the framework of one step high order methods. Schemes which are
second order in time and space are presented.

2. Numerical presentation of a BVP. The formulation of the present FD scheme
for the BVP is motivated by the following principles: (i) the ability to solve on present
computers directly and in a rapid manner certain banded systems ofalgebraic equations;
(ii) in order to increase the stability of the scheme, one should keep as small as possible
the number of grid points over which the FD approximation is spread. The numerical
methods for solving BVP’s that will be studied here are restricted to three point schemes.
It is assumed that the BVP is to be solved over the one-dimensional domain [l" (x
[L, R]), with the boundary 0[l: (x= L, x= R). Let N+ 1 be the number of discrete
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points spread evenly over the domain I with N > 0 and a spacing h (R-L)/N,
where Xk L+ kh, k O(1)N. It should be noted that the present numerical method
can be applied also to the case where h is not a constant 14]. According to the above
motivation the FD equation at any inner point can be written as"

(1) A,,_I+B,cb,+Ci,+I=D,, i= I(1)N

where

(x).

Now, the main problem is to find the most general family of BVP’s which FD
approximation at the node is expressed by (1). This approach is quite different from
the methods that have been mentioned previously. However this type of approach is
not new. A similar approach can be found in Hamming [6, p. 395] where the general
theory of predictor-corrector methods for solving initial value (IVP) ODEs is discussed.
The main advantage of this approach for IVP is that the scheme contains enough free
parameters that most of the accuracy requirements can be fulfilled minimizing the
instabilities and roundott errors. Let us consider the following general BVP

with

a(x)Cbx,= g(x, , x)

tgX OX2’ tgX3’ OX4’ tgX

subject, for simplicity, to the following Dirichlet boundary conditions

cI)(L)= CI)L, (R)

and where g is a nonlinear functional. Let us define also

og og
o’ o"

It is assumed in addition that g, b, e, a are continuous over f, and that this BVP has
a unique solution (e.g. e/a < 0 and Ib/a[ is bounded [7]). Since nonlinear problems
will be of interest only iater [12] the nonlinearity of (1) is treated for simplicity by
Newton’s method" By using an artificial time coordinate, the following iterative tech-
nique is obtained:

a(x)cb,x + b(x, d"-, b,-)dP + e(x, "-, ,-)" d(x, do"-,

The iteration procedure begins by assuming some function, (x), and with the last
equation a sequence (x), 2(x), etc. is produced until some convergence criterion
is achieved. A more precise study will be presented in the subsequent paper [12].
Hence, generally, at every iteration stage, the following linear FD model of (1) has to
be solved:

(2) a(x),x + b(x)x + e(x)O d(x).

Let us now establish the relations between the nodal coefficients set M [Ai, Bi, Ci, D]
of (1) and the BVP coefficients set m=[a(x), b(x), e(x), d(x)] of (2). The optimal
situation occurs when the solutions of (1) and (2) are the same at the grid points. The
motivation is to find under what conditions or circumstances this goal can be achieved.
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Trivially, it can be shown that the difference between the solutions of (1) and the
solution of (2) are functions of h. Therefore by defining

(Ai + Ci)h2

(3a,b,c) a,-- i Ci A,)h, 3’, A, + B + C,
2

and using Taylor expansion for i+/- around the point x, (1) can be written at any
point as follows"

h2 h2

(4) %cI) + ,8,0 + c,,, +---/3,cI)xx= +’i ot,Cb==xx + a,.

Comparing (4) with (1) it can be seen that the relation between the set M and the set
rn is through a perturbation series in the parameter h. Let us assume the following
asymptotic expansion at any discrete point i"

(5a,b) a=ao+ah+a2h2+ fl=bo+bh+b2h2+. .,
(5c,d) y=eo+eh+e2h2+ t=do+dh+dEh2+.
Substitution of (5) into (4) gives for every inner point 1-< i=< N-1 the following
equation:

(aoxx + box + eo)+h(a+b+e)

+h2(ao bo )-dp -F-dP Jr a2dP -F b2dP h- e2(

+h4 xx-.:+-+a4x+b4+e4 +...

do+ hdl + hd+. .
This equation is the same as (1) when an infinite number of terms are considered

in the infinite series on both sides of (6). In principle, numerical schemes are formulated
by truncating these series. Hereafter several schemes for the set M will be derived,
using (6) and the BVP to be solved (equation (2)).

2.1. Second order models. Second order models are the simplest numerical
approximations to (2). These approximations are obtained from (16) by truncating all
the terms of the order higher than O(h2) [13]. By comparing (2) with the reduced (6)
the following relations are obtained"

(7)
d_== =_Z=Ap withp=O, landAoO.a b e d

Thus, using (3) the following equation holds for every inner point i:

(8a) C, + +
G

+ O(h

(8b) A, (-2 2-2) a2- b2h/2+
G

+ O(h2),
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( 2) e2h2-2a2
(8c) B e 2 -}

G
+ O(ha),

d2h2
(8d) Di=dq

G
where

(8e) G ho+ hA 1, [ho[ > O(h).

Equations (7)-(8) describe a general family of schemes which are second order
accurate. It is interesting to note that if the first derivative is modeled by the classical
central differences

b(xi)
(9) (b),

2h

and, similarly, the second derivative is modeled by

a(x,)
(10) (a),= h2 (,+1-2,+,-1),

then equations (8)-(10) give the following FD model for at the grid point i:

( 2a2e2h2) a2-b2h/2a2 + bzh/2
(i)i+l + e (i "}-(11) (e)i

G G

This four parameter scheme is usually used with

(12) a2 b2 e2 0

to give the standard FD approximation for :
(e)i,. e(xi)tPi.

Another possibility for choosing the free parameters is similar to (12), but with

(13) a2 -0.

Thus, assuming again the FD approximations (9) and (10) the following FD model is

obtained:

(14)
where

(15)

(e)i e(x,)[ r/c,+, + (1 -2"q), + r/,-1]

In this special one parameter second order scheme, r/[ can be assigned any value
which is less than O(1/h). Thus, it is possible to impose some additional requirements
and properties which the standard scheme, (12), does not have. For example it is

possible to find a parameter r/such that the absolute value of the truncation error of
the scheme described by (13) will not be larger than that of the scheme described by
(10). Or the free parameter can be used to reduce the truncation error still further. In
this case, the truncation error of the scheme defined by (13) is

(16a)

T -h2
a2- (Ix a2

a 12a

(d,,x+bd,, ( b e))]+\12 1--+d a= 12a i?
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and that of (12) is

(16b) T=12---- x+e +e

In order for the two truncation errors to be as close to each other as possible, the
following equation has to be fulfilled:

:max

Thus, for example, for the case where b 0 we have

(17) /=g.

The same result can also be obtained with the FE method by assuming linear basis
functions (cf. [5, p. 259]). It can be shown that the truncation errors of the schemes
described by (16) and (17) have the same absolute values with opposite signs (this
can be verified also numerically by [5, Table 5.5]). This result also supports another
fact that was previously mentioned in [5], namely that the (converged) errors of the
FE method are lower bounded, and those of the FD method are upper bounded when
compared to the exact solution. The minimum truncation error (T 0) is obtained at
any point for the following value of r/:

(18) ’O =i- 1 +e +--l..axx
Thus, by definition, this is a fourth order scheme and it presents one subfamily of the
schemes of this order that will be discussed shortly. It should be noted that for the
b d 0 special case, the FE method with the quadratic shape functions also suggests
that /- 12"

2.2. Fourth order models. Most of the recent numerical methods for BVP propose
fourth order schemes. The PASVA3 method [17] (which is based on the IDC method
[13]), one of the best known of these procedures, is most similar to the present one.
With this method the second order accurate solution is used to approximate the
truncation error, which in turn is used as a deferred correction (source term) to get
again a higher (4th) order solution. However unlike the present method, some
instabilities and wiggles were detected for several BVPs when the deferred correction
method was used to get high order solutions. A possible explanation for this may be
the fact that as the accuracy demands increase the correction terms are spread over a
larger number of grid points; nevertheless, this observation may be a subject for a
more careful investigation. On the other hand the present numerical scheme is limited
only to three grid points, and therefore similar instabilities may be eliminated. The
present fourth order method is obtained again from (6) by asking the O(h3) and O(h4)
terms’ coefficients to have the following relations:

apx,,x + bp
(19) 1- --ff ,,x d- ap+2dxx d- bp+2t d- ep+2t dp+2 with p 0, 1.

It can be shown that if the variation of the m group’s coefficients, a, b, e and d with
x is slower than that of , then (19) can be fulfilled by the following relations at any
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point i"

(20a,b,c) a2 hzao+- eo + b2 hzbo + .-7---, e2 h:eo,
ao/ lzao

121( b) blel(20d,e,f) a3-- h3al q- el + b3 A3bl + e3 h3el,
all’ 12al

with [h:l > O(h2).
Equations (20) can be substituted back into (3) to formulate the tridiagonal matrix

coefficients"

(21a)

(21b)

(21c)

where

C, K( 5) 1( b2

bae)+ +- e+--+ha
A=K

a b 1
e+-h+12 a

B=K e- -- e+

K 1 + K2h2 K2--
AoA2 + A 1A3 h

G

If (9) and (10) are considered as a reasonable model for the first and second derivatives,
then according to (21), is approximated at the grid point as follows"

[ (_) ] [ 1(1 be+otK2h2 +dP Ke-2aK2h2 - e+(e),,+l -i e+ +h24a
(22)

+,_1 [l-(e+-)-h be ]+aK2h2

24a

This is a one parameter model for the fourth order numerical approximation for the
BVP (eq. (2)) and can also be tuned. The truncation error of this scheme can be found
by assuming as before that the variation with x of the m group’s coefficients is slow
compared to that of the variable "
(23)

12K2+ x
144 a -5

+ [-2(e--) +(+ 12K2) (e +-) ] x,,}
The simple situation is when K: 0: then for the case where b 0 as in (17), the term
(e)i is modeled by an equation similar to (22) but with

(24) ’r/=-i

(this result is embedded implicitly in (18)). It is not trivial to get this fourth order
model (22) with the FE method. The present fourth order approximation is tested in
the following example.

Example 1. Let us consider the following linear BVP:

(25)
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with L 0 and R 1. The following boundary conditions are imposed"

(26) dp(x O) P+ Q-1, dp(x 1) P e + Q e-2-1

where e is the natural exponent and P, Q are any two constants.
The FD approximation at every point is (see (21))

(27a) C =-N2K 1 +

(27b) A=
2

1-

1
(27c) B 2(1 NE)K +-

6’

where N is the number of equal intervals spread over 2. The results for the second
and fourth order schemes can be verified in Table 1. It can be seen that (27) represent
actually a fourth order scheme.

TABLE
Second, fourth and sixth order schemes’ errors for example 1, at x 0.5 solved with equal spread mesh.

Scheme

2nd order
PASVA3 [17] 2nd order
4th order
PASVA3 [17] 4th order
6th order
4th order boundary

condition

N= 26

0.69580 (-4)
0.19190(-3)

-0.82340 (-8)
0.55432 (-6)

-0.15838 (-8)

0.75417 (-8)

N=51

0.17401 (-4)
0.48513 (-4)

-0.51991 (-9)
0.42657 (-7)

-0.24759 (-10)

0.47148 (-9)

N 101

0.43585 (-5)
0.12204(-4)

-0.31547 (-10)
0.35546(-8)

-0.41197 (-12)

0.29815(-10)

N 201

0.10903 (-5)
0.30572 (-5)
0.19706 (-11)
0.29667 (-9)
0.64931 (-14)

0.18933(-11)

It is important to note that the errors vary linearly with K2, approximately like 5
10-6 K2. This scheme can be compared to the PASVA3 scheme [17] for which results
are also presented in this table. The second order solutions of this scheme were obtained
by taking the forward differences for x in (25), with the correction term (N/2)dPxx.
The derivative in the correction term was approximated by the standard central
difference scheme (10). It can be seen that both schemes produce second order solutions.
However, the solutions obtained with the present scheme have smaller errors and are
obtained while solving the system only once. In any event, for this case, both systems
use three points schemes and the behavior of the errors is similar. Comparing the
fourth order solutions, it can be seen that the present scheme produces errors which
are much smaller than those of the PASVA3 scheme. It can be observed also that the
latter is not exactly fourth order [’O(h3"7)]; this may be due to the influence of
spreading the FD approximation of the corrections over many grid points.

2.3. Sixth order models. The sixth order model can be formulated in a similar
way to that of the second and the fourth order models. It is necessary to fulfill (7)
with the first and second terms of the series presented in (5), and to fulfill (20) with
the third and fourth terms of this series. After this is done, the following O(h4) and
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O(h5) equations are obtained:

(28) fx6+-
q- ap+4xx + bp+4x + ep+4 dp+4,

After reducing (28), one can get the following relations:

(29a)

(29b)

p=l,2.

Ao, e2 A2
a4-- A4a +720a 3 ---5+4 +- e+

b4--A4b+720a2 3e2- +

(29c) e4 A4e,

eb
12a’

and the tridiagonal matrix coefficients at any inner point are

(30a)
+ +---- e++ha

h2 [ e2 b4

60 4a 12a
b2e h3eb( b2)3a2] +480a2 e-a

(30b)
A, L(- 2-) Kh2( b2 b-a)+-- e+-ha

h2 ( e2 b4

+6--- a 12a
be h3eb( b2)I-
3 a2] 480a2 e aa

(30c) Bi=L e--- -K e+ -360a 3e2-+4eb2),
where

L K + K4h4 and K4
AoA4+ hA1A5

G

This sixth order scheme has been applied to the BVP in Example 1, and some of the
results are given in Table 1. It can be seen that the scheme described in (30) is of the
order O(h6). Another simple example is that which is given in [5, pp. 259]. With
K2--K4--0, the FD coefficients are as follows:

a b e (eh)2

c,
2h 12 240

e (eh)2

12 240

5e (eh)2

6 120

a b
h2 2h

With the approximations given by (9) and (10) it can be shown that the sixth order
model for the term (e) is similar to that given by (14) with

((31) r/= 1+20,/.
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Although it is quite easy to generate this scheme from finite difference considerations
as it was shown here, it is extremely difficult to find the appropriate basis functions
for a FE method to give the results presented in (30) and (31).

3. Boundary conditions. The accuracy of the BVP’s solutions depends also very
much on the numerical approximations to the boundary conditions.

Let us consider here only linear boundary conditions. If "0" is a grid point on
01 and "1" is the closest grid point to "0", then the entries corresponding to the
boundary condition in the tridiagonal algebraic system have to take the following form:

(32) Boo+ Col Do.
This algebraic equation simulates the general boundary condition of the form:

(33a) bndp, + en dn.
As for the general case (4), (32) can be manipulated at the point 0 in a similar way
to (3) to give

(33b)

where

(33c,d,e) Coh2
o-

2
=Coh, y=Co+Bo.

In order to establish the FD approximation, (32) and (33b) have to be compared.
Thus the next step is to assume a perturbation series for a,/3 and 3’ as in (5), where
the accuracy of the FD models depends on the truncated terms in these series. For
consistency, let us assume the following relation:

b(x,)
2a(x,)

and then (6) does also apply.

3.1. Second order models. The second order approximation for the boundary
condition is found in a similar way to that of a regular inner point as is derived in

2.1. Since it is desired that (6) will approximate (32) to the second order then

or
p=0, 1;

(34a,b,c) bo =/xoH-, eo =/xo(en + He), do txo(dn + Hd),

2a
(34d,e,f) bl =/zlH--, e =/z(e + He), d tz(da + He),

where/Zo and/xl are two parameters, and

hbn(34g) H
2a hb"

Thus

(35a,b,c) Co=H--, Bo=en+H e- Do=dn+Hd.

The term/Xo+ h/z was factored out from (35). The main difference between the
boundary equations (35) and the equations governing the variation of over 1, (8),
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is that the scheme at the boundary does not have any free parameter to match additional
demands from the governing system of equations. Thus, it can be expected that the
boundary conditions will reduce the capability to produce additional schemes of the
same order. This limitation is not so dramatic, since the free parameter may be varied
with x (or with the index i), to get its imposed (zero) values at the boundary.

3.2. Fourth order models. In order to recover the fourth order approximation,
similar equations to those presented by (19) have to be formulated. Choosing/z2 as
the free proportional parameter, the following relations have to be fulfilled:

2a 2a [ () he](36a) b2 =/.2H--+/.oH2 b-- E e-

(36b) e=e+ hb-= +

hb -7

where E 1 hbn/4a; and with /’/’2 0o Thus

b2(36d, e, f) Co =-h-’ Bo e2- Co, Do d2.

This approximation for the boundary conditions has one free parameter /2. The
performance of this scheme is checked below.

Example 2. For checking the above fourth order scheme, let us consider the
problem given in Example 1, with the following change in the boundary conditions"

(37) x+2 =3P-2 at x =0.

Table 1 summarizes some tests with the application of (36) to the boundary
condition (37). The fourth order of the scheme was recovered when it was used
with (27).

4. Numerical results. In this section, some problems that appear very often in the
open literature are tested. The comparisons are done over a uniformly spaced mesh.
The codes were programmed in FORTRAN as well as in PASCAL (for double check),
and were run on the IBM-3081 and on the VAX-780. On the IBM machine, the programs
have been run under the Q option (64 bit word) and a similar option have been taken
when running them under the VAX machine. The errors are defined here as
MAX/]Ycomputed Yexact]-

Problem 1. The same problem as [20, Problem 2]:

y"=Ky+d, y(O)=y(1)=O

where K=400, d(t)=2OO+2(lOO+r2)cos(2rt). The exact solution is y(t)=
cosh (20t- 10)/cosh (10)-cos2 (rt). The FD approximation at the grid point is:

Yi+l 2yi + Yi-1 { khE kEh4
h l + r4--+ r6-) Ky

kh2 k2h4--l+r4-+r6-)d(t)
h4kh2 kh2d,,(t d(4)(--r4-i- l+r6 30] --r66-- t)=O
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where the second order solutions are obtained for r4 r6--0 while with r4 1, r6 0
and r4 1, r6 0 the respective fourth and sixth order solutions are recovered. The
comparisons are given in Table 2. The results show that all methods produce more or
less the same order of accuracy as they were designed for. However, the results of the
present scheme are somewhat better than the others. In any event these results prove
the fact that with the present scheme it is possible to get solutions which are very
accurate.

TAaLE 2
Maximum error comparisons for Problem 1.

Scheme

present, 2nd order
present, 4th order
present, 6th order

PASVA3 [17] 4th order
PASVA3 [17] 6th order

Imp. Acc. [10] 6th order

N=17

:.03 (-a)
9.80 (-4)
2.69(-5)

2..3 (-2)
4.28 (-4)

6.56 (-3)

N=33

5.55(-3)
7.8 (-5)
4.98 (-7)

1.43 (-3)
8.39 (-6)

1.19(-4)

N =65

1.46 (-3)
4.81 (-6)
8.35(-9)

1.19(-4)
1.86 (-7)

2.14(-6)

N 129

3.67 (-4)
3.03 (-7)
1.32(-10)

9.99 (-6)
4.04 (-9)

3.91 (-8)

Problem 2. The same as [20, Problem 4]"

y"=z, z"=d(t); y(O)=y’(O)=y(1)=y’(1)=O.

For d(t) e’(t4+ 14t3+49t2+32t- 12) the exact solution is y(t)= t2(1 t)-e ’.
The FD approximation up to the fourth order at the mesh point is

Yi+l 2yi + Yi-1 kh2 ( h2 )hE --z= r4-- d + r6- d"

Zi+ 2zi + Zi-

h2 d r4--- d"ff- r6- d (4)

The main difficulty is to get the appropriate boundary conditions for z(t). Using the
formulae in 3, subject to the above boundary conditions for y(t), one can get the
following relation at the first grid point i= 0"

2yl 2 + h2[do h( hd,) 1hE-3zo zl-r4- --+r6 d+
and a similar equation at N. Due to these boundary conditions it is necessary to
solve simultaneously the two governing equations at every grid point. Here the block
tridiagonal inversion procedure [14] is used. Comparisons of the maximum error are
given in Table 3.

Problem 3. The same as [20, Problem 5]:

y"=(y-z); z"=a(z-y).

Here it was chosen also [20]" s 10, c 10-3 and a =/3 2.5. The FD approximation
up to the fourth order is

Yi+l 2yi + Yi-1
h2 Kfl(y z) O,

Zi+ 2Zi d- Zi_

h 2 -Ka(z-y)=O,
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TABLE 3
Maximum error comparisons for Problem 2.

Scheme

present, 2nd order
present, 4th order
present, 6th order

PASVA3 [17] 4th order
PASVA3 [17] 6th order

Imp. Acc. [10] 6th order

N=17

5.52 (-2)
2.94 (-3)
9.93 (-4)

7.70(-3)
2.11(-3)

4.41 (-3)

N=33

1.38(-2)
1.84 (-4)
1.55(-5)

6.01 (-4)
4.69(-5)

8.02 (-5)

N =65

3.46 (-3)
1.15(-5)
2.43 (-7)

4.64(-5)
1.07 (-6)

1.46 (-6)

N 129

8.62 (-4)
7.19(-7)
4.10(-9)

3.11 (-6)
2.33(-8)

2.65(-8)

where

h2

K l + r4(a + ).

The boundary conditions are derived from the equations in 3, to give

h3c h2

YN YN-I + +mflK (yv zs O,
6 2

h3ac h2

Zo Zl++maK Zo Yo) O,
6 2

h otc h2

zu z-i hc-+aK zrv yN O.
6 2

The maximum error is compared with Table 4. The block-tridiagonal procedure was
used also here to get the solutions. When applying the deferred correction method
with equal intervals, some wiggles are encountered as the values of a and /3 are
increased. These wiggles are of the order of the maximum error. The possibility of
applying the improved accuracy procedure 10] to the present scheme was also checked
with this test problem. As it is presented in Table 4, it was found that there is not
much of improvement by doing so. The reason for this may be due to the fact that
both truncation errors are of the same order.

TABLE 4
Maximum error comparisons for Problem 3.

Scheme

present, 2nd order
present, 4th order
present+ Imp. Acc. 4th order

PASVA3 [17] 4th order

N=17

6.11(-2)
3.36(-3)
2.12(-3)

5.62(-2)

N=33

1.53(-2)
2.10(-4)
1.92 (-4)

3.61 (-3)

N =65

3.82 (-3)
1.31 (-5)
1.02(-5)

2.31 (-4)

N 129

9.55(-4)
8.19(-7)
7.78 (-7)

1.41 (-5)

5. Numerical presentation of a IBVP. The general concepts for getting high order
numerical schemes for a BVP, that were established previously in the paper, can be
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extended also to IBVP-initial boundary value problem, helping to solve them more
accurately and in a stable manner.

Let us consider the following linear IBVP for (x, t):

(38a)
0 02(I 0(I
=a+b+e-d
Ot Ox2 Ox

with the boundary conditions

(38b) (x= L) L, (x= R)=R-

The Dirichlet boundary conditions were chosen for simplicity and without loss of
generality. For solving (38), a uniformly spaced grid with an interval h is spread over
1): (L -< x _-< R). The numerical solution will be obtained for the discrete time values
tk, k 1, 2, 3," ", beginning at k =0 with the initial conditions for "
(38c) (x, to) ,(x).

Let us denote the discrete values of by ’ (xi, t,), where xi L+ (i-1)h. For
the same reasons that were discussed previously, it is desired that the solution " at
every time t, will be obtained by a three (spatial) point’s numerical scheme. In order
to achieve high accuracy, other numerical methods use linear multistep techniques
11]. However, since one of the requirements here is that the numerical scheme will
be as stable and simple as possible only one-step techniques are of interest here. Thus,
the main assumption about the numerical solution of the IBVP at the nth time step is
that it will uniquely depend on the solution from the n- 1 time step:

(39) A (ij S((i)n-1i-1 -- B () -}- C ( 7+1 ),

where S is a linear operator acting on the solution at the n 1 time step. The coefficients
A, B, C and operator S depend solely on the equation to be solved and not on the
solution. The second assumption is that the operator S will be as similar as possible
to the operator on the right hand side of (39). Thus it is assumed that

(40)

Following (4), (40) can be written at the point also as follows"

(41)

h2 +ZdPxxxx + daxx +fl +Y+ flxx 2

ax++,+-( +- + d =0

where the definition of the coefficients in the last equation is similar to the definitions
given by (3). Using the last equation it is possible to derive expressions for these
coefficients, subject to the requested scheme’s order of accuracy. In order to bring the
last equation to a similar form as that of the original IBVP, (38), the different functions
at the time level n have to be expanded around the n- 1 time level. Let us define

A tn tn--1

and the time as

?=t,+OA, 0-<O_-<1, withO=l-O.
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Now (41) can be rewritten around the time ? as follows:

hE h2

(, a)x, +( ),I, + (/- ),t,+( )xx+(, a)xxx +’..

++/-[
(42)

hE h2

+--(o + )xxx+ o + ),t,,,x +...
6

A2 32

+2Ot2[(O20--2)txx+’’" ]+ 0

and it is clear that (42) presents, in general, an equation that should resemble (to
certain order of h and A) the original (38a). It is reasonable to assume that the change
with time of the coefficients appearing in that equation is slower than that of .
Therefore, eliminating the time derivatives from (42) using (38a), a new equation
involving only x derivatives and powers of h and A is obtained. Hereafter, some
numerical approximations which are based on (42) are derived and examined.

5.1. Second order approximations for the IBVP. The second order approximation
is obtained by a suitable truncation of the infinite series in (42). Since this equation
should be fulfilled exactly for every set of the parameters, the following system of
equations govern the relations between the parameters to the order of h2 and A2:

/ A
(43a)

(43b) A-(__Aft- +

(43c) CA+CA_ A
Aa

BA+ BA BA+ BA

Bfi. + B-A A- CA-vA B+--B,+ B-A A- CA--A(43d) A2ab (2 A_

B AA- BA+Cfi"+ BC](-)-
h2+ C hAab
12

/Tto2 m21 c# [h2

B*+A J-- -+ C- A2"ab

(43e) -(A.2-02) + bO2 +

b_ (A62_.,oZ)(B_ AAA BA+
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where

(44a,b) A= l+AOe+A202e2 B=AOb(I+AOe)2’

(44c,d) C=AO a+ (2ae+b2) =l-Ae+
2

(44e,f) t Ab(1 + Ae), =A a+ (2ae+b2).

The system (43) has always a solution since the determinant D of this system has the
following form"

( hEA h2A2

D=(O-O) l+--b- 12
eb-AeO

-.A-(hE/6)A[AA2 A

B,+ B-A Aa -- e --b(2+O+ 02) ---ebOhE e fi- A-(hE/6)A
12 b l+Ae(O-+O)+AE/2e20

and it can be verified that D # 0 for every O in the range of 0_-< O, O-<_ 1 with a 0.
Therefore, (43) and (44) define an infinite number of second order schemes for an
IBVP, which may be obtained by changing the parameter O between 0 to 1.

Let us formulate specifically some of these schemes"
(1) The Crank-Nicolson (CN) scheme [9], O =1/2. This is a well-known second

order scheme and may be recovered from (43) very easily by assuming O- 0.5"

(45a,b) _A /3_B

(45c,d,e)
ti C a C /3 B
3’ A’ y A’ y A

(2) The backward implicit (BI) scheme, O 1. This scheme is called the BI scheme
since the IBVP and the FD approximation are compared at the time t_. The relations
between a and fl for O 1 are obtained from (43)"- a(l+Ae)+-b2

+-b Aa+ =- Aa-----(l+Ae)

ab(l+Ae)+ fl a(l+Ae)+ b2

r
=-b Aa-(1 +Ae)

and the relations between the other parameters are

(46a,b) = 1 +ae+(ae) = h/6-Aa
r 2 r 2 l+2Ae-(h2/12)(b/a)2’

(46c,d)
1 b h2/6 Aa h2/6+ Aa

V 2al+2Ae-(hE/1E)(b/a)2’ 21+2Ae-(hE/12)(b/a)2’, l_ b_. h2/6+ Aa
(46e)

2 a l+2Ae-(h/12)(b/a)"



956 AVI LIN

The case of O 0 is very similar to that of O 1. Since this scheme is created by
comparing the IBVP to the FD approximation at the time t,, it is called the forward
implicit (FI) scheme, which is somewhat similar to the BI scheme and will not be
derived here explicitly.

5.2. High order boundary conditions for the IBVP. Just as was done for the BVP,
the boundary conditions for the IBVP should be given an appropriate FD approxima-
tion in order to be fitted generally to the accuracy of the scheme. Only the Neumann
boundary conditions for the IBVP will be discussed here. Let us assume that at the
point i= 0 the following boundary condition is imposed"

(47) --=f(t).
Ox

It is also assumed that the finite difference approximation at this point is"

Checking this scheme at the point , the following equation is obtained"

[ ( ehebh32a
[ (ehe_b_h3_’ ( h2

(48) + rb, A(fl’O fl’O) A(CO CO)
2a 6a2 ] +

+o,,

A2 (eh2 e_bh3 (h2

--2 c:- ] +

6a:](C-)+"

6a2] A(OC + OC) +
0

where

and

fl B,+ C, fl B+ C,

D,-/,=(h h2b2a h3(e-b2/a))6a
[f(t-)(C-C)+f(t")A(OC + OC)]+

h3(C- )
6a

For the CN scheme (O 1/2) this formulation is reduced to the following equation at
the boundary point i= 0:

(i)O0 0 1/2[..(00)
_

where

2a/h:
E(rb) =e-2a/h2 beh/3ao+ fl1-bh/3a 1-bh/3a

(b-2a/h:- hb:’/3a- he/3a)f+ bh/3af+
1-bh/3a
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Equation (48) can be applied also to the BI scheme ( 0) with the following formula:

o 1-Abf’-l+ 1+ e f" e oA -- - +12
a

+-[(1 + Ae):-’+x]
2

where

2 2

This approach can be extended to derive the FI formula at the boundary, by choosing
0--0

5.3. Example. Let us consider the IBVP (38) with

b(x)=2Pa(x), e(x)=P2a(x)-Q, d(x)=O

and with the initial condition: pi(x)=xee, and boundary conditions: (L, t)=0,
(R, t)= e-(1+’). This problem has the following exact solution for L= 0 and R 1"

(x, t) x e-(+c’).

Tables 5 and 6 summarize the solutions for two different functions a(x), which
were obtained with the BI scheme. The second order in time and fourth order in space
can be observed.

TABLE 5
Numerical solution’s errors of the IBVP of 5.3 with a(x)= e at x =0.5.

At

0.02
0.04
0.08
0.16
0.32

N= 26

0.673 (-7)
0.268 (-6)
0.105(-5)
0.401 (-5)
0.159(-4)

N=51

0.425 (-8)
0.168 (-7)
0.659 (-7)
0.255(-6)
0.100(-5)

N=101

0.268 (-9)
0.109(-8)
0.413(-8)
0.161 (-7)
0.627 (-7)

N 201

0.171 (-10)
0.688 (- 10)
0.261 (-9)
0.101 (-8)
0.393 (-8)

TABLE 6
Numerical solution’s errors of the IBVP of 5.3 with a(x) =sin (x) at x =0.5.

At

0.02
0.04
0.08
0.16
0.32

N =26

0.289 (-8)
0.116(-6)
0.468 (-7)
0.189(-6)
0.759(-6)

N=51

0.188(-9)
0.737 (-9)
0.310(-8)
0.122(-7)
0.485 (-7)

N 101

0.121(-10)
0.471 (-10)
0.205 (-9)
0.771 (-9)
0.313(-8)

N 201

0.763 (-12)
0.305 (- 11)
0.129(-10)
0.490(-10)
0.208 (-9)

6. Conclusions. The present paper presents a general approach for deriving high
order numerical schemes for solving BVP and IBVP. Most of the schemes contain
enough free parameters so that it is possible to adjust the method according to some
additional restrictions. Although most of the discussion was done for the linear case,
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the same approach can be extended to the nonlinear case 12]. The high order accuracy
of some typical numerical schemes was verified by several examples. The present
approach is different and more general than that of [10]. More detailed comparisons
will be made for the nonlinear version of this new strategy in a forthcoming paper 12].
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AUTOMATIC GKS STABILITY ANALYSIS*

MICHAEL THUNIt

Abstract. A new algorithm is presented for automatic stability investigation according to the theory of
Gustafsson, Kreiss and Sundstr/Sm. It is more efficient than approaches tried earlier, by taking advantage
of the special structure of the system of algebraic equations whose solutions govern stability.

The software system IBSTAB implements this algorithm, as well as procedures for checking yon

Neumann- and P-stability. IBSTAB combines symbolic formula manipulation and numerical routines.
Furthermore, a user oriented problem description language is included. The software system is entirely
FORTRAN based, the symbol manipulation parts being written in LISP, using the FORTRAN coded
LISP-F3 interpreter.

Results are presented from tests, in which IBSTAB was addressed to problems with known results.
Also, a study is presented, in which IBSTAB was used as a tool in the development of stable numerical
boundary conditions for a problem in fluid dynamics.

Key words, stability, hyperbolic initial-boundary value problems, mathematial software, symbolic for-
mula manipulation

AMS(MOS) subject classifications. 65M10, 65N10, 65V05

1. Introduction. This paper concerns automatic investigation of stability of
difference methods for hyperbolic initial-boundary value problems. We consider linear
first order systems in one space dimension. The crucial parameter on which stability
is generally dependent is A -= At/Ax, i.e. the relation between the step sizes At in time
and Ax in space. The stability investigation will amount to finding a critical A-value
A such that the difference method is stable if we choose A [0, A] and unstable
otherwise.

To make such an investigation, there are some possibilities that might seem
plausible at first thought. One is to run the difference scheme for some values of A
and look at the solutions to see if those A-values gave a stable approximation. Another
possibility is to perform a von Neumann analysis (i.e. a Fourier analysis, which is only
applicable on pure initial value problems and on problems with periodic boundary
conditions), disregarding the boundary data, and use that stability limit also for the
mixed problem. The third immediate idea is to write the difference equation on one
step form

/,/n+l Qu

and then study the eigenvalues of the matrix Q (which contains the coefficients of the
ditterence formulas). It seems reasonable to think that the ditterence approximation
is stable for all A-values that give a spectral radius of Q, which is less than or equal
to one.

However, from reasons that are discussed in [29], none of those three ways is
sufficient if one wishes to investigate the stability of mixed problems. For that kind of
problem some special theory is needed. Consider first the energy method [24]. It has
the drawback of being in general applicable only on problems with nonhomogeneous
boundary conditions (see [10], where an example is given, that demonstrates how
unhomogeneous boundary conditions can affect stability). Furthermore, it only gives
a sufficient stability condition. There is thus need for a more powerful theory.
The normal mode method was developed by several authors, notably Godunov and

* Received by the editors June 21, 1984, and in revised form March 10, 1985.
f Department of Computer Sciences, Uppsala University, S-752 23 Uppsala, Sweden.
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Ryabenkij [6], Kreiss [15], [16] and Osher [22], [23]. Finally a general stability theory
based on normal mode analysis was presented by Gustafsson, Kreiss and Sundstr6m
11 ], 12] for the class of initial-boundary value problems that we are discussing. This

theory, henceforth called the GKS-theory, covers linear, first order hyperbolic systems
in one space dimension. Since 1971, when the GKS-theory was first presented, related
work has been done by Varah [30] for parabolic problems, by Strikwerda [27] for
semidiscretized equations and by Michelson [18] for multidimensional problems.

The main topic of this paper is a new numerical algorithm for implementing the
GKS-theory. We also present a software package, named IBSTAB, which contains this
algorithm and combines it with routines for symbolic algebraic manipulations. The
presence of symbolic analysis in IBSTAB is inspired by the software package DCG
[5], where an artificial intelligence approach to mathematical software is used.
Analogous to DCG, the IBSTAB system also includes a user oriented problem descrip-
tion language. Presently, IBSTAB exists in a pilot version and is not yet available for
general distribution.

In order to make the paper self-contained, we give a review of the GKS-theory
in 2. Then 3 gives an overview of IBSTAB after which a more detailed description
is given in 4-6. Finally, test results are presented in 7 and future plans are discussed
in8.

2. The GKS-theory.
2.1. The details of the GKS-theory will just be described briefly, as the topic of

this paper is not the theory in itself but the implementation of it. The reader who
wishes a complete presentation of the theory is referred to [11]. The presentation in
that paper is made for homogeneous initial conditions, but the theory can be modified
such that it holds for inhomogeneous initial conditions as well, as is shown e.g. in 10].

We will present the stability theory for a quarter-plane problem

(2.1)
u,=Aux 0_-<x<, 0=<t,

u (0, )
where

u (ul,. ", ua T, A d x d-matrix

with suitable boundary conditions.
We take A to be constant. However, the theory also covers variable coefficients.

For A A(x) it is shown in 12] that it is sufficient to study the case A A(0), i.e. it
is sufficient to analyze a problem with a frozen coefficient.

Furthermore, ifthere are two boundaries, then the theory shows that each boundary
can be analyzed separately, "removing" the other boundary. Thus, it is sufficient to
study quarter-plane problems.

Now to the difference approximation of (2.1). The grid is defined by

xj=j. Ax, j=0,1, ...,
t,, n. At, n =0, 1, ,

and the basic (interior) difference scheme has the form

Q,u;-’=o, j=r,r+l,...

p

(2.2) Q Y’. A,,E, Eu’ u"+ 1,
j=

u e(o, o).
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As Q,, uses r points to the left, the basic approximation can not be used at
Xo, Xl," , xr-1, so there we will have to apply boundary conditions. These can be the
conditions that are given for the pde problem, but they can also be difference schemes,
which will then be called extra (or numerical) boundary conditions. The choice of
extra boundary conditions is crucial for the stability.

By formally introducing uj -z uj in (2.2) we arrive at a resolvent equation. It is
assumed that the coefficient matrices in the operators Q can be diagonalized by one
and the same transformation

T-IAT D,, diag (...(1) ...(d)h
U,,j U,,j ],

This assumption is not a severe restriction since in most cases the matrices A,,
are powers of the coefficient matrix A, which, because of the hyperbolicity, can be
diagonalized.

With the transformation w= T-j inserted into the resolvent equation, this
equation takes the form

(2.3) z D,,kEk. w=0, j=r,r+l,’’’.
--1 k=

Equation (2.3) represents d scalar difference equations for the components w)) of w.
We seek the solution w which is bounded as j--> o. This solution has the general form

(2.4) w 2 E Ok,," Vk j
k=l v=0

where mk is the multiplicity of Kk and trk,, are unknown scalar constants. Vk will be
unit vectors. Kk are the solutions such that [Kk[ 1 of the characteristic equations

p

K(.r))k+r(2.5) z a(,)( =0, z= 1,2,-.., d
-1 k=-r

corresponding to (2.3).
The solution (2.4) is substituted into the boundary conditions. This gives a linear

system of equations for the unknown coefficients trk,, in (2.4):

Mtr 0, o (O’1, ", O’N)

Strong stability (cf. [11, Definition 3.3]) is established iff the condition

det M 0, Izl >= 1

is fulfilled. In analyzing stability we look for solutions that violate this condition. Thus,
the determinant condition is

(2.6) det M(K1,..., Kv, z)- 0.

If (2.6) is satisfied for some value z; [z[ > 1, max [ukl < 1, then the scheme is unstable.
The case det M- 0, Izl- 1, can be separated into three cases.

i) All the corresponding Kk are less than one in magnitude. Then the scheme is
classified as weakly stable (cf. [11, Def. 3.2]).

ii) There is some /k such that [kl- 1. If all such /(k are multiple roots of (2.5),
then the scheme is classified as weakly stable.

iii) At least one Kk is on the unit circle and is a single root of (2.5). In that case
the scheme is unstable.
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2.2. The practical use of the GKS-theory requires solving a system of polynomial
equations:

c((), z) 0,

Cd(l(,(d), z)--O,
g(r, r2,""", r, z) =0.

Here q, j 1,..., d are the characteristic equations and g is the determinant
condition obtained from the boundary conditions.

In the system we have d + 1 equations and N+ 1 unknowns, d <= N. Now, for a
fixed z, C(K (), Z) will be a polynomial in K

) only, having j solutions K), , Km,(J)
such that IKo)I< 1. All those solutions, taken together for j= 1,.-., d, are denoted
K],. , Ku. In order to get a system of N+ 1 equations with N+ 1 unknowns we just
let each q be repeated/z times, at the same time renaming the equations. The system
of polynomial equations to be solved in order to investigate stability will then be"

f1(1, Z) O,

(2.7) fu(:rq, z) O,
g(,..-,,z)=0.

The stability investigation means solving (2.7) for all solutions with Izl >- 1. This is,
despite the simple structure of the -equations, a formidable task. Stability investiga-
tions that have been published for special schemes (e.g. [20], [25], [21], [13], [26])
show that already for small problems a lot ofwork is required to pursue a GKS-analysis.

To simplify the analysis, some researchers have tried to derive new criteria, based
on the GKS-theory but more convenient for practical use. Those criteria have only
been sufficient, so they do not replace the general theory.

The most far-reaching work along these lines has been done by Goldberg and
Tadmor [7], [8], [9].

Their efforts improve the analytical tools for stability investigation. However, the
problem remains of solving (2.7) for cases that those criteria do not cover. Some work
has been done to develop automatic techniques for that purpose.

Oliger [20] used reduction methods to reduce (2.7) to one polynomial of one
unknown. This equation was then solved by an ordinary numerical root finder. There
were two problems with this approach. First, the reduction was complicated. Secondly,
the degree of the resulting polynomial was very high and finding its roots was therefore
very time consuming.

Another approach would be to attack (2.7) with some iterative method directly,
without reducing the system. Remember that our problem is: find all solutions to (2.7)
such that Izl >_-1. To be able to do this it is necessary to invent some way of finding
good initial guesses to all such solutions. When we have a good initial guess, then we
can use, e.g., Newton’s method to find the corresponding solution.

One way of finding initial guesses is to use a continuation method. This approach
was tried by Coughran [4] and also, in a smaller investigation, by Swenson [28]. Both
experienced trouble at points where several continuation paths are crossing. Coughran
also noticed that a complete stability investigation using a continuation method was

very time consuming. The timing was furthermore sensitive to the choice of initial
splitting in the continuation method. This is of course a serious drawback if the splitting
is to be chosen automatically.
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To conclude" In order to investigate GKS-stability some automatic procedure is
needed and methods tried in the past have shown serious drawbacks. This is the
motivation for the work that has been done within the IBSTAB project.

3. IBSTAB---an overview.
3.1. The central point of IBSTAB is that it contains a new method for finding

initial guesses to the solutions of (2.7). The approaches that were described in the last
section could be applied to any system of polynomial equations. However, (2.7) has
a very special structure, each f containing only one Kj. By taking advantage of that
structure it has been possible to develop the efficient numerical algorithm that is the
heart of IBSTAB.

The basic idea of the method is: Only look for solutions where the z-component
is close to the unit circle.

Suppose that for some ;t Ao all solutions are such that Izl -< 1. Furthermore,
suppose that a slightly increased ,X A Ao+ Ao does only give slightly different
solutions. Then for ,X all solutions will be such that Izl <= 1 + 3, where is small. As
we are only interested in the case where Iz -> 1, it would consequently be sufficient for
us to look for solutions with z in the close neighbourhood of the unit circle. By making
some very weak assumptions on the underlying difference approximation we can show
that it is possible to find Ao and that the solutions for subsequent A-values will only
be perturbations of those that we get for ;t Ao. This shows that the basic idea is
reasonable.

How can this basic idea be used in practice?
For a fixed A-value, we try to find initial guesses to the solutions of (2.7), by

searching for such guesses with Iz 1 + :. We take z-values on the "search circle"

Izl 1 + :. For each fixed z we solve for Kj from f, j 1,.-., N. This is where the
special structure of (2.7) is used. We thus get a =(K,..., KN, Z), such that f(ct) 0,
j 1,..., N. If, in addition, g(a) is small, then a is taken as initial guess to some
iteration method for solving (2.7). (IBSTAB uses a modified version ofthe IMSL-routine
ZSYSTM, which implements Brown’s method [3], [14].)

It should be noted that the main advantage of this algorithm is that we only have
to search in one variable. Ifwe would have to search in the N+ 1 variables , , rN, z,
then the number of possibilities would in general be immense and the method would
be impractical. But by using the structure of (2.7) we can solve for r, , rN exactly
(or with high accuracy by some iteration method) from the characteristic equations,
as those are polynomials in K for a given z. This allows us to search in z only and this
leads to an efficient algorithm for analyzing stability.

In order that the algorithm find all critical solutions of (2.7), what assumptions
are necessary on the difference approximation? We will denote the difference approxi-
mation at inner points by D(,X). Our assumptions are:

1. D(0) is a stable approximation to the ordinary differential equation u, O.
2. No higher time level is involved in D(A), A > 0, than in D(0).
The first assumption is natural. The second, however, is a restriction, but not a

severe one as most schemes currently in use fulfill it.
These assumptions are necessary in order to assure that the mathematical premises

of the IBSTAB algorithm are fulfilled. The premises are:
i) The system of polynomial equations has the structure of (2.7).
ii) (from first assumption). For A =0 all solutions of (2.7) are such that Izl =< 1.
iii) (from second assumption). For A >0 all z-values are perturbations of the

z-values obtained for ,X 0.
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Premise ii) is used to get a startvalue h ho=0, such that for ho all solutions
fulfill Izl<_-1. Premise iii) will then assure that for slightly increased h-values the
solutions will only change slightly. These are exactly the two facts that are needed for
the basic idea to be reasonable.

It is important that [z[- 1 + sc is chosen as "search circle" (instead of [z[ 1, which
might seem to be a more natural choice). The reason is that when the von Neumann
condition is fulfilled, which is assumed in the GKSotheory, then for [u 1 we must
have Izl-< 1. Thus, in taking Iz[ 1 + :, :> 0, we are sure that the K-values split nicely
into two groups, one with lu[ < 1 and one with lu[ > 1. This will simplify the implementa-
tion of the IBSTAB algorithm, making it easy to pick the right K-values, i.e. those with
[u < 1, for each characteristic equation.

3.2. After this introductory presentation of the numerical algorithm we give an
overview of the entire IBSTAB system. As mentioned there are also parts for symbolic
algebraic manipulations and for problem description.

There are two difficulties in the GKS-theory, that motivate the use of software
tools for the investigation. The main difficulty is of course the solution of (2.7), which
we have already discussed.

The other difficulty is the derivation of (2.7) from the underlying difference
approximation. This can be a tedious and error-prone work. Consequently a program
for automatic derivation of (2.7) would be of great help.

In the construction of IBSTAB the aim has been to apply the ideas of mathematical
software used in the software package, named DCG, which has been presented by
Engquist and Smedsaas [5]. The IBSTAB system thus combines symbolic manipulations
and numerical routines. Furthermore, it is intended to allow the user to present the
problem in a "natural" manner that will not include the writing of FORTRAN
subroutines or functions. Therefore IBSTAB contains an extended version of the
problem specification language used in DCG, which makes it possible to present the
stability problem in a notation that hopefully seems natural to a numerical analyst.

The overall structure of IBSTAB is presented in Fig. 3.1.

PROBLEM

SPECIFICATION,
PROBLEM

PREPARATOR

ANALYZER

LISP-part

SYMBOLIC

SOLVER

NUMERICAL

SOLVER

FIG. 3.1

The symbol manipulation parts of the system are written in LISP, using the
LISP-F3 interpreter 19], and the numerical part is written in FORTRAN. LISP-F3 is
coded in FORTRAN and thus IBSTAB is completely FORTRAN based. Another
advantage in using LISP-F3 is that it gives the possibility to make external calls to
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FORTRAN routines from LISP. This will be used e.g. when diagonalizing the matrices
of the difference equations (in order to have premise i) of the last paragraph fulfilled).

Now the parts of IBSTAB will be introduced briefly. The problem specification is
given by the user. It is read by the problem preparator, which also generates the nonlinear
system of equations (2.7). The main task of the analyzer is to decide whether this
system should be solved by a direct or by a numerical method. If the problem is simple
enough to be solved analytically, then the symbolic solver takes over, making the
stability analysis using symbolic manipulations. If, on the other hand, the analysis
shows that the numerical algorithm must be used, then the analyzer

symbolically calculates the Jacobian of (2.7);
generates FORTRAN functions for both (2.7) and its Jacobian.

The generated FORTRANfunctions together with problem independent routines
from a library form the numerical solver, which will now take over and perform the
stability analysis.

It should be pointed out that IBSTAB treats not only GKS-stability but also checks
the von Neumann stability (which is an underlying assumption in the GKS-theory).

Furthermore, if GKS-stability is assumed, then P-stability [1] can be checked in
a separate pass, rerunning IBSTAB. However the P-stability investigation is not the
main purpose of IBSTAB and is therefore not treated as generally as the GKS-stability
check.

4. The numerical solver.
4.1. We will now go into the details of the new numerical algorithm for automatic

GKS stability analysis.
Assuming that the reader is familiar with the basic ideas, we first give a more

complete description of the algorithm, which we will then discuss and motivate. For
the description we use a quasi-ALGOL notation:

ALGORITHM 4.1.
for )k step htCp until hstop do

1. Compute e.

2. Check the von Neumann condition.
3. for 0 0 step 0step until 2r do

3.1. z=(l+:).e’.
3.2. Compute Kk from the characteristic equations to get a "search point" a

3.5.
3.5.1.
3.5.2.

3.6.
3.7.

3.7.1.
3.7.2.

KN
Compute GABS Ig(a)l.
if GABS 0 then

if instability then stop.
else
if GABS =< e then
Solve (4.1) using Brown’s method with c as initial guess.
if convergence then
if instability then stop.

Compute new 0st=p.
if 0st=p "small" then
Solve (4.1) using Brown’s method with a as initial guess.
if convergence then
if instability then stop.

3.8. endfor 0.
4. Compute new /step.
5. endfor A.
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4.2. It is of course important that the stepsize Astep is in each step chosen so that
no z will be more than slightly perturbed. We shall here develop an algorithm for that
choice. In order to do that we write the system (2.7) as a vector equation

(4.1) G(A,a)=O,

where a=(K1,’’-,KN, Z), G=(f,’’’,fN, g)T
Let aa be a solution to (4.1) for the A-value A + 8A, i.e.

G(A + X, a)=0,
and take ax to be a perturbation of ao. A Taylor expansion gives, for small values of

(4.2) Gx(A, Co)" 8A -J(A, Co)(aa-Co)

where G denotes the gradient vector with respect to A. J is the Jacobian matrix with
respect to a. We now introduce the parameter A. We want aa to fulfill Izl--< 1 + A,
where A is chosen small enough that Algorithm 4.1 works. Assuming that Co fulfills

Izl <-1 we thus impose the condition Ila- aoll -< A. If we use the latter condition in
(4.2) then we get the following approximate bound on Atp"

(4.3) Astep A" min (IlL(A, )11o/II G(A, )11o)

where the minimization is made over those solutions a which were found for the
previous A-value.

For efficiency we wish )[step to be as large as possible, so we take equality in (4.3)
as our formula for Astep- As the Taylor analysis breaks down if Astep is not small, we
also impose a maximum limit

Astep Astep.

The choice Astep’-Astep is used not only when the formula gives too large values, but
also When no solutions were found for the previous A-value.

4.3. The choice of stepsize 0step for the argument of z is governed by the following
analysis. For z on the circle

z= (1+:). e io, 0<= 0<27r

we can regard the system G(a) as a function of 0 instead of z, i.e. we take a

(," , , 0).
We take c such that G(c) 0 and we look for 8a such that G(c + 8c) 0. With

a linearization we get 8c to be the ordinary Newton step

, -s() G(,)

where J is the Jacobian of G.
We look for 80, which is the last component of
In general 80 is complex valued. However, 0tp should be real and furthermore

the angular change is given by Re (80), whereas Im (80) represents a change in
magnitude of z. Thus a reasonable choice of 0tp is

(4.4) 0step--[Re (80)[.
The choice (4.4) is used together with a maximum limit

Ostep Ostep.
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In Algorithm 4.1 we also, in step 3.7, introduced a lower limit of Ostep saying that if
0step is "small" then Brown’s method should be used. By "small" we shall mean

10stepl2" Ig()l if >c, j=l,...,N.

This is fulfilled if the derivatives involved in g0 are large./z is taken to be a constant,
small enough to avoid unnecessary use of Brown’s method, c is also a small constant,
such that -< means that of/dKj is "almost singular" at a. If
for some j, then 0step is also considered "small" and Brown’s method is called. In
practice the computation is done in the following way"

Compute 0step using (4.4) (if possible);
if Ig(a)l >_ e then check if 0ste_p "small";
if Ostep > Ostep then set Ostep--Ostep.

4.4. We want the parameter e to be an indicator of whether the residual
of the determinant condition is small enough to make it probable that a is close to a
solution to (2.7). It is chosen to be an average size of g according to the following
procedure:

For h we use

1 4

E Ig(cs)l/4e
j=l

where aj is the search point with z-value z# (1 + :)(i)
For the subsequent A-values we take

e 1/2. (average of the g-residuals at the search points
generated for the preceding A-value).

4.5. We will now justify Algorithm 4.1 by stating two propositions. For that
purpose we introduce the following notation. Let a (K1, ", xv, z) be a given search
point, i.e. a point such that

(4.5)
f( g#’ z) 0,

z=(l+)ei.

j=l,...,N,

A point a that fulfills (4.5), but that is not guaranteed to be among the set of search
points is called a presumptive search point. Furthermore, let a*=(:*,... *N,z*-Iz*le’*) be a solution to (2.7) and introduce the distance

We can now state the propositions.
PROPOSITION 4.1. Assume"
a) Brown’s method has convergence radius R, such that

R =T>O
where 3/is a fixed constant.

b) All derivatives offk, k 1,’’’, N, and g are majorized by a constant at every
point fl such that

dist (*,/3) -<_ 3.
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Then there is o such that for <= o IBSTAB will find a* if a* is the only solution
such that

dist (a*, a) <= ,
PROPOSITION 4.2. We can choose A small enough that if

1-<[z*l_-< l+a
then there is a presumptive search point a fulfilling

dist (a*, a)_-< 5o,

For a proof of Proposition 4.1, see [29]. The second proposition follows trivially
from the fact that when z* is close to z, then K is a perturbation of Kj (cf. [29]).

The first proposition shows that there is a convergence region around every search
point. Now, assume that for A Aj all solutions a* fulfill Iz*l=< 1. By our way of
choosing ’step we have that for h h+l any a* such that [z*l -> 1 must fulfill 1
1 + h. Then Proposition 4.2 says that all such critical solutions are within the conver-
gence region of a presumptive search point.

Some remarks are needed:
We are interested in finding all solutions in a neighbourhood of the unit circle

with 1 <-[z* _-< 1+ A. Now, we have not shown that all such solutions will be within
the convergence region of a true search point.

The assumptions imply cases for which the algorithm might not work. Pinpoint-
ing such "critical" cases is one of the benefits of the kind of justification given here.

The uncertainties that are pointed out in the remarks must be covered for by
extensive testing of the algorithm. Test results are presented in 7.

4.6. It now seems appropriate to discuss how to choose h. Proposition 4.2, which
is where A was used, is a poor guide for that choice.

For that reason we will try the following approach (using the notation from 4.2).
Choose A such that if, for h -h+l, we use ao as initial guess to Brown’s method, we
will get convergence to aa. This means that A must be chosen on basis of the
convergence properties of Brown’s method. Looking at a local convergence theorem
given by Brent [2], we find that a bound on the convergence radius R of Brown’s
method is

R 1/(3. N. L. I1 - 11),

where N is the number of equations, L is a Lipschitz constant for the jacobian J and
[[j-i[[ is the norm of J-1 taken in the solution point.

Thus, a reasonable choice of A, assuming that J is well-conditioned, would be

A= 1/(3N).

This is the formula that is used in IBSTAB. To show that it is satisfactory, we refer
to the test results.

4.7. After this presentation of the numerical algorithm we will just give some short
remarks on its implementation. First, it has turned out in practice to be suitable to
impose lower bounds on step and 0step

hstep _step, Ostep _Ostep

to avoid unnecessarily small steps.
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Secondly, we have found that when a solution has been computed, then it is
necessary to take a rather large 0step in order to get out of the region of convergence
of that solution. This is done by taking

0step 0step/ 2 (cf. 4.3)

every time a solution is encountered.
Finally let us assume that the difference approximation being investigated is found

to be stable for h -< AL, but that it is unstable for the next A-value, A AR. Then IBSTAB
continues with a refinement step, where the "uncertainty interval" ]At, AR[ is reduced
by bisection. Here either yon Neumann- or GKS-stability is checked. The refinement
goes on until AR- A/_--< TOL, where TOL is a given tolerance.

4.8. We will end the description by discussing how to modify the algorithm in
order to implement it on a parallel processing computer. One possibility to do that
efficiently would be to have all (or groups of) the z-values for a given A examined
simultaneously. This could be done if we chose a fixed step size around the circle
]z] 1 + s, taking some "minimal" value of 0step and calling on the "system solver"
only when Igl--< e. If all the processors flagged stability, then one processor could
calculate a new A-value etc. If instead we consider a vector machine, then, still keeping
a fixed "minimal" 0step, picking the search points for which Brown’s method should
be called could be done in a couple of"vector sweeps". The details of such implementa-
tions have not been considered yet.

5. The LISP-part of IBSTAB. The numerical algorithm is in IBSTAB surrounded
by routines for symbolic analysis. Those routines were introduced in 3.2. As IBSTAB
does only exist in a pilot version and is not yet available for general distribution, we
will here just make some short comments on the LISP part of the software package.

The main task of the analyzer is to check whether the system (2.7) is simple enough
to be solved by the symbolic solver. The criteria for this are;

i) There are only two equations in the system, i.e., there is only one characteristic
equation.

ii) The second equation, i.e., the determinant condition, is of at most first degree
in z and fourth degree in K and the coefficient for z is independent of K.

iii) Substituting z in the characteristic equation will yield at most a fourth degree
polynomial in .

The kind of modifications and improvements that might be considered for the
LISP part of IBSTAB would primarily be changes in order to enlarge the class of
problems that could be treated without using the numerical solver. One such possibility
is to include the criteria of Goldberg and Tadmor, that we discussed in 2.2. Another
way could be to attach to IBSTAB a data base containing known stability results.
Whenever a problem was presented to IBSTAB, the system would then begin by
comparing it to the problems in the data base. This latter idea is rather loose and I
have not considered any details of how the data base should be constructed.

The modification, that would give the most far-reaching enlargement of the class
of problems that could be treated analytically, is to use some better method for solving
systems of polynomial equations by symbolic algebraic manipulations. It is the opinion
of the present author, that the most promising method is the one developed by Lazard
[17]. However, careful consideration would certainly be needed to make a useful
implementation of the method. It is also unclear how efficient any implementation
might be if it were to be used for problems of realistic size (i.e., problems that are
larger than those that can currently be treated by the symbolic solver). Putting some
effort into the investigation of those questions could possibly be worthwhile.
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6. The problem description language. As stated in 3.2 one of the intentions with
IBSTAB is that it should have a user oriented problem description language. The user
should be able to specify the problem in a manner that is natural to her. To illustrate
how this goal has been approached we give a short example.

We wish to investigate the stability of a leap-frog approximation to

tt’-(01 Io) V O=<X<, O=<t,

v(O, t)=O

with extra (numerical) boundary condition

Wo 2W W2,

where w is the approximation to v(x, t,). The investigation should be made for
0_-< A <_-2. The IBSTAB notation for this would be, e.g.,

DIFFERENCEEQS
U(J, N+ 1)- U(J, N-1)-L.A,( U(J+ 1, N)- U(J-1, N)) 0.0

BOUNDARYCONDS
B1, U(0, N)- B2. U(1, N)+ B3, U(2, N)= 0.0

PARAMETERS
DEPVAR U;
NDE=2;
NBCND=2;
DCOEFF A: 0.01.0

1.00.0;
BCOEFF BI: 1.00.0

0.01.0,
B2:0.00.0

0.02.0,
B3:0.00.0

0.01.0;
LSTOP 2.0

END

This example shows the structure of the problem description language. It is based on
self-explaining section names. Expressions must be given with right-hand side identical
to zero. The difference equations and boundary conditions should be presented in
vector form. The name L for A is fixed but the names of the dependent variable
(DEPVAR) and of difference equation- and boundary condition coefficients (DCOEFF
and BCOEFF) can be chosen freely. As shown by the example those are specified in
the PARAMETERS section, where also the values of the coefficients are given. The
example is not exhaustive" there are also sections for describing the polynomial
equations if one has already derived those by hand. In this case one must use the
notation Z for z, K1 for r, K2 for , etc.

It seems, that for a person working in engineering or numerical mathematics the
notation adopted in IBSTAB is much more natural than e.g. a conventional FORTRAN
notation. The size of the description program is also considerably smaller than for a
corresponding FORTRAN code.

7. IBSTAB in practice. We have now reached the point, where the efficiency of
the numerical algorithm for automatic GKS stability analysis shall be demonstrated
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by experimental results. First we will show how IBSTAB managed to solve test examples
for which the correct answers were already known. Then a real-life experiment will
be presented, where IBSTAB was addressed to a previously unsolved problem. In this
case the result was checked by running the investigated scheme using the DCG system.

The choice of test examples is always critical. Any algorithm can probably be
shown to be superior by making a suitable choice of test data. We have not chosen
our test examples in such a biased way. On the other hand, we have not intentionally
tried to design test examples that would check the critical cases that were indicated
in Proposition 4.1. Our principle has been to try IBSTAB on problems for which the
results were known and furthermore, to choose the problems so that they cover a wide
range of problem types with respect to order of approximation and number of pde’s.
In this context it should be noted that there is not vast literature on known results, so
the choice of test problems has been limited.

For each test some statistics have been collected"
Nx total number of A-values,
Nz total number of z-values,
NM total number of calls to Brown’s method,
Nz= Nz/N,.
N, N,,/ N,,,
CPU-time (in minutes).

The values of Nx, Nz, Nnl and CPU-time will be reported. The stability result is given
as a pair of A-values AL, AR. The scheme is stable for A =< A. and unstable for A-> AR-

Another point of interest is the actual choice of the "open" parameters that were
introduced in 4. Those values are listed below. For each parameter we include a
reference to the section where it was defined. The values used in the current implementa-
tion of IBSTAB are:

A, =0.06 (4.1)

: 0.001 (4.1)

step 0.2 (4.2)

Xstep 0.05 (4.7)

0step 0.1 (4.3)

0step 0.01 (4.7)

=0.04 (4.3)

TOL 0.025 (4.7)

All tests runs were made on the BASF 7/68 at Uppsala University Computer Center,
using the WATFIV compiler.

7.1. Test problem I.

(ott ttx, t/-- 0 <:

a(x) u =x<o% t=0

un (0, t) 0.

This is the wave equation written as a first order system. We apply the leapfrog scheme.
With linear extrapolation as extra boundary condition and with a(0)= 1 (cf. 2.1,
where the treatment of variable coefficients was discussed) the scheme is weakly stable
for A < 1. For A _>-1 the von Neumann condition is not fulfilled.
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Result.

hL 0.98500,

Nx =22,

Nz =67,

NBM 28,

CPU-time 2.62.

hg 1.01000,

7.2. Test problem II.

ut a(x, t)ux 0_--<x=<l, >--O, a(O, t) -I

u(0, t)=0.

We apply the fourth order Kreiss-Oliger scheme [20] and take the extra boundary
conditions analyzed by Sloan [26] and Oliger [20].

Result"
a) Right quarter-plane problem:

h 0.71000, AR 0.73500,

Nx =16,

Nz=7,

NBM =31,

CPU-time 1.41.

b) Left quarter-plane problem:

AL 0.66000, AR 0.68500,

Nx=15,

Nz 128,

Nn 118,

CPU-time 6.66.

This confirms Sloan’s analysis.

7.3. Test problem III.

ut=a(x,t)Ux 0<=x<oo, t>--0, a(0, t)=l.

We use an approximation and boundary conditions studied by Oliger [21]. It uses a
coarse grid in the inner part of the region and a fine grid near the boundary. The
corresponding spatial step sizes are denoted Axe and Axy.

On the coarse grid we take the fourth order Kreiss-Oliger scheme (cf. Test problem
II) and on the fine grid, in the interval [0, 2Axc], we use the leapfrog approximation.

We define the parameters hy At/Axf and hc At/Axe and the scale translation
factor S Axc/Axy. Consequently we have hf S. hc. In our test, we used S 5.

Oliger [21] was able to show theoretically that for S=>2 the approximation is
unstable for all values of h. With 0 denoting arg (z) he proved that there are two
intervals 0_, 03] and 04, 05] in each of which for some 0* the determinant condition
is violated.
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Result"

AL 0.03000, AR 0.04500,

N=3,

Nz 57,

NBM 54,

CPU-time 0.48.

We notice that IBSTAB failed to find the critical solution for A =0.03. However, a
search point a was generated with arg (z) very close to 0* 0, 03] and at that search
point Brown’s method was called. Thus the failure is due to the fact that Brown’s
method evidently has a very small convergence radius around the solution a*.

In [29] this test is discussed in more detail. The conclusion is that IBSTAB failed
but that the failure is not alarming. The erroneous stability interval A [0, AL] is very
small. IBSTAB was in fact for A => 0.045 able to confirm Oliger’s theoretical analysis.
It is also reassuring that the search procedure even for the difficult A-values managed
to generate good initial guesses to Brown’s method.

7.4. Test problem IV.

+ o
0 y fid =0, 0< x < cx3, t-->0.

These are the linearized Euler equations. We study the subsonic inflow problem with
extra boundary condition

[cu-p]+’ 2[cu -V]’;-[cu __p]--l.

We choose t, and c so as to give, according to the analysis of Gustafsson and Oliger
[13], GKS-stability for A-<2.

Result"

AL 1.98314,

Nx =33,

N 117,

NBt 99,

CPU-time 13.56.

2.00338,

7.5. More details on the test examples are given in [29], where also additional
tests are presented. We now make some general comments on the test results.

It should be emphasised that all the tests were made using one and the same
choice of open parameters. No trimming was made to improve the results. The statistics
show that the CPU-time was very modest, especially considering that we used a
nonoptimizing compiler and considering the complexity of the problem to be solved.
However, the number of calls to Brown’s method was rather large. The ratio NnM/Nz
ranges from 0.42, for Test problem I, to 0.95, for Test problem III. This is probably a
price that has to be paid in order to get a robust algorithm, even if those ratios may
possibly be reduced by making an optimal choice of open parameters.
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7.6. After having been successful on the test problems with known results, IBSTAB
was addressed to a real-life problem, where it was used as-a tool in choosing numerical
boundary conditions. The stability limits obtained by IBSTAB were double checked
by running the approximation using the software package DCG.

The problem was given by Bertil Gustafsson and has the following background.
Shock propagation in a compressible fluid is governed by a system of conservation laws

U,+F(U)=O

where the components of U (t9, up, E)r are density, momentum and energy. Assume
that a frontal shock is propagating to the left through a fluid at rest, and that the flow
behind this shock contains several other shocks. A possible solution method for such
a problem is the von Neumann-Richtmyer difference scheme [24] combined with shock
fitting for the frontal shock. The scheme uses a staggered grid as shown in Fig. 7.1.

tn+1 ,E ,E

,E ,E

tn_

L(t xj

FIG. 7.1

The Rankine-Hugoniot conditions are used to define the state at the frontal shock.
This requires one additional condition, which is obtained by using an extrapolation
procedure for u. A plane P(x, t) in the (x, t, u)-space is defined by using the u-values
at (x, tn_l/2) (Xj, t.+l/2) (L(t,), t,), where L(t) denotes the shock position at time t.
The u-value at the shock for t,+ is then taken as P(L(t,+), t,+).

A proper model problem is obtained by linearizing the problem and freezing the
coefficients. If the variables are renumbered, and if it is assumed that the shock is
stationary, then the problem reduces to

[
+’

The problem is how to choose a numerical boundary condition for q, at x 0. The
procedure described above leads for the model problem to the boundary condition

n+l n+l(l+0)qt+’ (l+0)q,g+0(/, -q,’)+a(bo -bo), -0.5<0<--0.5, 0<--a<--10.

The question to be answered by IBSTAB was" for what values of 0 and a is the
approximation stable?

The suggested approximation of the model problem yields the following system
of polynomial equations"

(z-l)=. - a2z(:- 1)2 O,

(1 + 0)(1 z)- 0(1 z) aa(1 ) =0.



AUTOMATIC STABILITY ANALYSIS 975

In the investigation we chose fixed a-values a 1.1 and a 1 and varied 0 for each
of those. Results are shown in Table 1, where (N) means von Neumann- and (G)
means GKS-instability. For 0 0 IBSTAB was able to use the symbolic solver. In that
case the user interactively prescribes the A-values for which the investigation should
be made. Then only h -<_ 0.99 was tested, as h 1 is the limit for von Neumann stability.
Thus we got no hR-Value in that case.

TABLE

a=l.1

a=l

-0.49 0.66823 0.68358 (G)
-0.4 0.75554 0.76808 (G)
-0.3 0.79157 0.81657 (G)
-0.2 0.90934 0.93434 (G)
-0.1 0.96078 0.98578 (G)
0 0.99 (N)
0.1 0.98536 1.00058 (N)
0.2 0.99046 1.00483 (N)
0.3 0.98877 1.00985 (N)
0.4 0.98500 1.01000 (N)
0.5 0.98500 1.01000 (N)

-0.49 0.71281 0.72653 (G)
-0.4 0.77663 0.80163 (G)
-0.3 0.87560 0.90060 (G)
-0.2 0.93528 0.96028 (G)
-0.1 0.99196 1.01696 (N)
0 0.99 (N)
0.1 0.98017 1.00517 (N)
0.2 0.97936 1.00436 (N)
0.3 0.98500 1.01000 (N)
0.4 0.98564 1.01064 (N)
0.5 0.98500 1.01000 (N)

A parallel test was made by running the scheme with a 1, using the DCG system.
The results confirm those obtained by IBSTAB. What do the results mean? The
definition of 0 is

O=8/h,

where 8 and h are explained in Fig. 7.1. More exactly 8 Xj_l/2 L(tn+l). That means
that 0 corresponds to the position of the shock at t,+l, which is xj_ for 0 =0.5
and xj for 0 =-0.5. The extrapolation procedure described in the prevl.ous paragraph
will be worse the closer the shock is to x, i.e. the closer 0 is to -0.5. This is mirrored
in the stability results, as the stability limit becomes more and more restrictive as
0--0.5 from the right.

$. Future plans. In IBSTAB we have obtained an efficient tool for automatic
stability analysis. But still there are several paths along which IBSTAB can be extended.

One extension would be to elaborate the P-stability check. The tests already made
within the IBSTAB project are promising and the work seems worth continuing.

Another extension, which is perhaps the most urgent, is to implement Michelson’s
theory for problems in several dimensions to be able to cover a larger class of real-life
problems. The theory is only developed for special cases but nevertheless it would be
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worth implementing. It should be noted that even for cases that the theory does not
cover the uniform Kreiss condition [18] could be formally derived. This condition is
then not sufficient but necessary for stability.

A third extension concerns problems where the parameters vary within a certain
range. For those problems it would be nice if the user was allowed to prescribe a range
of coefficient values for which the stability investigation should be made in one single
run.

Note. As has been stressed several times in this paper, the complete IBSTAB
system does only exist in a pilot version at Uppsala University. However, after the
submission of the paper, the problem independent part of the numerical solver has
become available for general distribution and can be ordered from the author. In this
"public" version of IBSTAB, Brown’s method has been replaced by Powell’s hybrid
method. This was motivated by the result for test problem III, which was the only test
case, where the pilot version failed. With the new version, a correct stability limit is
obtained for that problem as well.
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on software design.
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NONLINEAR PARABOLIC EQUATIONS*

THOMAS HAGSTROM’ AND H. B. KELLER

Abstract. Traveling wave solutions have been studied for a variety of nonlinear parabolic problems.
In the initial value approach to such problems the initial data at infinity determines the wave that propagates.
The numerical simulation of such problems is thus quite difficult. If the domain is replaced by a finite one,
to facilitate numerical computations, then appropriate boundary conditions on the "artificial" boundaries
must depend upon the initial data in the discarded region. In this work we derive such boundary conditions,
based on the Laplace transform of the linearized problems at +co, and illustrate their utility by presenting
a numerical solution of Fisher’s equation which has been proposed as a model in genetics.

Key words, artificial boundary conditions, parabolic traveling waves
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1. Introduction. We develop numerical methods for computing traveling wave
solutions of Cauchy problems for nonlinear parabolic equations posed on infinite
spatial domains. In particular we consider the general one space dimensional case:

a) ut=f(U,x, u,, u), -oo<x<oo, t>0,

(1.1) b) lim u(x, t) :,
--oO

c) u(x, o)= Uo(X).

The equation (1.1a) is parabolic if, as we assume:

(1.1) d) af(a,b,c)>-I Va, b,c.

Further we require that the constant states at +oo are compatible with smooth steady
states, but that changes in their values effect the wave; thus"

(1.2) a) f(0, 0, +/-) 0, b) f(0, 0, o+) # 0.

Finally the initial data is required to satisfy (1.1b); that is:

(1.2) c) lim Uo(X) tO+.

In particular we wish to compute the evolution of initial data into traveling waves,
that is into solutions of the form u--w(x-ct).

Hagan [3], [4] has presented an extensive analysis ofproblem (1.1). We paraphrase
some of his results below:

(i) Nonmonotonic waves (i.e. w’() not of one sign) are unstable in general.

* Received by the editors May 24, 1984, and in revised form July 1, 1985. This research was sponsored
in part by the U.S. Department of Energy under contract DE-AS03-76SF-00767, and by the U.S. Army
under contract DAAG29-80-C-0041.

" Department of Applied Mathematics and Statistics, State University of New York at Stony Brook,
Stony Brook, New York 11794., Department of Applied Mathematics, California Institute of Technology, Pasadena, California 91125.
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(ii) The stability of monotonic waves of speed c can, in general, be determined
by an examination of their trajectories in the phase plane of:

(1.3) w’- v, f(v’, v, w)+ cv =0.

(iii) If traveling waves exist, a large class of initial data, Uo(X), satisfying (1.1b)
will evolve to the same traveling wave.

(iv) Infinitely many wavespeeds, c, may be allowed. In this case, the traveling
wave which evolves depends on the behavior of the initial data at infinity.

The numerical solution of (1.1) requires a finite computational domain. One way
to obtain such a domain is to introduce artificial boundaries at the points x +,
z+ > z_. The derivation of such boundary conditions is the main subject of this work.
A general theory of boundary conditions at an artificial boundary is given by the
authors in [6]. This theory is not directly applicable to time dependent problems in
unbounded spatial domains such as (1.1). However, a Laplace transformation in time
yields a problem of the right form. In 2, proper boundary conditions are derived for
the transformed problem and they are inverted to yield conditions on the direct problem.

We note that use of the proper boundary conditions is crucial whenever (iv) holds.
Then, the "naive" conditions, replacing (1.1b) by:

(1.4) u(7-+, t) q+,

must, in general, fail to lead to the correct long time solution.
In 3 a specific problem of the form (1.1) is introduced: the Cauchy problem for

Fisher’s equation. It has traveling wave solutions of all speeds c >= 2. Gazdag and
Canosa 1 present a numerical solution of Fisher’s equation using boundary conditions
analogous to (1.4). As predicted by the theory, their solution always evolved to the
traveling wave of minimum speed, c 2. In order to calculate traveling waves with
speeds c >_- 2, we employ the boundary conditions derived in 2. The numerical solution
evolves to the correct traveling wave for a variety of choices of initial data.

We note that the method of deriving boundary conditions presented here can be
applied to other time dependent problems, including some problems of hyperbolic
type. For other examples the reader is referred to Gustafsson and Kreiss [2] and
Hagstrom [5].

2. Construction of the boundary conditions. We construct boundary conditions at
the fight-hand boundary, x +. The construction at the left will be analogous. Although
the general results of [6] are not directly applicable to this problem, they do motivate
our approach and, hence, we summarize them below.

For a linear problem the exact boundary condition at the artificial boundary is
characterized in the following way: the Cauchy data at the artificial boundary, that is
the function along with the correct number of its normal derivatives, should be an
element of a certain affine set. This affine set is determined by the subspace of Cauchy
data which leads to solutions of the homogeneous problem in the tail, x >- z+, combined
with the trace of any particular solution of the inhomogeneous problem. For certain
nonlinear problems whose solution is required to have a smooth limit at infinity, the
existence of an exact nonlinear boundary condition is established. Here it is necessary
to assume that the solution at the artificial boundary is sufficiently close to its limiting
value. An asymptotic expansion of the boundary condition is derived, the first term
of which consists of the boundary condition for the problem linearized about the
limiting solution.

Given this last fact about nonlinear problems, it is reasonable to analyze the
problem in the tail linearized about q+. We assume a coordinate system moving to the
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right with speed c and thus we consider:

(2.1)

a)

b)

c)

v(x, t)= u(x, t)- +, x >- +,

v, f,v +Av + cv +f3v,

v(x, O)= uo(x)-,+,

lim v(x, t) O.

Here the constants f are given by"

(2.2) fi- (0, 0, q+), fi=O(u) O(u)
f(o,o, +)(o, o, +), f=

Following the discussion above, to derive boundary conditions from (2.1) two
problems must be solved; boundary conditions for the homogeneous problem, (2.1b,
d) combined with zero initial data, must be found as well as a particular solution of
(2.1b, d) which satisfies (2.1c). The homogeneous problem is considered first.

2.1. Boundary conditions for the homogeneous problem. We introduce the temporal
Laplace transform:

(x, s)= e-tw(x, t) dt.

If w is a solution of (2.1b, d) with zero initial data, then k satisfies:

(2.3)
a) f,,+(f2+c),,+(f3-s)k=O,

b) lim (x, s)=O.

Equation (2.3a) has the basic exponential solutions:

(2.4) e(;)

where +(s; c) are given by:

-(f+c) 1
(2.5) to+ + [(f2 + c)2 + 4fl(s -f3)] ’/2.

For Re(s) sufficiently large, Re(to+)=>0 and Re(to_)=<0, since f=>l. Hence, the
admissible solution has exponent to_ and it satisfies"

(2.6) x(r+; s)= u_(s; c)(r+; s).

This can be rewritten as:

(2.7)
k’( ’+; s)

(r+; s).
_(s; c)

Using the convolution formulas and the expression for the inverse transform of 1/_
(see, e.g., Oberhettinger and Badii [9]), (2.7) yields for w(r+, t) the condition:

(2.8)

--fl e[f3-c2](t-p) 1
eO2(t-p)((t-p) Erfc (a4t ) w(+, p) dp w(+, t)
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where we have introduced:

f2+c

2.2. Particular solution. We now find particular solutions in the case that Uo(X)-
is expressed as a finite sum of exponentials:

N

(2.9) Uo(X) q+=- Y die-"j(x-+), aj>0, x>= ’+.
j=l

Hagan’s analysis [3] shows that Uo(X)-q+ must decay at least exponentially for
traveling wave solutions to exist. From (2.5), with s =0, we see that traveling waves
of speed c have exponential decay rates given by:

(2.10) g+(c) f2+c 1
+ [(f2+c)2-4flf3] ’/2.

Thus for any exponent, -a, there exists a unique speed c such that:

(2.11a) -a g_(c) or -aj g+(c).

This speed is given by:

(2.1 lb) c =f3 +fla-f2.
Hence, each exponential in (2.9) can be associated with a unique traveling wave,

from which a particular solution can be found. This gives the particular solution
corresponding to the initial data (2.9):

N

(2.12) Vp(X, t) d e-J<t"-’+l-<c-)t).
j=l

Combining (2.8) and (2.12) yields the following linearized boundary condition
on u=-w-vp at x=r+:

et-](’-p) a e Erfc (a p)
4(t-p)

(2.13) ux(z+,p)+ 2 ad e’(-)p dp
j=l

N

t)- 2
j=l

Here of course:

(2.14)
N

b) Uo(X)=q++ Y’. dje-%(’-+), x>= ’+.
j=l

2.3. Conditions at the left boundary. A similar boundary condition can be derived
at the left-hand boundary, x r_. In transform variables, a solution to the linearized,
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homogeneous problem on (-c, z_] must satisfy:

(2.15)
,(r_; s)__ (z_; s),

where

(2.16) Y+

and

-(A+c) 1+,, [(L + <)+4y,(-L)]

(2.17) f_ Of (0,0,o_), f- of
a(Uxx) a(u)

Of(o,o(o, o, _), A -The inverse transform of (2.15) is given by"

(2.18)

x/r( p
+ae’-) Erfc (-6x/t "p)]w,(r_, p)} dp-- w(’r_, t)

with c (f2+ c)/14f. To find a particular solution, we assume that

M

Uo(X)-o_: Z t eaj(’-’-), 6j>0, x<_-r_.
j=l

Each exponent, 6j, can be uniquely associated with a linear traveling wave of speed
through (2.16), with s =0:

(2.19) g) y2_flg9 _f

This leads to the particular solution:

M

(2.20) /p(x, t) q_ + Y e-7 ea"+c-5)’).
j=l

Combining (2.20) with (2.18) yields a linear boundary condition at -_, analogous to
(2.13)"

(2.21)

Here

[1

M

+ a ea2<’-e) Erfc (-a/t "p)]
j=l

u(’r_, t)- qg_-- E d e,bc-)’.
j=l

(2.22)

a) a

M

b) Uo(X) o_ + E
j=l

X
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3. Application to Fisher’s equation. We now apply the results of the preceding
section to Fisher’s equation"

a) u,=ux,+u(1-u), x(-oo, oo), t>=O,

(3.1) b) lim u(x, t) 0, lim u(x, t) 1,

c) u(x, o)= Uo(X).

Problem (3.1) is used as a model of the propagation of an advantageous gene.
For a discussion of this application see, for example, Moran [8]. It is a special case
of (1.1) and various statements concerning the behavior of its solution are consequences
of Hagan’s [3] general analysis. (They were first proved by Larson [7].)

(i) There exist traveling wave solutions of all wavespeeds c-> 2.
(ii) All positive initial data, Uo(X), decaying at least exponentially as x 00 evolves

to a unique traveling wave.
as x oo, then the solution evolves to a wave of speed c(/3)(iii) If Uo(X)--" e-3’

given by"

1+/32
c(/3)

2,

/3<=1,

The linearized boundary conditions, (2.13) and (2.21), are easily specialized to
this problem. As in 2, we introduce a coordinate system moving to the right with
speed c and choose ’+ and r_ as our artificial boundary locations. We assume that
Uo(X) can be represented as a finite sum of exponentials in the tails:

(3.3)

N

Uo(X) Y, d e-"(-+), x >= ’+,
j=l

M

Uo(X) E te%-*-) + 1,
j=l

X -<- ,r_.

The boundary conditions we impose are"

a) e(1-c2/4)(t-p)
1 __5 eC2(t-p)/4 Erfc /t-p

/r(t-p) 2

u(r/,p)+2 ,de(/-’ dp
j=l

N

=u(’+, t)- E dj e(+-’jc’,
(3.4)

J=l

fo [ 1 Cec2(t-p’/4Erfc( c -/9)]b) e-(l+c2/a)(t-P) /r(t-p) - --u(r_, p)- Y d e( dp
j=l

M

u(r_, t)- 1 E ea+%c-’’.
j=l

We note from (3.3) that the true solution should evolve to a wave of speed c(t) given
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by (3.2) where

(3.5) /3 m!n {%}.

In certain circumstances the particular terms in (3.4a) have a large exponential growth
in time. As this could be a source of error in a numerical computation, the integrals
involving them were done exactly. This allows us to rewrite the right boundary
condition"

(3.4a’)

Here

[e(l_c2/4)(t_p) 1
x/ cr( p
N

u(’+, t) + , f(t).
j=l

f(t)=ajdg
2(1 kg)
e’ Erfc ( x/)

[kj + c2/4 1] /2

(1 kg)
e’ Erfc k +-- 1 + h(t)

(3.6) hs( t)
-2 ekt,

a=+ + kj- 1,

a=- [+ k- 1,

and
2

ce;C.k=l+a-
We note that (3.4a’) explicitly contains the different evolution of initial data with large
and small decay rates.

Presented below are the results of some numerical computations of solutions of
(3.1) using the boundary conditions (3.4a’, b). A uniform grid was introduced and
spatial derivatives were replaced by centered finite differences. The method was implicit
in time and stable for the ratio of the time step to the grid size sufficiently small. With
h denoting the spatial mesh width and k the time step we used:

u(x, + k)- kD+D_u(x,t + k)- ku(x, + k)(1 u(x, + k))

u(x, t- k)+ kD+D_u(x, t- k)+ u(x, t- k)(1 u(x, t- k))+ 2ckDou(x, t).

Here D+D_ and Do are standard spatial difference operators:

(f(x+h)-2f(x)+f(x-h)) (f(x+h)-f(x-h))
D+D_f(x) h2 Dof(x)

2h

At each step the nonlinear system of difference equations was solved using Newton’s
method with an explicit step taken to generate the initial guess.

The boundaries were located midway between gridpoints and the integrals there
were approximated by the trapezoid rule (away from the singularity). So, for example,
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at the right-hand boundary we used"

(K(+:(w(O+
(t/k-2)

j=l
(K(t-jk)+ K(t-jk))w(jk)

k k
+ kK(k)w(t- k)+- K(O)w(t)+- Ks(k)w(t- k)

t-k

{(t-p)w(t-k) el-2/4)-(t-k-p)w(t)}

=-2 u "r++,t +u ’+-,t +j= fj(t).

Here, K and Ks are respectively the singular and nonsingular parts of the kernel in
(3.4a’), the f are defined in (3.6) and w(t) is given by"

W(t)= U ’r++,t --u 7%--,t
The remaining integral was done analytically.

For all cases described below the grid ranged between -12 and 12 and contained
171 points. The time step is .025, well within the stable region in all cases. Initial
conditions were generated in the following way: expansions in the tail, (3.3), were
input and smoothly connected (two continuous derivatives) by a combination of
polynomial and exponential functions. The computations shown were performed on
a VAX 11/780 at the University of Wisconsin at Madison, though others were done
on the IBM 4341 of the Applied Mathematics Department at the California Institute
of Technology.

Figure 1 shows the evolution, in a coordinate system moving with speed 4, of
initial data which decays, at both +o, at a rate compatible with a wave of speed 4.

1.2

:::) 0.6

0.4

0.2

C= 4.000000

-12 -10 0 8 4 6 8 10 12
x-cr

FIG.
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The initial data and solutions at intervals of 25 time steps are displayed. A steady state
is reached which must be moving with speed 4. Figure 2 contains the final state (solid
line) of Fig. 1. This is the solution at =6.875. Plotted with it is the traveling wave
solution of speed 4. This solution was found by a second order centered finite difference
solution of the relevant steady problem on the same mesh as used in the time dependent
case. The solution was required to agree with the time dependent one at the right-hand
boundary while the condition"

ux if+(0; 4)(u 1)

was used at -_. (Note that ff+(s; c) is defined in (2.16).) The agreement between the
two solutions is seen to be excellent.

C=4
1.2 [---
1o0

0.6-

0.4

0.2

0.0
-12 -10 -8

FIG. 2

We note that the boundary condition,

(3.7) u(’+, t) constant,

leads to good results when the speed of the coordinate system is the same as the speed
of the final state. For a more complicated problem, however, this might not be known
in advance. Indeed, it might be the goal of the computation to determine it. As shown
in Fig. 3, our conditions avoid this difficulty. This is the computed evolution in a
coordinate system moving with speed 3 of the same initial data used to generate Fig. 1.
The wave is seen to move to the right and, in fact, moves with relative speed 1. This
is confirmed in Fig. 4, a comparison of the solution at =6.875 (solid line) and the
wave of speed 4 of Fig. 2 translated to the right a distance of 6.875. We believe the
small error at the right boundary is due to the use of linearized boundary conditions.

Figure 5 displays the computed evolution, in a coordinate system moving with
speed 4, of initial data with two decay rates in the right tail: one compatible with a
wave of speed 4, the other compatible with a wave of speed 3. Here, the speed 4 part
decayed at the large rate while the speed 3 part decayed at the slow rate. As predicted
by the theory, a speed 3 wave is eventually reached.
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C= .000000
1.2

1.0

0.8

0.8

0.4

0.

-12 10 8 6 4 2 xcOT 4 6 8 10 1

FIG. 3

C=4

1.0

0.8

::) 0.6

0.4

0.2

12

FIG. 4

We note that, as it is the initial data in the right tail which determines the wavespeed,
it is the right-hand boundary condition which is important. Various choices for the
left-hand boundary condition, for example u constant and ux 0, were tried and led
to good results.

In summary, we have shown that our boundary conditions consistently lead to
correct long-time results while other simpler conditions do not. We believe that their
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C= 3.000000
i’

FIG. 5

generalization to more complicated problems, where the final state is not known a
priori, will also give reliable results. It should be noted, however, that this has not yet
been proved even in the simple case described here.

Acknowledgment. The authors thank Prof. J. D. Murray for bringing this problem
to our attention.
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THE NUMERICAL SCHWARZ ALTERNATING PROCEDURE AND SOR*

LOUIS W. EHRLICHf

Abstract. The Numerical Schwarz Alternating Procedure is accelerated on several sample regions using
a block SOR technique where the relaxation factor is determined using the power method to approximate
the appropriate eigenvalue.

Key words. Schwarz alternating, SOR, power method, relaxation.

1. Introduction. Almost a hundred years ago, H. A. Schwarz [10] introduced an
idea that has been used over the years to solve or prove the existence of solutions of
Dirichlet problems for Laplace’s equation over regions composed of regular geometric
shapes pieced together. In effect, one decomposes the region into these regular regions
with overlapping or abutting boundaries. The equations are solved in each of the
regular regions alternately, with the values on the "interior" boundaries of the regular
regions determined iteratively.

To this writer’s knowledge, the first application of this approach to numerically
solving problems was discussed by K. Miller [8]. The idea then apparently lay dormant
for about 15 years. Suddenly, recently, applications burst forth [1], [3], [4], [5], [6],
[9], [ 12]. The reason for this is probably the emergence of parallel computing, but the
emergence of the personal computer may also have been a factor.

In the literature, the idea is called the Numerial Schwarz Algorithm [8], [9],
domain decomposition [3], [6], [13], domain partitioning [1], [12], etc. It apparently
is implemented in several ways. One can overlap the regular regions [4], [9], or one
can abut the regions with no overlap [1], [12]. Each of the regions can be solved
numerically, independent of adjacent regions. In some cases finite differences are used
[4], [5], [9], and in others, finite elements [1], [3], [6], [12]. The interconnection of
the regions may be through grid points common to both (abutment) or through some
sort of interpolation (abutment or overlap).

Since each iteration requires solutions of the Laplace equation in certain regions,
a variety of suggestions have been given to solve the resulting system. In [1], [3], [6],
12], conjugate gradient type techniques are suggested. In [9], an incomplete-factoriz-

ation technique was suggested. It was also pointed out in [9] that, as usually imple-
mented, the method is a block Gauss-Seidel method. As such, it should be amenable
to acceleration. This idea was mentioned in [4]. Also in [4], [5] the idea of decomposing
the region into regions that fast Poisson solvers can handle was presented. We have
used that idea here in conjunction with using a block SOR method. It should be pointed
out that some of these ideas may appear in [7], but that report is unavailable to this
author.

2. Numerical implementation.
a. Overlap. To fix ideas, let us consider the Dirichlet problem in a rectangle using

finite differences. We propose to split or decompose the rectangle into two overlapping
rectangles as per Fig. 1, where (a) is the right boundary of rectangle (A), and (b) is
the left boundary of rectangle (B).

* Received by the editors March 25, 1985, and in revised form July 15, 1985.
t Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20707.
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(A) (b) (a) (B)

FIG. 1. Region overlap.

The usual approach is the following. Since one of the rectangles will have at least
one boundary within the other, guess the solution along this boundary (say (a)) and
solve rectangle A. Alternate to the other rectangle (B) and solve using the values along
its unknown boundary (b) that were computed in (A). Ifthe grid points do not coincide,
some sort of interpolation scheme can be used. In any event, using the values which
were just computed in (A) leads us to the Gauss-Seidel approach rather than the
Jacobian method of using the values of the previous iteration. Repeat.

This is effectively an iterative process for the unknowns which are on the interior
"boundary" lines. Considered as a block method, it has the required properties to
apply block SOR. The problem is determining the optimum relaxation factor. This can
be done by applying the power method to the problem to determine the largest
eigenvalue of the block Jacobi matrix. Actually the block Gauss-Seidel method was
used since its eigenvalues are the squares of those of the Jacobi and hence should lead
to faster convergence of the power method due to better separation of the eigenvalues.

b. Abutting. Here we assume the region is split into two (or more) regions with
only boundaries overlapping, as in Fig. 2.

(A) (B)

FIG. 2. Region abutment.

This leads to a natural decomposition of the resulting linear system, i.e.,

Axl + IXa bl,

(1) IX1 + Dxa + IX2-- ba,

Ix,, + Ax2 b2,

where xa is the solution along the common boundary to (A) and (B). Eliminating xl
and x2, we end up with a linear system for xa involving the Schur complement matrix
[2]. 1 and 12] discuss this and suggest a conjugate gradient approach. Equation (1)
also lends itself to a block SOR method which we are proposing here as another
consideration.

3. Numerical results. We considered first the Laplace equation in a rectangle. A
32 64 grid was superimposed over the region with the usual 5 point finite difference
equation. Both overlapping and abutment were tried. The rectangular subregions during
each iteration were solved using a direct solver--POIS by Swarztrauber and Sweet
11 ], thus avoiding any interplay between the iterative method ofthe Schwarz technique
and that of solving the Laplace equation. The block SOR relaxation factor, to, was
determined in each case by using the power method on the Gauss-Seidel iteration
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technique to find/z, the spectral radius. The factor was then determined from

2

(1 +x/1 /z)"
Table 1 contains some of the results. Iteration continued until two successive approxi-
mations differed by less than 10-6

TABLE

BSOR (to 1) Power method BSOR (to)
Rows of overlap Iters. Iters. (to) Iters.

(32)* 119 7 1.52 27
(15) 103 7 1.50 25
(48) 97 7 1.49 24
2 66 6 1.40 20
3 35 5 1.27 14
15 7 3 1.02 6
30 4 3 1.00 4

* Abutments at row indicated in ().

Several things are noticeable from the table. First, the greater the ovelap, the more
rapid the convergence, dramatically (see also [4]). Second, with minimal overlap, the
BSOR method becomes cost effective. Clearly, if storage permits, the region should
be solved as a single region. However, parallel computation may affect this decision.
Also, small personal computers may be used in solving the various regions.

To illustrate the surprising effectiveness of the Numerical Schwarz Alternating
process, the region in Fig. 3 was considered.

FIG. 3. Sample region.

This region was decomposed two different ways and the effectiveness of the
Alternating technique compared. Figures 4 and 5 illustrate the two decompositions.
Tables 2 and 3 compare the effectiveness of the methods.

FIG. 4. First decomposition of sample region.

In the rectangles, rectangular finite difference equations were used and solved by
the direct method cited above. In the circle, the Laplace equation was written in polar
coordinates and solved using polar finite differences and the direct method of PWSPLR
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FIG. 5. Second decomposition of sample region.

TABLE 2
(e 10-1)

Figure
to=l
Iter.

Time Power method
sec. Iter. to Iters.

Time
see.

44
9

5.85 4 1.21
1.33 3 1.009

22+4
8+3

3.43
1.63

TABLE 3
(e 10-6)

Data for Fig. 4

Rect. mesh Polar mesh to Time Power meth. to Time
M N o Iter. sec. Iter. to Iter. sec.

16 16 60 16 26 3.46 7 1.2 13 + 7 2.66
32 32 60 32 24 7.51 3 1.19 12 + 3 4.7
32 32 60 64 24 12.9 3 1.19 12 + 3 8.04
64 64 60 64 24 20.4 3 1.18 12 + 3 12.77

Data for Fig. 5

16 64 60 16 7 1.02 3 1.01 6+ 3 1.31
32 127 60 32 7 2.77 3 1.01 6+ 3 3.56
32 127 60 64 7 4.4 3 1.01 6 + 3 5.6
64 127 60 64 6 5.2 3 1.01 6 + 3 7.8

[11]. The approximations to the "interior" boundaries were determined by linear
interpolation, but any higher interpolation scheme would probably have worked as
well. Iteration continued until values along the "interior" boundaries agreed to within
e as noted in the tables. Comparison of the solutions of Figs. 4 and 5 shows 3 and 4
significant digit agreement for the finest mesh used.

4. Comments. The Numerical Schwarz Alternating technique appears to be a very
ettective method to solve a problem in pieces of a region if one cannot handle the
entire region at once. Also, speedup may be possible by parallel computation of the
pieces simultaneously. This report suggests another approach to piecewise computation,
i.e., block SOR.
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Abstract. A rigorous analysis is presented for the method of modified equations whereby its range of
applicability and its shortcomings are delineated. Numerous examples from different areas are presented
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1. Introduction. Modified equations have been a commonly used tool in the study
of difference schemes. Because of the lack of any theoretical foundation, this use has
been accompanied by constant difficulties and results derived from modified equations
have sometimes been regarded with apprehension. As a result a situation has arisen
where authors either disregard entirely the technique or have an unjustified faith in
its scope. The aim of the present paper is to investigate carefully the foundation and
applicability of the method in the hope of clarifying the situation.

To our best knowledge the method of modified equations was first used by
Garabedian [4] in the analysis of SOR iterations. Few papers have been devoted to
studying the method (Hirt [11], Warming and Hyett [34], Wilders [35], also Morton
16]). On the other hand the technique has been extensively employed in the literature,

see e.g. [1], [6], [7], [8], [10], [14], [19], [20], [26], [33] and [36]. By and large,
applications have concentrated on the investigation of dispersive and dissipative
properties of partial difference schemes. A nonstandard example is given by Duncan
and Griftiths [3]. One of the referees has rightly pointed out the analogy between the
idea of modified equation and the backward error analysis of Wilkinson.

A summary of the paper is as follows. The main ideas are introduced in 2, in
the context of a concrete example. This is followed in 3 by the discussion of a wide
range of applications to both ordinary and partial differential equations. The theoretical
analyses are backed throughout by numerical illustrations. We place the method in a
wider context in 4, by making comparisons with other forms of analysis. Our findings
are summarized in 5.

In keeping with the aim of the paper, the examples included, mostly simple, have
been chosen to provide insight into the various aspects of the method; the presentation
of new real-life applications is completely outside the scope of the article.

2. Modified equations. This section introduces, in a rigorous way, the concept of
modified equation. For simplicity, the ideas are presented in the case of a model
problem which exhibits all the important features of the more general situation. In
fact, it is not difficult to rewrite the material below in the language of any of the general
discretization theories (e.g. [31], [29], [33], [23]) and in particular, [37 2.4]).

We consider the scalar initial value problem
(2.1a) u(O)=,

du
(2.1b) dt-f(u), 0<-_ <- T,

* Received by the editors September 18, 1984, and in revised form, February 20, 1985.
t Department of Mathematical Sciences, The University, Dundee DD1 4HN, Scotland.
Departamento de Ecuaciones Funcionales, Facultad de Ciencias, Universidad de Valladolid,

Valladolid, Spain.
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where f(u) is smooth and Lipschitz continuous in -oo < u < oo, with Lipschitz constant
L. These hypotheses ensure the existence and the uniqueness of a smooth solution.
The problem (2.1) is discretized by means of Euler’s rule

(2.2a) Uo r/+ 8,

(2.2b) (U,,+-U,,)/h=f(U,,), n=0, 1,..., N-1.

Here N is a positive integer, h TN and 6 caters for a possible error in the starting
value. For simplicity, the effects of round-off errors are not considered in this paper.

Some of the basic, elementary steps of the analysis of (2.2) ([12], [9], [5]) will
now be presented for later reference. A crucial part of the analysis is the estimation
of the size of the global errors

(2.3) e,= Y,-U,,

where Y, u(t,) is the value of the theoretical solution at the grid-point t, nh. In
more concrete terms we are interested in the quantity

(2.4) e max {le, l: n 0, 1,..., N}.

Note that U,, Y,, e,, e, 6 depend on the parameter h but this dependence does not
appear in the notation. The standard approach to the study of e is the following indirect
one (and this includes both the derivation of bounds for e for a given, fixed h and
the investigation of the behaviour of e as h tends to zero).

First the auxiliary local truncation errors

(2.5a) /o Yo- (r/+ 3),

(2.5b) I,,+I=(Y,,+I-Y,,)/h-f(Y,,), n=0,1,...,N-1

are introduced. A simple Taylor expansion taking into account that Y, u(t,) reveals
that, for n > 0, I, can be bounded by 1/2hB2, where B2 is a bound for lu"(t)l, 0 <= -<_ T. Thus

(2.6) l=max{ll, l: n =0, 1,..., N}

is O(h+) as h-0.
Then, the stability of the discretization is established, i.e. it is shown that

(2.7) e<=Cl,

where C is a postive constant which depends on T and L but not on h. This bound
is derived by subtracting (2.5) from (2.2) and applying induction w.r.t.n. No property
of Y, is required in the derivation, i.e. the fact that Y, u(t,) is not used at this stage.
From (2.7) e is also O(h+ 8) and one says that (2.2) possesses first order rate of
convergence.

Remark. Some authors [13] prefer to write (2.2b) in the undivided form

U.+I- U.=hf(U.).

Accordingly they define the local truncation error for n > 0, to be

Ir.+l- v. hi(

rather than (2.5b). With this definition the local errors are O(h2+ 6) while the global
errors, whose definition remains unchanged, are O(h + 8). In this paper, finite difference
schemes are always written in divided form, i.e. in the form resulting from the
replacement of derivatives by divided differences.



996 D. F. GRIFFITHS AND J. M. SANZ-SERNA

The introduction of modified equations aims at describing the behaviour of the
numerical solution U,. This will now be illustrated in the context of (2.1), (2.2). We
consider the modified problem

(2.8a) z(0) r/+ 6,

(2.8b) (1 +1/2hf’(z))z’= f(z), 0 <- t<= T.

(The derivation of modified problems is considered in the next section. No motivation
for (2.8) will be provided at this stage.) The standard theory of continuous dependence
on the parameters shows that, at least for h small, (2.8) has a unique solution z(t).
(Notice again that z(t) depends on h.) We claim that z(t,) is a better approximation
to the numerical solution U, than u(t,). Our task is to bound the quantity e given by
(2.4)-(2.3), where now Y, z(t,). In order to do so, we resort to the indirect approach
above. We still define l,, by (2.5)-(2.6) with Y, z(t,) and observe that (2.7) is still
valid, since, as noted before, the derivation of the stability bound does not use any
information on Y,. However, now

lo Yo- Uo z(0)- Uo 0

while, for n =0, 1,..., N-l,

/,+l (Y,+I Y,)/h-f(Y,)=[z(t,+l)-z(t,)]/h-f(z,)

z’(t,)+(h/2)z"(t,)+(h2/6)z’"(O,)-f(z,),
where t, < 0, < t,+l. On using (2.8b)

/,+1 z’(t.)+(h/2)z"(t,)+(h2/6)z’"(O,)-z’(t,)-(h/2)f’(z(t,))z’(t,)
(h/2)[z"(t,) -f’(z( t,))z’( t,,)] + (h2/6)z’"(0)

which, on using the equation obtained by differentiation of (2.8b), leads to

(2.9) l,+l=(h/2)2[f’(z(t,))z"(t,)+f"(z(t,))(z’(t,))2]+(hZ/6)z’"(O,).
ZNow z, z’, z", can be bounded independently of h because of the continuous

dependence of the solutions of (2.8) on the parameter h. We conclude that now
e= O(h2) and say that the modified problem (2.8) describes the behaviour of the
solution of (2.2) with second order of correctness. This will be now illustrated by
means of an example.

The problem (2.8) is easily integrated to yield

[z(,) dv -ln [f(z(t))[
t.(2.0)

on+a f(v) If(n + ,s)[
In what follows we set f(u)= u2. This does not strictly satisfy the hypotheses above
in that f(u) is Lipschitz continuous for M < u < M, M finite but not for -oo < u < oo,
however this poses no difficulty (see e.g. [25, p. 24]). We further set T .99, r 1,
=0 with theoretical solution u(t) 1/(1 t). From (2.10), the modified solution z(t)

is given by
1

1--+hlnz=t.
Z

Figure 1 depicts z(t), u(t) and the Euler points U, when h T/4, T/16. It is
clear that the values computed by the difference scheme are much closer to the values
z(t,) than to the values u(t,). Moreover the agreement between z(t,) and U, is very
good, even for the coarser grid.
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10

0.0 0.2 0.4 0.6 0.8 1.0

t-

FIG. 1. Exact solution of u’ u2, 0 -< t----< T (= 0.99) ull line), together with solution ofmodified equation
(broken lines) and numerical solution by Euler’s method (+ and x for h T/4 and h T/16.

It should be noted that the modified equation continues to describe the behaviour
of the Euler solution even for nh >_- 1, when the theoretical solution u(t) ceases to exist
(cf. [24]). This is illustrated in Fig. 2. One can actually derive bounds for U,- z(t,),
nh 1, but this point will not be pursued further. The following points summarize the
main ideas and are useful in preventing the pitfalls which may arise from an indiscrimi-
nate application of modified problems.

30

25

20

10

exact

h=T/16

/

/

/

h= T/4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
t-

FIG. 2. Solutions as in Fig. but for an extended time interval.

(i) A modified problem correct of order p is a problem depending on the parameter
h with the property that its solution z has a local discretization error O(hP) i.e. it
satisfies, except for O(hp) terms, the discrete equations defining the numerical method.
In order to prove that the local discretization error is O(hP), it is not enough to show
that <- hPBp, where Bp depends on the derivatives of z. In fact z z(h) and one must
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also check that Bp remains bounded as h 0. This point was illustrated in the argument
which follows (2.9).

It is perhaps worth pointing out that for a numerical method with qth order of
convergence, the original problem being solved provides already a modified problem
correct of order q.

(ii) It should be observed that even though it is customary in the literature to talk
about modified equations, it is essential to consider modified problems, i.e. the modified
equation should be supplemented by the necessary initial/boundary conditions (such
as (2.8a) and care should be exercised in checking that the modified solution satisfies,
except for O(hp) terms, the initial/boundary discrete equations (such as (2.2a)) which
supplement the main scheme (such as (2.2b)).

(iii) The stability ofthe numerical method is an essential ingredient in guaranteeing
the success of the method of modified problems. Without stability the bounds for local
errors cannot be transferred to the global error z-U. The concept of stability used
here refers to the h O, nh fixed case (0-stability in ODEs [13], Lax stability in PDEs
[19], [17], [18]) and not to the n +, fixed h case (weak stability in [13], contractivity
[21).

The importance of the points (i)-(iii) above will be borne out by the examples in
the next section.

The idea of comparing the numerical solution U with a function close to but
different from the theoretical solution u goes back to Strang [30]. See also [27], [22]
and [37, Chap. 1].

3. The construction of modified problems: examples and counterexamples. In this
section examples of modified problems are constructed, which illustrate the range of
applicability of the technique.

(A) In our first example we return to (2.1)-(2.2). In order to construct a modified
problem, correct of order two, the values of a smooth function w(t) are substituted in
(2.5):

/o= w(0)-(n+),

l,+l=(w(t,+,)-w(t,))/h-f(w(t,)), n=0,1,...,N-1.

The possible dependence of w(t) on h is not reflected in our notation. On Taylor
expanding, we obtain

h2l,+=w’(t.)+h-w"(t,)+ w’"
2 -- (t,)+ f(w(t,))

and the requirement that O(h2) implies that w(t) should satisfy

w(0) n + + O(h),

hw"(t) f(w(t))+ O(h2).w’( t) +-
In particular, the equations

(3.1a)

(3.1b)

w(0) + ,
w’+h-w"=f(w)

2

appear to be good candidates for the role of modified problem with second order of
correctness. However two difficulties have to be addressed. First the missing initial
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value w’(0) needs to be specified. Secondly, as h- 0 the equation (3.1a) is singularly
perturbed and there is a danger of w" increasing without bound. Such a growth would
destroy the O(h2) bound on l, as noted in 2(i). The success of the modified problem
approach depends on extracting a regularly perturbed problem from (3.1). A means
of achieving this is by a suitable choice of w’(0) to accompany (3.1). The difficulties
inherent in this approach do not manifest themselves in this example and the study
of this technique is deferred until the next example.

A second means of regularizing (3.1) is now presented.
Differentiation of (3. lb) leads to

w,,+hw,,,=f,(w)w
2

Upon eliminating w" between this equation and (3.1b), we obtain

1 + f’(w) w’--- ’" =f(w).
4

The solutions of this equation we are interested in, namely those whose derivatives
remain bounded as h 0, differ by O(h2) from those of

(3.2) (1 +f’(z))z’ f(z),

an equation which is not singularly perturbed. It was rigorously shown in 2 that
Euler’s method provides a second order approximation to (3.2).

In practice, and for a more general problem, the steps leading up to a modified
problem need not be performed rigorously. One would begin by replacing the grid
values in the discrete equations by those of a smooth function w. Then, on performing
a Taylor expansion and discarding powers of h higher than the pth, one would arrive
at an equation involving high derivatives of w. Finally, and as far as possible, higher
derivatives would be eliminated by combining this equation with those resulting from
its differentiation (while systematically deleting terms which involve powers of h above
the pth).

Once a candidate for a modified problem has been obtained by mere formal
manipulation, the local error of its solution z should be rigorously shown to be small
in order to conclude that z models the behaviour of the numerical solution provided
by a stable scheme (cf. (i)-(iii) 2).

An instance is provided by the equation

(3.3) z’ (1-f’(z))f(z),
which results from formal inversion up to O(h2) of the factor 1 +(h/2)f’(z) in (3.2).
One easily shows that solutions of (3.3) with z(0) r/+/5 possess a local error <- Ch2

(C independent of h), thereby providing a new modified problem for (2.2). This
demonstrates that modified problems correct of order p are, by no means, unique.

(B) We retain the initial value problem (2.1), but this time discretize it by means
of the backward Euler rule

Uo= 7+,
U,,+I- U,,)/h =f(U,,+1), n 0, 1, , N- 1.
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On proceeding as at the beginning of the previous example we arrive at the following
analogue of (3.1)

(3.4a) w(0) r/+

h
w"(3.4b) w’-- =f(w).

2

We now discuss the regularization of (3.2) by means of a suitable choice of w’(0). To
avoid any unwelcome detail, we only consider the case r/= 1, 8 =0, f(u)= Au. The
family of solutions of (3.4a)-(3.4b) is given by

w(t)=(l+c) er/’-ce r-’,

r (-1/ h)[ +.,/i 2Xh -1],

so that r+ A + O(h), r_ 2/h + O(1) and the derivatives of w will increase as h 0
unless the missing starting value w’(0) is chosen to guarantee that a 0, i.e. w’(0)= r/.

When w’(0) r/, solutions of (3.4) do not describe up to O(h2) the behaviour of the
numerical solution, even though (3.4) was obtained by insisting that the expansion of
the local error should only contain terms involving factors h s, s >_-2 (cf. (i) of 2).

This is illustrated numerically in Table 1, where A 1, t=1/2 and w’(0)= A (a
reasonable choice, since this coincides with u’(0)) and w’(0)= r/. The theoretical
solution has u(1/2)- 1.649.

TABLE

Modified
h Numerical w’(0) A w’(0) r+

1.778 .93 1.796
1.706 -7.32 1.709
1.676 -5,907.49 1.676

Had Euler’s rule been used, the roots r/, r_ would have satisfied r/ A + O(h),
r_ -2/h + O(1) and then the study of the size of the derivatives of exp (r_t) would
have been rather delicate due to a boundary layer at 0.

(C) This and the following example show the importance of considering modified
problems rather than modified equations, i.e. proper account must be taken of all side
conditions ( 2(ii)).

We again consider the problem (2.1), but this time discretized by the leap-frog
scheme

(3.5a) Uo
(3.5b) U1- Uo)/ h =f(Uo),

(3.5c) U,+2- U,)/2h =f(U,+I), n =0, 1,. , N-2,

where the additional starting value U1 is obtained by Euler’s method. The scheme
(3.5) possesses second order of convergence and therefore the original problem (2.1)
provides a modified problem with second order of correctness. We now seek a modified
problem of third order of correctness. On proceeding as in the derivation of (3.2), we
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obtain the equation

(3.6) [ h2
1 +’-(f"(z)f(z)+f’(z)2) z’=f(z)

whose solutions satisfy (3.5c) except for an O(h3) local discretization error. In this
sense, (3.6) is a modified equation correct of third order for the leap-frog scheme.
However solutions of (3.6) with z(0)=r/ only satisfy (3.5b) with second order of
correctness. Therefore a modified problem based on (3.6) cannot attain third order of
correctness. A numerical example with f(u)= u, u(0)= z(0)= 1, t= 1 is presented in
Table 2, which shows that the approximation provided by z has only second order of
accuracy. In fact, no smooth function w of and the parameter h can satisfy w(t,) U.
O(h3), since the theory of asymptotic expansions of global errors [9] shows that
u( t,) U, ha[ ck( t,) + (-1)"O/( t,)] + O( h4), with tk and ff smooth functions, which
leads to a disparity between even and odd grid values of U.. (This disparity is evident
in the table.) A means of describing the behaviour of U, may be found in [21] (cf. [28]).

TABLE 2

h (u-U)/h (z-U)/h

1_ 1.13 .69
1/4 0.99 .55

1.21 .76- 1.03 .58
t__ 1.22 .7715
+/- 1.04 .5816

(D) The two-point boundary value problem

(3.7a) u(0) =0,

(3.7b) -u"+u =0,

(3.7c) u’(1) 1,

is discretized by

(3.8a) Uo=0,

(3.8b) -( U,.,_-2U, + U,+)/h2+ U, =0,

(3.8c) Uv- U1,_)/ h 1,

0_<_t<__l,

n= 1,2,..., N-l,

z(0) :0,

-z"+ z =0, 0_-< t_-< 1,

z’(1)-(h/2)z(1)=l,

where the last equation has been derived by Taylor expanding (3.8c) and using (3.9b)
to eliminate z". Table 3, which shows values at 1, provides illustration of the fact
that (3.8) is first order accurate, while (3.9) coincides with (3.8) up to second order.

correctness

(3.9a)

(3.9b)

(3.9c)

where h 1/N, N a positive integer. We observe that (3.8b) approximates (3.7b) with
second order accuracy, while (3.8c) is only a first order accurate replacement of (3.7c).
Consequently we obtain the following modified problem, which has second order of
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TABLE 3

h (Exact-numerical)/h (Modified-numerical)/h

_1 -.287 +.0344- -.289 +.015
+/- -.290 +.00716

(E) Our final example is given by the following periodic initial value problem for
the heat equation"

(3.10a) u(x, O) Uo(X), -oo < x < o,

(3.10b) u(x, t) u(x + 1, t), -oo < x <

(3.10c) ut u,x, -oo < x < c, > 0,

together with the discretization

(3.11a) U= uo(jh), j-0, +l, +2, ,
(3.11b) U;=U;+ n-l,2,..., j=0,+l,+/-2,...,

(3.11c) (U./I-U.)/k-(U;_I-2U;+U.+I)/h2, n=0,1,...

t>0,

j=0,+/-l,+/-2," ".

which leads to

(3.13) w,= wxx- w,--rW,,
as a candidate for modified equation. Again (3.13) contains a small parameter in front
of the highest derivatives and, because of its high order, requires more side conditions
than can be derived from (3.11a)-(3.11b). Differentiation of (3.13), first with respect
to and then with respect to x twice, yields

Wxxt Wxxxx Wxxtt -r D w

These equations can now be used to eliminate wtt from (3.13) and, on discarding terms
involving k2, we arrive at the equation

(3.14)

where w w(jh, nk). On Taylor expanding, we obtain

(3.12) /7+= (w,- wxx)+ w,,-rW,,x, +’’"

Here Uo is 1-periodic, h 1/J, J a positive integer and k= rh2, with r a positive
parameter. We now present in detail the construction of a modified problem of second
order of correctness (in k), so as to show the additional novelties involved in dealing
with PDEs. A smooth function w(x, t) is substituted in (3.11c) to yield

n+l17+’ (w w )/k-(w_,- 2w] + w+)/ hz,
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We notice in passing that the form

Dx zt=Zxx

resulting from formally inverting the operator in brackets on the right of (3.14), may
also be considered. This alternative form seems advantageous in the case of initial
boundary value problems, since it does not increase the number of required boundary
conditions. See below.

We now discuss whether (3.14), together with

(3.16a) z(x, O) Uo(X), -c < x < o,

(3.16b) z(x+l,t)=z(x,t), -o< x < o, t>0,

provides a modified problem for the study of (3.11). The Fourier transform of (3.14)
is given by

(d/dt)(m, t)=-(1 +(1---r)4m2"n’2)4m2"tr2(m, t)

where m is the wave number (m 0, +1, +/-2, ). This leads to

(3.17) (m, t)= (m, 0) exp [tr(m)t]

where tr(m) is the symbol of (3.14)

_1\ 2 2 2 2’(m):-(l+-k(12 -rJ4m zr )4m 7r"

Three ranges of the parameter r should be studied separately.
(i) --< r=<. When r has been fixed within this range the exponential term in (3.17)

is bounded for all >= 0 uniformly in m and k. Therefore the solutions of (3.14)-(3.16)
are bounded together with their derivatives uniformly in k. This fact combined with
the stability of the scheme (3.11) allows us to conclude that we are dealing with a
problem of second order of correctness. (Note that for r= (3.14) reduces to the
original equation (3.10c), in agreement with the fact that, for this value of r, (3.11) is
convergent for order O(k2) [15].) Table 4 provides a numerical illustration of the
approximation at

x=1/2, t=1/4, Uo(X)=,, (-1)’
16 COS 2zrlx, u(1/2, 1/4) 5.172 X 10-5

when r .
TABLE 4

h Numerical x 105 Modified x 105

1/4 26.327 1.875
4.351 4.013

+/- 4.851 4.85416
+/- 5.091 5.09132

(ii) 1/2< r. In this range the exponential term in (3.17) is still bounded. However
the scheme is now unstable and bounds for the local discretization error do not lead
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to bounds for global errors. As a result (3.14)-(3.16) do not model the behaviour of
(3.11). This is borne out by Table 5, which is analogous to Table 4 except for the fact

2that now r 3.

TABLE 5

h Numerical x 105 Modified x 105- -2.05 104 0.0124- -3.13 107 1.129
-4.57 1020 3.535

+/- 1.55 1039 4.70332

(iii) 0< r <. In this range the scheme is stable, but the exponential term in (3.17)
cannot be bounded uniformly in m, k. Thus (3.14)-(3.16) is not well-posed uniformly
in k. (Even for a fixed k > 0, (3.14)-(3.16) cannot be solved for arbitrary initial data,
due to the unboundedness of the exponential term as m varies, a situation similar to
that for the backward heat equation. In particular (3.14)-(3.16) does not possess a
solution for the initial datum employed in Tables 4-5.)

When attention is restricted to initial data Uo containing only a prescribed finite
number M of harmonics, (3.14), (3.16) may still be of some value, since the exponential
in (3.17) is bounded for m_-< M and k sufficiently small k < ko(M). This remark has
often been expressed in the literature by saying that modified equations are valid only
when the product mk is small [34], [16], [33], [20].

Table 6 refers to the initial condition

Uo
(-1)/
-i6 cos 2r/x,

/=1

x=1/2, t=1/4, r=, M=5, u(1/2,)=5.172x 10-5 As M is increased, the value of h must
be decreased accordingly in order to attain a prescribed level of accuracy.

TABLE 6

h Numerical x 105 Modified x 105

34.474 2.277 10- 5.927 5.872
1 5.342 5.33916
1 5.214 5.21332

To conclude this example we point out that the alternative modified problem
(3.15)-(3.16) is uniformly well-posed, as k -> 0, if and only if r lies in the range 0 < r < .
Therefore (3.14), (3.15) complement each other and allow a study of the scheme in
the entire stable range 0 < r _-< 1/2.

4. Related techniques. The modified equation approach is closely related to other
commonly employed means of analysis. We first consider the use of variational
equations to study the behaviour of the global error u- U. For the sake of simplicity,
attention is restricted to the model situation (2.1)-(2.2) with /5 =0. It is well known
[9] that Un=u(tn)+hv(tn)+O(h2), where the function v(t) does not depend on h
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and satisfies

(4.1a) v(0) -0,

(4.1b) v’=f’(u(t))v-1/2u"(t), 0 <- <- T.

Thus y(t) u(t) / hv(t) provides a model for the description of the Euler solution
accurate to O(hE). However the determination of y(t) requires successively the solution
of the original problem (2.1) and that of the variational problem (4.1). The modified
problem approach, on the other hand, involves only the solution of the single problem
(2.8). This latter approach is therefore more convenient in practice, where often only
qualitative information on the behaviour of U is of interest. Nevertheless the two
approaches are closely related, as borne out by the fact that (2.8) can be rigorously
derived from (4.1) as follows. On using (2.1b), we can rewrite (4.1b) as

v’=f’(u)v-f’(u)u’.
Hence, since y u + v,

y’= u’+ hv’=f(u)+ hf’(u)v-f’(u)u’
(4.2)

h,
=f(y)--f (y)y’ + O(h2),

where in the final step we have made use of the smoothness of u and v. Deletion of
the O(h2) remainder in (4.2) can only lead to an O(h2) change in the solutions and
yields (2.8).

This close relationship between the variational and modified equation approaches
merely reflects the fact that they are based on the same information, namely the leading
terms in the expansion of the local error. This remark applies equally to any strongly
stable [29] linear multistep method. For stable linear multistep methods having roots
r 1, [r[ 1 the situation is more delicate [9] due to the effect of choice of starting
values. (See example C) above.)

The observation that modified problems make use only of the leading terms of
the expansion of the local error applies generally, and is primarily responsible for
restricting the scope of the method. A further illustration is given in the context of the
heat equation example in the previous section. The scheme (3.11) was used there only
insofar as to derive (3.12). In turn the modified equations (3.14), (3.15) were based
solely on the terms displayed in (3.12); consequently they would serve as modified
equations for any scheme that gave rise to the same terms. On the other hand the
amplification factor 15]

so(rn) 1 4r sin- m,rrh,

where the wave number m is an integer, provides a complete characterization of the
scheme and may therefore be used to deduce all its properties. In particular the first
order of local accuracy (r -) is a consequence of the expansion

(4.3)
’-exp[-(2mr)2k]k

k (1)-r=-(2mr)4 1 / O(k2m6),

This expression is simply the Fourier transform of (3.12) when w is a solution of
(3.10c). The O(k) term in the right of (4.3) is the Fourier transform of the leading
term of the local truncation error, which is the only information required to construct



1006 D.F. GRIFFITHS AND J. M. SANZ-SERNA

the modified problems. This is reinforced by noting that

---(2mcr)4 1 =exp (2m,/r)4 1 1 -k O(k4m8)

k2

exp [-(2m’rr)2k]{exp [-(2m’n’)4(1--r) ] I }
+ O(k m6),

which, together with (4.3), leads to

:- exp (irk) O(k2m6),
k

where tr-tr(m) is the symbol of the modified equation (3.14). In other words the
symbol tr(m) and consequently the modified equation itself, can be derived from the
terms displayed in (4.3) without having to resort to the original difference equations.

The study of the stability of the scheme (both for k- 0, fixed and k fixed, c)
requires complete knowledge of s(m), [hm[ <- 7r, information which cannot be deduced
from the leading terms of the expansion of :(m) around mh =0. Consequently,
properties such as stability cannot be ascertained from a study of modified problems
(cf. Table 5). Therefore the cases reported in the literature where analysis of a modified
problem has resulted in the correct stability limits must be regarded as coincidence.
These attempts have, by and large, been restricted to cases where the stability had
previously been analysed by different means and the stability limits were thus known
beforehand.

It may be useful to point out that although the derivation of modified equations
only takes into account the behaviour of the numerical scheme for mh small, well-posed
modified problems describe accurately the numerical solution provided by (Lax) stable
schemes even if the solution contains all wave numbers (cf. Table 4). The reason for
this is that in any initial datum in (say) L2 the high frequencies are represented with
amplitudes which tend to zero as the wave number increases. "It does no harm for
these higher harmonics to be falsified" both by the scheme and by the modified equation
"provided only that they do not become amplified to such an extent as to be no longer
negligible" (see 19, p. 11]. The quoted sentences have been taken from this reference.)

5. Conclusions. The following conclusions have emerged from our study of the
method of modified problems.

(i) The construction of a modified problem correct of order p may be undertaken
in a purely formal manner. Having arrived at a suitable candidate it is necessary to
verify that its solution satisfies the discrete equations except for an O(hp) remainder.
In doing so it is imperative to ensure that any derivatives appearing in the remainder
are bounded as h 0 (cf. Table 1).

(ii) Side conditions in both the original problem and its discretization must be
incorporated into the analysis (cf. examples C) and D)).

(iii) Stability as h0 of the discrete method being analyzed is an essential
prerequisite for the success of the analysis. Without stability, estimates of the local
truncation error do not imply estimates of the global error (cf. Table 5).

(iv) Since only a limited amount of information on the scheme is used in construct-
ing a modified problem, such problems cannot provide a full description of the scheme.
In particular stability properties, both for h fixed, c and h 0, fixed, cannot be
deduced from a modified problem.
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(v) It has often been asserted in the literature that modified partial differential
equations provide a valid description of the numerical solution only when the product
(wave number)x h is small. However our analysis has revealed that this is not
necessarily the case and that solutions to initial data containing all harmonics can be
described, provided that the candidate modified problem satisfies (i)-(iii) above (cf.
Table 4 and last paragraph of 4).

Acknowledgment. The authors would like to express their gratitude to the British
Council in Spain for their financial assistance.
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AN EXTERIOR POISSON SOLVER USING FAST DIRECT
METHODS AND BOUNDARY INTEGRAL EQUATIONS WITH

APPLICATIONS TO NONLINEAR POTENTIAL FLOW*

DAVID P. YOUNGf, ALEX C. WOO:, JOHN E. BUSSOLETTI: AND FORRESTER T. JOHNSONt

Abstract. A general method is developed combining fast direct methods and boundary integral equation
methods to solve Poisson’s equation on irregular exterior regions. The method requires O(N log N)
operations where N is the number of grid points. Error estimates are given that hold for regions with corners
and other boundary irregularities. Computational results are given in the context of computational aerody-
namics for a two-dimensional lifting airfoil. Solutions ofboundary integral equations for lifting and nonlifting
aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of
thinness.

Key words, partial differential equations, fast direct methods, boundary integral equations, fast Poisson
solvers, preconditioned conjugate gradient, transonic potential flow

1. Introduction. Fast direct methods have been used extensively in recent years
to solve Poisson’s equation on rectangular and other separable domains [ 1 ], [2]. Much
work has been devoted to extending these methods to other elliptic partial differential
equations and/or nonseparable domains. In particular, for irregular geometries the
analogy of capacitance matrices with potential theory has been exploited by Pros-
kurowski and Widlund [3], [4]. In this paper, we show how a consistent, second-order
boundary integral discretization can be implemented using fast direct methods. The
starting point is the classical theory of double- and single-layer potentials. If N is the
number of grid points, our discretization enables a solution of Poisson’s equation in
O(N log N) opeations which retains the spectral properties of the boundary integral
formulation. This discretization has certain advantages with regard to conditioning of
the matrices, flexibility in boundary discretization, and computation of quantities such
as surface pressures.

In 2, we outline the hybrid method in the context of boundary integral (panel)
methods. Section 3 explains how the boundary integral problem is approximated using
an exterior fast solver and an error estimate is given. Section 4 presents some two-
dimensional computational results. Section 5 explains some iterative techniques for
solving the linear system resulting from the approximations given in 3 (such techniques
are necessary in three dimensions). It also contains the results of some numerical
experiments with preconditioned conjugate gradient. In 6 we put our work in the
context of previous work in this area.

2. The hybrid method. Because of the extreme sensitivity of airfoil problems to
small perturbations in geometry [5], [6], [7], panel (boundary integral) methods with
their accurate representation of surfaces have long been standard for linear potential
flow calculations. But implementations of these methods have not been optimal compu-
tationally. Fast direct methods and boundary integral methods can be combined for
the Poisson problem with advantages over either method alone. Consider the boundary
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value problem

(1) Ab=f in, ack+fl-n=g on0fl,

for an exterior domain 1
_. Extend f by zero outside 1 and write b 4) + 42 with

4 and 4 satisfying

(i) h4 =f over with arbitrary boundary conditions on 0

b- O(log R) as R -,and

(ii) A4,2=0 onlY,

04 nab2+/-’n g 1- fl on 0,

2 O(log R) as R , where R x2+ y.
Solving problems (i) and (ii) can be made less expensive than solving the original

Problem (1). Problem (i) can be solved using any exterior fast direct method. We have
chosen Hockney’s convolution algorithm [8] because of its simplicity and either
Hockney’s discrete Green’s function or that given by James [9]. Problem (ii) is solved
using a modified second-order boundary integral (panel) method. More details on
boundary integral methods can be found in [5], [6], [7], 10]. The method we modified
is described in detail in [5], [6], [11].

The panel method can be viewed as collocation on an integral equation derived
from Green’s third identity. The formulation we use solves both the exterior problem
and a related interior problem using jumps in 2 and OO/On called doublet and source
distributions.

FIG. 1. Domain description.

If b, denotes the limiting value of b2 from the inside and bu the limiting value
from the outside as in Fig. 1, we let

called the doublet, and

[[,,]]--- ,/,, ,,,

called the source. Now, b2 can be described in terms of its jumps on 0f by

(2) dp2(P)=fontr(O)K(P, Q) dl-Iontx(O)(P O) dlo

where K(P, Q)- -(1/27r) log R(P, Q) for the two-dimensional problem and R(P, Q)
is the Euclidean distance between P and Q.
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The surface is discretized using piecewise linear elements (also called panels).
The unknown sources are piecewise linear and the doublets piecewise quadratic.
Collocation points are chosen at the geometric centers of the boundary elements. The
method is second order and is described in detail in [5], [6], [11].

The conventional panel methods generate an aerodynamic influence coefficient
matrix giving the influence of each singularity basis function on each collocation point.
Each element in the matrix is computed explicitly using the geometric relationship
between the panel and the collocation point. If p is the number of panels and N an
equivalent number of grid points in space (i.e., p2._ O(N) in two dimensions), generat-
ing this influence matrix requires O(p2) O(N) operations although the coefficient is
large. Solving the linear system directly involves O(p3) O(N3/2) operations. In three
dimensions, p- O(N2/3) and the matrix generation requires O(N4/3) operations while
solving the linear system requires O(N2). This motivates the search for methods that
avoid explicit generation of the matrix and the direct solution of the linear system. A
panel or boundary integral code only gives solution values at the collocation points
on the surface without special postprocessing. In conventional panel codes this is done
with explicit integral evaluations similar to those used to generate the influence
coefficient matrix. In two dimensions, for N grid points, the cost of evaluating 2 at
all the grid points as required for the Poisson problem is O(Np) O(N3/2) operations.
Because of the large constant, this is the greatest cost in two dimensions and for
moderate N would dominate the cost in a three-dimensional code.

Our solution to the problem of finding )2 at all grid points is described below. It
enables us to avoid generating and directly solving the boundary correction matrix.
The same methods and error estimates are applicable to both the fast computation
of 2 at all grid points and the fast computation of a matrix-vector multiple as
required for a method such as conjugate gradient. This follows since multiplying the
boundary correction matrix by a vector gives boundary values of the unknown poten-
tial 2 and its normal derivative 02/0/’/ at the collocation points. These values
can instead be obtained directly by extrapolation once these quantities are known
away from the boundary. The methods described below also enable the use of
simple relaxation schemes and matrix splitting techniques where products of certain
parts of the matrix with vectors can be computed without explicit generation of the
matrix

3. Description of the method. The method outlined above for solving (1) has five
steps:

1. bl is computed using Hockney’s exterior convolution algorithm. bl satisfies

Ahbl =f where Ah is the standard second-order, five-point finite difference approxima-
tion to A.

2. bl and Vbl are interpolated to panel centers for use in the boundary correction
algorithm. These functions are assumed smooth and the interpolation should be second
order.

3. Boundary conditions for b2 are determined from adp2+fl 02/0n=
g ack fl Odp/On at panel centers.

4. The boundary integral equation (2) is solved for the source and doublet strengths
cr and /x on the boundary used collocation. In two dimensions, this can be done
without excessive cost by directly computing the influence matrix and solving the linear
system by Gaussian elimination. In three dimensions, an approach using iterative
methods without explicit generation of the matrix is required. Such a scheme is
described in 5.
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5. b2 is computed at the grid points using discrete charges to compute accurate
far-field influences of the known surface singularities. This also requires one call to
the exterior solver.

Our main emphasis in the rest of this paper will be on step 5. We will show how
step 4 can be similarly accomplished for three-dimensional problems at a cost of
O(N log N) operations (see 5).

Assume that a source distribution cr on a flat panel p embedded in a regular grid
is known (the dipole distribution will be discussed presently). This assumption is
correct for step 5 and also for step 4 if a method such as conjugate gradient is used
(see 5 below). Two methods will be examined for relresenting the influence of the
source distribution cr on a point P by charges on the grid points (see Fig. 2).

h

Q6

R(P,Q1

P

FIG. 2. Arrangement of charges forfar field influences.

Method I. An approximation of the form

tr(Q) log R(P, Q) dlo= q, log R(P, Q,)= qp.O= p(P)

is desired of as high an order as possible where G is Hockney’s discrete Green’s
function given by

(1/27r) log R(Q,, Q)
G(Q,, Q)

1,1 ifi=j.
ifij,
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Expanding log R(P, Q) and log R(P, Qi) in Taylor series about the panel center Qo
for large R, multiplying by or, and integrating over the panel p yields

cr log R dl log Ro cr dl + R--o crAR dl

l(r,-x,)fp 2XoYolpcrabd+- g4o cra2 dl- R---o
1 (X- r)+- crb dl +.
2 R’ Jp

where Qo (Xo, Yo), A-- (a, b), and A--i (ai, bi). Similarly, expanding each discrete
charge about Qo,

Yo-Xo) 2Ro 1(
qi log Ri qi log Ro + R---o qi-i +- d qiai

2XoYo 1 (X- Y) 2

R qiaibi +-2 R qib +" ".

Matching terms in the expansions requires

q fp cr dl,

E qiA----i-- fp ,- dl,

E qia2i fp cra2 dl,

qiaibi Ip crab dl,

, qib f crb2 dl.

This gives six conditions to determine the six unknown charges ql, q2,"" ", q6. As is
shown by Isaacson and Keller [12], if the points (a, bi) form a triangular array, the
two-dimensional interpolation problem equivalent to the above system has a unique
solution. The error term is O(ha/R3o).

If the panels are assumed to be of length O(h) and are flat, the error for the
dipole distribution can also be made O(ha/R3o). The expansions are more complicated
but the terms to be matched are

qi=O,

dl,

1/2 q,a ,,x dl,
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qiaibi nX lp tXb dl + nr lp tza dl,

Y qib ny Ip tzb dl,

where ri (nx, ny) is the unit normal to the panel.
The result is a charge distribution qp such that tp(P) qp.G. By linearity, we can

superimpose charge distributions to obtain the total potential

lfo lfplogRdl= logRdl

=(q)*G+er(P)+e where eistheerrorterm.

In two dimensions, there are O(1/h)= O(N) panels, so the error for br is
O(h3/Rg)-- O(h2//3), where the summation is over all p,/ is the minimum of the

distances from the point P to all panel ceters and Ro is the distance from P to the
geometric center of p.

The error corre.sponding to points P near some panel may thus be large. Hence,
the total potential br obtained from the exterior convolution algorithm using the sum
of all the discrete charges must be corrected. This correction is accomplished point by
point as follows.

Cycle through the points P in the grid. If P is sufficiently close to any panel p,
i.e., closer than some empirically determined constant distance k, chr(P) must be
corrected for this panel’s influence. Because there are O(1/h) panels we want to keep
h3/ Rp,p Kh for each grid point panel pair for which no correction is needed. Thus,
kl/K <-_ Rp.p is required of the point P for p to be accurate enough there. The
correction is done by subtracting the discrete contribution and adding the surface
integral,

T(P)-- .TrlfpbT(P) qiGi(P, Qi) +-_ tr(Q) log R(P, Q) dlo.
i=1

The total error in bT after all corrections is

.<= C--<= C O(h2),

where the sum is over all panels p such that Ro -> k.
The number of points at which corrections are required is the number of panels

times the area of the circle of radius 3v/-g-divided by h2 and is thus O((1/h) (C/h2))
0(N3/2).

By taking three more terms in the Taylor series, the error term for a single panel
becomes O(h6/R6). Hence, for a second order method we require h6/R6<- Kh or
x///_-<R. In this case the total number of corrections required is
O((1/h)). (h/h2)) O(N). A similar analysis can be made for dipole distributions
assuming flat panels. Thus, the entire sequence of steps requires O(Nlog N)
operations.

An implementation of a first order variant of this scheme as outlined in [13] can
be found in the doctoral thesis of K. Halasi [14].

Method II. This method is more closely related to the convolution algorithm and
is the one used in our code. It consists of four steps:



AN EXTERIOR FAST POISSON SOLVER 1015

1. Compute =(1/2r)p tr(Q) logR(P, Q)dlQ using exact near field integral
computations for each grid point P within a circle of radius R (determined empirically)
about the panel center.

2. Compute finite differences of to obtain charges t] Ah on the grid. t] will
be zero outside the circle.

3. In two dimensions in order to get the correct far field behavior, it is necessary
to adjust the charge values so that Y (t Jp tr dlQ where the sum is taken over the whole
grid. This correction is evenly distributed over the nonzero

4. Compute b satisfying Ahth using Hockney’s convolution algorithm with the
discrete Green’s function of James [9].

This method is similar to that of Mayo [15], [16], who used, however, fewer
changes and required a sixth order boundary integral method. We implemented Method
II because certain data structures turned out to be easier to code. However, Method
I provides a more intuitive formulation of this type of procedure.

The error in this process can be estimated by integrating the neglected charges
outside the circle. The error analysis yields the same results as for Method I, i.e., the
total error in b is 0(h2/I3). As explained in 5, this approximation is also used as
part of an iterative method to find b2. The process amounts to using the above
approximation for off-diagonal elements of the discrete boundary correction operator.
Since the unmodified panel method is assumed to be second order, application of
simple perturbation analysis such as that contained in [12, Thm. 3, p. 37] shows the
presented method to be second order in h.

Computation of velocities from the potential is a somewhat complicated matter.
First order accurate velocities can be obtained at half grid points by centered finite
differencing of the potential. However, when the differencing stencil crosses a panel,
a large error is introduced. We must, therefore, correct these velocities by subtracting
the finite differences of the individual panel potential influences for those panels that
are close to the point in question and then adding the exact panel influence velocities
computed as in [5], [6] for those panels. More details can be found in [17]. This gives
a sum of first and second order terms, the accuracy of the result depending on the
near-field influence cutoff R.

4. Computational results. Our code implements Method II and was run as a
component of a nonlinear potential flow code for two-dimensional problems described
in [17]. This code uses a preconditioned steepest descent algorithm with a scaled fast
Poisson solver using the algorithm described above as a preconditioner. The accuracy
of the Poisson solver was consistently checked against a standard panel code that
evaluated b2 at all grid points using exact integrals of the singularity strengths. Method
II was about 20 times faster than exact integral evaluations. Table 1 shows the errors

TABLE
Code vs. exact potential.

Absolute errors

Grid h R h/R ck Vx Vy

.03 .06 .5 .18 .038 .019

.015 .06 .25 .029 .010 .0065

.03 .12 .25 .030 .004 .003

.015 .09 .167 .010 .0027 .0018

.015 .12 .125 .0060 .0011 .0009

33x33
6565
33x33
65x65
6565

Relative errors

.02 .06 .043

.0032 .016 .015

.0033 .0062 .0066

.0011 .0043 .0044

.0007 .0018 .0022
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in the maximum norm obtained by such a comparison. The number of grid points in
each direction is either 33 or 65 as noted. Also, h is the grid spacing, R the radius of
the circle within which discrete charges were computed in step 2, h/R is the convergence
error variable, Vx and Vy are the x and y components of velocity and b is the potential.
The region is the exterior of the NACA 0012 airfoil at zero angle of attack. The dipole
and source distributions are those needed to impose homogeneous Neumann (imper-
meable) boundary conditions after volume sources due to nonlinear terms have been
evaluated at a freestream Mach number of 0.7. Specifically, I[ ,ll 100 where /x is
the doublet strength.

Figure 3 shows a log plot of the absolute errors in b times R versus h/R. The
empirically observed convergence rate is very close to the theoretical prediction.

The whole nonlinear iteration sequence was also run for this problem. The result
is the same as that obtained with the exact integral formulation and the same as that
obtained from Jameson’s code FLO42 to three digits.

5. Solution of the boundary integral problem. The boundary integral problem for
the correction potential b2 can be solved by direct methods such as Gaussian elimina-
tion. Since the system is dense and in general nonsymmetric and since the number of
boundary elements is relatively small in two dimensions, we have used Gaussian
elimination in our two-dimensional code.

However, in three dimensions, iterative methods have the potential to be sig-
nificantly cheaper (O(N log N) operations per iteration) than direct methods. This is
true, in particular, when each iteration involves only matrix-vector multiplies or
matrix-vector multiplies with minor adjustments in which case the boundary integral
matrix does not need to be explicitly generated and stored. Such is the case for the
conjugate gradient algorithm and the paired Jacobi relaxation used by Schippers 18].
Multigrid methods as developed by Schippers [18], Hempker and Schippers [19], and
Sloof et al. [20] can also be used. We describe an iterative method below based on
the method of conjugate gradients applied to the normal equations. An important
advantage of using a consistent discretization of a boundary integral equation of the
second kind is that the condition number of the matrix is asymptotically constant. This
observation follows from the classical spectral properties of compact operators and
the consistency of the discretization. For unions of rectangles, finite difference capacit-
ance matrices are first-order discretizations of boundary integral equations and hence
have asymptotically constant condition numbers. For finite element formulations, this
result was proved by Dryja [21] and has recently been extended to the general case
of smooth regions where the sides of the triangular elements are all O(h) as h - 0 [22].
For the finite difference formulations, Shieh [23], [24] has shown that at most a fixed
number of singular values of the capacitance matrix are outside a fixed interval as
h 0. An N log N operation count can be maintained by using a "sparse" fast solver
when solving the capacitance matrix equation iteratively. However, the number of
iterations required may grow slowly as h- 0 even though in practice this does not
seem to occur. This is due to the fact that the diagonal elements of the capacitance
matrix need not be asymptotically the same size as the self-influences for the boundary
integral equation.

Below we give results of some experiments using a two-dimensional panel aerody-
namics code that solves the Prandtl-Glauert equation by discretizing the classical
boundary integral equation [5], [6]. We have used preconditioned conjugate gradient
to solve both lifting and nonlifting problems. A boundary integral equation of the
second kind results from using impermeable boundary conditions, i.e, c3qb/On--0 and
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FIG. 3. Plot of log of maximum errors in dp times R against log (hi R) for Poisson solver.

sources alone on a nonlifting configuration. Table 2 shows how the condition number
is related to thinness and Table 3 shows that it remains constant in this example as
the number of panels is increased. All eigenvalues were computed using the EISPACK
subroutine RGG.

TABLE 2
Condition numbers of boundary integral equation

matrices.

Shape

Sphere
10% thick flattened sphere
1% thick flattened sphere with tip

Condition no.

2.04
11.0
52.1

To accelerate convergence for the thin configurations, a preconditioner consisting
of the largest few elements in every row was used. Even with explicit computation of
the boundary correction matrix and the matrix-vector products rather than implicit
evaluation discussed below, we were able to obtain eight digits reduction in the residuals
with significantly less work than with Gaussian elimination, while using relatively few
surface elements. The results are shown in Table 4. NELRW is the number of elements
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TABLE 3
Influence ofpanel density on condition number.

10% thick flattened sphere

No. panels Condition no.

21 11.03
42 11.0
84 11.0

1% thick flattened sphere with tip

No. panels Condition no.

84 52.1
168 53.2

TABLE 4
Preconditioned conjugate gradient applied to boundary integral matrices Nonlifting configuration).

Problem

10% thick
10% thick
1% thick
1% thick
1% thick

No.
panels

42
84
84
168
168

NELRW

4
8
8
8

16

No. iterations
to obtain

10-6 residual

Preconditioning flops

Total flops

9
9
9
17
10

.16

.21

.22

.11

.26

Total C.G. flops

1/3N

1.53
.80
.78
.70
.49

selected from each row for the preconditioner. The largest elements in the row are
always chosen so that the preconditioner consists of the near-field influences. Also
shown is the number of operations associated with preconditioning (SPARSPAK [25]
was used to solve the required linear system) divided by the total number of operations
for the preconditioned conjugate gradient method and the total number of operations
for the preconditioned CG algorithm divided by the number of operations for Gaussian
elimination. The residual is measured in the L norm.

For the lifting problem, the Kutta condition introduces a small eigenvalue resulting
in a condition number of 103- 104. Preconditioning can ameliorate the influence of
this eigenvalue on the convergence rate. Our preconditioner was chosen to include
both the row and column associated with the Kutta condition as well as the largest
elements in each row. Preliminary results of using this method on the NACA 0012
lifting airfoil at 2 angle of attack at mach .61 using our nonlinear potential flow code
[17] are shown in Fig. 4. There were 110 panels in the configuration. Out of 12,761
matrix elements, 2593 were included in the preconditioner. After 20 iterations, the
maximum residual was 4.03 x 10-7 and the Kutta condition was satisfied. Similar error
reduction factors were observed throughout the nonlinear iteration sequence. The
residuals were measured in the L norm.

In an iterative solution of the boundary integral problem the product of the
boundary integral matrix with a vector must be computed. Given an approximation
to the surface singularities, the product of the boundary integral matrix with this vector
is computed simply by determining resulting values of b and ck/gn at the centers of
the boundary elements. This is exactly what step 5 in the algorithm of 3 allows if
the resulting b and ck/On values can be accurately interpolated to points not on the
grid. With near field corrections, this can be accomplished by interpolating only the
smooth far field part of the solution, the near field influence integrals being computed
explicitly. The adjoint of the influence matrix can be dealt with similarly since the
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FIG. 4. Preconditioned conjugate gradient applied to a lifting airfoil.

adjoint of a single layer potential operator is another single layer operator and the
adjoint of a double layer potential operator is a derivative of a single layer potential
operator [26]. Incorporation of this implicit multiplication results in an algorithm that
is asymptotically O(N log N) operations where N is the number of grid points, for
problems in which the boundary correction results in an integral equation of the second
kind.

Schippers [18] has used a multigrid method on two-dimensional lifting airfoil
problems using Jacobi, paired Gauss-Seidel, and paired Jacobi relaxation. These
relaxation techniques can be carried out using the same near field-far field ideas without
explicit generation of the matrix.

6. History and comparisons. The methods presented here can be viewed as gen-
eralizations of capacitance matrix techniques. Here we attempt to put our work in the
context of this previous related work. The term capacitance matrix seems to have been
coined by Hockney [8] and Buneman. The ideas were put in the context of the
Woodbury formula by Buzbee, Dorr, George, and Golub [27]. Proskurowski and
Widlund [3] generalized the formulation to second-order finite differences on arbitrary
regions. They developed the analogy between this formulation and boundary integral
equations and advocated the use of the conjugate gradient method to solve the
capacitance matrix system. Shieh [23 analyzed the conditioning of capacitance marices
for this formulation for the Neumann problem and showed that all but a finite number
of singular values lie in some fixed interval bounded away from zero. He also showed
an N log N operation count by using a "sparse" fast solver doe to Banegas. The
method was extended to three dimensions by O’Leary and Widlund [28] and to regular
finite element discretizations by Proskurowski and Widlund [4]. The recent work of
Dryja [21], [22] analyzes the finite element approach.
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Mayo 15], 16] has applied fast direct methods to a boundary integral formulation
for interior problems with smooth boundaries. A sixth-order boundary integral method
was used to obtain a solution in O(N log N) operations.

Faber, White, and Sweet [29] have improved the conditioning of capacitance
matrices by using large numbers of discrete charges while retaining the Woodbury
formula. Far field approximations for boundary integral equations have been developed
by Mike Epton and others at Boeing to improve the efficiency of conventional panel
methods [11]. Another way to view the work in this paper (and the way it developed)
is as a very general and efficient way of computing far field influences for panel
methods. A preliminary report on these methods can be found in [30]. Application of
these methods to incompressible Navier-Stokes equations was reported by Gustafson
[31].

Recent surveys of fast direct methods include those of Hockney [32] and Stuben
and Trottenburg [33]. The hybrid method described here has several advantages. One
is that the condition number for integral equations of the second kind is bounded by
a constant as the number of boundary elements grows. This is because it represents a
consistent discretization of the boundary integral equation. Another advantage is that
arbitrary geometries with local surface features can be handled without requiring the
grid to go through such local features. Also, surface information is easily obtained
from the singularities. More details of such calculations are given in 17].
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COMPUTATION OF THE CHI-SQUARE AND POISSON DISTRIBUTION*
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Abstract. The paper deals with the computation of upper and lower tail probabilities of the chi-square
and Poisson distribution with a specified relative accuracy on both tails for virtually all possible parameter
values. With some supplement the proposed algorithms will also work for the general gamma distribution.
If the parameters are small, open forward and backward recursion is used for the summation with an
adaptive number of steps depending on the specified accuracy. For large parameters asymptotic expansions
related to the central limit theorem are applied for the approximation. The basic ideas of the proposed
methods will also be applicable to other elementary statistical distributions such as the binomial, beta, and
F-distribution as well as the hypergeometric distribution.

Key words. Poisson distribution, chi-square distribution, gamma distribution, open adaptive recursion,
asymptotic expansions
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1. Introduction and summary. The paper deals with the computation of upper and
lower tail probabilities of the chi-square and Poisson distribution with a specified
relative accuracy on both tails for virtually all parameter values. With some supplement
the proposed algorithms will also work for the general gamma distribution. The basic
ideas of the proposed methods will also be applicable to other elementary statistical
distributions such as the binomial, beta, and F-distribution as well as the hyper-
geometric distribution.

In 2 the desired probabilities are reduced to three building blocks I(a, x), J(a, x),
and p(a, x). In 3 and 4 the first two quantities are computed by simple and very
stable algorithms where the adaptive number of steps depends on the arguments and
the specified relative accuracy. In 5 we propose a logarithmic procedure to compute
the quantity p(a, x) and in order to reduce cancellation effects we suggest using a
scaled version of the gamma function and a shifted version of the log-function. Section
6 deals with asymptotic expansions of the desired tail probabilities as a whole and of
the three building blocks individually. Proofs and derivations are not given in this
paper and can be found with further references in Kniisel (1981).

2. Basic building blocks. We define the following quantities"

p(a,x) --e-xxa-1 foF(a)
where F(a)= ’-1 e-t dr,

(2.1) I(a, x) x e "- e- dr,

J( a, x) x e - e- dr,

(a > 0, x > 0). The following identity holds true"

(2.2) [I(a,x)+J(a,x)]p(a,x)= 1.

* Received by the editors January 12, 1983, and in final revised form June 17, 1985.

" Institut fiir Statistik und Wissenschaftstheorie, Universit/it Miinchen, D-8000 Miinchen 22, Federal
Republic of Germany.
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Now, let X denote a random variable having a gamma distribution with parameter
a>0:

1 [.’ a--1(2.3) Pr{X<x}=F-. e- dt forx>0.

In terms of p, I and J we have

Pr{X<x}-p(a,x). I(a,x),
(2.4)

Pr {X > x} p(a, x). J(a, x).

Next, let Y denote a random variable having a chi-square distribution with f
degrees of freedom (f 1, 2,... ):

(2.5) Pr{Y<y}=2r(f/2 (t/2) (y/-- e-/ dt fory>0.

Then the random variable X Y/2 has a gamma distribution with parameter a f/2.
In terms of p, I and J we can write

Pr { Y< y} p(a, x). I(a, x),
(.

Pr { Y> y} p(a, x). J(a, x),

where a f/2 and x y/2.
Finally, let Z denote a random variable having a Poisson distribution with

parameter A > 0. As opposed to the gamma and chi-square distribution, which are
continuous distributions, the Poisson distribution is a discrete distribution:

e-Xh
(2.7) Pr {Z k}- for k 0, 1,....

kl

In terms of p, L and J we can write

Pr {Z k} p(a, x),

(2.8) Pr {Z k}=p(a, x) J(a, x),

Pr {Z > k} p(a, x). I(a, x),

where a=k+l andx=A.
As we have seen, the gamma, chi-square and Poisson distribution can be reduced

to the same building blocks p, L and Z The parameter a is a real number in case of
the gamma distribution, half of an integer in case of the chi-square distribution and
an integer in case of the Poisson distribution. Thus we look for reliable algorithms to
compute p, L and L and in view of (2.2) only the smaller of the two quantities I and
J needs to be computed directly.

3. Computation of l(a, x). From definition (2.1) we derive the following properties
of I, l(a, x) for any given x > 0:

a) I $ 0 fora ’ ,(3.1)
b) L =x (l+Ia+) for a > 0.

a

Thus the following algorithm (open backward recursion) will yield an approximation
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Set Ia+, 0 for some positive integer n.

(3.2)
For b a+n-1, a+n-2, , a"

X

Ib= (l + b+l).

Then .a is an approximation to/ I(a, x).

From (3.2) we derive

(3.3) Ia-- .=fac"
where

(3.4) fac
X

a(a+l)... (a+n-1)

and because of the monotonicity property in (3.1) we have the following inequality
for the relative error of the approximation I"
(3.5) rel. err. la Il/ Ia fac (L+,,/ L) <fac.
Therefore we can guarantee a relative error of less than a given e > 0 if we

(3.6) choose n as the smallest positive integer such that fac < e.

(3.2) and (3.6) constitute the algorithm we propose to compute I(a, x). It is an adaptive
algorithm where the number of steps depends on the arguments a and x and on the
given relative accuracy e.

What can be said about the number n of steps required to achieve a given accuracy?
We remember that only the smaller of the two quantities I(a, x) and J(a, x) needs to
be computed directly, and in (4.14) we shall give the rule to use the algorithm (3.2)
only when a > x. For given x and e and on condition a _>-x the number n attains its
maximum for a x. For large x (x> 100 or so) and a x we have approximately

(3.7) n tv/- where e-’2/2= e

(e.g. 5.26 for e 10-6", 7.43 for e 10-12).
The algorithm (3.2) actually computes the sum

X X
2

X
(3.8) I =-++...+

a a(a+l) a(a+l)...(a+n-1)"

The terms of this sum are all positive, and for a _-> x they are monotonically decreasing.
The algorithm performs the summation in the ideal way namely from small to large
terms by nested multiplications. Therefore the algorithm is very stable, and on condition
a->_ x the relative rounding error can be bounded by a term of order r/x/ where 7 is
the relative machine accuracy that is the smallest real machine number with 1 + r/> 1
(cf. Kniisel (1981)).

We mention some further properties of I(a, x) that can be useful when implement-
ing the algorithm. We can write

(3.9) I(a, x) x - e’(-’) dt

and this shows that I(a, x) is an increasing function of x for any a>0. From (3.1)
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we derive for a > x

(3.10) q<I(a,x)<q/(1-q) whereq=x/a

and for x a, a large, we find from the asymptotic expansion (6.4) given in 6

(3.11) I(a, a)x/ar/2= 1.253vr-d.
On a machine with 10 decimal digits the adaptive open backward recursion given

by (3.2) and (3.6) can guarantee a relative accuracy of less than e 10-6 for values of
a up to ama 106 since the rounding error will be much smaller than e though the
maximum number of steps required would be about 5300. If computing time is a
consideration, however, I(a, x) can be computed more efficiently for large a and x by
means of the asymptotic expansions given in 6.

From (3.8) it is seen that the algorithm (3.2) is related to the method proposed
by Bhattacharjee (1970) but there the summation is performed from large to small
terms. See also Kennedy and Gentle (1980, p. 117).

4. Computation of J(a,x). The quantity J(a,x) in (2.1) is defined not only for
positive a but for any real a. For a 0 we have

(4.1) J(O,x)=xeXIe-"/udu
and the integral on the right-hand side is the so-called exponential integral.

The following properties can be derived for J, =J(a, x) for any given x>0:

a) Ja $ 0 fora -00,

(4.2) b) Ja+l 1 +a Ja for any real a,
x

c) J1 1.

Comparing (4.2) with (3.1) we observe that Ja can be computed in much the same
way as I, but this time the recursion has to work in the forward direction and as initial
value we can use one instead of zero which saves us the first step in the iteration"

Set J-n+ for some positive integer n.

(4.3)
For b=a-n+ l, a-n+2,..., a-l"

t,+l l+--b .t,.
x

Then J is an approximation to J J(a, x).
For the relative error of the approximation a we obtain the inequality

(4.4) rel. err. IL Jal/Ja --Ifacl" (Ja-n/Ja) < Ifacl,
where

(4.5) fac (a 1)(a -2)... (a n)/x".
We point out that n may be larger than a, but note that for n < a + x and a -< x each
of the n terms (a-j)/x in (4.5) is smaller than one in magnitude.

In view of (4.4) we can guarantee a relative error of less than a given e > 0 if we

(4.6) choose n (n -< a + x) as the smallest positive integer such that ]fac] < e.



If such an integer n does not exist we compute Ja by complete forward recursion to
be based upon the exact initial value Jb, 0< b-< 1, and only rounding errors will be
incurred in this case. Note that complete recursion is required only for small values
of x and a. As an example, a desired relative accuracy of e 10-6 (or e "-10-12) is
already achieved by an incomplete recursion with the approximate initial value Ja-n+l
1 provided that x => 16.2 (x -> 30.3 respectively) and 0 =< a _-< x.

As to the exact initial value we note that

J(0.5, x) exp (x) erfc (x/)(< 1) for x > 0,
(4.7)

J(1, x) 1 for x > 0,

where erfc is the complementary error function

(4.8) erfc (y) (2//-) exp (-t) dt for -c < y <

We need not bother about overflow and underflow problems in evaluating J(0.5, x)
as given by (4.7) since we can confine ourselves to 0.5--%_ x < 20 or s.o. This is because
we have to compute J(a, x) only for a -< x and because complete recursion is required
only for small values of x as we have seen in the last paragraph.

Thus there are no unsolved problems with the initial value in case of the Poisson
and chi-square distribution where a and 2a respectively are integers. For the general
gamma distribution, however, we would require the exact value of J(b, x) for any real
b with 0< b < 1 and 0< x < 20 or so in case complete recursion has to be used. A
routine doing this job is not described in this paper.

The number n of steps required by the forward recursion (4.3) and (4.6) to achieve
a given accuracy again depends on a and x. Since we will apply forward recursion
only if a _<-x the maximum number of steps for given a will be attained when a =x,
and for large a the same approximation formula as in case of the backward recursion,
given in (3.7), holds true.

The following properties can prove useful when implementing the proposed
algorithm. J(a, x) can be written as

;o ((4.9) J(a, x) e-" 1 + du

and this shows that J(a, x) is not only a monotonous function in the argument a but
also in x"

J(a,x) ,[, J(1, x)-=l forx ’ eoanda>l,
(4.10)

J(a, x) ’ J(1, x) =- 1 for x ’ oo and a < 1.

Furthermore we derive from (4.2) for 1 < a _<-x

(4.11) l<J(a,x)<l/(1-q) whereq=(a-1)/x

and finally we obtain for x--a, a large, from the asymptotic expansion (6.5)

(4.12) J(a, a)/aTr/2= 1.253,/-d

which is the same formula as in case of I(a, x) given in (3.11).
The algorithm (4.3) actually computes the sum

-a 1 +(a- 1)Ix +(a- 1)(a- 2)/x:+
(4.13) n-1+(a-1)(a-2)... (a-n+l)/x
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For a =<x and n <= a+ 1 the terms of this sum are all positive and monotonically
decreasing. So the summation which is again done from the last to the first term by
nested multiplications is performed in the ideal way as to the rounding error. The
same is true if the summation is complete starting at the exact initial value Jb, 0 < b =< 1.
For a + 1 < n -< a + x the terms in (4.13) are still decreasing in magnitude but some of
them now become negative. Nevertheless cancellation problems do not arise. First,
the number of negative terms is bounded; for a relative error of e- 10-12, e.g., it is
-< 16. And second, the sum J(a, x) can only be slightly smaller than one when the open
recursion provides a sufficient accuracy (a relative error of at least e 10-3 or so); for
a -> 1 we have J(a, x) >= J(1, x) -= 1, for 0.5 =< a <= 1, a -<_ x we have J(a, x) => J(0.5, 0.5)
0.656, and for 0<= a < 0.5, a <= x the open recursion will not work unless x is at least
larger than one and then we have J(a, x)>= J(0, 1)= 0.596.

We have already mentioned that we need not provide algorithms that compute
both functions I(a, x) and J(a, x) for any pair of the arguments a, x (>0) since the
two quantities are related by (2.2). Ideally, the smaller of the two quantities should
be computed directly while the larger one could be determined by (2.2) without
incurring cancellation. From (2.4) we obtain I(a, x)/J(a, x) Pr {X < x}/Pr {X > x}
and this shows that the ratio I(a, x)/J(a, x) is an increasing function of x for any
a > 0. If we define x,, for given a such that I(a, x,,,)= J(a, x,,,) then we obtain from
the expansions (6.4) and (6.5) x,,=a-+0(1) for a-oo. We suggest applying the
following simple rule

(4.14)
compute I(a, x) if a > x,

compute J(a, x) if a <= x.

Table 1 shows that this rule is adequate for the Poisson and chi-square distribution,
where a >= 0.5.

TABLE

a I(a, a) J(a, a) I(a, a)/J(a, a)

0.5 1.411 0.656 2.151
1.0 1.718 1.000 1.718
1.5 1.973 1.270 1.553
2.0 2.195 1.500 1.463
10 4.333 3.660 1.184

100 12.877 12.210 1.055
000 39.970 39.303 1.017

10 000 125.666 124.999 1.005

From (4.13) it is seen that the algorithm (4.3) is related to the asymptotic expansion
6.5.32 given by Abramowitz and Stegun (1964, p. 263). Another method of computing
J(a, x) for a<-x can be obtained from the continued fraction 6.5.31 on the same page
of the same book:

1 1-a 1 2-a 2 3-a 3
(4.15) J(a,x)

1+ x+ 1+ x+ 1+ x+ 1+

This method can be even more efficient than the algorithm (4.3) in particular for large
a and x, but as we have seen the algorithm (4.3) is very stable and we have a simple
rule to determine the number of steps to guarantee a prescribed relative accuracy. I
do not know whether the continued fraction (4.15) is also competitive in these two
respects (see also Bhattacharjee (1970) and Moore (1982)).
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5. Computation of p(a, x). To reduce overflow and underflow problems in evaluat-
ing p(a, x) as defined in (2.1) we compute as a first step the logarithm of p(a, x). Note
that an absolute error of e in the logarithm In (p(a, x)) entails a relative error of e in
the antilogarithm p(a, x), which means that the length of the mantissa of the logarithm
determines the relative accuracy of the antilogarithm. Thus, if we wish to guarantee,
e.g. six correct significant digits in the numeric value of p(a, x), we have to compute
In (p(a, x)) with six correct places after the decimal point.

The computation of In (p(a, x)) could be done simply by the formula

In (p(a,x))=(a-1). In (x)- x-ln (F(a)).

For large a and x, however, this method suffers under severe cancellation. As an
example, for x a 106we have In (p(a, x)) -7.8 but (a 1) In (x)
1.38. 107 and thus about seven decimal digits are lost when computing p(a, x) by
method (5.1).

The effect of cancellation can be attenuated by introducing a scaled version of
the gamma function:

(5.2) G(z) F(z+ 1) for z>_-0 (G(0) 1).

According to Stirling’s formula we have

(5.3) r(z+ 1) x/-rz for

and thus G(z).-.x/.a’z for z oe. The function G is increasing and its condition number
zG’(z)/G(z) is smaller than 1/2 for all z > 0. The logarithmic scaled gamma function,
In (G(z)), is well conditioned as well as the condition number being smaller than one
in magnitude for all z>0. To compute In (G(z)) for large z we can use the expansion
6.1.41 given by Abramowitz and Stegun (1964, p. 257) from which we obtain

(5.4) In (G(z))=1/2 In (27rz) + 1/(12z)- 1/(360z3) +
When using seven terms of this expansion the absolute error will be less than 10-6 (or
less than 10-12) for z >- 1.9 (z => 5.7 respectively).

As to the range of the function p(a, x) we have

max p(a, x) =p(a, a- 1) 1/G(a 1) _-< 1

p(a,x) ’ oo forx 0 if0<a<l.

ifa>_-l,

Thus p(a, x) is always smaller than 1 for a > 1 while it can be larger than 1 for a < 1.
For large a and x the central limit theorem yields the approximation

1
(5.6) p(a, x) xx exp (-t2/2) where (a 1 x)/v/-

and on a machine with /’min-- 10-1 (/’min "-smallest positive real machine number) the
quantity p(a, x) will underflow for It[->_21 or so. Note that both the expectation and
the variance of the gamma distribution (2.3) are identical to the parameter a while for
the Poisson distribution (2.7) both the expectation and the variance are identical to
the parameter A x so that (a- 1- x)/x/- (k-A)/v/- is the standardized form
of k in the sense of the Poisson distribution.

Using the logarithmic scaled gamma function we obtain from (5.1) for a > 1

(5.7) ln(p(a,x))=(b-x)-b.ln(b/x)-ln(G(b)) whereb=a-l(>0).
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Both methods (5.1) and (5.7) are of the form ln(p)=A-B where AB>O and for
large b a- 1 and x we have

A b. In (x) in case (5.1),
(5.8)

A-t.x/-with t=(b-x)/x/ incase(5.7).

Thus the effect of cancellation is much less severe with (5.7) particularly in the central
part of the distribution where the standardized variable is small. For x b, where
the quantity p attains its maximum as a function of x, there is no cancellation at all
and In (p) is given with full accuracy by (5.7).

One problem with method (5.7) should not be overlooked. Assuming that b and
x are representable as machine numbers the quantities b-x and In (G(b)) can be
computed to machine accuracy as well, but this is not necessarily true for the term
b. In (b/x). The condition number of the log-function In (u) is I/In (u) and so this
function is ill-conditioned for u 1, which is just the region where we are mostly
interested in namely the central part of the distribution where (b- x)/J- is small
which means that b/x 1. The problem can be overcome by introducing the shifted
log-function

(5.9) lns(v)=ln(l+v) forv>=0

which has a condition number of one for v 0, and we recommend computing the
term In (b/x) in (5.7) as follows:

(5.10) Ilns (b x)
ln(b/x)=_lns(X-bb)

for b>-x,

for b<x.

On a machine with rmin-" 10-1 (rmin=smallest positive real machine number)
and with 10 decimal digits we can achieve by (5.7) and (5.10) an accuracy of about
five correct places after the decimal point so that p(a, x) can be determined with about
five correct significant digits for values of a and x as large as 108 even for the most
extreme cases where Itl-la-1-xl/J----20 whereas method (5.1) cannot guarantee
more than one correct significant digit.

6. Asymptotic expansions. With increasing a and x the iterative computation of
I(a,x) and J(a,x) becomes more and more time consuming and the logarithmic
computation of p(a, x) less and less accurate due to cancellation. Both problems can

be overcome by applying asymptotic expansions that refine the approximation by the
normal distribution based on the central limit theorem.

Let X be a random variable having a gamma distribution with parameter a as

defined in (2.3), and let us denote by q(t), (t) and c(t) the density function,
distribution function, and complementary distribution function, respectively, of the
standard normal distribution

qg(t) (1/2x/) exp (- t2/2),

(’) Io (u)du,

c(t) (u) du= 1-(t),
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(-c< < +eo). From the results given by Ess6en (1945) we obtain for a->

1
Pr{X<x}=(s)-p(s) (s-l)+-a(2s-lls3+3s)

(6.1)
+
1620a3/------- 10s8 145s6 / 399s 69S2 3) + O(a-2)

p(a, x)
q(s) { 1 1

1 +-a(S3-3s)+-a(2S6-21s4+36s2-3)
(6.2)
+(lOsg- 225s + 1269s- 1665s + 135s) + O(a-)1620a3/2

where s (x- a)/v/-d (refer to Kniisel (1981)). The expansion ofPr {X > x} is obtained
in an obvious manner from (6.1) as Pr {X > x} 1 Pr {X < x}.

What accuracy can be achieved by means of the expansions given above? To ask
a more precise question, let us take the first three terms of the expansion (6.1) as an
approximation (= app) to the exact probability Pr {X < x} (= exa), and let us ask how
large the parameter a has to be if we want the relative error of the approximation to
be smaller than e 10-6 for all values of x for which the exact probability can be
represented as a positive machine number. We assume that rmin 10-1 is the smallest
positive machine number and we have (-21.3)= rmin. From (6.1) we obtain for the
relative error

(6.3) rel. err.
app-exa P(){ 1 (10s )-F O(a-2)}exa dp(s) 1620a3/2

and neglecting terms O(a-) this error is smaller than e for all Isl < 21.3 if a > 3 101.
Note that q(s)/(s)--.-s for s- as can be seen from (6.6) and (6.10) below. As
to the accuracy of the expansion (6.2) the same considerations lead to pretty much
the same results. Thus the expansions (6.1) and (6.2) will be useful only for rather
large arguments a and x.

The quantity p(a, x) can now be computed for virtually all values of a and x by
means ofthe logarithmic procedure (5.10) in conjunction with the asymptotic expansion
(6.2). But we are not yet content with the computation ofthe tail probabilities Pr {X < x}
and Pr {X > x} as the iterative computation of I(a, x) and J(a, x) becomes too time
consuming for values of a and x as large as 10; from (3.7) it is seen that the number
of steps required to achieve a relative accuracy of e 10-6 could become as large as
5.26.105 500,000. Now we can derive from (6.1) and (6.2) asymptotic expansions
for I(a, x) and J(a, x), and it turns out that the convergence behaviour of these factors
is much better than that of their parental expansions. We find for x o:

(6.4) I(a, x) x/- al(t)-a2(t)+ a3(t)/v/-a4(t)/x+ 0(X--3/2),
(6.5) J(a,x)=x/-. al(t-)+a2(t-)+a3(t-)/x/-+a4(t-)/x+O(x-3/2),
where

a(t)=(t)/q(t),

(6.6)

a2(t)
al(t) 1 t2
6 (t3-3t)- (-4),

a3(t)= a’(t) t6 t2 7-72 -9 +6)- (t -6t),
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a4(t) a(t) (5t9+45tT-81ts-315t3+270t)
6480

1
(5t + 40t6-111 4-174t2 + 192),

6480

with t=(a-l-x)/x/, =(x-a+l)/v (--t).
Remember that we have to compute only the smaller of the two quantities I(a, x)

and J(a, x) directly and so the expansions above are of interest only for positive
arguments and .

If we take the first term of the expansion (6.4) as an approximation to I(a, x),

I(a, x)-x/ a(t),
then the relative error is

(6.7) rel. err.-
app- exa a2(t)

exa =v/ a(t)
+ O(1/x) forx.

Now a closer look at the coefficients aj(t) shows that

(6.8) aj(t) 1/t for t-

(j= 1,. ., 4), and so a2(t)/al(t) 0 for - ea (refer to (6.10) below). Thus we may
expect that the relative error (6.7) will be uniformly small for all t_->0 if x is
sufficiently large! The same will be true when using two or more terms of the
expansions (6.4) as an approximation to I(a, x), and with the expansion for J(a, x)
things behave exactly the same way. Tables 2-5 confirm our considerations. For
example it is seen that three terms of the expansion (6.4) give an approximation to
I(a, x) with a relative error of less than 0.253.10-4 for all t->0 if x => 100.

So, the fact that a(t)/al(t) 0 for - o (j __> 2) is the significant improvement
in the expansions of I(a, x) and J(a, x) as compared with the expansions (6.1) and
(6.2) where the corresponding ratio tends to +/- for Isl- . And the reason why
we have replaced the gamma variables a and s (x a)/x/-d by the Poisson variables
x (-A) and t=(a-l-x)/x/=(k-A)/x/- (refer to (2.8)) lies in the fact that the
nice property (6.8) would not hold true with the gamma variables.

When computing the coefficients a2, a3, and a4 by straightforward application
of the formulas (6.6) we face again the problem of cancellation. If t- 20, e.g., we
have a4( t) sl s2 where

al(t) t9sl (5 +’’’ )--- 19.7. 106,
6480

(6.9)
1

s2 6480
(5t8+ )---19.7. 106,

the correct ditterence being a4(t) 0.586 10-5, and so about thirteen decimal digits
are cancelled. A more stable method of computing these coefficients for large can
be based upon the asymptotic expansions for o

a(t) 1/t-1/t3+3/t5-3. 5/t7+3. 5.7/t9

a2(t) 1/t2--4/t4+25/t6--210/t8+
(6.10)

a3(t) 1/ta-ll/tS+ 130/t7-1750/t9+
a4(t) 1/t-26/t6+546/t8-11368/t1+

These expansions can be derived from 26.2.12 given by Abramowitz and Stegun
(1964, p. 932).
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A GENERALIZATION OF THE METHOD OF CORRELATED
SAMPLING FOR NUMERICAL INTEGRATION*

THOMAS E. FLICKS" AND LEE K. JONES’:

Abstract. In correlated sampling an integrand f is approximated by a function g whose integral is
known. However if the integral of g is unknown then ordinary correlated sampling cannot be used. Our
generalization of correlated sampling addresses this situation: If the approximating function g is computa-
tionally simpler than f but both have unknown integrals, it is possible to estimate the integral of f with
considerable time savings by optimal selective sampling of both f and g. One application, where the integral
of f represents a probability of error, resulted in time savings by a factor of nearly 20.

Key words, correlated sampling, numerical integration, series expansion, error estimation, classification
error, hypothesis testing

AMS (MOS) subject classifications. 65D30, 65U05, 62H12

1. Introduction. Statistical estimation is usually employed to integrate a function
of many variables whenever the function is too complex to allow direct analytical
methods. The simplest approach to such estimation is the ordinary Monte Carlo
sampling scheme. But often this approach is too computationally burdensome to
produce an estimate with a desired accuracy in a reasonable amount of time. This
difficulty occurs especially when a large amount of computer time is necessary to
evaluate the function for each sample generated. For example one may want to
determine the expected value of a function expressed as a summation of thousands
of terms. Another example occurs in multi-hypothesis testing where it is necessary to
estimate classification error among hundreds of hypotheses. For these situations we
propose a generalization of the method of correlated sampling. Correlated sampling
(to be reviewed in 2) can be much faster than the ordinary Monte Carlo approach.
In correlated sampling an integrand f is approximated by a function g whose integral
is known. However if the integral of g is unknown then ordinary correlated sampling
cannot be used. Our generalization of correlated sampling addresses this situation: If
the approximating function g is computationally simpler thanfbut both have unknown
integrals, it is still possible to estimate the integral off with considerable time savings
by optimal selective sampling of both f and g. In fact experiments demonstrate time
savings by an average factor of nearly 20 when compared to an ordinary Monte Carlo
approach.

2. Correlated sampling. Let f be a "difficult" function to integrate on Ra with
respect to some Borel probability measure /x. By generating N independent and
identically distributed/x points X1, X2,""’, XN it is possible to estimate fdlz as

N1
E f(X,).(1)

This is the ordinary Monte Carlo method. Now suppose there is a good approximation
to f, namely g, whose integral G g d/z is known. The principle of correlated sampling
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with the facilities of the Naval Research Laboratory and supported, in part, by the Office of Naval Research
under Contract N00014-84-C2245.

t Naval Research Laboratory, Code 6520, Washington, DC 20375.
Catholic University, Mathematics Department, Washington, DC 20064, and Unified Industries, Inc.,

Springfield, Virginia 22150.
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(see 1], [2]) states that it is possible to obtain a variance reduced estimate of Jfdtz as

N1
E [f(Xi)-g(Xi)]+G.(2)

The variance of the methods is given by

1
(3) var I var (f),

1
(4) var/g =- var (f- g).

Clearly the variance is reduced by a factor of var (f-g)/var (f) by using g instead
of I. This may be appreciable if g closely approximates f.

3. Generalized correlated sampling. We generalize the above as follows: Suppose
fis a difficult function (to evaluate as well as integrate) with an expected time complexity
of M units required to evaluate at (including generating) a random (w.r.t./z) X. Let
g be a function which approximates f but requires only R units to evaluate in the
expected case. Suppose evaluation off-g requires P expected units. Finally, assume
S units are required in each case to generate a random X.

Now sample (independently /z) f-g, Ny times, and g, Ng times, and use the
(unbiased) estimate of fdtz

Then
1 1

(6) var (.g) =--ff var (f g) +--g Var (g)

and the expected total time complexity is

(7) = Nf+ Ne..
For the moment assume Ny, Ng take positive real values. If we wish to minimize T
for a fixed variance or minimize variance for fixed T, elementary methods of Lagrange
multipliers yield in either case

(8) (Ng/Nf)2=/5 var (g)l(l var (f- g)).

This implies the relations

(9) var (Y,)= (l/)[(P var (f-g)),/2 + (/ var (g)),/2]2,
(10) (1/var (.g))[ (/3 var (f- g))1/2+ (/ var (g))1/212,
(11) NI= /[ff’+(13 var (g)/var (f g))l/2],

(12) Ng /[+(. var (f-g)/var (g))I/2].

Taking appropriate integer parts of Ny and Ng gives optimum solutions to the actual
discrete sampling problems.

Note that the variance reduction could be considerable compared to straightfor-
ward Monte Carlo where, in particular,

(13) var () =/fir var (f)/.
(Fix expected time complexity for both procedures and compare (13) with (9).)
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Of course, in many cases, the "good" approximation g is not known in advance.
Hence a moderate amount of "preliminary" sampling is performed to "find" a g which
minimizes

(14) trg ( var (f g))l/E /( var (g)) 1/2

and then more extensive sampling using g is done to achieve high accuracy rapidly.
Naturally the preliminary procedure introduces some inaccuracies since estimates

of var (f- g) and var (g) are used instead of the true values. But the empirical results
with our application to hypothesis testing appear very promising. Also, the estimates
of trg at g- gl and those at g- g2 are often highly correlated for g, g2 close to the
optimal g with respect to some suitable distance measure. So variance in estimating
optimal g, Nf and Ng may be small for moderate numbers of samples. Finally, only
an accurate estimate of var(f-g)/var(g) is necessary to determine the optimal
sampling ratio Nf/Ng.

4. Allflications.
Example 1. Integrating a series expansion. Let

M

(15) f=
i=1

R

(16) g E a,h,(X),
i=1

where the h’s are computable in equal time. Let one unit be an evaluation of h plus
one multiplication and one addition. Then we have

(17) M=M+S, R=R+S and P=M-R+S.

Here our proposed procedure may be stated: Approximate the integral of the tail
of the series (from R + 1 to M) by using proportionately fewer samples than used for
integrating the sum of the first R terms. R could be estimated by first minimizing (14)
using preliminary samples.

Example 2. Error estimationfor multihypothesis tests. When classifying an observa-
tion in a as belonging to one of Q classes by a maximum likelihood test (see [3],
[5], [6]), one is primarily interested in the quantities of the form

(18) e= dX

where e, called the complement of the type error, is one minus the probability of
misclassifying X given that class to is present. Here p(xl,,)dX is the probability
measure for class to and the integrand, f vo,,), is the indicator of the region of a,
y(to), where observations are assigned to class to. If the p(xl,o,) are all Gaussian with
equal covariances then y(to) is the interior of a polytope with possibly as many as
Q- 1 sides. Because we must always check for the possibility of Q- 1 sides, M for
(18) is linear in Q. (Details are available upon request.) The integrand may be
approximated by

(19)

where yR(tOi) is the region of assignment to toi if only R classes are considered. By
choosing the R classes with the R closest mean vectors to that of class to, substantial
variance savings may be achieved. (Note R for g is linear in R.) In a classification
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model for optical ship recognition with 255 classes, the authors were able to achieve
a time savings of a factor of nearly 20. Time savings due to generalized correlated
sampling (including the preliminary sampling) was 6.2. An additional factor of 3 was
achieved by using polar coordinates (see [4]). This has allowed the authors to save
weeks of computer time.
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SOME COMPUTATIONAL ASPECTS OF A METHOD FOR
RATIONAL APPROXIMATION*

LOTHAR REICHELf

Abstract. Numerical aspects of a method for rational approximation of analytic functions on regions
in the complex plane are considered. The approximation method divides the problem of computing a rational
approximant into three subproblems. First, one chooses a space of rational functions, then one selects a
basis for this space, and finally one determines an element of the space by interpolation. For approximation
on regions with bounded simply connected complement, we discuss the choice of space and basis from a
numerical point of view. We illustrate with computed examples.

Key words, rational approximation, interpolation, numerical conditioning

1. Introduction. We describe a numerical method for rational approximation of
analytic functions on regions in the complex plane with bounded simply connected
complement. In this method one first chooses a space Qn of rational functions and a
basis for this space. Then, a rational approximant is selected from Q, by interpolation
at points on the boundary of the region. We discuss numerical aspects of the choices
of space and basis and show that these choices should depend on the shape of the
region. The distribution of interpolation points should in turn depend on the rational
space, and we further consider the computation of such points.

The questions of how to choose basis and interpolation points also arise in
polynomial approximation and have, in this context, been discussed in Gautschi [2],
Mason [4] and [12].

In this first section, we present some computed examples which illustrate the
questions to be discussed in 2 (choice of space) and 3 (choice of basis). The
examples do not show how to organize the computations most efficiently. We will
return to that in 4, which contains rational approximations of conformal mappings.

Let fl be the closed exterior of the ellipse E(a, b):={a cos (t)+ibsin (t),
0-<_ =< 27r}, a -> b. Denote by 012 the boundary of ll and let 12c be the co.mplement of
12 w.r.t, the extended complex plane C*. Let w ,(z) denote the conformal mapping
from ll to Iwl-> 1 such that ,()= and ,(a)= 1. Then

1
(1.1) ,(Z)=a+ b

(z+4z--(a-b)),

where the branch of the square root is chosen so that I(a + b)-(z +,/z:-(a- b) )1 >-- 1
for z 12. In a neighborhood of infinity ,(z) has the representation

(1.2) ,(z) c-z+ E dkz-k
k=0

with c 1/2(a + b). We determine approximants of ,(z) by applying the approximation
scheme to compute rational approximants of

(1.3) f(z):=O(z)-c-z,
which is regular in fl. We seek to approximate f(z) by functions of the form

(1.4) r,(z):= a,q(z)
k=l

* Received by the editors May 22, 1984, and in revised form March 1, 1985.
f Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
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where

1, k=l,
(1.5) qg(z) := k-1

Sk I-I (z- j)-l, k= 2(1)n,
j=l

i.e. we choose the rational space Q, := span {ql, q2," , q,}. The points ’j are defined
by choosing not necessarily distinct points ’*, ’2","" ", srt* in Ic and letting

(1.6) ,+,,:=K*, m=l(1)/, k=0,1,2,....

The Sk are scaling factors chosen so that Ok IIo - 1, where IIo denotes the maximum
norm on

(1.7) Ilqkllon := max
zeO

We determine the complex coefficients ak of r,(z) by interpolating f(z) at n nodes

z e 0fl. This yields a linear system of equations for the a. For future reference, we
write this linear system

(1.8) A,t f,

where a,:=[ak], ak:=qk(Zj), k,j=l(1)n, and f:=(f(zl),f(z2),...,f(z,)), t:=

(a, a2,"" ", a,)! We obtain an approximation q,(z) of q(z) from

(1.9) qt,(z) := c-lz- In(Z ).

Example 1.1. Let a := x/ and b := 1/x/. Choose the rational space

(1.10) Q, := span {1, z-, z-2, ., z-"-},

and the basis qk(Z):= S,Z-k+a, Sk := 2k-1)/2, k l(1)n. This corresponds to ’=0’ in
(1.5). We will determine several approximations r,(z) of f(z) by using different sets
of interpolation points and different values of n.

First, choose the simply computable interpolation points

Zj+l:=acos(2zr)+ibsin(2r), j =0(1)n- 1.

Let n=8. Fig. 1.1 shows the unit circle and q,s(Of), the image of 0f:= E(x/,
under q,8(z), q,8(0II) is not close to the unit circle, and increasing n increases the
approximation error. The numerical behavior is analogous to the Runge phenomenon
for polynomial approximation. As we will see below, the difficulties can be removed
by using a different distribution of nodes. The dashes on Fig. 1.1 mark the images of
the interpolation points under q(z).

We next choose differently distributed interpolation nodes. To describe the distri-
bution, we introduce the conformal mapping w q(z) which maps c U0 onto Iw] >= 1
so that q(0)= and 0(a)= 1. The nodes z are defined by

(1.11) q(z+) exp (2rij/n), j 0(1)n- 1.

This set of interpolation points is analogous to the Fej6r points for polynomial
interpolation. In Smirnov and Lebedev [13, Chap. 1], it is shown that iff(z) is analytic
on fl, then the r,,(z), computed by interpolating f(z) at the n nodes defined by (1.11),
converge to f(z) in the norm (1.7) as n

Figure 1.2 shows 01) and the nodes defined by (1.11) for n 24, marked by dashes.
In Fig. 1.3 we show the unit circle, 024(0I), and the images under O(z) of the nodes
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FIG. 1.1

FIG. 1.2

FIG. 1.3
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in Fig. 1.2. The curve tP24(012) is barely distinguishable from the unit circle. Figure 1.4
shows the approximation error for different n.

All computations in this paper were done on a DEC-10 computer in single precision
arithmetic, i.e. with 8 significant digits. Figure 1.5 shows, for various n, the condition
number cond a, := IIall Ilalll of the n x n complex matrix a, defined by (1.8).
denotes the matrix maximum norm for real matrices, and An is regarded as a 2n x 2n
real matrix. Figures 1.4-1.5 show that when computing with 8 significant digits, it is
impossible to get a substantially smaller approximation error than for n =48. This
results from the poor numerical condition of An for large n. Already for n 48, the
ill-conditioning affects the accuracy of the computed approximation q48(z), as is seen
by the rounded lower part of the graph of Fig. 1.4. In exact arithmetic, the convergence
would be geometric and the graph would approximate a straight line.

log

-1

FIG. 1.4

x0 log(condoo A,)

FIG. 1.5

The difficulty in computing high-accuracy approximations stems from the rapid
increase of cond An with n combined with a fairly slow rate of convergence of rn(z)
to f(z) as n grows. The next example shows that the difficulties increase with the ratio
between the lengths of the axes of the ellipse.

Example 1.2. Let 012:=E(2,1/2), j:-’-OVj, and define the nodes zj by (1.11).
Figure 1.6 shows 012 with 40 nodes. Figure 1.7 shows the unit circle, 4o(012), and the
images of the 40 nodes under tp(z). The lack of accuracy is obvious, and since
cond A, 1.1 108, the approximation cannot be improved significantly by increasing
the degree n. On the other hand, an approximant of lower degree does not give higher
accuracy either.
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FIG. 1.6

FIG. 1.7

The difticulties encountered in Examples 1.1-1.2 can to a large extent be overcome
by choosing a rational space different from (1.10) to obtain a higher rate of convergence,
or by selecting a different basis of the space (1.10) so that the linear system (1.8) is
less ill-conditioned. In many cases it is possible to determine spaces Q, which give a
higher rate of convergence, and which have simple basis functions that give a fairly
well-conditioned matrix A,. This is illustrated in the following example.

Example 1.3. Let 01):= E(x/, 1/x/)and let ’*, *, ’3" be the zeros of the degree-3
Chebyshev polynomial of the first kind scaled to the interval [-x//2, x//2] between
the foci of the ellipse. Define the ’ by (1.6) with 3. We generalize the distribution
method (1.11) for interpolation points as follows. Let W=qk(Z) be the conformal
mapping from lc U 0f to Iwl >= 1 such that (k(k) --0(3 and qk(/)= 1, k 1, 2, 3. The
nodes z are required to satisfy

(1.12) I-I (qk(Z.+l) 1/3) =exp (2"rrij/n), j =0(1)n- 1.
k=l

We let 0 <_- arg q < 27r and determine the root of each Pk(Z) before forming the product.
This gives the correct branch of the root. For n 24 we obtain Figs. 1.8-1.9. The former

FIG. 1.8
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FIG. 1.9

shows cf, the points ’* marked with crosses and the nodes zj. Figure 1.9 shows the
unit circle, @24(c9f) and the images of the zj under @(z). @24(cf) is not distinguishable
from the unit circle.

Figures 1.10-1.11 correspond to Figs. 1.4-1.5 and reveal that the rational space
and basis of the present example yield a higher rate of convergence and a better
conditioned matrix An than in Examples 1.1-1.2.

The ideas of this last example will now be developed in 2.

10 logllx I .(z)l

10 log(condoo A,)

FIG. 1.10 FIG. 1.11
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2. Choice of rational space. Let 12 be a closed set in C with a bounded simply
connected complement lc and boundary 0. We assume that 012 is smooth since this
simplifies the description of the approximation method, but this restriction can be
relaxed. We consider approximation of functions f(z) which are analytic in an open
set which contains 12. In this section we discuss the choice of rational space

: in 12c. TheQn := span {ql, q2," , qn}, i.e. the choice of and of the point set {’
’j defining the qk(Z) are obtained from (1.6). We also show how appropriate interpola-
tion points can be computed.

Let rn(z) be the rational approximant to f(z) obtained by interpolating f(z) at
the nodes z012, j= l(1)n, according to the scheme (1.4)-(1.8). The approximation
error can be expressed as,

1 W(z) f(’)
f(z)- r,(z)= 2rr--- J, W(’) ’---2-7 d,

see Smirnov and Lebedev [13, Chap. 1], where

W(z)
HjL1 (Z-- Zj)
--h-’-Hj=I (Z-- j)

y is a contour in \12 containing all points ’ in its interior. Fix the node zl on 012,
and define conformal mappings w=%(z) from 12 to Iwl> 1 such that %(’’)=,
j= I(1)L %(z) can be continued continuously to a bijective function on c0. We
denote this extension also by (z). %(z) is uniquely determined by the additional
requirement %(z)= 1. Introduce for p 1 the level cues

(2.1) L(p):= {z:
j=l

In paicular, L(1) 0.
TnORZM 2.1. For n 1, 2, 3,... define the interpolation nodes z, j 2(1)n by

(2.2) ((z+))/t=exp(2ij/n), j= l(1)n-1,
k=l

where we let 0 arg <2 and compute the root before multiplication. We then obtain
the correct branch of the root. Iff(z) is analytic on and exterior to L(p) for p > 1, then

f- r, II0. Mp- , n 1, 2, 3,...

where M is a constant independent of n.

oof In Smirnov and Lebedev [13, Thm. 1, p. 61, and Thm. 2, p. 70], the theorem
is proved for 1. The proof for > 1 is analogous.

The computation of nodes z from (2.2) is not very attractive. The next lemma
shows a different way to determine the nodes.

LZMMa 2.1. e system of integral equations

ln]z- [, z

(2.3 

for {g, d}e L=(O)xN has a unique solution {g*, d*}. e interpolation nodes z,
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2 <--j <= n, defined by (2.2) satisfy

Iz _j-1
j =2(1)n,(2.4) r*(’)ldTI

n

where integration is performed along 012 in the direction which corresponds to increasing
argument in (2.2).

Proof. The lemma is a special case of [8, Thm. 3.1]. l-]

We turn next to the choice of space Qn. We are interested in the shape of the
level curves L(p) as a function of p and of the location of the points ’. The following
examples are related to the approximation problems discussed in the introduction.

Example 2.1. Figure 2.1 shows the ellipse E (x/, 1/x/) and the level curves L(1.13)
and L(1.37) defined by (2.1) with l= 1 and st* =0. The curve L(1.13) passes through
the foci of the ellipse. The foci are marked with crosses and ’* with a dot. The curves
L(p) contract rapidly and become nearly circular as p increases. This property becomes
more pronounced for flatter ellipses, see Fig. 2.2, which shows 0:= E(2,1/2), L(1.13)
and L(1.37). The foci are marked with crosses. The contraction of the level curves
gives slow convergence when approximating functions f(z) with not all singular points
near the origin. This was demonstrated in Examples 1.1-1.2. [q

i )
FIG. 2.1

FIG. 2.2

If the locations of the singular points off(z) in fc are known, we try to distribute
points ’ so that a level curve L(t9) for some large t9 contains all the singular points
off(z) in its interior. Sometimes the method of Papamichael et al. [6] can be used to
determine the location of the singular points closest to df. This information could
also be used to introduce basis functions which are singular where f(z) is, see, e.g.,
Papamichael and Kokkinos [5]. We turn to the case when the locations of the singular. in fZc suchpoints off(z) are not known. We then seek to determine a point set
that

(1) the distance from a point z 0f to L(p), p > 1, is approximately the same
for all poings z on

(2) the points st7 are not very near
(3) there exists a simple fairly well-conditional basis of Qn
(4) the distribution of the sr is simple to carry out.



RATIONAL APPROXIMATION 1049

The purpose ofthe first requirement is to make the rate of convergence r,(z)-f(z),
n - o, z 01), dependent on the distance 6 between 01) and the singular points off(z)
closest to 0fl, but fairly independent of at which points in 1)c of distance 6 from 01)

f(z) is singular. This is reasonable when no a priori information on the location of
the singular points of f(z) is available. The second condition is connected to the wish
that any level curve L(p) containing all singular points of f(z) in its interior also has
all sr in its interior. The reason for this is clear from Theorem 2.1. Instead of trying
to find points r that satisfy conditions (1)-(3) directly, we solve a numerically simpler
problem: we distribute points ’ in 1)c so that for some constant c

(2.5) h(z) :"- C H ]Z-- 1--1/1. 1, z 01).
j=l

We next discuss how this distribution is related to conditions (1)-(2), and then present
a numerical method for determining points ’ that satisfy (2.5) and condition (2). In
3 we show that condition (2.5) ensures the existence of a simple fairly well-conditioned

basis of Q,. Requirement (2.5) states that we wish to approximate 01" by a lemniscate.
This can always be done, see Hille [3, Chap. 16]. Equation (2.6) below shows that
when h(z) is nearly constant on 012, then the level curves of h(z) in 1) are of similar
shape to the curves L(p). It therefore suffices to study the level curves of h(z).

LEMMA 2.2. Let Of := {z" h(z)= 1}. Then

(2.6) L(p) {z" h(z)= p}.

Let d/(z) be a conformal mapping from 1) to [w[ >-1 such that (o)=o. Then for
some constants O, 0 <-_ 0 <= 2r, and a suitable branch of the root,

(2.7) q(z) := e’c I-I (z- ?)1/.
j=l

Let O-(w) denote the inverse of dz(z). Then

(2.8)
Oh dq-(e’’) -’
On

(z)
dt

z Of e" qt(z)

where O/On denotes the normal derivative directed into

Proof. In [II=l pj(z)(h(z))-[ is harmonic in 12, vanishes on 01), and therefore
vanishes in 1). This establishes (2.6). In [h(z)g/(z) is harmonic in fl and vanishes on
0. Therefore h(z)-[,(z)[ -1. This establishes (2.7). (2.8) follows from (2.7) and the
Cauchy-Riemann equations.

For condition (1) to be satisfied, it is necessary that Oh does not vary too
much on 01). This is satisfied if 01) is smooth and 1)c is not pronouncedly nonconvex.
When 1) is strongly nonconvex [(d/dt)O-l(e")[ -1 can vary considerably for 0 <- < 2r,
even if 0fl is smooth, see [7] for an example. In this situation the approximation
method of this paper is unsuitable.

Example 2.2. Let 0: E(x/, 1/x/) and let Ta(be the degree-3 Chebyshev
polynomial of the first kind scaled to the interval [-x/3/2, x/3-] between the foci of
the ellipse E(x/, 1/x/), and normalize Ta(z) to have the highest order coefficient
0.210. Choose h(z):-[Ta(z)[ -1/3. Then 0.987 <_-h(z)<- 1.012 for z 0ft. Figure 2.3 shows
the level curves {z" h(z)-1.13} and {z:_h(z),_l.37}, and the roots ’, j-1(1)3 of
Ta(z) marked with dots. The foci of E(x/, l/x/2) are marked with crosses. The figure
shows that the level curves of h(z) are in better agreement with condition (1) than the
level curves of Example 2.1.
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FIG. 2.3

We next turn to the question of how the proposed allocation of the ’ relates to
condition (2). The corollary to the following lemma suggests that difficulties in finding
points sr such that both condition (2) and (2.5) are satisfied could arise if 0 has a
very small radius of curvature somewhere.

LEMMA 2.3 (Walsh [14, p. 252]). Let S be an open set with a bounded simply-
connected complement and boundary OS. Let G(z) be the Green’sfunctionfor the Laplace
operator for S, i.e. G(z) satisfies AG(z)=0 for zS\{oo}, G(z)--0 on OS, G(z)=
In [z[+ g(z) where Ag(z) =0 in S. Let K denote the smallest convex set which contains
0S. If is an arbitrary point in S, then the normal at . to the curve 3’ :-- { z" G(z) G()}
in the sense ofdecreasing G(z) must intersect K. If is the point nearest to ofintersection
of this normal with K, the radius of curvature at of the curve 3’ is not less than [--

COROLLARY.. Assume that Of is analytic, and let be an arbitrary point of Of Let
v be a vector beginning at z, parallel to the normal of O at z, directed into c, whose
length equals the radius ofcurvature of Of at z. By analyticity of Of can be continued
analytically across 0. Let ro < 1 be the smallest r >-0 such that [,(z)[ has no singular
points in the region S:= {z: [p(z)[> to}. Let OS be the boundary of S, and let K denote
the convex hull of OS. Then the vector v touches (or crosses) K.

Proof. The corollary follows from Lemma 2.3 by the identity (z)= ce(z+iH(z,
where c is a constant, G(z) is the Green’s function of the lemma, and H(z) is its
harmonic conjugate. We continue ,(z) analytically into 1)c to the boundary OS, on
which I(z)l has at least one singular point. For every e > 0, a Green’s function G(z)
with a pole at infinity can be defined on the region S := {z: [(z)l_-> ro+ e}. We let K
be the convex hull of S, and note that.0f/is a level curve of G(z). By Lemma 2.3 the
corollary follows for S replaced by S for any e > 0. But v is independent of e, which
completes the proof.

Example 2.3. Let Of/be the ellipse E (a, b) with a >_- b >_- 0. The radius of curvature
of0 at z a is p :=b__q. The foci of E(a, b) are +x/a2- b. Region S of the corollary
is C\[-xfdY- , /a2- b2]. Let v be the normal vector to Off at z a, directed into
and of length Iv p. Let d denote the distance between z a and the closest focus.
Introduce

X :== l +/1- b2/ a2

giving 1 --< X -< 2, consistent with the corollary. For a/b 2, X 1.9.
We next describe a numerical method for allocating the ’. The method consists

of four steps"
(a) If Of/is analytic and with nowhere a very small radius of curvature, let F := Of/;

otherwise let F be a curve near Of/with these properties.
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(b) Solve the system of integral equations

a + (_ In Iz- ’l,()ld’l- O, z r,
dl

(2.9)

r
r(ff)ldffl- 1

for {tr, a} L2(F)xR. (2.9) has a unique solution {tr*, a*}; see [9], where also a
numerical solution method is described. Denote by qr(Z) the conformal mapping from
the exterior of F to ]w] > 1 such that qr()=c and qr(l)- 1, where 1 is a point on
0fl. By [9]

(2.10) r(Z) exp 27ri r*(ff)ldffl, z e F,

where integration is carried out along F in the positive sense, eI’*1 is the capacity of F.
(c) Continue r(Z) analytically into lc. We do this by solving an initial value

problem for the Cauchy-Riemann equations by a method described in 10]. The method
generates approximate level curves of I’r(z)l for equidistant and decreasing levels, as
well as approximate stream lines starting at the images of the roots of unity under
pl(z). Each step of the method generates a new approximate level curve, and we
continue the generation of level curves until, from the computed level curves, it appears
likely that we have reached a singularity of 0r(Z), see Figs. 2.4 and 2.6. The generation
of level curves is easily monitored at a graphics terminal.

(d) Allocate points ’, j 1(1)/, on the innermost generated level curve, so that
they are images under {l(w) of equidistant points on a circle Iwl--d < 1.

The next lemma shows that for sufficiently large, the set {’}--1" determined as
described above will make the product H= Iz-srl/ nearly constant on F.

LEMMA 2.4. Let the set {’}= be computed by steps (a)-(d). Thenfor some constant
r, 0 <- r < 1, decreasing when the distance between and Ofl increases, we have uniformly
for zF

1-I (z-)=(cq,r(z))’(1 +O(r’)), l-,
j=l

where c is a complex constant whose magnitude is the capacity of F.
Proof The lemma can, for example, be shown by the methods in 11 ].
To measure how much the product I-I /llZ-’l differs from being constant on

Of/, we introduce the level curves

(2.11) (c):={z: I [Z--ll/l’’C)j=l

All computed examples allowed F := Of/.
Example 2.4. Let Of/ be the superellipse {x + iy" x4+y4= 1, X, y R}. Figure 2.4

shows 01 and four level curves as well as stream lines of k(z) in the interior of
computed by steps (a)-(d). The figure indicates that (z) is likely to be singular at
the four points +0.71 +0.71i. It is easy to show that -l(1/6(z)) is singular at the four
points +l/x/2+ i//-, see [10]. We allocate the points sr on the innermost level curve
drawn. Denote this level curve by I,(z)l--to. Figure 2.5 shows the points ’:=
@-l(ro exp (2zri(j-1)In)), j= 1(1)8 for n=8. For this choice of ’’ the largest c such
that the curve (c), defined by (2.11), is in f/is c 1.9. The smallest value of c such
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FIG. 2.4

FIG. 2.5

that (c) is in cUO is c= 1.11. The closeness of these c-values shows that h(z) is
nearly constant on OO. This will also be of interest in 3. The curves (1.09) and
(1.11) are drawn with dots and are seen to be close to

Example 2.5. Let OO := E(x/, 1/x/). Figure 2.6 shows O and five computed level
curves as well as stream lines of O(z) in Oc. The level curves are confocal ellipses.

FIG. 2.6
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The level curves and stream lines suggest that O(z) is singular at the foci of 01), in
agreement with (1.1). Let IO(z)[ ro be the innermost level curve drawn, and allocate
six points ’j := o-l(ro e2’i(j-1)/6 el), j- 1(1)6, where 0 is chosen such that ’1 and ’4
lie on the y-axis. Forming the mean values ofclose points, ’* :- 1/2(’1 + ’4), r2*:= -(’2 + st3),
’3*:= 1/2(st5 + ’6) yields approximations of the zeros of the third degree Chebyshev
polynomial of the first kind for the interval between the foci. With ’ff, j 1 (1)3, being
the roots of this Chebyshev polynomial, we obtain Fig. 2.7. The dotted level curve
(1.105) is the smallest curve enclosing 0, and (1.102), also dotted, is the largest
curve interior to c

FIG. 2.7

Next we turn to ellipses 01 := E(2, 1/2), and allocate the ’ analogously as above"
’, j 1(1)3, are the roots of a Chebyshev polynomial T3(z) for the interval between
the foci of 01. Figure 2.8 shows 01, the ’ and level curves (c). Notice that the
largest locus W(c) interior to lc U 0f/is not connected. In particular it does not contain
the interval between the foci in its interior. By the previous discussion, the subspace
defined by these ’ is not suitable for approximating functions which are nonanalytic
on that interval. If we instead use the roots of the Chebyshev polynomial of the fifth
degree, we are in a better position, as seen in Fig. 2.9. Then (1.23), the largest level
curve interior to or on fc U aft, is connected and contains the interval between the
foci in its interior. The smallest level curve enclosing 0f is (1.27).

FIG. 2.8

FIG. 2.9

3. Choice of basis. We will show that when the ’f are allocated as suggested in

2, the basis (1.5) of Q, is fairly well-conditioned. We will also consider the numerical
condition of a basis which is slightly faster to evaluate. The reason for using a
well-conditioned basis in computation is the wish to obtain a linear system (1.8) with



1054 LOTHAR REICHEL

a fairly well-conditioned matrix A,. However, cond A, also depends on the allocation
of the nodes zj. Even if we use a basis that is well-conditioned in a sense defined
below, cond A, c as z z2. Conversely, for some ill-conditioned bases one may at
least, for fixed n, be able to find nodes zj such that cond A is small. Nevertheless,
numerical experiments suggest that with the relation (2.3)-(2.4) between nodes Zj and
poles ’, there is a strong connection between the condition number for the basis and
cond A,, in that both condition numbers are large or small simultaneously.

The following definitions are analogous to those introduced by Gautschi [2] in
his investigation of polynomial bases on intervals of the real axis. Let a:=
(a, a2,""", a.)" and define the mapping F.:" Q. and its inverse by

(F,a)(z) := r,,(z):= akqk(Z)
k=l

F-r, := a.

Equip " with the norm Ilalloo:=max=<k. lakl. In Q. we use norm (1.7). We obtain
the induced operator norms

:-_ max III1o k oa

The condition number of the basis is defined as cond F. := F, F Jl-
Example 3.1. Let 0f:= {z: ]z[= r} and consider the basis q,(z):=(r/z)k-, k=

l(1)n. Then IIqll0.= 1 qk and IIf ll- n. Since (z/r) k are Chebyshev polynomials for
0f, see Davis 1, p. 146], we obtain

]]F]] -a= min ][aq(z) =man I[az/,"-l[=l.
Hence cond F. n, which shows that this basis is fairly well-conditioned on

Example 3.2. Let 0I be the ellipse E(c, d), c > d, reflected in the circle Izl c, i.e.
012:= {z:= c2(c cos (t)+ id sin (t))-, 0<= < 27r}. We let Q, be the same as in Example
3.1, and choose the basis qk(z):= (c/z)k-, k l(1)n. The substitution w:= c2/z trans-
forms F, into (F,a)(w)=k=o ak(w/c) k, we E(c, d). The determination Of cond F, is
now a problem of determining the condition of a scaled power basis on E (c, d). This
problem is treated in 12], where we showed that for c > d, cond F, grows exponentially
with n and the exponential growth rate is given by cond F,---((1 +x/2-a2)/(1 + a))",
a:=d/c.

These examples demonstrate that the choice of a well-conditioned basis must
depend on the shape of f. We turn now to the investigation of basis (1.5), and to
begin with, we assume that f (c) for some c > 0. Then Iq+(z)l Iq)(z)l, z
1-<_j-<_ l, k => 0. Therefore there is a constant M > 0 such that

(3.1) Iq(z)l>=M on 0, k->_O.

We can bound ]]F]] by observing that a,-kS,-k, k=O(1)n-1, can be expressed as
divided differences of

n--1 n--1 n--1

r.(z) H (z-sty) Z ask H (z-)+a.s.,
j=l k=l j=k
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where S :-- 1. The divided differences can be written as complex integrals over 01", see
Davis [1, pp. 67-69],

1 I. r,,(z) H"---- (z )(3.2a) a,s, 2rr--- ,ol’l (Z-- n--1)
dz,

n--1
1 r.(z) Nj=I (Z j),_- dz, k l(1)n- 1(3.2b) a,-kS,-k

2rri 1-I=,-k (z-- )(z-- ’,-k-1)

where we define o TM ’,. From (3.2), we obtain

(3.3) lan_kl <- Idzl, k=0(1)n-1,
q._k(Z)(Z-- n-k-1)

and by combining (3.3) and (3.1), we find that the aj are uniformly bounded for all j.
Hence for some constant t2/, IIF:lll __< . Since IIfll <-- , we obtain

cond F <- Mn.

We next remove the requirement 0 (c). A new bound corresponding to (3.1)
is needed. Let k tool + m,, 1 <- m, <- I. Then

max Iz-
(3.4)

qk+a(Z) oa zoaj=a zoaj=

<_- M max
zeOl /zeOl’l j=

where M is a constant independent of k. In order to bound the quotient on the
right-hand side of (3.4), we introduce constants Cl and c2 defined by

ca := smallest c such that

c= := greatest c such that (c) c U of/.

Then ca -> c2, and by (3.4),

(3.5)
qk+,(Z)

Substituting (3.5) into (3.3) gives

cond F, <-_ If’In(ca c2) %,
where M is a constant independent of n, and no is the integer part of n I. In 2, we
described a method for allocating the ’ so that ca/c2 is close to 1, and the basis (1.5)
is then quite well-conditioned for moderate n.

We conclude this section with a remark on a basis simpler than 1.5). For notational
convenience, assume that the sr, j 1(1)/, are distinct and that n l+ 1 for some
integer > 0. Then

(3.6)
Okl+j+l(Z) := Skl+j(Z__ )-k-1 j= 1(1)/, k=0(1)- 1

is a basis for Q,. Calculations with := 2, 1" := 6 > 0, ’2" := -6 and 0lq := {z" Iz2- 21 c2}
show that this basis becomes severely ill-conditioned as -> 0 or c -> oo. This is reflected
in larger condition numbers of the linear system (1.8) for basis (3.6) than for basis
(1.5). Basis (3.6) is therefore not recommended.
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4. Applications to conformal mapping. We can apply the approximation method
to compute rational approximants of some exterior conformal mappings ,: fl --> [w _-> 1
such that ,() and ,(Zl) 1, where z 0fl. This gives approximants of a simple
form which can be evaluated rapidly by nested multiplication. In the examples of this
section we carried out the following computations in order.

(1) Solve (2.9) with F:=Ol’l for {tr*, a*} to obtain the restriction of ,(z) to Ofl
and the constant c in (1.9). If O(z) is symmetric w.r.t, the x-axis, i.e. ,(z)= (g), and
r,(z) is symmetric also, then (1.9) yields c and c:=exp (a*). For nonsymmetric
,(z) we compute c from c=((1/2zr).2o ,-l(ei)e-idO). Methods for solving (2.9)
are discussed in [9].

(2) Allocate the ’ by carrying out steps (a)-(d) of 2.
(3) Solve (2.3) for the density function for the nodes zj, j- 1(1)n. A low-accuracy

solution suffices. Note that the system (2.3) and that solved in step (1) only differ in
their right-hand sides. Compute the nodes from (2.4).

(4) Solve the linear system (1.8) for the coefficients of r.(z). By (1.9) we obtain
q,.(z).

In the computed examples we used n := 2 nodes, where p was the smallest integer
such that the graph of the curve {q,(z): z 01} was not distinguishable from the unit
circle on the plotter.

Example 4.1. This is a continuation of Example 1.2. Let 0f := E(2, 1/2) and := 5.
Let ’, j 1 (1)5, be the zeros of the Chebyshev polynomial of degree 5 for the interval
between the foci of 012. The ff are shown in Fig. 2.9. Let z 2, and compute {zj}=264
according to step (3). Then [64(z)1-1110 2.10-4. Figure 4.1 shows the unit circle,
64(0f) and O(z), j= 1(1)64.

FIG. 4.1

The basis functions were scaled so that Iqk(i/z)]= 1 and yielded cond A64
1.2. 103. The condition number decreases if we increase and let the ’ be the zeros
of an/th degree Chebyshev polynomial.

Example 4.2. Let 0fl := {x + iy" x4 + y4 1, x, y
be as shown in Fig. 2.5. Let z:= 1. With n:= 16, we obtain Illq.(z)l- 111o.=3.4. 0-and cond A, 7 101.
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Example 4.3. Let Ofl be the reflected ellipse obtained by reflecting E(1.2) in the
unit circle. Figure 4.2 shows 0f and two approximate level curves of O(z) generated
according to step (2) with F := 0f. We choose l= 3 and ’1" := 0, *,3 := +0.37. The
are marked with crosses in Fig. 4.2. Let Zl := 1. Already for n =4 the error in 0n(z) is
below the resolution of the plotter, IO(z)l-111o, =4.7 10-3.

FIG. 4.2

Acknowledgment. I wish to thank Germund Dahlquist for many valuable dis-
cussions.
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THEORETICAL AND NUMERICAL STRUCTURE FOR REACTING
SHOCK WAVES*

PHILLIP COLELLA, ANDREW MAJDA AND VICTOR ROYTBURD

Abstract. Several remarkable theoretical and computational properties of reacting shock waves are both
documented and analyzed. In particular, for sufficiently small heat release or large reaction rate, we
demonstrate that the reacting compressible Navier-Stokes equations have dynamically stable weak detona-
tions which occur in bifurcating wave patterns from strong detonation initial data. In the reported calculations,
an increase in reaction rate by a factor of 5 is sufficient to create the bifurcation from a spiked nearly Z-N-D
detonation to the wave pattern with a precursor weak detonation. The numerical schemes used in the
calculations are fractional step methods based on the use of a second order Godunov method in the inviscid
hydrodynamic sweep; on sufficiently coarse meshes in inviscid calculations, these fractional step schemes
exhibit qualitatively similar but purely numerical bifurcating wave patterns with numerical weak detonations.
We explain this computational phenomenon theoretically through a new class of nonphysical discrete
travelling waves for the difference scheme which are numerical weak detonations. The use of simplified
model equations both to predict and analyze the theoretical and numerical phenomena is emphasized.

Key words, reacting shock waves, strong and weak detonations, Godunov’s method

AMS(MOS) subject classifications. 76L05, 80A32, 65P05

1. IntroductiOn. Through numerical experiments, several peculiar theoretical and
practical computational properties regarding the structure and stability of reacting
shock waves are both documented and analyzed. The waves which we study are defined
by solutions of the compressible Navier-Stokes or compressible Euler equations for
a mixture composed of chemically reacting species in a single space dimension.

The compressible Navier-Stokes equations for a reacting gas are extremely com-
plex, and it is not surprising that simpler qualitative-quantitative model equations for
the high Mach number regime have been developed [5], [7], 11]. These simpler model
equations are a coupled 2 x 2 system given by a Burgers equation coupled to a chemical
kinetics equation (see 2 for a detailed description of the model equations). This
model system has transparent analogues of the Chapman-Jouguet (C-J) theory, the
Z-N-D theory, and also the structure of reacting shock profiles with finite diffusion
and reaction rates, and these are developed in detail in [7]. One of the objectives of
this paper is to use the predictions of this simplified model system both for theoretical
purposes and as a diagnostic for numerical modelling of the more complex equations
of reacting gas flow in the shock wave regime. The authors advocate the use of these
simpler model equations for numerical code development for shock phenomena in
reacting gases in much the same fashion as the Burgers equation has provided both a
wide class of simple test problems and the anlysis of difference schemes for the Burgers
equation has influenced code development for nonreactive compressible gas flow.

In 2, we begin by listing the equations of compressible reacting gas flow and
describing in detail the simplified model equations mentioned above; then, we describe
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the numerical methods used in this paper. We use very natural fractional step schemes
with three ingredients per time step: 1) the inviscid hydrodynamics is solved by the
Godunov, second order Godunov [3], or random choice 1] methods; 2) the chemistry
equation is advanced by explicit solution of the ODE for mass fraction given the
temperature; 3) the diffusion equation is solved via the Crank-Nicolson or backward
Euler methods. Such a class of numerical schemes is one of the obvious candidates
for use in modelling reacting gases given the current development of methods for
solving the compressible Euler equations. Also, with the simplified one-step kinetics
schemes which we study, the chemistry equation for the mass fraction is linear given
the temperature at each mesh point so that even when the reaction rate is high, this
equation can be solved exactly--thus, no additional errors from solving the stiff ODE
are introduced.

For the calculations in 3, the shock layer is fully resolved, typical length scales
are on the order of 10-6 or 10-5 meters, and the diffusion coefficients on such a length
scale are roughly order one in magnitude. Our objectives are to document the structure
and dynamic stability of reacting shock layers on such length scales where diffusive
mechanisms are important. The wave structure is remarkably complex with varying
heat release and reaction rate, and to our knowledge no time-dependent computations
analyzing this structure have appeared previously. First, we report on detailed numerical
experiments with the model equations which corroborate the rather complex behavior
(see [7]) of the reacting shock profiles as the heat release varies. We use numerical
experiments to predict a bifurcating wave pattern instead of the expected strong
detonation for sufficiently small heat release. This bifurcating wave pattern has a
precursor stable weak detonation moving at a faster speed followed by a slower moving
purely fluid dynamic shock. The above experiments in the model suggest analogous
behavior for the reacting compressible Navier-Stokes equations. Through numerical
experiments for a detonation with fairly small heat release (modelled on an ozone
decomposition detonation), we document the existence of dynamically stable weak
detonations and the existence of bifurcating wave patterns as described above for the
model equations. In fact, with all other parameters held fixed for this detonation wave,
an increase in the reaction rate by a factor of 5 changes the wave profile from a spiked
Z-N-D detonation structure to such a bifurcating wave pattern with a stable precursor
weak detonation. We mention here that weak detonation waves are observed experi-
mentally when initiated through external means [4] and that a variety of theoretical
scenarios for the existence of weak detonations are given in [4, Chap. 3].

Resolving detonation waves on viscous length scales is not a practical option for
a large scale reacting gas computation with many wave interactions such as the problem
of transition to detonation. In 4, we set all diffusion coefficients to be zero and
investigate the problem of computing the spiked Z-N-D detonations of the inviscid
reacting Euler equations on coarser meshes. This problem has practical interest because
the spike in a Z-N-D profile has significantly higher values for the pressure. Any
algorithm which is based on using the Chapman-Jouguet theory alone (such as [2])
automatically will ignore this local pressure spike in the travelling wave structure no
matter how fine a mesh is used. The numerical experiments with the inviscid fractional
step schemes with either the Godunov or second order Godunov methods exhibit the
following surprising behavior:

(1.1)
A) For very fine meshes, the Z-N-D wave is completely resolved by these

numerical methods.
B) For moderately fine meshes (i.e. meshes yielding very high resolution for
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the second order Godunov method in the nonreactive case) and either of
the fractional step methods, a numerical bifurcating wave pattern emerges
with a structure qualitatively similar to those documented theoretically in

3. This numerical wave strucure has a discrete weak detonation profile
moving at the mesh speed--one grid point per time stepmwith all chemical
energy released in this numerical precursor wave followed by a slower
moving numerical shock wave.

The property in (1.1B) is an unexpected and serious defect in the use of fractional
step schemes based on (higher order) Godunov methods for inviscid reacting gas
calculations in the shock wave regime. On the other hand, for the simplified model
equation the inviscid fractional step scheme for the random choice method yields a
correct pressure spike in the Z-N-D profile with as few as three mesh points resolving
the reaction zone while the split Godunov scheme has the nonphysical monotone
numerical bifurcating wave pattern with as many as twenty mesh points resolving the
reaction zone in the same problem (see 4). However, in this paper, we have not
pursued the use of the inviscid fractional step random choice scheme for the reacting
compressible Euler equations and plan to do this in the future.

Finally, in 5, we give a theoretical explanation for the computational phenomena
on coarse meshes reported in the previous section for the Godunov methods. We work
within the context of the simplified model and derive a new class of nonphysical
discrete travelling waves for the difference equation for a simplified variant of the
basic fractional step methods which uses the upwind scheme rather than Godunov’s
method. As predicted by the numerical experiments from 4, these exact discrete
travelling waves are numerical weak detonations which move at the speed Ax/At,
i.e. one grid point/time step and the numerical experiments from 4 verify the stability
of these purely numerical discrete weak detonations on sufficiently coarse meshes. The
structure of these nonphysical discrete travelling waves is quite different from that of
the well-known discrete entropy violating travelling waves [6], [8] which can occur
for difference schemes in the nonreactive case. Furthermore, in the context of the
simplified model, such discrete travelling waves always exist on a given mesh if either

(1.2) A) KAx is large enough with K the reaction rate or
B) the heat release qo is large enough for a fixed mesh.

The explicit conditions for the existence of numerical weak detonations provide a
quantitative guideline for the validity of the basic fractional step schemes in coarser
mesh calculations.

2. Preliminaries.
The compressible Navier-Stokes equations for a reacting mixture. We assume a

standard simplified form for the reacting mixture throughout this paper. Thus, there
are only two species present, unburnt gas and burnt gas, and we postulate that the
unburnt gas is converted to burnt gas by a one-step irreversible chemical reaction.
Under the above hypothesis the compressible Navier-Stokes equations for the reacting
mixture [12] are the system of four equations,

(2.1)

pt -t- (pU )x O,

(pu)t + (pu + P)x

(pE)t+(puE+up)"=(la’(u-) )
(pZ), + (puZ), -pK T)Z + (DZx),,
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where/9 is the density, u is the fluid velocity, E is the total specific energy, and Z is
the mass fraction of unburnt gas. The total specific energy, E, has the form

U
2

(2.2) E e + qoZ +
2

with e the specific internal energy and qo the amount of heat released by the given
chemical reaction. For the assumed ideal gas mixture (with the same y-gas laws), the
pressure and temperature are defined respectively by the formulae p (),- 1)pe and
T=p/pR x M with R, Boltzmann’s gas constant, M the molecular weight, cp the
specific heat, and 3’ defined by c,(y-1)=R. The factor K(T) in (2.1) is strongly
dependent on temperature and has the form

(2.3) K(T)= Koch(T)

with Ko the reaction rate. The function b(T) typically has the Arrhenius form,

dp( T) T e-A/T

or for computational purposes, the approximation for large A given by ignition
temperature-kinetics,

1, r=>o,
b(T)=

0, T< o
with To the ignition temperature.

The coefficients/x, A, and D in (2.1) are coefficients of viscosity, heat condition,
and species diffusion, respectively. The compressible Euler equations for the reacting
mixture are the special case of (2.1) with/z A D 0.

The simplified model equations. Obviously, even in a single space variable, the
above system is extremely complex so it is not surprising that simpler qualitative-
quantitative models for the equations in (2.1) have been developed [5], [7], [11]. The
simplified model equations for the shock wave regime derived through asymptotic
limits from the system in (2.1) (see [11]) have the form

u, + (1/2u2- qoZ), flux,,
(2.4)

Z, Kqb(u)Z

where u is an asymptotic lumped variable with some features ofpressure or temperature,
Z is the mass fraction of burnt gas, qo > 0 is the heat release,/3 => 0 is a lumped diffusion
coefficient, K is the reaction rate, and b(u) has a typical form as described below
(2.3). The reader should not be confused by the appearance of Zx on the left-hand
side of (2.4) rather than Z,. The coordinate x in (2.4) is not the space coordinate but
is determined through the asymptotics as a scaled space-time coordinate representing
distance to the reaction zone; the x-ditterentiation occurs because Z in (2.4) is convected
at the much slower fluid velocity rather than the much faster reacting shock speed (see
[ 11] for details). With these interpretations the equations in (2.4) become a well posed
problem by prescribing initial data Uo(X) for u(x, t) at time 0 and prescribing the
value of Z(x, t) as x- (corresponding to finite values ahead of the reaction zone
with the rescaling in 11]), i.e. Zo(t) should be specified with the boundary condition,

(2.5) Zo(t) lim Z(x, t).

In this paper, we always set Zo(t)-= 1 for simplicity. The analogues of the Chapman-
Jouguet theory, the Z-N-D theory, and the structure of travelling waves with nonzero
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diffusion and finite reaction rates for the equations in (2.4) have all been discussed in
detail in [7] and we refer the reader to that paper when we discuss properties of
solutions in the model.

The numerical methods. First, we describe the basic fractional step numerical
method used in solving the model equation from (2.4). We set w (u, Z). Given mesh
values w]v= (u]v, Z), in the first fractional step we determine U7+1/2 from u]v by
using a finite difference approximation to the inviscid Burgers equation

u, + (1/2u) o.

In the computations reported below, we use Godunov’s method, a second order
Godunov method [3], or the random choice method [1] as the finite difference
approximation. In the next fractional step, we determine ZTM as the solution of the
ODE

Zx=K$(u)Z

with u given approximately by uv+/2. We march from positive values of x to negative
values of x and use the boundary conditions from (2.5) with Zo(t) -= 1 on the right-hand
side of the large interval where the calculations are carried out. Given the values of
uv+/2, the above ODE is linear in Z and we solve it by the trapezoidal approximations
of the integral in the exact solution formula to derive

u_ + 4,(u7+/))(2.6)

with ZJv+= 1 for j large enough. Finally, in the third sweep of the fractional step
method we solve the diffusion equation

(2.7) u,- flux,, qoZx =- qoK$(u)Z.

The linear diffusion equation on the left-hand side of (2.7) is diseretized by using
either the backward Euler or Crank-Nieolson methods with initial data u+/2. The
value of uJTM is then determined by solving this inhomogeneous difference equation
where the values for (Ufq+l/2, ZfTM) are used in the approximation of the forcing
function on the extreme right-hand side of (2.7) at time level (N+ 1)At. This completes
the description of the basic fractional step method for the simplified model equation.
Obviously, the only stability condition needed in the method is the C-F-L condition

At
A--I uJVl < 1

required in the first sweep.
Next we describe the basic fractional step algorithms which we use for the reacting

compressible Navier-Stokes equations in (2.1). We use three fractional steps analogous
to those in the model system. In the first sweep, the inviscid nonreactive compressible
Euler equations are solved, i.e. L denotes a finite difference approximation to the
equations,

p, + (OU)x 0,

(pu),+(pu2+p)x=O,

(OE + (ouE + ut,)x O,

(0Z), + (puZ)x 0.
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For this difference approximation, we use either the Godunov or a second order
Godunov method [3] for an ideal y-gas law with the mass fraction Z advected as a
passive scalar. In the second fractional step all diffusion mechanisms are solved, i.e.
L is a finite difference approximation to

Ut
1
(P,ux)x,

)

Z -1 (DZx)x.
P

In this difference approximation, we use the Crank-Nicolson scheme implemented in
such a way that pu, pu2/2, pT, and pZ are conserved (this is why we need to discretize
the trivial equation, pt 0). The total energy at the end ofthis fractional step is recovered
from the formula in (2.2) with (U2/2) obtained from the kinetic energy diffusion
equation. In the final sweep, we solve the chemistry equation, i.e. L denotes the
discrete solution operator for

Pt =0,

Zt Kock T)Z.

At each grid point, we exactly integrate the linear ODE for Z using the fixed value
of temperature, Tfq+2/3 at the grid point determined from the previous sweeps; thus,

Zr+l= exp (-Ko(k T+2/3)At)Z+2/3.

This completes the description of the method used to advance the solution from level
nat to time level (n / 1)At. Actually we implemented the approximation from time
level nAt to (n +2)At in the form,

total DCCDE

so that we have second order accuracy in time for the algorithm. The only stability
restriction on the above numerical method is the basic C-F-L condition for the inviscid
hydrodynamic sweep, Lt.

3. The structure and stability of detonation waves with finite viscosity and reaction
rate.

Wave structure for the simplified model system. Since we begin by studying the
structure and dynamic stability of detonation waves for the model system, we begin
with a brief summary of the surprisingly complex structure of the travelling waves for
the model system in (2.4) (the quantitative details can be found in [7]). Given a
preshock constant state WR- (UR, 1) in chemical equilibrium so that ck(Ug)=0, we
study travelling wave solutions of (2.4) with the given preshock state WR and a fixed
speed s. We seek special solutions of (2.4) with the form,

w=w(X
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so that with (x st)fl
(3.1) lim W()=(UR, 1), lim w(:)=(ur, 0),

where ur needs to be determined. With Z qoZ and Ko =/3K, substituting the above
form of w into (2.4) leads to the autonomous system of two nonlinear ODE’s,

2 + c,
Z’= Koqb(u)Z.

The integration constant C is determined by the formula,

C--- 2-uR + SUR + qo,

and in general, there are two states ur., u* with u. < u* and satisfying

(3.2) 2
--UR + SUR + qo -1/2(u*)2+sut. -1/2(u*)2+su*

The two states, (u., 0) and (u*, 0), are the only conceivable limiting values for the
second equation in (3.1) and define the end states for the corresponding weak and
strong detonation waves propagating with speed s and determined by the Chapman-
Jouguet theory (see [7]). When do such travelling waves exist with a finite reaction
rate and nonzero diffusion for fixed s? According to the results in [7], for a fixed
positive value of Ko =/3K and fixed values ur*, u*, as the heat release varies there is
a critical heat release, qcr, SO that

A) For qo> qcr, a strong detonation travelling wave profile with speed s exists
connecting (UR, 1) to (U*, 0).

(3.3) B) For qo qcr, a weak detonation travelling wave with speed s exists connecting
(UR, 1) to (Ur., 0).

C) For qo < q, no combustion wave moving with speed s is possible.

A similar behavior occurs if the heat release is fixed and Ko is varied (see [7]); we
make this remark because the reaction rate is the quantity actually varied in the
calculations reported below. In fact, an even finer structure for the travelling waves
in case A) of (3.3) occurs provided that the parameter Ko =/3K satisfies either

(3.4) u*- s > Ko
or

(3.5) u*- s < Ko.
In the case when the inequality in (3.4) is satisfied, all of the strong detonation profiles
are nonmonotone and exhibit a combustion spike. However, when the case in (3.5)
occurs, there is a second critical value of qo, qsp, with qsp > qcr SO that

A) For qo> qsp, the strong detonation profile always has a nonmonotone com-
(3.6) bustion spike.

B) For qo with qcr < qo <= qsp, the strong detonation profile is monotone without
a combustion spike.

See [7, Fig. 1] for graphs of the typical wave profiles described in (3.3) and (3.6) as
the heat release is varied. Given the complex structure of the travelling wave profiles,
it is not apparent when these profiles are dynamically stable and also what happens
when qo satisfies qo < qcr so that no travelling wave profile moving at speed s occurs.
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Next we report on a detailed numerical study using the fractional step scheme described
in 2 which addresses the above issues.

In these experiments, the viscous length scale is completely resolved and we set
/3 1. In all of our reported computations, we take as initial data the values defining
an inviscid strong detonation wave moving with speed s, i.e.

UR, X > O,
(3.7) Uo(X) u*, x <-_ O,

where given qo and s, the equation in (3.2) is satisfied with u*> uL*. We use a fixed
finite interval with Dirichlet boundary conditions for u at the ends determined by the
respective limits, UR and u*. Also, given a wave speed s, we perform a preliminary
Galilean transformation x’= x- st and solve the transformed equations for zero speed
waves. Besides the obvious advantage of keeping the waves from leaving the fixed
computational region as time evolves, with this transformation we can also exploit the
higher resolution of the Godunov scheme for nearly zero wave speeds.

In the initial experiments described below, we fixed u*= 1, uL.=.4, s .7 and
varied the heat release qo. We took K 1,/3 1 and used ignition temperature kinetics
with the ignition temperature at the value, u 0. With these parameters, the value of
qcr from (3.3) is qcr .568 and that corresponds to UR =--.407. Also, the inequality in
(3.5) is satisfied for these parameter values and qsp from (3.6) is given by qsp .949.

2.00 -10.00 -8.00 -6.00 -4.00 -2.00 0.00 2.00 4.00

(a) (b)

FIG. 1. Spiked strong detonation profile for qo > qcr-

Case 1. Spiked strong detonation profile. We set qo 2.375 >> qcr; this qo corresponds
to UR =--1.5. In Fig. l(a) we present the exact spiked solution profile obtained by
direct quadrature of the ODE below (3.1). In Fig. l(b) we present the profile that
emerged from dynamic stability calculations with the fractional step method described
in 2 with the initial data from (3.7). We used 560 zones on the interval [-5, 2] and
this dynamically computed steady profile differs from the exact solution by less than
1% in the maximum norm. This calculation both validates the method from 2 and
also demonstrates the expected stability of the spiked combustion profile.

Case 2. Monotone strong detonation profiles, q0 qsp. We used qo qsp .949 and
with the shock tube initial data from (3.7) and only 140 zones on [-5, 2], the time-
dependent solution converged very rapidly (after only 50 time steps with CFL number
of one-half) to the profile in Fig. 2(b)--this profile is practically identical to the exact
steady solution in Fig. 2(a).
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(a)
-18.00 -15.00 -II.00 -7.00 -3.00 1.00 5.00

(b)

FIG. 2. The exact steady profile (a) and the dynamically emerging monotone detonation profile (b) for
qo qsp.

Case 3. Strong detonation profiles for qo near qcr. In the reported experiment, we
set qo .571, a value slightly larger than qcr. The exact steady solution calculated by
quadrature of the nonlinear ODE is given in Fig. 3(a). The profile is completely
monotone with a very long characteristic fiat segment with a value of u corresponding
to u .4 uL*; we also observe that most of the chemical energy is released in this fiat
segment. Thus, this wave structure is almost that of the weak detonation observed for
qo -qer. One might suspect that such a wave is dynamically unstable. As a numerical
test, we took spiked perturbed initial data for this wave with the form depicted in Fig.
3(b) and with 560 mesh points on [-5, 2]. The numerical solution after 600 time steps
is given in Fig. 3(c); this solution is identical to the profile in Fig. 3(a) and demonstrates
the dynamic stability of this wave.

The profiles with a step shape like those in Fig. 3(a) are a difficult case for the
numerical methods from 2 on a finite interval due to the extremely long tail of the
analytical steady wave in its adjustment in the step from uL. to u*. In fact, with 560
mesh points and shock tube initial data, a qualitatively different steady numerical
profile emerged from the calculation dittering by about 15%-20% in the maximum
norm. However, we emphasize here that this second profile is a numerical artifact--a
second steady-state solution of the difference equations on a finite interval with a fixed
mesh. Under further mesh refinement the shape of this steady solution changed
substantially and finally disappearedwabout 880 mesh points on [-5, 2] were needed
for a similar test problem with qo near qCr to have a unique numerical steady state
emerge from the dynamic calculations with a wave profile differing from the analytical
profile by 2.5%.

Case 4. Bifurcating wave structurefor qo < qr. As qo$ qr, the fiat step in the profile
corresponding to u. .4 in Fig. 3(a) becomes even longer and as in Fig. 3(a) most of
the reactant is consumed at the front of this fiat segment. Once Z is nearly zero as in
the back of this wave, u becomes essentially a solution of the Burgers equation and
the second hump in Fig. 3(a) is an ordinary fluid dynamic shock with speed s
(u*+u.)/2=.7. What happens for qo<qc? No steady detonation profiles moving
with speed s exist for values of qo with qo < qer. For a fixed UR, qcr becomes a smoothly
varying function of the wave speed, s; we denote this function by q(s). By continuing
the above wave profile for qo > qer(S) to q0 < qcr(S), it is natural to expect that given
UR there is a wave speed s’ satisfying s’> s and

(3.8) qo qcr(S’).
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(a) (b)

-35.1Yl-27.00-19.00 -I1.00 -3.00 5.00 13.1XI

(c)

FIG. 3. The dynamic stability of detonation profiles for qo- qcr; the exact steady profile (Fig. 3(a)); the
perturbed initial data (Fig. 3(b)); the dynamically emerging profile (Fig. 3(c)).

If we let uL.(s’) with uL.(s’)< u.(s) denote the value of the weak detonation satisfying
(3.2) and (3.8) for the fixed UR, then the behavior for qo> qcr suggests by continuity
that the basic strong detonation shock tube initial data evolve into the following
bifurcating wave pattern: an approximately self-similar wave pattern given by the faster
moving weak detonation moving with speed s’ from (3.8) and connecting (UR, 1) to
(U*(S’), 0) with all chemical energy released in this wave followed by a slower moving
fluid dynamic shock moving with the speed < s with -(u.(s’)+ u*)/2.

Next, we describe the results of numerical experiments which confirm the behavior
conjectured above. For this experiment, we used UR =--.02 and qo-.214 (so that
qo (qcr) and retained the values of u. .4 and u* 1.0 used in the previous calculation;
we also increased the value of K to K 10. With shock tube initial data and 400 mesh
points on [-5, 2] the bifurcating weak detonation pattern emerged from the dynamic
calculations depicted in Fig. 4 at 160, 320, and 400 time steps and persisted under
mesh refinement. This precursor weak detonation has a wave speed s’ exceeding s
since this speed exceeds zero in Fig. 4, while the trailing fluid dynamic shock has a
slightly negative wave speed.

As a second test of the stability of the weak detonation wave and also as a test
of the explanation given above, we kept UR and .the heat release qo as in the earlier
calculation, but we altered the initial data by using the initial value, u/- .8 for x (0.
This value of uL satisfies uL.(s’)( u (u*. The calculation with this initial data will
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(c)

FIG. 4. The dynamically developing bifurcating wave pattern for q0<qcr at 160 (Fig. 4(a)), 320 (Fig.
4(b)), and 400 (Fig. 4(c)) time steps.

confirm the explanation advanced above provided that the same weak detonation as
depicted in Fig. 4 emerges as a prescursor wave followed by a fluid dynamic shock
moving at the slower speed g (uL+ uL.(s’))/2. The time history of this calcuation in
Fig. 5, displayed at the corresponding number of time steps as in Fig. 4, completely
confirms our earlier explanation and also the stability of the weak detonation. Thus,
within the context of the simplified model, we have demonstrated the existence of
stable weak detonations. Similar results for these calculations with/3 1 occurred with
any of the three inviscid schemes for Burgers’ equation in the fractional step method.
We also performed similar numerical experiments with a truncated Arrhenius kinetics
form, as described below (2.3). Qualitatively similar phenomena, as documented above,
always occur but for somewhat different parameter ranges.

Wave structure for the reacting compressible Navier-Stokes equations. The theory
of combustion wave profiles for the reacting gas flow equations from (2.1) is consider-
ably less complete than that for the model equations [12]. Nevertheless, Gardner [13]
has recently proved the existence of viscous strong (and weak) detonations for varying
(and exceptional) values of the heat release and wave speed. One consequence of the
results in 13] is a scenario for the wave structure with varying heat release qualitatively
similar to that mentioned in (3.3) for the model equations; in fact, his method of proof
involves deformation to the travelling waves of the qualitative model from [7]. This
fact both provides a partial rigorous justification for the model and also suggests that
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FIG. 5. Another test of the time-dependent stability of the weak detonation flora Fig. 4 for qo < qcr at 160,
320, and 400 time steps.

similar dynamically stable wave structures, as documented earlier in this section for
the model, would also occur for the reacting compressible Navier-Stokes equations.
In the remainder of this section we describe a series of numerical experiments
confirming this conjectured behavior.

We used the fractional step method described in 2 with the second order Godunov
method in the numerical experiments described below. We introduced the rescaled
variable Z- qoZ rather than Z and the initial data was always taken as the piecewise
constant initial data defining a C-J (Chapman-Jouguet) detonation; i.e. the initial data
for (p, p, u, Z) had the form

(Po, Po, O, qo), x > O,

(Pl, P, U, 0), xO

where given the preshock state for x > 0, the postshock state defined for x _-< 0 satisfied
the Rankine-Hugoniot relations defining a C-J detonation. The numerical calculations
were performed on a finite interval with Dirichlet boundary conditions, and to avoid
the computational expense of a very long interval, the solution was allowed to run
until the wave came with a fixed number of zones from the right edge of the grid; then
the solution was shifted from the right to the left to keep it fixed on the interval with
new values for the zones on the right defined by (po, po, 0, qo)--our graphical displays
retain this computational artifact and focus on the fastest moving wave pattern.
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In this section, diffusive length scales are completely resolved computationally,
but for emphasis we will work in dimensional units which are typical ones for a viscous
reacting shock layer. The detonation waves which we study have fairly small heat
release and are modelled on initial data for the preshock state corresponding to 25%
ozone and 75% oxygen at roughly room temperature in the ozone decomposition C-J
detonation; thus, we use the documented sizes of all constants reported in the deflagra-
tion calculations from [9]. We use CGS units and the following parameter values"

R=8.3143x107, /z =2x10-4,

3’ 1.4, PAtna. 1.0135 x 106,
A =/X D, PAtm. 1.29 x 10-3,
M=36.

For the ambient initial data, we used

Po .931/ggtm,

PO .821 PAtm,

MpoPo To-eo
y 1)Po’ Rpo

Zo- qo 3 eo.
With the speed of sound Co given by

Co po/ po)

the scalings of time, to, and of space, Ro, were defined by

(3.9) to
/z Ro toCo.poC2o

This choice of time and space scales corresponds to scaling compatible with the size
of the reacting shock layer. Finally, in modelling the chemistry, we sometimes used
the Arrhenius factor

(3.10) K (T) BT/2 e-A/kT

with k=-MR, A--1.00x 1012, and B =6.76 x 106; this is the value of the dominant
forward rate in the ozone decomposition reaction (see [9]). In other calculations we
used ignition temperature kinetics with the form

K if T> ’o,
(3.11) K(T)= o

if T< o.
For the ignition temperature with the above detonation, we used To 500K. We always
used 300 mesh points in all computations on the fixed interval but increased (decreased)
the resolution by setting Ax aRo with a a scaling factor. To avoid repetition, we
only report the results of computations with the kinetics scheme in (3.11) because the
kinetics structure function in (3.10) gave qualitatively similar behavior.

Case 1. A C-J detonation with a nearly Z-N-D spike. We set Ko 1 and report on
the time dependent development of the wave that emerged from the C-J initial data
described above with Ax .025Ro. The Z-N-D detonation (see 4) has a pressure peak
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FIG. 6. Dynamically emerging C-J detonation wave with nearby Z-N-D spike for Ko 1.

of 12 atm. The pressure and chemical energy wave profiles of the solution that emerged
from the dynamic calculation is given in Fig. 6. This solution is numerically steady in
a reference frame moving with wave speed and is nearly a Z-N-D detonation since
the pressure rises to a value of nearly 12 atm, then drops to the C-J value slightly
below 8 atm. The width of this C-J detonation wave is roughly 10-4 cm. This is
compatible with older estimates using explicit integration in the phase plane for the
laminar ozone detonation wave thickness 10]. This calculation is a refinement of one
with Ax .05Ro where a profile of identical size and structure emerged.

Case 2. Bifurcating wave patterns and dynamically stable weak detonations. By
increasing the value of the reaction prefactor Ko but keeping the heat release and the
initial C-J data fixed, by analogy with the structure documented earlier for the model
system, one might anticipate a bifurcating wave pattern with a dynamically stable
precursor weak detonation wave once qo satisfies qo< qcr(Ko). In the calculations
reported in the time sequence from Fig. 7 we have kept all parameters in the calculation
from Case 1 fixed except Ko. We have increased Ko from Ko- 1 to Ko 5. Only the
pressure and chemical energy plots are displayed in Fig. 7. The graphs display successive
time plots of the profile but focus increasingly on the precursor hump given by the
stable weak detonation wave. The reader can see that all chemical energy is released
in this precursor weak detonation wave as anticipated in the model system; furthermore,
this wave is supersonic from both the front and back. The slower moving trailing wave
profile is an ordinary fluid dynamic shock. We remark that the same wave profile
emerged under the mesh refinement with Ax- .015Ro. It is somewhat surprising that
a change in the reaction prefactor of 5 in the given detonation wave accounts for a
transition from a dynamically stable strong detonation to a bifurcating wave pattern
with a stable precursor weak detonation.

4. The behavior of fractional step methods for computing Z-N-D detonations. The
computational meshes used in the calculations from 3 are several orders of magnitude
finer than those that could be used in a typical large scale computing problem. On
much larger spatial scales the effects of diffusion are ignored so in this section we
report on calculations with the inviscid reacting compressible Euler equations. Since
it is an interesting problem to develop numerical methods which can capture the
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FIG. 7. Dynamically emerging precursor weak detonation with K 5 but all other parameters and initial
data fixed as in Fig. 6.
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significantly higher pressure peaks which occur in the structure of Z-N-D waves, we
assess the performance of the inviscid fractional step methods of 2 in such a
calculation.

Coarse mesh calculationsfor the reacting Euler equations. For comparison, we used
as initial data the same C-J detonation wave which we used previously in {} 3. In the
reported calculations we always used 300 mesh points with Ax tRo. We recall that
Ro is a characteristic length scale which measured the internal structure of the reaction
zone. In fact, by using Fig. 6, we see that 30 Ro 1.5 x 10-4 cm "approximate width
of the nearly Z-N-D detonation" computed in {} 3. We used either the Godunov or
second order Godunov scheme in the inviscid calculations below with LD I.

The graphs in Fig. 8 display the values of the pressure and chemical energy for
the travelling waves that emerged from these calculations with the C-J initial data. The

(a)

o

0 0 0 0 0g g g g o
o

o
o

[SSl/

o o
E 0

H(tl CAL (l(ll’

01’ 2.iSO(-IZ TIM( ].$2.S(-00 TIIIESTEP $95

(b)

0

0 0 0 0 0

Im[SSOR[
I)T f.lOS(-ll rill( J.$z$(-ol TIIIEST[P lOiS

FIG. 8. Dynamically emerging numerical wave patterns with the Godunov schemes and meshes Ax .1 Ro,
Ax Ro, Ax 10 Ro, Ax 10 Ro, Ax 10 Ro. Only the pressure and chemical energy are displayed. The black
line represents the Godunov method while the dashed line represents the high order Godunov method.
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dashed line describes the results of computations using the second order Godunov
method while the black line describes the results for the Godunov method. We increased
the value of c in the calculations reported in successive plots and thus, we used
increasingly coarse meshes.

For Ax .1Ro, the reaction zone was completely resolved and the expected Z-N-D
profile was computed by either method. For Ax Ro so that there are roughly 30 points
in the reaction zone, both methods gave a C-J detonation moving at the correct speed
but the Z-N-D pressure peak predicted by the Godunov method was only 10 atm,
rather than the expected 12 atm. Already at Ax 10 Ro, neither numerical method has
any pressure peak higher than 8 atm. On this mesh the Godunov scheme already clearly
exhibits a numerical bifurcating weak detonation pattern qualitatively similar to the
one described in 3 with all chemical energy released too soon in the precursor
numerical weak detonation wave. The second order Godunov method also exhibits an
incorrect wave pattern on this mesh and this value of t is at the critical value for
numerical wave bifurcation for this numerical method. On a mesh with Ax 102 Ro,
both methods clearly exhibited totally nonphysical bifurcating wave patterns with
precursor numerical weak detonations. On even coarser meshes, the same approxi-
mately self-similar nonphysical discrete wave pattern emerged as indicated by a
comparison of the graphs in Fig. 8(e) with Ax 105 Ro and Fig. 8(d) with Ax 102 Ro.
We recall that the mesh with Ax-105 R0 has 300 mesh points in a region only 1.5
meters long. Although we do not report the detailed time history here for these
calculations, the numerical weak detonation wave that emerges is always moving at
the speed of one mesh point per time step. Qualitatively similar results occurred in
our computations with an Arrhenius kinetics structure function. The theory for numeri-
cal weak detonations developed in 5 indicates that this numerical bifurcating wave
phenomenon should occur on even finer meshes for detonations with larger heat release
(our test problem has rather small heat release).

Coarse mesh calculations for the model equations. A similar computational
phenomenon occurred for the fractional step schemes for the model system with the
Godunov or second order Godunov methods. On the other hand, the inviscid fractional
step scheme using the random choice method performed extremely well and a numerical
bifurcating wave pattern was never observed on even the coarsest meshes tested. For
example, in Fig. 9 we compare the exact Z-N-D profile and the numerical wave profile
for a calculation with only 25 mesh points on the interval [-5, 2] for the random choice
fractional step method. The agreement is astonishing given the coarse mesh, and almost
the complete pressure peak has been captured. In contrast, for the same initial data
the fractional step scheme with Godunov’s method produced the nonphysical numerical
bifurcating wave pattern with 100 mesh points. These experiments suggest that at least
in a single space dimension, the fractional step scheme using the random choice method
might be capable of coarse mesh resolution of pressure peaks in wave structure for
solutions of the reacting compressible Euler equations involving complex chemistry.

5. Discrete weak detonations: nonphysical but stable discrete travelling waves. The
calculations from 4 on coarser meshes with the Godunov fractional step schemes
yield a bifurcating numerical wave pattern with a discrete weak detonation wave as a
precursor. These wave patterns qualitatively resemble the analytic bifurcating wave
structures documented as stable exact solutions ofthe reacting Navier-Stokes equations
in 3. However, the wave patterns from 4 are purely a numerical artifact since the
numerical solution converged to the expected Z-N-D detonation under further mesh
refinement.
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FIG. 9. A coarse mesh calculation for the model system using the random choice fractional step method
(Fig. 9(b)) compared with the exact steady profile (Fig. 9(a)).

Here we provide a theoretical explanation for the numerical results presented in
4. We work within the context of the simplified model and derive a new class of

nonphysical discrete travelling waves for the basic inviscid fractional step scheme
introduced in 2. These exact solutions of the difference equations will be numerical
weak detonations moving at the speed, g Ax/At, i.e. one grid space per time step, as
observed in the calculations from 4. Of course, we have already demonstrated the
stability of such nonphysical discrete weak detonations in the calculations reported in
4 for sufficiently coarse meshes.

Within the context of the simplified model, in the last section we considered the
problem of computing the Z-N-D detonation dynamically as a solution of

(5.1)
u, + (1/2u2- qoZ)x O,

Z, Kdp(u)Z

from initial data given by a C-J or strong detonation wave, i.e., w ’(u, Z) has initial
data with the form in (3.7) for the fixed wave speed s. We introduce the Hugoniot
function defined by

n(u, (1/2u)--

For simplicity we always assume that the initial data from (3.7) satisfy UR > 0 SO that
for this strong or C-J detonation, we have

(5.3) u*=> s > ue >0.

These initial data also satisfy the reacting Hugoniot equation

(5.4) H(u*, UR, S)= qo.

For the inviscid fractional step schemes of the last section, we required the C-F-L
stability condition

At
(5.5) AxU=a<l.
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Given the mesh, we introduce the discrete wave speed g= Ax/At. From (5.5) and (5.3)
it follows that g satisfies > s and one easily verifies the following fact:

For any > s, there are always exactly two solutions ti*L, tit‘. satisfying

H(a*, u, )= qo, a* > >
(5.6)

H(fit.., UR, i) qo, fi* > U*t. > fit‘. > U.

The wave defined by (at‘., UR) is an inviscid weak detonation wave with speed i while
the wave (ti*, u) is.an inviscid strong detonation wave travelling with the same speed.
We observe that

At . At . At
L* Ax

( I,’I L’x ( ti L Ax
) 1

and the weak detonation always satisfies the C-F-L stability condition from (5.5) on
the computational mesh but the strong detonation will always violate this C-F-L
condition is (5.5). The numerical computations from 4 indicate that on sufficiently
coarse meshes, the difference equations for the inviscid fractional step schemes based
on Godunov’s method should have discrete travelling wave solutions, w-
satisfying the equations

(5.7A) wJv w_v for all N >_- 0 and j,
o having the structurewith the discrete wave profile wj
o

(5.7B)
wj (UR, 1), j>_-- 1,

olim wj (tit‘., 0).

Such solutions of the numerical scheme define the nonphysical discrete weak detona-
tions moving at mesh speed which were observed computationally in the last section.
Here we will verify the following result:

PROPOSITION (existence of numerical weak detonations). For a simplified inviscid
fractional step scheme (see (5.10) and (5.11) below) based on the upwind scheme rather
than Godunov’s scheme, explicit nonphysical travelling waves satisfying the structure in
(5.7A) and (5.7B) exist under the following conditions on heat release, qo, reaction rate,
K, and mesh spacing, Ax:

A) For ignition temperature kinetics with ignition temperature satisfying > UR,
nonphysical discrete travelling waves with a monotone profile exist provided the two explicit
inequalities

(5.8) a < tit‘. and H(a, UR, g) < q0(1 e-KAx/2)
are satisfied.

B) For a general kinetics structure function c(u) satisfying ck(uR) --0 and d(u) > 0

for UR < U, a numerical weak detonation profile exists with the structure in (5.7) provided
that there is a solution Uo with UR < Uo < tiL* to the nonlinear algebraic equation

(5.9) H(uo, UR, g)+ qo e-Cax*(u)/2 qo.

Remark 1. It is easy to see that either of the quantitative algebraic conditions in
(5.8) or (5.9) is satisfied provided that either KAx is sufficiently large or the heat
release qo increases. In fact, the quantity K KAx for these inviscid fractional step
methods for reacting gases has an analogous role as the mesh Reynolds number in
viscous incompressible flow. The behavior of the numerical methods for K large for
the reacting compressible Euler equations mimics the behavior for high reaction rate
Ko documented in 3 for the reacting compressible Navier-Stokes equations.
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Remark 2. The same construction which we give below in the proof of the
proposition will establish the existence of a spiked Z-N-D strong detonation discrete
wave profile moving with mesh speed, i.e., a discrete travelling wave satisfying (5.7A)
with

oWj=(UR, 1), j>=l,
o (*, o),lim wj

and u > t* for j-< 0. Because we have the C-F-L restriction below (5.6), this wave is
never realized on the given computational mesh; however, it might occur in similar
fractional step schemes based on implicit methods.

First, we describe the variant of the inviscid fractional step schemes from 2
based on the upwind scheme. Given w]v= (u]v, Zf), in the first fraction step, we
compute Zv+l via numerical integration of the ODE to obtain the formula

(5.10) z/,= z/, ( g4(uJ)+ 4’(u-,))j_l exp
2

with initial condition Z+1--- 1 for j large enough and/ defined by / KAx. For
waves moving with positive wave speed as guaranteed by (5.3), Godunov’s scheme
reduces to the upwind scheme. In the second step of the simplified algorithm, we
compute u]v+l from {uf}, {Z+1} by applying the upwind difference approximation
to the first equation in (5.1). This results in the formula for u+ given by

(5.11) u+’ u (u (Uj_l)2 +qo(Z+1 +’Zj_, ).

The formulae in (5.10), (5.11) describe how to compute {w+} from {w} in this
fractional step method. Next we prove the proposition for this scheme.

The equations in (5.7A) will be satisfied provided that we find an initial wave
oprofile w (u, ) satisfying

o(5.12) w w-i for allj.

from the fractional step method in (5.10) (5 11) we seeBy explicitly computing w
that (5.12) will be satisfied provided that

(5.13A) - exp (-(u+’) + (u))’2

(5.13a) H(uj_,, uj, )= qo(-,--:)
forj with -<j <. First, we concentrate on the case of ignition temperature kinetics.
With wj=(uR, 1) forj 1, the equations in (5.13) are trivially satisfied forj2. From
(5.13A) we see that Zo 1 and if a solution Uo> is found, Uo is the solution of the
equation

(5.14) H(uo, UR, g) q0(1 e-e/2).
The Hugoniot function, H(u, UR, g) has the three propeies

H(u, u, ) 0,

(5.15) H(a., u, )= qo,

H(u, UR, g) is monotone increasing in u for u < u <
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Given the conditions in (5.8) and the above three properties, we see that there is a
solution Uo to the equation in (5.14) satisfying

(5.16) t < U0 < /’L*"

Next, we generate the uj for j < 0 recursively from Uj+l by a similar procedure. We
anticipate the fact to be verified a posteriori that u for j < 0 also satisfies < u < tL*.
We define a to be the factor a e-g/2; if u for j 0 inductively satisfies u > 6, then
from (5.13A), we compute that is given by the formula

(5.17) =a-z-’ j=-I -2,-3 -4,...

With the formula in (5.17), the equations in (5.13B) will be satisfied inductively provided
that

(5.18) H(uj, u, g)= qo(1- ’--1): qo(1- --2j+l) --1
for j =-1,-2,-3,.... Since we have the monotone sequence

qo > q-i > q, j 1, -2, -3,- ,
it follows from (5.15) that there are always solutions uj to the equations in (5.18) with
the monotone structure

< Uo < Uj < Uj_ < L.
forj -1, -2, -3, . From the above monotone structure and the equations in (5.18),
it is easy to see that the unique limit a of this sequence as j+-c satisfies

a(, u.], H(fi, UR, g) qo.

The only solution of these equations is tL. and clearly from (5.17), Z$0 rapidly
as j-o. This completes the construction of the explicit travelling wave for ignition
temperature kinetics. Obviously a similar recursive construction can be applied for the
more general kinetics schemes. The only difference is that the right-hand side of (5.14)
or (5.18) also depends on uj. However, the assumption in (5.9) guarantees that Uo can
be found and the other equations are easily solved inductivelymwe omit the details.
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A MULTIGRID CONTINUATION METHOD FOR ELLIPTIC
PROBLEMS WITH FOLDS*

JOHN H. BOLSTAD AND HERBERT B. KELLER:i:

Abstract. We introduce a new multigrid continuation method for computing solutions of nonlinear
elliptic eigenvalue problems which contain limit points (also called turning points or folds). Our method
combines the frozen tau technique of Brandt with pseudo-arc length continuation and correction of the
parameter on the coarsest grid. This produces considerable storage savings over direct continuation methods,
as well as better initial coarse grid approximations, and avoids complicated algorithms for determining the
parameter on finer grids. We provide numerical results for second, fourth and sixth order approximations
to the two-parameter, two-dimensional stationary reaction-diffusion problem:

Au + A exp(u/(1 + au))= O.

For the higher order interpolations we use bicubic and biquintic splines. The convergence rate is observed
to be independent of the occurrence of limit points.

Key words, multigrid, arc-length continuation, nonlinear elliptic eigenvalue problems, limit points, folds,
frozen tau method, tau extrapolation, deferred correction, defect correction
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1. Introduction. Many problems of computational interest can be viewed in the
general form:

(1.1) G(u,A) =0,

where X is some Banach space, u X, A R, and G: XxR- X. Of course u

represents a "solution" field (e.g., flow field, displacements, etc.), and A is a real vector
of physical parameters (e.g., Reynolds number, load, etc.). It is required to find the
solution for some A-intervals (or some A-arcs), that is, a path (or manifold) of solutions:
(u(A), A). We consider problems of the form (1.1) which are nonlinear elliptic eigen-
value problems.

A common feature on solution paths of such problems is the frequent occurrence
of limit points (also called turning points or folds). Figure 1 illustrates two limit points
in the (A, u o) plane for two different families of numerical solutions. The limit points
are at A Ay and A A limit point p0 (uo, A o) is defined as a solution of (1.1) for
which the Fr6chet derivative G of G with respect to u evaluated at po satisfies"

a) G, is singular;
b) G R(G,,).

The limit point or fold is said to be simple if in addition:
c) dim N(G,)= codim R(G)= 1.

Here N and R denote null space and range, respectively. In the rest of this paper,
when we refer to limit points, we shall mean simple limit points.

Pseudo-arc-length continuation methods (Keller [19], [20]) have been used suc-
cessfully for computing limit points and bifurcation points of nonlinear elliptic eigen-
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at the Lawrence Livermore National Laboratory using a troff program running under UNIX. The final copy
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EY-76-S-03-070 and by the U.S. Army Research Office under contract DAAG-29-78-C-0011.

Present address: Lawrence Livermore National Laboratory, Box 808 L-16, Livermore, California
94550.

Applied Mathematics 217-50, California Institute of Technology, Pasadena, California 91125.
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value problems (e.g., Meyer-Spasche and Keller [24], Schreiber and Keller [32]).
However, the size of problems that can be solved by these methods is limited principally
by the storage required for the Jacobian G,, as well as the time required for the direct
factorization of these Jacobians. For these reasons it is natural to consider multigrid
methods, which, for a grid with N2 mesh points, require O(N2) storage and approxi-
mately O(N2) arithmetic operations to solve to the accuracy of the truncation error.

Straightforward implementations of multigrid methods work well for nonlinear
elliptic eigenvalue problems, but they fail near singular points. One type of difficulty
near a limit point has been noted by several workers (e.g., Chan and Keller [9], Meis,
Lehmann and Michael [23]). Assume that the solution branches on coarse and fine
grids look like those in Fig. 1, say F and FM, respectively. Suppose we use "natural
continuation" with A as parameter on the coarse grid, and use the full approximation
scheme (FAS) full multigrid algorithm while keeping A fixed. Assume we start at A
on the coarse grid, and wish to compute the fine grid solution at the limit point AI.

Fine Grid Solution

Coarse Grid
Solution

FIG. 1. Limit points for different grids.

Orthogonal
Tot,



A MULTIGRID CONTINUATION METHOD 1083

As we approach the coarse grid limit point h there is a drastic slowing in the rate of
convergence of the multigrid method, followed by divergence at At. The divergence
occurs first on the coarsest grid. (Although Chan and Keller [9] used the Cycle C
"Correction Scheme" multigrid algorithm, we found the same results when we used
the FAS full accommodative multigrid algorithm.) For points h 2 > h there is no coarse
grid solution, so we will not be able to approach hf without some remedy, such as
deleting coarse grid(s).

Another (less well-known) type of difficulty occurs when the coarse and fine grid
solution paths in Fig. 1 are interchanged. If we approach the fine grid limit point hf
in the direction of increasing A, the multigrid method converges, but the solution is
not very accurate. However, if we do not know the location of hz in advance, we will
try to compute solutions for h with hf < h 2 < h For these h no fine grid solution
exists. In practice, for A2 not "sufficiently close" to hy, the residuals of the fine grid
solution cannot be reduced below a certain level, i.e., we encounter divergence on the
fine grid.

Both configurations occur in practice, even using different approximations on the
same problem. See 6, Table 1.

One remedy for the first type of difficulty was suggested by Chan and Keller [9].
They approximated the eigenfunction of the discrete differential operator that was
causing the divergence, and then altered the interpolation operator and skipped a grid
to prevent divergence.

All other methods do not fix the parameter A during the multigrid iterations, i.e.,
they use different parameters h on different grid levels k. One class of methods has
been suggested by several authors, e.g., Meis, Lehmann and Michael [23], Stiiben and
Trottenberg [35]. Consider the model problem (1.2). In addition to the usual difference
approximations, they impose an additional constraint on the finest grid, say:

ul (P) =- u (1/2,1/2) -= Ilu ll constant,

where u at the center point is specified but A M remains unknown. This amounts to
switching the role of unknown uM(P) and parameter A. This parameter switching
is one of the earliest techniques for treating limit points for single grid methods (see,
e.g., Abbott 1 ]).

More specifically, Stiiben and Trottenberg suggest modifying the multigrid smooth-
ing step at one level as follows:

(a) Apply one, (nonlinear) smoothing (relaxation) step to the actual approximation
u k, including the prescribed value at P.

(b) Multiply the relaxed approximation by a factor such that the constraint is
satisfied afterwards.

(c) Compute a new value of/k for this level by using the ditterence equations
together with a one-dimensional rootfinder (e.g., using a suitable average over
all the equations).

Of course, this procedure will produce different A k at different grid levels if the
constraint has the same value on all levels. At convergence, however, the parameters
A k will be (approximately) the same if the FAS multigrid algorithm is used.

An objection to this procedure is, of course, its lack of generality. In more
complicated problems (e.g., Lentini and Keller [22]) there is no clear "natural"
parameter which can be used to eliminate limit points. Rheinboldt [29] circumvents
this problem for single grid algorithms by treating the parameter as an additional
unknown, and at each step appropriately selecting one of the unknowns as the
continuation parameter.
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A second class of methods has been proposed by Hackbusch [17], and by Bank
and Chan [2]. Assume we are given the solution structure of Fig. 1. Having found a
coarse grid solution point Q (u, A) RTM on F1, these workers suggest finding a
corresponding fine grid point on the line orthogonal (in the space RTM) to the coarse
grid curve passing through Q. The projection of this orthogonal onto the A-Ilul[
plane is shown in Fig. 1. Furthermore, Bank and Chan use additional diagonal shifts
of Jacobians to assure that all matrices have the same number of negative eigenvalues.
A third method, the generalized inverse iteration method, has been proposed in
Mittlemann [25], and Mittlemann and Weber [26]. Their method determines the
parameter A k on each grid as a generalized Rayleigh quotient.

Instead of using different parameter values on different grids, our method changes
the structure of the solutions on different grids, by using the frozen tau technique of
Brandt [7], [8]. In Fig. 1, our method in effect "moves" the coarse grid curve so that
locally it is very close to the fine grid curve. Then the parameters A needed on different
grids are very near to each other, so we may use the same A on all grids, and change
A (using pseudo-arc-length continuation) only on the coarsest grid. The multigrid and
continuation methods interact through the full approximation scheme (eq. (3.3)). A
special procedure (eq. (4.7)) produces accurate initial approximations.

Since we use the frozen tau method, the coarse grid equations produce approxima-
tions which, in general, more closely approximate the fine grid solutions than the
solutions ofthe unmodified coarse grid equations. This is an advantage when computing
problems with multiple solutions. Together with Mittlemann’s method, our method is
robust in the sense that the same algorithm can be used for both regular points and
limit points, without, significant loss of efficiency. That is, we need not detect the
presence of limit points and try to switch algorithms. Our method requires a Jacobian
only on the coarsest grid, so it is well-suited to large problems, especially those obtained
from discretizing coupled systems of partial differential equations on fine grids [24],
[31]. Finally, in our numerical results we observed that the rate of convergence (i.e.,
the rate of decrease of residual norms) did not degrade near limit points.

Throughout this paper we consider the following model problem, which will be
used to illustrate the methods and to furnish numerical examples.

A two-dimensional stationary reaction-diffusion problem is formulated as"

(1.2a) Lu(A, a) -= Au + A exp(u/(1 + au)) 0 in ,
(1.2b) u=0 on0.
We take fl -= the unit square: [0, 1]x[0, 1]. In the notation of (1.1), k (h, a).

The solution of this problem has interesting geometric features (see Fig. 2). There
exists a critical value of a, say a*, for which" i) u(-, A, a) has two simple (quadratic)
limit points in h for fixed a < a*; ii) u(., A, a) has no limit points for fixed
iii) u(., A, a*) has one (cubic) limit point. In case i), in a sufficiently small neighborhood
of each limit point Pi, the solution curve lies on one side of the (vertical) tangent line
at Pi, while in case iii) the solution curve lies on both sides of the tangent line at the
limit point. See Spence and Werner [34] for a discussion of methods to compute a*.

In 2 of this paper we review arc-length continuation methods. Section 3 summar-
izes the accommodative FAS full multigrid algorithm for a fixed parameter value. In
4 we review the frozen tau algorithm and then describe our method. We also describe
implementation details such as the use of high order splines for interpolation. An
outline of a convergence proof, which is based on methods of Hackbusch [16], [17]
is given in 5. In 6 we give numerical results for second, fourth and sixth order
approximations to our model problem (1.2).
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FIG. 2. Solution curves of reaction-diffusion equation (1.2) for various values ofparameter a.

2. Continuation methods. In this section we briefly review continuation methods
for computing a family or path of solutions of (1.1), without using multigrid methods.

2.1. Newton’s method. Given a value of A and an initial guess u of the solution
u(h), we perform the following steps repeatedly until II u’ll < is satisfied:

(2.1) G,,(u A )Su’ -G(u A ),

(2.2) u+= ui + 8u .
This procedure will generally converge quadratically when it does converge. However,
as is well known, it can fail to converge when the initial guess is not sufficiently close
to a solution, or if a solution does not exist for the given A value.

2.2. Natural continuation. To overcome the former difficulty, we can start at a
known solution (Uo, Ao) on the solution path and use it as an initial guess for a
Newton-type iteration to find the solution for a neighboring point on the solution path
with A close to Ao. The procedure is then repeated. We can improve on this by computing
the derivative u x at a known solution and use it to get a better initial guess for the
next value of A in a predictor-corrector fashion. We call this a natural continuation
procedure because it corresponds to parametrizing the solution path by A, the naturally
occurring parameter. A specific form of this is the well-known:

Euler-Newton continuation procedure. Given a known solution (Uo, Ao), compute
the solutions at nearby values of A as follows:

1. First compute the derivative ux at (Uo, Ao) from

GuUx -Gx.
2. Perform an Euler predictor step:

u Uo + u (X Xo).
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3. Use u as initial guess in Newton’s method. Repeat

G,(u+ u) -G(u’, , ),

until convergence.
4. Use (u(A), A) as the new (Uo, Ao) and go to Step 1.
Unfortunately, this procedure needs some modification in order to handle general

nonlinear systems because ofthe possibility ofnonunique solutions. The nonuniqueness
usually manifests itself in the form of existence of"singular" points where the Jacobian,
Gu, is singular. The most common (i.e., generic) singular point is a simple limit point.
(Another type of singular point, a bifurcation point, at which G R(Gu), will not
be considered in this paper.) A natural continuation procedure will encounter two
difficulties at limit points. First, since Gu is singular at these points, Newton’s method
(unaltered) will at best be linearly convergent, making it much more costly to compute
the solution. Second, and more serious, the Euler-Newton procedure may lead us to
a value of A (such as A2 for the coarse grid in Fig. 1) for which no nearby solution
exists, and the iterations will generally fail to converge.

2.3. Pseudo-arc-length continuation. In the pseudo-arc-length approach (Keller
19]), these difficulties are overcome by not parametrizing the solution u by A. Instead,
we parametrize the solution branches using a pseudo-arc-length parameter s, and
specify how far along the current solution branch we want to try to march in s. This
requires us to add an "arc-length" equation to our system of equations.

To be more specific, we let s be the arc-length-like parameter, and treat u(s) and
A(s) as functions of s. We then replace the Euler-Newton continuation procedure by
the following:

Pseudo-arc-length Euler-Newton continuation procedure [19]" Assume given a
solution (U(So), A (So)).

1. Compute a tangent

(o, o) -= ((So), (So))
to the solution branch (where the dots denote differentiation with respect to s)
satisfying:

(2.3) Gao + oG 0,

(2.4) Ilall = + IAI=- 1 0.

Equation (2.3) is obtained by differentiating (1.1) with respect to s, and (2.4) is
an arc-length condition. The norm is a discrete vector norm which approximates
the continuous L2 norm for integrals. For example, in m dimensions,

2

where ui are the vector components. The equations (2.3)-(2.4) are easily solved [20]
as follows.

First solve the system of linear equations

(2.5a) G6 -G;

then determine ti(So) and (So) by

(2.5b) &o +(1 + 6 I1=) -/=,
(2.5c) rio
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Here the sign in (2.5b) determines the direction in which we traverse the solution path.
If two solutions (U_l, A_I) and (Uo, Ao) have been computed, then we choose the sign
such that:

(0, UO- U--l) + XO(AO- A--l) > O,

and the continuation proceeds in the direction from (U_l, ;t--l) to (Uo, ;to). Here (,) is
an inner product which induces the norm in (2.4).

2. Select a step size s So. (See 4.5.) Then take an Euler step of length s So
along the tangent:

(2.6a) u Uo + (s So)rio,

(2.6b) ;to Ao + (s So)o.
In general (u, ;to)will not be a solution of (1.1).

3. We now use the pseudo-arc-length condition to return to the solution branch.
We require our new solution point to satisfy the equations

(2.7) G(u(s), ;t (s)) =0,

(2.8a) V(u(s), A(s), s) O,

where

(2.8b) N(u(s), ;t (s), s) -= (rio, (u(s) U(So)) + Xo(;t (s) ;t (So)) (s So) 0.

Equation (2.8) is a linearization of the arc-length condition (2.4) and is used because
it contains (u(s), ;t(s)) and not (ti(s), (s)). Equation (2.8) forces the new solution to
lie on a hyperplane perpendicular to the tangent vector to the solution curve at So,
and at a distance Is- So[ from it. We solve the coupled system (2.7)-(2.8) for u(s)
and ;t(s) by using Newton’s method with initial guess (u, ;to). This requires solving
the following system at each iteration:

(2.9) A
BA’J N,

The quantities G, N and their derivatives are all evaluated at (ui(s), ;t i(s)).
It can be shown [19] that at simple limit points, the linear system in (2.9) is

nonsingular, and so Newton’s method for the coupled system (2.7)-(2.8) is well-defined.
Hence simple limit points present no computational problems and even quadratic
convergence is achievable.

In order to solve the linear system in (2.9) by direct or iterative methods, several
approaches are possible. One way is to perform Gaussian elimination on the inflated
matrix A, with some form of pivoting to ensure stability. But this approach completely
ignores the sparse structure which is usually found in the Jacobian G, arising from
discretizations of nonlinear elliptic eigenvalue problems. In order to take advantage
of the structure in the Jacobian, Keller [19], [21] used the following bordering
algorithm"

Solve

(2.10) G,y Ga

Another choice is: N Ilu Uo[I + IA Aol -Is Sol o, This forces the solution to lie on a sphere
of radius Is Sol about the previous solution.
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and

(2.11) Guz -G.

Set
T T(2.12) BA (N + Nuz)/(N N,,y),

(2.13) Bu z + BAy.

Now only systems with the coefficient matrix G have to be solved, so structures in
G, can be exploited. Moreover, only one factorization of G, is needed. It has been
shown (Szeto [34]), and observed in practice, that even when Gu becomes singular,
this bordering algorithm produces iterates that converge quadratically at simple limit
points. Some loss in accuracy (cancellation errors in (2.13)) are to be expected, however
[21]. We discuss this further in 4.5.

But, as mentioned before, a major disadvantage of these continuation methods
for many problems is the need to store and factor large Jacobians, Gu. For that reason
we consider multigrid methods.

3. Multigrid methods. In this section we shall give a brief description of the
multigrid method we use for a fixed value of the parameter vector A. It is assumed (in
this section only) that (u, A) is not a limit point (or bifurcation point). In the next
section we shall give modifications necessary for continuation. For a survey and more
complete description of multigrid methods, see Brandt [5], Brandt and Dinar [6],
Brandt [8], Stiiben and Trottenberg [35], and other papers in the latter volume. We
use accommodative, full multigrid with the full approximation scheme (FAS). Unlike
Chan and Keller [9] we do not use the "Cycle C" algorithm.

We consider an elliptic partial differential equation defined on a region with
boundary 0[1:

LU F onfl,
(3.1)

U 0 on 0[l.

(If U or F depend on a parameter A, fix the parameter.) Then we construct a hierarchy
of grids ll, fiE, fM, all approximating the domain iI, with corresponding mesh
sizes hi > hE > > hM. The discrete approximation on grid -k is written as

(3.2)
LkUk(x) Fk on IIk,
Uk 0 on0k,

where 0[’k approximates the boundary 0[l. We wish to solve this discrete problem on
the finest grid, [lM.

Figure 3, adapted from [6], gives a flow chart of the FAS full multigrid (FMG)
algorithm. In the FAS method, each Uk is an approximation to the exact solution U.
The FAS method (as opposed to the correction scheme) is particularly suited to the
solution of nonlinear problems. When properly employed, it eliminates the need for
large Jacobians.

The FMG method can be divided into two phases: the "initialization" phase, in
which we start with a solution obtained in some manner on the coarsest grid 1, and
"bootstrap" our way up to a first approximation u, on the finest grid 124. (For
continuation problems it is important to have good first approximations on [l.) The
second phase improves the first approximation on grid l’l. This phase is common to
all multigrid algorithms. In the flow chart, these phases are combined by replacing the
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FIG. 3. Accommodative FASfull multigrid algorithm. The notation is explained in the text.

maximum level M with a level l, which denotes the highest grid level seen up to this
time. The index increases from 1 to M in phase one, and is fixed at M in phase two.

It is somewhat more natural to view the FMG method recursively; such a formula-
tion is given in Hackbusch 16].

We now explain the quantities in the flow chart. The current grid level is denoted
by k. In the FAS multigrid method, equations (3.2) are solved only at the highest
current level I. The current approximation to U at this level is denoted by u . In the
process, eq. (3.2) on coarser grids k < l) are modified by changing their right-hand
sides. The modified right-hand sides of the kth level equations are given by

(3.3) fk Lk "k uk+l) Lk+luk+(Ik+ + I+l(f+’ ),
and depend on u+1, the current approximation on the next finer level. The solutions
to these modified equations are denoted by dr, and their computed approximations
by u. Thus, the FAS multigrid method attempts to solve the equations

(3.4) Lkfk fk
at each level k < l, not (3.2).
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The order of accuracy of the difference approximation is p. The norm of the
dynamic residual on level k is

ill
and its tolerance is e k. The interpolation operator I_ interpolates corrections from
a "coarse" grid to the next finer grid. The interpolation operator IIl-1 interpolates
solutions from a coarse grid to the next finer grid; it is used only in phase one, and
frequently must be of higher order than I-1. The operators I+1 and I+1 are projection
operators from a "fine" grid to the next coarser grid. The former projects residuals
and the latter projects approximate solutions.

The parameter controls switching to a coarser grid. When the norm ek of the
residual for this iteration of the relaxation process on grid k exceeds ,/ times the
corresponding residual norm ’k of the preceding iteration (i.e., the convergence rate
becomes too slow), we switch to grid k-1. The parameter 8 controls the accuracy with
which we solve the equations on grid k-1 before using the result to correct the solution
on grid k. The use of / and 8 characterizes an accommodative multigrid algorithm,
where the number of relaxation sweeps on a grid is determined dynamically by the
progress of the iterations. This is in contrast to fixed algorithms, which perform a fixed
number of relaxation sweeps on grid k before going to grid k-l, and then a fixed
number of sweeps after returning to grid k. Accommodative methods are more robust,
especially for nonlinear problems.

On the coarsest grid we do not use a relaxation method. On the upper branches
of multiple solutions (Figs. 1 and 2) the matrix Gu becomes indefinite. This leads to
divergence on the coarsest grid if a standard relaxation method is used ([9], [35]).
Hence we use the full Newton method on the coarse grid. In 4.2 we will see further
reasons for using Newton’s method here.

We defer until 4.5 further details of our multigrid implementation.

4. Description of the algorithm. In this section we describe our algorithm. This
description will involve Brandt’s frozen tau method, and some modifications to the
methods described in 2 and 3. Our goals in designing a continuation method are to
do as much as possible on the coarse grid, and to avoid the need for large order
Jacobians.

4.1. The frozen tau technique. We first describe the "dual view" (Brandt [8], Stiiben
and Trottenberg [35]) of the multigrid algorithm, and the relative truncation error.
The local truncation error of the kth level approximation is

.k =_ Lk(ku)_ Fk Lk(ku)_ Ik(LU),

where k projects continuous solutions onto the kth grid, and Ik (possibly different
from k) does the same for right-hand sides. This is obtained by substituting the
solution U of the differential equation into the difference equations (3.2).

To estimate .k, we replace U by the "converged" approximate solution u n,
k < m _-< M, and replace the projections Ik and k by Ikm and ^kIra, respectively. We
then obtain the m, k)-relative truncation error, or fine-to-coarse defect correction

k(4.1) ’m

where

Lk(ikmum Ikm(Lmtlm),

rk+l m-1Ikm Ikk+l"k+2 Im
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^kand similarly for Is. Using (3.4) with k m, this can be rewritten

k(4.2) L(imum) Ikf + "i"

The relative truncation error is related to the local truncation error by

k ,l.k"i’m .’" --7" l <- k < m <-_ M,

where indicates equality of the leading terms in an asymptotic expansion in powers
of hk. (Here we have assumed that the global error can be expanded in a power series
in h k whose coefficients are independent of k.)

This leads to the "dual" interpretation of the multigrid method. Instead of
regarding the coarse grid as a device for accelerating convergence of the fine grid
equations, we can view the fine grid as a device for calculating the correction ’km to
the coarse grid equations. In other words, if grid k is a coarsening of grid M, and if
"kIM is the straight injection operator, then zk is that quantity which has to be added
to a (modified) right-hand side, Ikf= IkF, to obtain values of the fine grid
solution u by solving the coarse grid equations. That is, at convergence, the coarse
grid solutions are simply projections of the finest grid solution. This would not be true
in general, if one solved problems (3.2) independently, without FAS.

We now present a modified version of Brandt’s [7], [8] frozen tau technique for
continuation. Suppose we have computed a multigrid solution for parameter ho by the
method of 3, and we wish to compute an FAS full multigrid solution at the "nearby"
parameter A 1. Assume we have an initial approximation to the solution on the coarsest
grid at A 1. We can make the coarse grid solution equation "appear" like the (as yet
unknown) fine grid solution at h as follows.

We first determine the relative truncation errors z(h0), k 1, 2,..., M-1. If
Fk-= 0, as in our model problem (1.2), zk is, at convergence, simply the modified
right-hand side fk. Otherwise, from (3.3) and induction, zk is given by

(4.3) rk fk. If.
Before the computation even begins at h 1, we add ’k(ho) to the right sides of the 11
equations, for k 1,2,..., M-1. If 11 is close to ho, this makes the coarse grid
equations at h locally look like the fine grid "corrected" equations (4.2) with m M.
The effect in Fig. 1 is approximately and locally to shift the coarsest grid curve (and
all "intermediate" grid curves) close to the fine grid curve. Away from the point where
we are computing, the curves corresponding to different grids are not necessarily close
to each other.

Of course, this procedure initially ignores the error in zk(h 1) due to the change
in h. However, the error so produced will not depend on the high-frequency com-
ponents, but only on the changes in those components from their values at ho. Normally
these changes are small compared with the components themselves [7], [8]. Further-
more, the ’M(ho) terms are implicitly improved by the multigrid iterations at 11, as
will be explained in 4.3. More accuracy could be obtained initially by extrapolation
in h using, say, ZM(hO) and ZM(hO- 8A) to better approximate zM(h 1).

4.2. Combining multigrid and continuation methods. Despite this improvement, it
is clear that we still must vary h during the multigrid iteration. As we observed in

1, many workers use different values of h on different grids. But our shifting of the
coarse grid curves allows us to use a very simple algorithm for changing h 1. We propose
correcting h during the multigrid iteration only on the coarsest grid.
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We need a method to produce a first approximation U on the coarsest grid at
and values u and h for the coarsest-grid correction at hi. The pseudo-arc-length
continuation method of 2 will supply both, while being insensitive to limit points.
This method interacts with the FAS-FMG algorithm in a natural manner, through the
right-hand sides of the coarsest grid equations.

We will now change our notation slightly, and refer to the old and new parameters
as h(So) and h(sl), not ho and hi. The old parameter h(So) is fixed. We allow h(Sl)
to vary, but it will be the same on all s 1-grids.

4.3. Algorithm for continuing through limit loints. We now summarize the steps
of our multigrid continuation algorithm. Then we will explain each of these steps. This
algorithm will follow solution curves as they pass through limit points, but in general
none of the computed solution points will coincide with any limit point. We will show
how to accurately locate limit points in the next subsection.

1. Assume given an initial parameter value ho, and an initial coarse grid approxi-
mation u to a solution of (1.1) which is not "too close" to a limit point. Let So 0
and define A(So)-- Ao, ul(s0)

2. Use Newton’s method (2.1)-(2.2) to obtain an improved solution on the coarsest
grid. Note Ao is kept fixed.

3. Perform the accommodative FAS full multigrid algorithm, as described in 3
and Fig. 3. Use a method such as Gauss-Seidel-Newton to relax (smooth) on grids
2, 3,..., M, and use Newton’s method (2.1)-(2.2) to solve on the coarsest grid. The
parameter A o is still fixed.

4. When the multigrid algorithm has converged, project the solution from the
finest grid to all coarser grids,

^k(4.4) uk(so) Ik+lUk+I(So), k M-l, M-2,’", 1.

5. If Fk : 0, determine the relative truncation errors zk(so). First compute

ff Ik+fk+, k 1, 2,- M-1

and overwrite on fk. Then compute

k k k M-2, M-3, 1,’/’M Tk+l + I+1 k+l

and overwrite on fk.
6. Choose a step length As. (See 4.5.) Let Sl So / As.
7. Apply the frozen tau technique by adding k(so) to the right sides fk(sl) =--

Fk(Sl) of the grid equations (3.4) at levels k 1, 2,..., M-1.
8. Perform the Euler step (2.5)-(2.6) to obtain a first approximation (ul(sl), A (Sl))

on the coarsest grid at
9. Use the pseudo-arc-length Newton method (2.10)-(2.13) to improve this

approximation on the coarsest grid. The "right-hand side" term Fl(Sl) in

(4.5) G(u(sl), A(sl)) -= LI(Sl)U(Sl) F(Sl),
which appears in (2.9) or (2.11), was replaced in step 7 by

(4.6) fl(sl) Fl(sl) + zl(so).
10. Perform the multigrid iteration to obtain A(Sl) and u(sl). This is the same

as step 3, except" (a) The right sides Fk will have already been modified by step 7;
(b) Initial approximations u k on grids 2, 3,..., M are obtained by a method to be
.described; (c) We use the pseudo-arc-length Newton method (2.10)-(2.13) to correct
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on the coarsest grid. The right side FI(sl) will have been replaced by the usual FAS
right-hand side in (3.3). We obtain not only a new ul(sl), but also a new

This procedure yields the solution for two parameter values So, s l. To compute
the solution at further values s2, s3," ", repeat steps 4 to 10, but replace si by
In practice we reuse the storage for s-i when we start computing at s+l. Thus only
two sets of grids are needed, each set consisting of values of u and f on all levels.
Hence the total storage is approximately eight times the number of grid points in
times the number of differential equations, plus a small amount for one coarsest-grid
Jacobian.

We will now expand on some of these steps.
In steps 2 and 3 we fix A because we do not have past information to enable us

to use pseudo-arc-length continuation. Step 4, projection onto coarser grids, is not
strictly necessary, since before it is applied, the FAS method ensures that ul(so) is
approximately equal to the right-hand side of (4.4).

Step 5 can be omitted when there are no inhomogeneous terms in the differential
equations (e.g., problem (1.2)). Then step 7 can be slightly simplified by copying ’k(so)
to the right sides of the s 1-grids rather than adding.

For the Euler step 8 and the Newton steps 2 and 9 we must calculate the Jacobian
Gu, but this is on the coarsest grid, so there is no storage problem.

Just as in the ordinary pseudo-arc-length method, the Newton step 9 brings us
back to the solution curve. Since we have added ’(So) to the right side of the coarse
grid equation, we are brought back (approximately) to the finest grid curve, rather
than the coarse grid curve at

During the multigrid iterations at the new parameter s l, we return to the coarsest
grid for corrections. Just before doing so, we replace the right-hand-side term fl(sl)
of (4.6) by a new fl(sl), as prescribed by the FAS-multigrid method in (3.3). We then
use pseudo-arc-length continuation (2.10)-(2.13) to obtain a new A(Sl) and ul(sl).
The new A(sl) is used on all finer grid levels until the next coarsest-grid correction.

At first glance it appears that A 1, since it is changed only on the coarsest grid,
incorporates information only from the coarsest grid and the frozen tau term ’(s0).
But as the full multigrid iteration at s progresses, A actually incorporates information
about all other grids and all other terms zk(So), 1 < k < M 1, as well. For example,
when the finest grid seen so far at Sl is 2 (i.e., 2 in Fig. 3), the coarsest-grid
correction involves f2(s1) by (3.3). But f2(Sl) has incorporated the term zE(so). Thus
the new A will also incorporate this term. Meanwhile, the z(So) are in effect being
replaced by "new" rk(Sl). When the iteration at Sl returns to the coarsest grid for the
first time in phase 2 (i.e., when k 1 for the first time after l- M in Fig. 3), the
z(So) in effect will have been completely replaced by new and better z(sl). This
implicit updating of the frozen tau terms is a consequence of eq. (3.3) and step 7 of
our algorithm as stated. No further computations beyond steps 1-10 are required. The
frozen tau terms are explicitly formed only in Step 5.

To obtain initial approximations uK(sl) for grids other than the coarsest, Brandt
[8] and Hackbusch [17] suggest starting with the old (So) solution at the same level,
and correcting it by the difference between the old and new solutions at the next
coarser level:

(4.7) uk(s1) Ilk(So) 4r" 1-Ikk k-1 ilk-11( u (S1) (S0)),

where II is the high-order interpolation described in 3.2. We found that this works
well, and it makes possible the error analysis in 5.
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4.4. Locating limit points. The algorithm of the last subsection gave a method for
continuing through limit points. In this section we describe how to accurately locate
limit points.

If the Jacobian Gu is available on the finest grid, then Keller [20] suggests locating
zeros of AM(s). (Here the superscript M means that the the derivative is computed
on the finest grid.) If we are performing pseudo-arc-length continuation on a single
grid (i.e., M 1), then this derivative is free, since we solve equations (2.5) (with
superscripts M added) anyway. But if M > 1 then M(s) requires the Jacobian on the
finest grid, which we wish to avoid.

A first approach is to use our algorithm of the preceding subsection, and compute
the root of l(s) on the coarse grid where this derivative is computed anyway.
Unfortunately, this does not work very well. Although this derivative does become
small in the neighborhood of a limit point P (uM(s*), A(s*)), it has so far been too
inaccurate in locating P to many decimal places. For example, we used the method
of Keller [20] for problem (1.2) with a 0 on a single grid l’l, M 1. We located
a turning point P by finding s* for which M(s*)=10-12. We then repeated the
calculation with multigrid (using a method about to be described), in which the finest
grid l-IM had the same mesh size as before. We found a limit point /3, which was
extremely close to P (i.e., the parameters A agreed to more than 12 digits). But at P
we had only (s) 10-3.

The next approach is to try to imitate the frozen tau method. To do this we would
need to replace

by

So), x (So)) 0

(4.8) G(u(so), X(So)) + -(u’(So), X(So)) 0.

Recall that we obtain (2.3) by differentiating (1.1) with respect to s. If we differentiate
(4.8) in the same way, we obtain derivatives of z with respect to A and u. The former
could be approximated by .difference quotients, but it is difficult to find the Jacobian
(zt)u without knowing the explicit form of ’.

Our approach, then is to use a derivative-free method. The algorithm proceeds in
two parts. We first apply the method of the preceding section to obtain points P, P2
lying on a solution curve and on either side of the limit point. Then we restart at one
ofthe points, say P (uM(s), h (s)), and use As -= s s as the independent variable
in a one-dimensional derivative-free optimizer to find an extremum of h (s). Each
"outer" iteration of the optimizer requires a complete multigrid solution (uM (s), h (s))
on the finest grid ("inner iteration") with As chosen by the optimizer.

We chose the optimizer FMIN, written by R. Brent and appearing in Forsythe,
Malcolm and Moler [14]. FMIN uses a combination of golden section search and
successive parabolic interpolation. Typically about twelve outer iterations are required
to locate the limit point to machine precision.

The only disadvantage of this method (compared with that of Keller [20]) is that
it cannot locate limit points which are also inflection points (e.g., on the curve in Fig.

*).2 for a a However, such points are very rare.

4.5. Implementation details. In this subsection we illustrate our algorithm by
applying it to the model reaction-diffusion problem (1.2). In contrast to the description
of the previous subsections, most of these implementation details (difference approxi-
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mations, smoothing algorithm, etc.) are problem-dependent. They are included to fully
characterize the numerical results of 6.

For simplicity, we consider a square region. This is not, however, a restriction on
our method. Removing this restriction would only change some of the implementation
details, especially the interpolations. Similarly, our method is not restricted to Dirichlet
conditions on

Let N1 > 0 be the number of coarse grid intervals, and hi 1/N be the mesh
size on the coarsest grid. The finer mesh sizes are given by letting Nk 2Nk-1, and
hk hk-1/2, k 2, 3,’", M. Grid -k is then defined as

(4.9) fk { (xk, y): xk ihk, y jhk, i,j O, 1,’’’, Nk},

for k 1, 2,..., M. We let U be an approximation to the exact solution U(x, y),
and u be the approximation to Uk

0 computed by the FAS method. We shall omit the
superscript k on U, x, and y whenever possible. For our Dirichlet problem, the difference
equations, the right-hand sides Fk 0 and fk, and the residuals fk Lkuk are defined
only on interior grid points, i.e., those for which neither nor j is 0 or Nk. Naturally,
we set the discrete solution to zero at the boundary points.

We use several difference approximations. The second-order approximation to
(1.2) is obtained by replacing the Laplacian A by the usual five-point approximation A"
(4.10) A U0 + A exp( Uo/(1 + aUo) O.

Since this approximation is relatively inaccurate, we also consider two fourth order
approximations, both obtained from Collatz’s Mehrstellen Verfahren. The local trunca-
tion error for the nine-point approximation to the Laplacian is

(4.11) AU (AU) h2A(AU)/12 + O(h4).

We use the differential equation (1.2) to replace (A U) on both left and right sides of
(4.11). Then we replace the remaining A operator on the right side by the 5-point
operator A,, to obtain the O(h’) accurate approximation:

(4.12) A9hUo + A(I + (h2/12)Ash)exp(Uo/(1 + txUo)) O.

The second fourth order approximation proceeds as before, up to the last step.
But we do not replace the outer A operator on the right side of (4.11) by A. Instead
we analytically differentiate. In addition to the obvious terms Au, we obtain terms in
Ux and U2y. We now replace A U by the five-point operator, and Ux and Uy by centered
differences Dox U and Doy U, respectively. The result is another O(h4) approximation:

(4.13) A]U + Aexp(U/3)[1 + h2([32A5hU + (1 2afl)(D2oU + DyU))/12fl4] O.

Here we have defined/3 1 + a U; and we have omitted subscripts i,j and superscript
k on U. This more complicated approximation is less accurate in practice than (4.12),
although both are fourth order.

We can obtain a sixth-order accurate approximation to (1.2) by applying tau
extrapolation [6] to approximation (4.11). We will discuss this in the next subsection.

We now discuss the smoothing (relaxation) method. On the kth grid -k we must
solve J (Nk- 1)2 nonlinear equations, say:

(4.14) gs(u, u2, us) O, j 1,2,..., J,

in J unknowns.
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On all but the coarsest grid, we use a.method called Gauss-Seidel-Newton by
Ortega and Rheinboldt [28]. In the jth equation (4.14) we fix all but the jth variable
uj, and apply Newton’s method to that equation. In the process, we must replace the

i/) in all equations (4.14) as soon as they are available.’old" iterates ui) by new ones uj

Were it not for this updating, this method would be equivalent to replacing the full
Jacobian for the system (4.14) by its diagonal.

.(i+)More specifically, the new approximation u to the jth unknown is given by

,/(i/ 1) i) gj(la)/(Ogj/Otlj)(tlJ’i),
where we have set

igj, i._. (lgi+’), R(2i+l), uJ-1"(i+1), R.(.,)," "’’, R(ji)).

Together with the full approximation scheme, this method avoids using large Jacobians.
Of course, this smoothing algorithm does not work in all problems, see [8].

We used "checkerboard" (or red/black) ordering of the unknowns for relaxation.
For the second order approximation, we first relax all the points (x, y) with / j
even, then all the points with i/ j odd. Foerster, Stiiben and Trottenberg [13] have
shown that this method speeds up the rate of convergence by a factor of two for
Poisson’s equation with Gauss-Seidel smoothing, compared with lexicographic order-
ing.

For the nine-point approximations, we replaced the two colors (red and black)
with four colors [15], [35]. Consider a "fundamental square" with corners P (x, yj),
or j 1 or 2. Each corner is given a different color. Then the colors are extended to

the whole grid by periodicity: P has the same color as Pm if and only if mod
2 and j--- m mod 2. For one iteration we relax all points with the color of P l, then
P22, PiE, and P21. Computations by Stiiben and Trottenberg [35] have shown that, for
Poisson’s equation, this ordering produces better smoothing properties than any other
commonly used smoothing method for the fourth order Mehrstellen Verfahren approxi-
mation.

^kFor the projection operator Ik+ on approximate solutions we use simple injection:
^ktl -- Ik+ _k+l k+l

t/2i,2j /’/2i,2j"

For the projection operator I+1 on residuals we use full weighting, given in stencil
form as

(4.15) I+, =--i 4
2 k+l

For the second order approximation, it is sufficient to use bilinear interpolation
I_ for corrections. This is easy to program. For the interpolation operator IIll_ of
solutions used in phase 1, it is necessary to use bicubic interpolation. We also used
bicubic interpolation for both interpolation operators in conjunction with our fourth-
order approximations, as did Schaiter [30]. Our sixth-order approximation requires
biquintic interpolation for II.

When the region /is, in some coordinate system, equal to the cross product of
intervals, we can easily implement these high-order interpolations. We used de Boor’s
[4] program SPLI2D, which computes the tensor product of one-dimensional splines,
using not-a-knot end conditions. It is sufficient to use SPLI2D with bicubic and biquintic
interpolation. We placed the knots at the points xi or y. However, bicubic (biquintic)
splines require the number of intervals N on the coarsest grid to be at least 3 (5).
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Since we wished to use coarse grids that were as small as possible, we also used SPLI2D
with biquadratic and biquartic interpolation for the cases N 2 and N 4, respec-
tively. This requires us to place the knots midway between the points xi or yj, as well
as at the endpoints 0 or 1. Further details are in de Boor [4].

For our second and fourth order approximations we chose N 4, but N 3
also proved acceptable in our computations. Some workers (e.g., [35]) have used
N1 2 (one interior grid point) on Poisson’s equation. We found that this produced
very sensitive behavior, even divergence, near limit points of problem (1.2). For our
sixth order approximation (to be described shortly) we found that using N1 < 5 caused
a slowdown in the rate of convergence, since the interpolation is not sufficiently accurate
on the coarsest grid. Therefore we used N1 8 for comparison with other results.

The spline interpolations are relatively expensive compared to the cost of the
relaxation sweeps. But the cost of the former is still linear in the number of grid points,
since SPLI2D exploits the band structure of one-dimensional spline interpolation.
Fortunately the number of relaxation sweeps is about three times the number of
interpolations. The second order method requires only M- 1 bicubic interpolations.
The rest are bilinear.

In the use of Newton’s method for continuation, it is customary (e.g., [24], [32])
to economize in the computation of the Jacobian Gu. This is done by not always
recomputing it after computing a new iterate u i). In contrast, our computation of the
Jacobian on the coarsest grid is so cheap that we recompute it after every iteration.
For the convergence tolerance e on the coarsest grid, we solve to nearly machine
accuracy, say

Ilu,/ - u,II + <  5 (llu +

where denotes the iteration number, e is machine epsilon (the smallest positive
number for which 1 q) e # 1), and is the Euclidean norm.

The storage required for the Jacobian is small. Typically N 4, so we need store
only a 9 by 9 Jacobian. We used the banded solver DGBCO, DGBSL (with pivoting)
in LINPACK [12] for our computations.

Our step-size control is based on the convergence behavior of Newton’s method
on the coarsest grid. (See Rheinboldt [29] for another algorithm.) We choose an initial
step size s So based on our knowledge of the problem. To determine all other step
sizes s- Si_l, > 1, we first take a trial Euler step from S_l to s, using as trial step
size the old step size s i-1- s i_2. We then count the number of (pseudo-arc) Newton
iterations performed on the coarsest grid until the first switch to the next finer grid. If
the residual norms of the iterates do not decrease, or ifmore than six iterations are
required, we multiply the trial step size by one-third and restart at S_l. If five or six
iterations are performed, we accept the trial step. If three or fewer (resp. four) iterations
are required, we complete this step, and set the trial steplength Si+l s to two (resp.
1.5) times our currrent steplength. (These figures for the number of Newton iterates
depend slightly on the machine precision.)

This strategy can also be used for single-grid methods. Its advantage here is the
low cost of the coarse grid operations, which simultaneously approximate the fine grid
equations because of the frozen tau term. This step control is not used when locating
limit points, as in the previous subsection, since the root-finder supplies the step
control.

For the parameters r/and which control switching between grids we used 8 0.3,
r/= 0.25.
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An objection is raised by T. F. Chan [10] to our use of the bordering algorithm
(2.10)-(2.13). Keller [21] shows that, in the absence of roundoff error, this procedure
is valid in the neighborhood of limit points. Chan asks if this is also true in the presence
of roundoff error. To resolve this question, R. Schreiber [33] suggested replacing the
bordering algorithm (on the coarsest grid) by a full matrix solver for the system (2.9).
This solver takes no advantage of the the structure of the matrix A in (2.9), but this
imposes only a small storage penalty. We obtained exactly the same results as before.

4.6. Tau extrapolation. We now explain how tau extrapolation [6] is implemented
to increase the order of accuracy of the approximation to problem (1.2) from four to
six. We do not implement this exactly as in [6], and we do not claim that our method
is optimal.

We retain phase one of the FMG algorithm (before the finest grid is reached)
unaltered; that is, we do not apply tau extrapolation in phase one. (The frozen tau
technique has in effect already produced an extrapolation here.) Upon reaching phase
two, we smooth on the finest grid as before, until the convergence slows. This is the
last time smoothing is done on the finest grid. Throughout we use sixth order interpola-
tions I+1, so the order of the interpolation error is the same as the order of the
truncation error.

When the algorithm switches from the finest grid M to grid M- 1, we form the
right-hand side fM-1 as in (3.3). Then we modify it by forming

(4.16) f’ <-- (1 2-P)-’[fvt-’- I-’F] + I-’F,
with p 4. (Note F 0 for problem (1.2)). The expression in square brackets is, by
(4.3), the relative truncation error z-1. Multiplying it by the factor in parenthesis
produces the local truncation error z-1, to leading order terms. Therefore, solving
L-lul-I =fn2 produces an O(h6) approximation on grid M- 1. The right-hand
sides of all coarser grids M-2, M-3,. ., 2, 1 are modified as in (3.3) but not as in
(4.16). Finally, our sixth order interpolation of the correction u u-1 produces a
sixth order approximation on grid M.

During the. rest of phase two of the multigrid algorithm, we do not smooth on
the finest grid. That would only force the finest grid solution to satisfy the original
(fourth order) equations.

Of course, tau extrapolation is the same as applying deferred correction once.
However, we need not explicitly compute the leading terms of the local truncation
error, nor form large order Jacobians.

After completing this paper we learned of the work of Schatter [31 ], which extends
the tau extrapolation method as follows. The procedure given above requires a minimum
of two grids and applies deferred correction once. Schaffer extends this to iterated
deferred corrections. For example, to attain O(h8) accuracy with an O(h4) basic scheme
requires a minimum of three grids. Clearly this method will require less work to obtain
the same O(h8) accuracy than Richardson extrapolation. Schatter gives numerical
results only for linear problems, but we believe that his method could be extended to
our problem if more accurate interpolations are used. As he points out, the second-
order-accurate projection operator (4.15) still suffices, due to a fortunate cancellation
of errors.

5. Convergence. In this section we outline a local convergence proof for our
algorithm. Further details will appear elsewhere. Our analysis is based on the techniques
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of Hackbusch 16], 17]. We assume the reader is familiar with these papers, and use
the notation in them with only slight changes.

Throughout we assume that all functions are as smooth as necessary. We shall
also ignore round-off errors since they are dominated by truncation errors.

Let us first recall the linear theory for a fixed parameter h. Hackbusch shows that
the interpolation, projection and smoothing operators satisfy a "smoothing property"
and an "approximation property". The analysis proceeds stepwise from two levels to
full multigrid.

The two-level multigrid method has iteration matrix

where Ik is the identity matrix on level k and Sk is the smoothing iteration matrix on
level k. Under appropriate assumptions he then shows that the norm of the two-level
matrix is less than one. The iteration matrix Mb for the "cycle C" multigrid algorithm
(which starts with an approximation on the finest level) is then found to be a perturba-
tion of the two-grid iteration matrix. By recursion Hackbusch shows that this matrix
has norm less than one. It is characteristic of the multigrid method that this bound is
independent of the grid level k. Finally, an inductive proof can be given to show that
the full multigrid method will produce approximations uM on the finest level whose
"iteration error" (the difference between uM and the solution UM of the discretized
equations) is bounded by the local truncation error.

Hackbusch provides a convergence proof in the nonlinear case (with fixed h),
but not for the FMG full approximation scheme. Instead he proves convergence for
what he calls the "multigrid method of the second kind". To do this, he proves a
contraction property which corresponds to the boundedness of the norm ofM by a
quantity less than one in the linear case.

Let kk(u,fk) be a nonlinear iteration function (the multigrid algorithm) on level
k which produces a new iterate u+ from old iterates u’ and right hand side fk. For
u in a sufficiently small neighborhood of the solution Uk of the difference equation
(3.2), he requires

(5.1) uL, u -< ,o u" II,

with p < 1, k 1, 2,..., M. Again p is independent of the level k.
The contraction property (5.1) is appropriate for "phase one" of the full multigrid

algorithm ( 3) when a first approximation on the finest level is being obtained. After
that, for the full approximation scheme a more appropriate contraction property is

where 0 < p’ < 1. For k M this is identical to (5.1); for other k it can be deduced
from (5.1). From this we can show the convergence of the FAS multigrid method for
fixed A, provided the initial guesses are sufficiently close to the solution UM.

Now we discuss the differences between our approach to the continuation problem
and that of Hackbusch. First, we parametrize our solutions in terms ofpseudo-arc-length
instead of the natural parameter h. That is, given differential equation (1.1), we
parametrize a solution branch as in 4.3 by choosing pseudo-arc-length points
So, s, s2," ", and letting the exact solution path

(5.2) (U(s),A(s)),
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and approximate solutions

(5.3) (Uk(s),h(s)), k 1,2,...,M,

depend on the pseudo-arc-length parameter s. Assume that the solution path (5.2)
encounters no bifurcation points and only simple limit points, and that the starting
point So is such that path (5.2) at So is not "too close" to a limit point. Then the results
of Keller [18] and Decker and Keller [11] show that the Jacobian Gu at So, and the
augmented Jacobian matrices (2.9) at s Sl, s2, , are nonsingular in suitable neigh-
borhoods of the exact solution (5.2). Hence our method will not have any difficulties
at limit points.

Our analysis proceeds in three steps. We examine the multigrid convergence at
So, where Ao is fixed. Then we examine the errors in the initial approximations at S l.

Finally we obtain bounds on the errors in the multigrid method at s, where A varies.
For all other intervals [si, Si+l] we repeat the last two steps.

The proof of convergence at So was already mentioned above in the FAS
modification of Hackbusch’s proof. The result is that

Ilu u (so)ll C,hPM,

where C is a constant independent of the the level k and of the mesh spacing, and
p is the order of accuracy of the difference approximation.

For step two we estimate the error in the initial approximations at s. Hackbusch
17] analyzed both the starting procedure (4.7) and the frozen tau method when A is

the parameter. Since he did not combine the two methods, he concluded that the frozen
tau method was unsatisfactory since it did not produce sufficiently accurate initial
approximations. By combining his results, and the results of Decker and Keller [11]
for Newton’s method, we can show that the initial approximations (uk(si+l), /(Si+I)
have truncation error O[(s+ s)h].

For step three we must analyze the multigrid convergence at s, when both u and
A vary. Let the composite vector tk be the vector u k with A appended. For our
composite vector we can prove a contraction property by induction on grid levels. For
k 1 this is certainly true since we use only Newton’s method. The most difficult case
is k 2. All other levels introduce no more difficulties than the case of fixed X. This
is because the coarse grid correction for two levels k-1 and k (k => 3 involves no
change in A. The result is that

IIM(Sl)- (Sl)ll C2(S1- s0)h4,

where again C2 is independent of the level and mesh spacing.
The main difficulty in these arguments is assuring that the result of each step of

the algorithm lies in a sufficiently small neighborhood for the iteration of the next step
to be well defined. Hackbusch has proven many of these results.

6. Numerical results. In this section we present results of our computations of the
limit point locations for two different parameter values a in problem (1.2). We have
also used this method in more realistic problems, e.g., the Taylor vortex problem [3].
The smoothing algorithm we used for that problem is alternating zebra [35], a variant
of alternating line (or block) Gauss-Seidel-Newton [28, p. 225, eq. (39)].

We first computed the location of the limit point for a 0 (see Fig. 2). This is a
good test problem because the very accurate results of Meis, Lehmann and Michael
[23] can be used for comparison. Meis, Lehmann and Michael computed solution
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points using the method described in 1, with second order approximation (4.10). They
obtained three points on the solution curve near the limit point, then fitted a parabola
to these points to find the location of the limit point. These calculations were done on
each of a sequence of grids whose smallest mesh size was h 1/4, 1/8,..., 1/128.
Repeated Richardson extrapolation (up to O(h6)) was then used to better approximate
the location of the limit point of problem (1.2) with c 0. The location thus obtained
is:

Acr 6.808124, Ilu(XCr)iI -= IlUcrlloo- 1.39166.

The maximum of u always occurs at the center (x, y) (1/2, 1/2) of .
We used our methods on essentially the same grids: the second-order scheme

(4.10), the fourth order schemes (4.12) and (4.13), and a sixth order-scheme obtained
by applying tau extrapolation to (4.12). We show the results in Table 1. The number
of intervals on the finest mesh is NM; hence the smallest mesh size is h4 1! N4.
For each method, the values labelled oo were obtained by repeated Richardson extrapo-
lation to O(h8). Thus, the extrapolated values for the second (respectively fourth,
sixth)-order method were obtained by three (resp. two, one) Richardson extrapolations
from the four (resp. three, two) values immediately above. Each column was calculated
independently of the others, so these results serve as a severe check on each other. To
our knowledge, the existence of asymptotic expansions for the global error (i.e., the
validity of Richardson extrapolation) for this problem has not been proved, but these
computational results provide almost certain evidence that one exists for each scheme.

From Table 1 we observe, as expected, that the sixth-order scheme is much more
accurate than the fourth-order or the second-order schemes. More striking is the
relationship between limit point locations on different grids. Our results show that the
limit points on coarser grids may lie on either side of the limit point of the finest grid,
depending on the approximation chosen. In fact, the value of /cr at the limit point
increases monotonically (with decreasing grid size) for schemes (4.10) and (4.12), and
decreases for the others. The maximum solution value Ucr]l increases for all approxi-
mations except the fourth-order scheme (4.13). Clearly, our method does not depend
on the orientation of limit points on different grids, except for starting points. Thus,
if we use the second-order scheme with M 2, hi 1/16, and h2 1/32, then we
must not use A 6.804, for example, as a starting point.

We give the results for Ilull to fewer digits than those for A, because of the
geometry of the limit point. Locally, the solution curve in the x-Ilull plane is a
quadratic in the neighborhood of a limit point (u*, a *), that is, Ilu u*ll- o(la a *1 ’/=)
(see, e.g., Moore and Spence [27]). Thus A* can be known (at best) to the machine
precision, but u*[Ioo can be known only to the square root of the machine precision.
Our computer (VAX 11/750) has about 17 decimal digits of precision. Thus we seem
to obtain 7 correct decimal digits of [[Ucrlloo and about 10 correct digits of A

The second order results and the extrapolated results agree with those in [23] to
the seven and six digits they gave for Act and IlUcrl[oo, respectively. The fourth order
results (4.12) for N 16 agree with those of [27] to the 11 digits they gave for a. For
IlUrlloo our eight-digit results agree with the first eight of their eleven digits.

Tables 2 and 3 show results similar to those of Table 1, but for the case a 0.2
in problem (1.2). Here there are two limit points. For the upper limit point we can
partially compare our results with those of Mittlemann [25] for NM 32. He used
second-order approximation (4.10) with his generalized inverse iteration multigrid
method [25], [26], and gave results to four digits. Rather than locate the upper limit
point, he showed successive values of the parameter a on the solution path near this
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TABLE
Location of limit point of (1.2) with a O.

Order and Scheme
(4.10) 4 (4.12) 4 (4.13) 6 [extrap. (4.12)]

16 6.80217409563 6.80808657467 6.80830691585 6.80812517811
32 6.80665272920 6.80812207169 6.80813582072 6.80812443571
64 6.80775749456 6.80812427588 6.80812513486 6.80812442280
128 6.80803275282 6.80812441342 6.80812446710 6.80812442259
oo 6.80812442263 6.80812442259 6.80812442258 6.80812442259

16 1.3888573 1.3916567 1.3917381 1.3916593
32 1.3909601 1.3916609 1.3916661 1.3916612
64 1.3914859 1.3916612 1.3916615 1.3916612
128 1.3916174 1.3916612 1.3916612 1.3916612
oo 1.3916612 1.3916612 1.3916612 1.3916612

TABLE 2
Location of lower limit point of (1.2) with a 0.2.

Order
4 (4.12)

16 9.12131236518 9.13630924484 9.13638435052
32 9.13263701343 9.13637838604 9.13638298751
64 9.13544784102 9.13638268079 9.13638296698
128 9.13614927051 9.13638294880 9.13638296666
oo 9.13638296666 9.13638296667 9.13638296666

16 2.8756967 2.8857321 2.8858002
32 2.8832818 2.8857962 2.8858004
64 2.8851712 2.8858001 2.8858004
128 2.8856430 2.8858003 2.8858004
oo 2.8858003 2.8858003 2.8858004

TABLE 3
Location of upper limit point of (1.2) with t 0.2.

Order

NM 2 4 (4.12) 6

16 7.08025536111 7.10152536891 7.10195697086
32 7.09656018055 7.10187720721 7.10190065819
64 7.10056845538 7.10189761734 7.10189897803
128 7.10156658312 7.10189886674 7.10189894998
oo 7.10189894893 7.10189894958 7.10189894953
16 18.207497 18.195894 18.192661
32 18.195850 18.192933 18.193740
64 18.193507 18.192778 18.192767
128 18.192951 18.192768 18.192768
oo 18.192768 18.192767 18.192768

point. These values of A, in increasing order of Ilulloo, are 7.103, 7.097, 7.096, 7.098,
7.104. Our value of Ao for NM 32 in the first column of Table 3 agrees well with
these. Unfortunately, he did not supply values of
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Our starting guess for the solution values in Tables 1 and 2 was zero. For Table
3 our starting guess was u 12 in the interior of the coarse grid, and u 0 on the
boundary. Of course, we obtained the same results by starting on the lower branch
and continuing to the upper limit point.

In all cases we iterate the multigrid algorithm until two successive solutions are
sufficiently close:

u, < u,Ilu,/ 
Here the subscript denotes the iteration number and e is a small number related to
the machine precision. Normally we would iterate only until the norm of the residual
is less than the norm of the relative truncation error z-1. But we wished to ensure
that the "convergence error" was much less than the truncation error so that we could
perform Richardson extrapolation.

The work required to reduce the 12 norm of the residuals by a factor of 10-12 was
never more than 35 work units, and usually about 25 units (after the first step So). A
work unit (following Brandt) is the work required to relax all the grid points once on
the finest grid. It does not include the work required for interpolations or projections.
The work required to reduce the residuals to the level of the truncation error was 4-10
work units after the first step, depending on the length of the step si Si_l. Computing
one solution of problem (1.2) on a 129 by 129 grid (Na-- 128) took approximately
20 minutes on a DEC YAX 11/750. This reduced the 12 norm of the residuals by a
factor of 10-12. (This machine is about 70% of the speed of a VAX 11/780.) We know
from 2 that the pseudo-arc-length Newton method eliminates slow convergence or
divergence near limit points when used with a "single grid" method. Similarly, it is
experimentally observed that our method eliminates convergence difficulties with the
multigrid method at simple limit points. This is confirmed by the experimental observa-
tion that the multigrid convergence rate is the same near limit points as awayfrom them.
An exception to this observation occurs at the starting point So, where we cannot use
the pseudo-arc-length procedure during the multigrid iteration. If this point is too
close to the limit point, the rate of convergence will of course be slow, but only at So.
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ON AN ADAPTIVE GRID REFINING TECHNIQUE FOR
FINITE ELEMENT APPROXIMATIONS*
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Abstract. We consider a family of finite element spaces and minimize an energy functional over each
space. The space which allows the lowest energy is considered "optimal." Such a family is constructed by
starting with an initial "triangulation" and refining one or more "triangles" at a time. We estimate the profit
in energy gained by refining a triangle and set up a discrete optimization problem which determines the
optimal refinement strategy according to a prescribed bound of the costs. This enables us to construct the
final grid by using as few as possible intermediate grids. Instead of solving the original optimization problem
we set up a partially dualized form of it which produces a nearly optimal solution and can be solved very
efficiently.

Key words, adaptive grid generation, finite element error estimation, multiple choice knapsack problem
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0. Introduction. To compute finite element approximations to elliptic differential
equations efficiently one has to minimize the energy functional over a suitable finite
element space. In general the achievable energy (or energy norm of the error) depends
on the given finite element space even if the dimension of that space, which influences
the costs of computations, is prescribed. The optimal space (with fixed dimension) is
not known in advance but depends strongly on the data ofthe given problem. Therefore
one tries to approximate such a space by what is called a "feedback finite element
method" (see [8], [13]). Roughly, a feedback finite element method consists of the
following ingredients (see [13] for a theory on adaptive processes):

--an a posteriori error estimator;
--a transition operator which refines certain elements of the old grid based on

the information given by the error estimator;
--a sophisticated data structure.
This paper is primarily concerned with a new type of transition operator. We refer

the reader to [3]-[6], [17] for a posteriori error estimates and to [9], [14]-[16] for
suitable data structures.

We apply the new transition operator to the so-called "h-version" of the finite
element method. It may well be adapted to the "p-version" (see 17], e.g.) as well as
to a combined "h-p-version" (see [7]).

We restrict ourselves to the context of conforming finite elements. We study the
problem how to minimize the energy functional

(0.1) E(u)=1/2a(u,u)-f(u) for u H,

where H is a Hilbert space which is assumed to be a subspace of some Sobolev space
over a region f c ln. The solution to (0.1) will be denoted by

u* =- arg nn E u ).

For some (finite-dimensional) subspace Vh H let

Uh =- arg mvin E(u) and E(Vh) - E(Uh).

* Received by the editors June 6, 1984, and in revised form March 19, 1985.
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Aachen, D-5100 Aachen, West Germany.
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Within a given class V of subspaces Vh of H we define the optimal subspace V*h by

Vh* arg rnin E(Vh).

Since we have Ilu*- E(u*)) for the energy norm Ilull =,/a(u, u) the
solution in the optimal space Vh* is best with respect to the energy norm.

In the following we consider abstract triangulations - of 1, where [.J { T}
and the "triangles" T cover fl. For ease of notation we restrict ourselves to F.E. spaces
of piecewise polynomials of fixed degree:

Vh {U H: ulT is a polynomial of degree at most k}.

We assume a cost function W(Vh) which assigns to each F.E. space Vh the costs of
minimizing E over this space. W(Vh) is required to be strictly increasing with respect
to the dimension of Vh.

Given some initial F.E. space Vo and some budget w* with w* >- W(Vo) we consider
the class of spaces

V:= {Vh: Vo Vh C H, W Vh W*}.

Each space Vh V can be considered as a knot of a tree structure with root Vo where
each son can be constructed from his father by "refining" (at least) one "triangle" T
of his father’s triangulation (see [12]).

Let V be an intermediate space Vo c Vc V* with the corresponding triangulation
-{T,. , T,}. For simplicity we assume that "refining" a triangle will always be
done in a fixed way. We introduce the decision vector z {0, 1} and denote by V[z]
the space obtained from B by refining exactly those triangles T with z- 1. For each
triangle T we introduce the energyprofit ri =- E (V) E V[ ei]) _-> 0 and the cost coefficient
c W( V[e])- W(V) > 0 where e is the ith unit vector in Rm.

Note that the energy profit serves as one possible error estimator. We are concerned
with the construction of a transition operator which maps V into V[z] and approximates
the optimal path from Vo to Vh* efficiently. A simple but theoretically very attractive
transition operator refines only the most profitable element at a time (OMP-strategy),
i.e. z ek where rk >- r for 1 <- -< m.

The OMP-strategy produces very good grids and enjoys very good theoretical
properties. Rheinboldt shows a certain optimality of this strategy since his assumptions
in 12, Thm. 10] seem to be fulfilled for the energy profit in practice. The OMP-strategy
will therefore be used to judge the quality of the grids produced by the new transition
operator.

The only drawback of this strategy is its high costs since the grids are modified
only very little from step to step. Therefore other transition operators have been devised,
see e.g. [3], [7]-[9], [12], [15]-[17]. All of these include the most profitable element
but try to refine several elements simultaneously.

To use as few as possible intermediate spaces, any triangle of an intermediate
space which has to be refined anyway on the path to the optimal space Vh* should be
refined as soon as possible. But to do so we have to know how many times a triangle
will have to be refined on that path and if there will be some money left to refine other
triangles as well. Thus we end up in an optimization problem which predicts how
many times each triangle can be refined with the given budget.

We go even one step further and introduce long and short passes as suggested in
[3], [7], [15]. In a long pass we solve for the finite element approximation on the latest
intermediate space before we apply the transition operator once more. In contrast to
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that within a short pass we bypass the expensive solution process by solving only local
inversion problems (see 5 and [15]). Based on these locally solved solutions we can
compute the energy profit of the new elements and start the next optimization step
just as within a long pass. In our numerical examples we obtained identical grids to
those given by the OMP-strategy in all cases but one even if we insert as many short
passes as are necessary to increase the number of elements by at least 100% between
successive long passes.

In 1 we introduce the optimization problem involved in the transition operator
in long as well as in short passes.

In 2 we estimate the energy profit involving both local and global data. This
serves as an error estimator for our purposes.

Section 3 motivates an extrapolation scheme for the energy profit of descendants
of an element. It includes a simple a posteriori error estimator for the final approxi-
mation.

Section 4 deals with the approximate solution of the discrete optimization problem
that was set up in 1.

In 5 we give the overall algorithm involving long and short passes. This is applied
to some numerical examples in 6.

Some concluding remarks will be given in 7.

1. The optimization problem. The problem of finding the grid associated with V[z]
may be formulated as a discrete optimization problem for the decision vector z. To
make the approach computationally feasible we need some

Simplifying assumptions.
The energy profit is approximately additive:

E(V)-E(V[z]) E r,,
zi=l

and the cost function is approximately additive:

w( V[z])- w(v) E ci.
zi=l

These assumptions have been proven practically valid in our numerical tests.
When proceeding from V to V[z] we have to decide whether it is more profitable

to refine triangle Tk several times opposed to refining it only once together with some
other triangles T, j # k. Since we have not yet refined the triangle Tk our procedure
to estimate the energy profit cannot be applied to the sons of Tk. Therefore we have
to predict these profits by some local extrapolation technique, see 3. This leads to a
predicted energy profit of the form pk’rk for the sons, p2k’rk for the grandsons, and
SO on.

The predicted energy profit of the triangle Tk, when refined once, is given by

l--1

r,=r. p.
’-----O

Similarly we assume for the cost coefficient

l--1

c--c. E q T,
’=O

for some qk ----> 1 depending on the refinement process.
Let us denote by (Xk) a preliminary decision vector with Xk 1 if[ Tk has been

refined j times. The problem of deciding how many times a given triangle Tk has to
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be refined is equivalent to extracting exactly one member out of the multiple choice class

(MCC) ((rko, Cko), (rkl, Ckl)," (rkj, Ckj)," ")

where we have added the slack variables rko =- O, Cko =- 0 corresponding to Tk being not
refined.

The problem of finding the optimal successor V[z] of a given intermediate space
V can be modelled by the following.

Multiple choice knapsack problem.

(MCK) P(w) =- min -(r, x)
xMC

where

N

(r, x)=- Y Y r,,x,,,
k=l j=O

N

xeMC iff Y. Xk=l for allk, xke{O, 1}
j=O

and N is a sufficiently large integer.
Given an (approximate) solution Xk to MCK (see 4) each triangle which has

been selected to be refined at least once (i.e. Xko 0) will be refined only once. We thus
form the actual decision vector z by Zk 1 iff Xko =0. We note that the transition
V--> V[ z] does not in general use all of the given budget even though the MCK problem
might have spent all of it ((c, x)= w). Thus we update our budget according to
w<-W--Yk__ 1Ck’Zk, set V<-- V[z] and proceed until we have exhausted our budget.

Remarks.
mSince the exact solution of MCK is a NP-hard problem, we shall suggest a

partially dualized problem which solves MCK approximately in very short time.
win the implementation we do not store xk but Yk with 0--< Yk <= N and Xkj 1 iff

Yk =j. Therefore the size of N does not matter in practical computations. Because of
the fast progression of work (qk >= 2 in general) the constraint (c, x)<-w limits Yk to
very small numbers anyway.

2. Estimating the energy profit. In this section we propose an easily computable
estimator of the energy profit by using a local 2-grid approach. We have two finite-
dimensional subspaces Vn c Vh with fixed bases. The matrix representation of the
imbedding will be denoted by P. For any function un Vn (0.1) leads to

(2.1) -unAnun f un
where the function uH and the vector representation of it have been identified. If the
minimum energy in Vn is achieved at rH we have

(2.2) E(rn) T- 1-T--HUH ---tlHAHUn.
With the bases fixed in VH and Vh, there is a canonical way to compute AH, Ah, fH,
j. Note the relations

(2.3) An pTAhP and fn pTfh.
TO motivate our energy estimator let us look at a typical 2-grid iteration to compute
the solution rh Vh given rH VH.

Step 0. Prolongate /H giving u- Prin.
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Step 1. Smooth u giving u 1. This can be done by some (local) relaxation
scheme or local inversion.

Step 2. Compute the residuum rn pT(Ahul--fh). Note that this can be done
locally by only computing the new element matrices which have to be
computed anyway in most cases. Simultaneously we can compute the
diiterence in energy between E(H) E(Pn) and E(u). This is simply
done by subtracting the old element energies from the new ones but
only where new elements have been created.

Step 3. Solve AHAH rH and correct u2=- u 4- PAH. Note that this step is not
too expensive since we have already solved a linear system involving
AH, namely AHH--fH. Thus we have an (incomplete) Cholesky fac-
torization at hand and AH can be computed (approximately) by a simple
backsolve or some preconditioned CG steps or by some multigrid cycles.

One can easily verify the following.
LEMMA. Let Ah =- h U and rh =- Ahu--fh. Then the exact energy profit is given

by E(H) E(h) 1/2rAh. Similarly we have E(u 1) E(u2) =I-rHAH.T
We now estimate the energy profit by

(2.4) E(a,) E(an) E(a,) E(ul) T+rna.,

where the difference on the right-hand side has been computed in Step 2.
Remarks. Preliminary numerical experiments indicate that
--The estimate (4) differs from the exact energy profit by far less than 1%.
The energy profit when refining triangle Tk is only weakly dependent on

neighbouring triangles being refined or not. Thus the energy profit of a triangle has to
be computed only when this triangle has just been created.

3. Extrapolating the energy lrofit. In this section we give a crude heuristic for
extrapolating the energy profit if a triangle were to be refined several times. We restrict
ourselves to second-order problems; the resulting extrapolation scheme will probably
hold for other problems, as well.

In 1 we have assumed that refining a triangle Tk and all of its descendants up
to the/th generation gives the total energy profit

l--1

(3.1) rk, rk Y’, p.
’=0

We try to motivate this ansatz and give an interpretation of the factor Pk.
In the standard finite element error analysis the error in energy of the finite element

solution can be dominated by the approximation error in the Sobolev space H which
in turn can be dominated by the interpolation error in that space. Furthermore the
interpolation error estimate gives the correct order of convergence of the finite element
error. The interpolation error can be computed locally and on each triangle since it
depends on the local regularity of the finite element solution u*.

Assume u* H+(T), r / has to be interpolated by polynomials of degree at
most k. Let s min {k, r}. Then the interpolation error in the norm of H can be
estimated by

const.

where h denotes the diameter of the triangle T and the norm I1" corresponds to
the Sobolev space HI/(T) and s depends on T: s(T).
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Therefore we introduce the error indicator

(3.2) e(3-) C l+s(r),r with some constant C
T

and assume E(ah)-- E(u*) e(3-).
Next we try to predict the change in e(3-) when one triangle T 3- is refined. We

assume that the regularity of u* within T does not change much, i.e.

1 1
T’+’’ V u* I1/, for all c T,(3.3) IT, Ilu*ll 2

where TI denotes the Lebesgue measure of Z Let us assume for simplicity that

(3.4) refining T produces m new elements T’ with equal diameter yh.

Now the term hZllu*ll z+.,r in the sum (3.2). changes to

i=1

because of assumption (3.3). Thus the energy profit of dividing T into m pas amounts
to

(3.5) AE [1 r:]h:Cllu*ll l+s,T"

Refining all triangles T we get for the additional energy profit AE+

(3.6)

where we have used assumptions (3.3) and (3.4) again. This motivates our ansatz (3.1)
with

(3.7) p

which shows the connection of this factor to the local regularity of the solution.
In practical computations we proceed as follows: enever a triangle is created

we compute the energy profit of it and store this value with this new triangle. The
same is done for each of its brothers. Summing up all these profits gives AE+. This
value is divided by the energy profit of the common father. Numerical computations
have shown that it is advantageous not to use p itself in the ansatz (3.1) but to use
the mean of p and the corresponding value of its father. The p-factors of all triangles
belonging to the initial grid are set to 1. This makes the solution look very rough in
the first two stages. A very careful strategy results since only elements of maximum
profit are refined in the first stage.

Finally the ansatz (3.1) can also be used as an a posteriori estimate by summing
up to infinity, i.e. the a posteriori error is estimated by

IIE(ah)--E(u*)llE r(1--p)-.
k

is estimate works quite well for examples with solutions which are not too rough,
i.e. pk<l.

4. Solving the multiple choice knapsack problem. In 1 we have modelled our grid
adaption problem by a multiple choice knapsack problem:

(MCK) P(w)
(c,x)w
xeMC
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where

N

(r, x>=- r,,x,,,
k=l j--O

MC= {x {0, 1}" Xkj=lforallk
j=0

here n m(N+ 1).

Furthermore we had the slack variables rko Cko =0 for all k. Now the solution of
(MCK) is known to be a NP-hard problem. Since the MCK-problems originating from

1 are big ones, an exact solution of MCK is prohibitive. We give a very cheap
technique to compute a suboptimal solution which only uses less money ff =< w, but
would be the exact solution if we had only a budget ft. Since our model is based on
estimated (energy-) profits for multipally refined triangles is not essential to use all of
the given budget but to use any money in an optimal fashion. We replace our primal
problem MCK by a partially dualized one by giving up the constraint (c, x)-<_ w and
adding a Lagrangian multiplier term instead. We have the following Lagrangian-relaxed
problem (cf. [10]):

(LRMCK) D(A)= min -(r, x)+ h((c, x)- w) forh>=0,
xMC

and the dual problem

(DMCK) A* arg* max D(A

where arg* denotes the largest X for which the maximum is attained. This is unique
in most cases.

These problems are related by the following.
LEMMA 1. (i) (weak duality). For any w R+ and any corresponding A* for which

the maximum is attained in DMCK, we have D(A*)<=P(w).
(ii) (partial strong duality). For any positive A* take a solution x* of LRMCK,

then for =- (c, x*) we have D(A *) P().
(iii) Let A* be thesolution of DMCK then there is a corresponding solution x* to

LRMCK with (c, x*) <= w, i.e. x* is feasible for MCK.
Proof. Parts (i) and (ii) are easy whereas part (iii) follows from Lemma 7 below.
Remark. Assertion (iii) implies that x* is the optimal solution of MCK with a

budget v (c, x*) <_- w.
The main advantage of dualizing the problem comes from the fact that the

Lagrangian relaxed problem LRMCK decomposes into m small problems within each
multiple choice class.

LEMMA 2 (decomposition). Given A +, x* solves LRMCK ifffor each k we have
X*ki i$ where j is a solution of mint (ACk- rk).

Since our solution algorithm to DMCK involves several LRMCK problems with
decreasing values of A it is profitable to give a more explicit solution formula for
LRMCK.

First we have to eliminate some degenerate cases of MCK problems. However it
will turn out that for MCK problems originating from our grid adaption process such
pathological cases do not arise (see Lemma 6 below).

We have the immediate result.
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LEMMA 3. Assume problem MCK has a solution (Le. there is at least one feasible
point) then for all 0 <-i, j <-N, i# j with Cki <----Ckj but rki >- rkj there is an optimal solution
x for which Xk O.

Such an Xk is called an integer dominated variable. Thus we can assume that all
integer dominated variables have been removed in advance.

LEMMA 4. Given a variable Xk, assume there are variables Xki and Xkt with Ck < Ck <
Ckl but rkj rki / Ckj Cki < rkl rki / Ckl Cki ).

Then Xkj- 0 in each optimal solution to LRMCK for any A R+.
We call such a variable Xk Lagrangian dominated. Thus, as far as DMCK is

concerned, we can assume that all Lagrangian dominated variables have been removed
in advance.

The proof of Lemma 4 can be easily reduced to the following.
GEOMETRIC LEMMA 5. Assume we have three straight lines cat-r, c/t-r, and

ct rv. The point of intersection of lines a and fl is denoted by cr =- (r re )/(ca c/ ).
Then with ca < c < cv, trv < o’ implies

Proof of Lemma 4. Assume there is a A and an optimal solution x to LRMCK
such that Xk 1. From Lemma 2 we have

ACk- rk <= ACk, rkm for all m.

Now m gives %-< A while m gives A <-trj. Then it follows from the geometric
lemma that r < tr0 which contradicts the assumptions of Lemma 4.

In general one has to remove all dominated variables. This can be done by sorting
the pairs (ca, r) such that the c’s are monotone increasing and then removing all
pairs where either r is nonincreasing (integer dominated) or the quotients r, with
ct (i, k) and fl (i, k- 1) are nonincreasing. But in our case we had in 1

l--1 I--1

rl=r Y p and c=c Y q
=0 v=0

where we have suppressed the class-index k.
LEMMA 6. For r > O, c > 0 and 0 < p < q there are no dominated variables n MCK

or LRMCK.
Proof. For the Lagrangian dominated variables r,_ r c (p/q)- is monotone

decreasing in k. The result now follows from the geometric lemma.
COROLLARY. Since in our case we always have p <-_ 1 (see 3) and q > 1 by the

assumption of monotone work, we always have p < q in our context.
DEFINITION. The quotients Skj =- (rkd rk-l)/(Ckd Ck-l) forj >_-- 1 are called incre-

mental profit densities. In addition we define Sko =-
We are now in a position to characterize the solutions to LRMCK.
THEOREM 1. Assume that all integer- and Lagrangian-dominated variables have

been removed in the Lagrangian relaxed multiple choice knapsack-problem (LRMCK).
Without loss of generality we may assume that the cost coefficients Ckj are monotone

increasing within each class. Then all solutions to LRMCK have the form xki go with

j=j(k) such that Skj >- A >_--Sk+I. (Note that A occurs in the definition of LRMCK.)
Proof. By Lemma 2 we have only to show that for k fixed and all

or

ACkj- rkj ACkl- rkl

/ Ckl Ckj rkl rkj.

We assume >j since the case <j can be dealt with similarly. Then we have to show



ADAPTIVE GRID GENERATION 1113

h >=try0 with a (k,j) and fl =(k, 1). The case l=j+ 1 follows from our assumptions.
Since the incremental profit densities Ski are monotone decreasing in the second index
the geometric lemma gives try < trio for y (k, j + i) and > 1. This proves the theorem.

COROLLARY. The solution to LRMCK is unique exceptfor h Skj and some k, j).
Thus it makes sense to define

x+(A) -= lim arg min- (r, x)+(A + e)((c, x)- w),
e--0

x_(A)--lim arg min- (r, x)+ (A e)((c, x)- w).
e--0

We have x+(h) x_(h) except for h =Sk and some (k,j).
Let us now study the dual functional

D(A)= min-(r,x)+A((c,x)-w).
xMC

LEMMA 7. D(A) is piecewise linear and concave. The directional derivatives are

given by D’. (A) (c, x+(A))- w.
COROLLARY. For a value ofA which is not less than an optimal value the correspond-

ing solution x+(A is feasible for the primal problem MCK.
Proof of Lemma 7. For fixed x we see that -(r, x)+A((c, x)-w) is linear in A.

Now the infimum of a family of linear functions is concave. Since there are only a
finite number of lines (since x MC) it is piecewise linear. Thus D(A) has a piecewise
constant derivative and the jumps are the intersection points Sa.

By the standard definition of a gradient of a convex (concave) function we have

p if0 IDa, D’] c R,
otherwise"

VD-=
D iflDl-<lD’l,
D" if ID’I--< ID-I.

Now maximizing D(A) can be simply done by looking up where the gradient VD
vanishes. This is easy since VD is a monotone decreasing and piecewise constant
function.

To formulate our final algorithm we need some more notation: according to the
definition of MCK exactly one of the variables Xk equals 1 in each class k. We say
"class k is in state s Sk" itt Xks 1.

For each class k we have:

Sk" state variable 0 <-_ sk -<- N,

rks: profit of class k being in state s (rko 0),

Ck: cost of realizing state s of class k (Cko 0),

6r(k, s)=-- rk,s+ --rk, (incremental profit),

6c(k, s)=- Ck,s+l- Ck, (incremental costs),

p(k, s)=- 15r(k, s)/ 6c(k, s) (incremental profit density).

ALGORITHM DMCK. Given the budget w and m multiple choice classes as
above do:
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STEP 0. Set all states to 0; Sk --0, 1-< k_-< m. Sort the classes such that p(k, 0) is
monotone decreasing. Set the total profit P to 0.

WHILE 13c(1, s) -<_ w DO step 1 and step 2.

STEP 1. w - w-- c(1, S1)
P - P+ 6r(1, Sl)
S <" S - 1

STEP 2. Reinsert class k 1 such that the list remains sorted with respect to
p(k,s).

Remarks.
The Lagrangian variable is given only implicitly by p(1, s).
If there were upper bounds to the state variables one could add a step after

Step 1 which removes class 1 from the list if s has just been incremented beyond its
bound.

Step 0 and Step 2 can be implemented efficiently by not sorting the classes
themselves but by maintaining a sorted list of pointers.

THEOREM 2. The algorithm DMCK solves the dual multiplechoice knapsackproblem
and gives an approximate but feasible solution for the primal problem MCK.

Proof. According to Theorem 1 and Lemma "7 there are only a finite number of
different Lagrange-multipliers A to check since the gradient of the dual functional
VD(A) only changes at )t Sd+= p(k,j).

Step 0 ensures that we start with the maximum of all p(k, j). We proceed by taking
the next smaller value of by Step 1 and Step 2 while our budget still lasts. By Lemma
7 this is equivalent to D(A)-<0. When the algorithm exists the loop at 2"= p(1, s)
we have D(A*)_-<0 and D’(A*)> 0. Thus we have VD(A*) =0 and a corresponding
feasible solution x+(A*) to LRMCK.

5. The overall algorithm. We start with an initial grid that has been specified by
the user and models the geometry of the computational region to sufficient precision.
We estimate the energy profit of each element and apply the DMCK algorithm to
select those elements that should be refined at least once. Having refined those elements
we normally solve for the current finite-element approximation on this grid before we
proceed with computing the energy profit of the new elements and so on. This is called
a long pass which is best but expensive. Therefore we optionally bypass this global
solution process and solve only locally with those elements which have just been
refined. The combination of long and short passes will be done on the basis of a
user-specified "increase factor" (ICF). Whenever the number of elements has not yet
increased by at least ICF times the number of elements within the last long pass we
insert (another) short pass until the number of elements has increased sufficiently.
Thus the user can force an arbitrary amount of new elements between long passes.
Note that the discrete optimization process is invoked in both cases. The only penalty
paid is a less accurate intermediate solution which harms the quality of the error
estimator. Furthermore since we do not have an (inverse of a) valid coarse grid matrix
in short passes we have to omit the coarse grid correction term on the right-hand side
of (2.4).

We are now in a position to give the overall algorithm.
Perform the following steps:
(o) Input the initial grid, the budget w that we may spend and the increase factor

ICF. Set the p-factors of all elements to 1. This corresponds to assuming
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worst case regularity in the very beginning (see 3). Assemble the element
matrices and solve on the initial grid. This constitutes the first long pass.
Next compute the energy profits according to (2.4). To get the terms in (2.4)
we have to refine each element temporarily and compute the related element
matrices. These can be stored and reused when the element is refined indeed.

(i) Invoke the algorithm DMCK to spend the "money" virtually.
(ii) Refine those elements (only once) which have been selected by DMCK to

be refined at least once. In general this does not use all of the budget since
elements are refined only once in contrast to the "plan" of the DMCK
algorithm. We update the budget accordingly (see 1). "Activate" the ele-
ment-matrices for these new elements. Note these have been computed in
step (o) or step (vi) before. If all of our budget has been used then solve the
finite-element equations to final accuracy, perform the a posteriori error
estimate given at the end of 3 and STOP.

(iii) If the number of elements added since the last long pass is at least ICF times
the number of elements at the last long pass, then GOTO step (v).
Otherwise proceed with a short pass:

(iv) To compute the nodal values at the added nodes within the just-created
elements we do not solve the FEM-equations globally but proceed as follows
(cf. [15]): assume "triangle" T has just been refined and thus replaced by
its sons T,. ., T’. We now solve a very small finite-element problem on
T,. ., T where the data on the boundary of T are now used to set up
proper boundary values for this small problem. This procedure is sometimes
called the "local inversion method" in the literature.
GOTO step (vi).

(v) Here we solve the global finite-element equations to get a solution on this
intermediate space (this is called a long pass). The solution process might
be done with somewhat lower accuracy if an iterative solver is implied.

(vi) Compute the energy profit for the new elements according to (2.4) but with
one exception" if the last step was a short pass (i.e. control passed from step
(iv) to this one) then we have no (inverse of the) coarse grid matrix at hand.

TTherefore we have to omit the coarse grid correction terms -rHAH from the
right-hand side of (2.4). This corresponds to a pure local estimate.
GOTO step (i).

6. Numerical results. The suggested scheme for automatic grid adaption is applied
to a one-dimensional problem only to avoid the nontrivial data handling. Although
the "pattern of the regularity of the solution" and the problem of data handling strongly
depends on the dimension of the problem the error estimator of 2 and 3 as well as
the transition operator given by 1, 4 and 5 are clearly applicable in more dimensional
problems and will hopefully produce similar results. Some tests concerning the energy
profit (error estimation) have been done for two-dimensional problems in [11].

We use the following one-dimensional model problem,

(6.1) -0.04y"+ y F(x), y(0) =y(1) =0

with quadratic and conforming finite elements.
We always start with a single element on [0, 1]. The coarsest grid was plotted on

top of the next finer grid and so on. We used continuous vertical lines to mark the
element boundaries. Thus it is clearly visible when an element has been first created.
Furthermore one can see that each element which has been subdivided on the way to
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the finest grid has been done so nearly as early as possible. In the lower part of each
figure we have plotted the fine grid finite element approximation and the force term
(but) in a different scale.

The plotted grids are.those computed by using long passes only (by setting the
increase factor to 0). But with the single exception of Example 4 an increase factor of
ICF 1 which inserts short passes until the number of elements has doubled produces
an identical grid sequence. The grids belonging to long passes have been marked
by a "+".

For comparison we have applied the OMP-strategy which refines only one triangle
at a timenthe one with best profit density when adapted to our error estimator.

,I, illIIi I,I,I, ,Id,l III

FIG.

Example 1 (Fig. 1). We start by using the "smooth" force term

F(x) [(x-0.5)-+0.0025]

which approximates the Dirac distribution at 0.5: -230.5. The given budget amounts
to 24 elements.

In the initial stage the region about 0.5. looks more promising than it turns out
later on. Therefore the element nodes at 0.5 +0.375 appeared one stage too late. All
remaining subdivisions have taken place as soon as possible. Note that up to 8 elements
are refined simultaneously.

The resulting grid is identical to that obtained by the OMP strategy even if the
increase factor is set to 1.
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FIG. 2

Example 2 (Fig. 2). Here we use a step function as right-hand side which approxi-
mates the distribution -28o.1 + 280.9"

-2-, 0 =< x-<-0.2,

F(x)= 0,2 0.2 < x < 0.8,

.-, 0"8=<x<= 1"

This time our budget amounts to 32 elements. The final grid is again identical to that
obtained by the OMP strategy even with ICF 1.

Since for this right-hand side one has the exact solution to (6.1) at hand, we look
at the predicted and true energy profits in this example. The algorithm predicts the
total energy profit which can be gained with the given budget. This is done each time
a new intermediate space is at hand. In Table 1 these predictions are compared with
the true differences between the energy of the final grid and the energy of the current
grid. Furthermore for the finest grid (24 elements) we have computed the true error
in energy and compared with the a posteriori estimate given in 3. The significant
overestimate of P for m 1 and m 2 comes from the fact thatthe order of convergence
of the energy profit cannot yet be obtained by extrapolation and was assumed to be
0 (roughest possible case, cf. 3).

Example 3 (Fig. 3). This example has a very rough force term. The problem (6.1)
can only be posed in weak form with F "=" -280.4. The given budget was 24 elements.
The final grid is again identical to that given by the OMP-strategy even with ICF 1.

Example 4 (Fig. 4). The last example has a force term consisting of the sum of
2 Dirac distributions of different strength F "="-380.3-F 80.8. The budget amounts to
32 elements. The adaptive grid identifies the "rough regions" very soon. The finest
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TABLE
Total energy profit--predicted and exact.

m f’ P

9.9E 0 3.3E 0
2 3.7E 0 1.3E 0
4 5.7E-2 6.1E-2
8 2.7E-2 2.1E-2
12 6.5E-4 8.5E-4
20 4.9E-4 3.5E-4
22 1.5E- 5 1.9E- 5
28 6.3E-6 6.3E-6
32 3.7E-6 3.5E-6

m =number of elements of this intermediate
grid.

P difference in energy between current space
and final space (m 32). The value for m 32 is the
true error in energy to the continuous solution.

/5 predicted value of P. The value for m 32
is the a posteriori estimate of the error to the con-
tinuous solution.

grid differed from that given by the OMP-strategy by only one element: the OMP-
strategy did not refine the element [0.0, 0.125] but used 4 instead of 3 elements in the
interval [0.2999, 0.3003] and achieved a somewhat smaller error in energy. This time
an increase factor of ICF=0.5 produced identical results, but with ICF= 1.0 we
obtained a less optimal result. This is shown in Fig. 5.

7. Summary and conclusions. The problem of constructing an optimal triangula-
tion for approximating an elliptic boundary value problem by finite elements is cast

FIG. 3
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FIG. 4

in the form of determining that space for a given family which permits the lowest
energy.

The difference in energy (profit) between a refined space and the original space
behaves like the sum of the individual profits of each triangle which has been refined.
Furthermore one can predict the future profits of a triangle by using a local extrapolation
technique. Thus we can predict how many times each triangle will be refined on the
path to the final grid. This has been modelled by a multiple choice knapsack problem.

FIG. 5
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Since the exact solution of that problem would have been much too expensive it
was replaced by a partial dual of it which can be solved efficiently and does not change
our model.

Since intermediate grids are expensive the user may specify the minimum amount
of new elements that must be added between so-called "long passes" which compute
a finite element approximation on the intermediate space.

The numerical examples show that the proposed technique produces grids nearly
as good as those produced by the expensive strategy to refine only the most profitable
element at a time. Since that strategy has proven optimality properties the proposed
grid transition operator should work well in practice.

Furthermore the technique seems capable of giving a good a posteriori estimate
of the error in energy on the final grid. Although the numerical examples were all
one-dimensional the proposed technique is applicable to higher dimensional problems
as well and it is hoped that similar results will be produced.

Acknowledgment. I wish to thank one of the anonymous referees for his or her
very constructive criticism.
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COMPUTING THE CS-DECOMPOSITION ON SYSTOLIC ARRAYS*

FRANKLIN T. LUKf AND SANZHENG QIAO

Abstract. We describe a new parallel algorithm for computing the CS-decomposition, and compare it
against a recently published method of Kaplan and Van Loan. For a 2n x n orthonormal matrix that is
partitioned into two square blocks, their procedure needs O(n2) time and O(n2) processors (probably in
the form of two distinct arrays), whereas our procedure requires O(n log n) time and one triangular array
of O(n2) processors.

Key words, systolic arrays, CS-decomposition, Jacobi-type methods, real-time computation, VLSI
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1. Introduction. In this paper we describe an almost linear-time algorithm for
computing a CS-decomposition (CSD) of an (n+m)xp partitioned orthonormal
matrix Q, i.e.,

Q1) nxp
(1) Q--

Q2 mxp

with n >= p, n >_- m and QQ1 + QQ2 Ip. The decomposition is simply a simultaneous
diagonalization of both blocks Q1 and Q2 via the singular value decomposition (SVD):

(2)

(3)

UQI V= C=diag (Cl,’", cp),
UQ2V= S diag (Sl, ", sq),

where q =min {p, m}, and U(n x n), U2(m x m), V(p xp) are orthogonal matrices.
Since CTC + SrS Ip, it follows that

2 2

(4)
ci+si=l, i=l," ",q,

ci +/-1, i=q+ 1,. ,p.

We may regard the singular values of Q and Q2 as cosines and sines, accounting for
the name ofthe decomposition. Various uses ofthe CSD in analyzing invariant subspace
perturbation problems are given in [3], [12], [15]. Paige and Saunders [11] showed
that computing the CSD can lead to a sound algorithm for the generalized singular
value decomposition (GSVD). However, direct GSVD methods were recently developed
by Paige [10] and Luk [8].

Both Stewart [13] and Van Loan 16] presented stable CSD algorithms. The latter
procedure is simpler in that no cross-product matrix is required. Its implementation
on systolic arrays was sketched by Kaplan and Van Loan [4]. If we assume q O(n),
we may say that their technique requires O(n2) processors (possibly in the form of
two distinct arrays) and O(n2) time. The purpose of this paper is to describe a different
parallel CSD algorithm that uses O(n+ps) time and one triangular array of O(p2)
processors. The parameter s denotes the number of sweeps required by a Jacobi-SVD
algorithm. We conjecture that s O(log p) and that s is bounded by a small constant
(say -<_ 10) for practical values of p (say _-<200) [1], [2], [7].

* Received by the editors February 5, 1985, and in revised form September 19, 1985.
f School of Electrical Engineering, Cornell University, Ithaca, New York 14853. The work of this author

was supported in part by the Office of Naval Research under contract N00014-85-K-0074.
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2. CSD algorithm. We sketch Van Loan’s algorithm [16] on the assumption that
m >_-p. A "normalized" SVD of Q2 is computed:

(5) Ur2 Q2v= S =-diag (Sl,’’", sp),

where U2(m x m) and V(p x p) are orthogonal matrices. By a "normalized" SVD, we
mean that the singular values are nonnegative and sorted in ascending order:

(6) 0 <- Sl <-" <= Sk <- 1/x/ < Sk+l <--" "<- Sp.

Let us assume that k singular values are "small" (-< 1/x/). A QR-decomposition
(QRD) of the product Q1V is made"

where U(n x n) is orthogonal and R(p x p) is upper triangular. It is proved in 16] that

R (diag (c,, Ck) 0),0 R1
where R1 is a (p-k)x (p-k) triangular matrix. That is, the first k (k + 1 to be exact
since R is upper triangular) columns of Q1V have been diagonalized by a QRD. Note
from (4) that c,..., Ck are "large" singular values. Next, an SVD of R is found:

1g" diag ck+ 1, Cp),
and a QRD of the (p k) x (p k) matrix W-- DV, with D diag (Sk+I,- ", Sp), is
computed:

lw= g2.

Since Sk/l,’’’,Sp are "large" we get R2=diag(sk/,...,sp). The resulting CS-

o/00 UIQV Ik diag (c c),
0

0 0 I,,_p

Jf Uf02V Ik diag (Sl sp)
0

The crucial step of this algorithm is the "normalized" SVD step of (5). It separates
each of Q and Q2 into two different blocks of "small" and "large" singular values.
The key result of Van Loan 16] is that a block consisting solely of "large" singular
values is diagonalized by a QRD.

3. Parallel implementations. From 2 we see that we need both QRD and SVD
processor arrays. Kaplan and Van Loan [4] selected the square SVD array of Brent-
Luk-Van Loan [2] and the square QRD array of Luk [6]. Few details are given in [4],
where it is stated that "important questions remain with respect to the parallel array
implementation." Kaplan and Van Loan chose to compute a "normalized" SVD via
the "parallel ordering" of [ 1]. Specifically, the ordering was used to first determine an
"unnormalizcd" SVD and then to sort the singular values. The sorting part is unaccept-
able, for q/4+ 1 sweeps are required for sorting q singular values.

decomposition is
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On the other hand, the triangular QRD-SVD array of Luk [7] is well-suited for
implementing Van Loan’s CSD algorithm. This array of O(p2) processors computes
a QRD of an nxp matrix (n>-p) in time (n+2p-2)z, where r is the time required
for a 2 x 2 QRD. The array uses a Jacobi-SVD method to diagonalize the resultant
triangular matrix, say R. Rotations are restricted to adjacent rows and columns of R
(via an "odd-even ordering"), in order to preserve its triangular structure. Explicit row
and column permutations are replaced by the choice of large rotation angles, called
"outer rotations." The "odd-even ordering" and "outer rotations" were used by Stewart
[14] to compute the Schur decomposition, and later by Luk [7] to find an SVD of a
triangular matrix. The SVD algorithm is very simple"

Procedure SVD(R).
do until convergence

for i= 1,3, 5, ,2,4,6, do
TR - Ji,i+lRgi,i+l.

The transformations J,+ and K,+ are rotations in the (i, + 1) plane implementing
the 2x2 SVDs. For a pxp matrix R one sweep (=p(p-1)/2 transformations) of
Procedure SVD requires time approximately 2per, where r denotes the time required
for a 2 x 2 SVD [7]. The QRD-SVD array thus determines an SVD of an n x p matrix
A in O(n +ps) time, by first reducing A to an upper triangular form R and then
diagonalizing R.

We now show how the QRD-SVD array can be used to compute a CSD of Q. To
simplify the presentation we assume m->_ p, by adding a block of zeros to the bottom
of Q if necessary. Our initial step is to determine QRDs of the matrices Q and Q2:

Procedure QRD (Q, Q, R, RE).
begin

end.

The matrices W(n x n), W(m x m) are orthogonal, and R(p x p), R(p x p) are upper
triangular. This step can be completed in time (n+ m+2p-2)- if the rows of Q are
fed into the array immediately after those of Q. Next, compute an SVD of R:

U[REV=S,
and a QRD of the product R V:

U(R V)--/1.
The two steps are performed by the following procedure with j 0.

Procedure SYD-QRD (RE, R1, j).
do until convergence of SVD algorithm

for i-j+ 1,j+3,j+5,... ,j+2,j+4,j+6,... do
begin
R2-JTi,i+REK,i+, {SVD}

r (R1K,,+I) {QRD}R - Pi,i+
end.
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The rotations Pi,i+l are chosen to maintain the triangular structure of R An advantage
of this procedure is that the QRD operations are free. Recall from [7], [14] that, to
avoid broadcasting, at most half the processors are busy at any time. So we shall attain
full efficiency if we stagger the SVD and QRD computations in an obvious manner.
One sweep of Procedure SVD-QRD (RE, R1,0) is then implementable in time 2pr.
After the procedure terminates, we get

R2 - S -= diag (sl,. ", sp).

The singular values Sl,’", sp must be negated (if necessary) and sorted to give a
"normalized" SVD. To save work, we decide to allow negative singular values and
order them on size alone using the "odd-even ordering":

Procedure Sort(S).
do for one sweep

for i- 1, 3, 5, , 2, 4, 6, do
if Isil > ISi+ll then exchange si and si+.

This procedure is called an "odd-even transposition sort" [5]. It requires one sweep
(=p time steps) to sort p numbers, and is optimal for sorting networks that involve
only adjacent comparisons. However, we need to preserve the triangular structure of
R1. Procedure Sort is extended to a "normalized" SVD scheme:

Procedure NSVD (RE, R).
do for one sweep

for i= 1, 3, 5, , 2, 4, 6, do
ifis, > [s,+l then

begin
R2 - 1-I r R2IIi,i+1 i,i+l

~TR - Pi.i+(RIIIi.i+I)
end.

The matrix IIi,i+l is a permutation in the (i, / 1) plane, while Pi,+ is a rotation chosen
to triangularize the product RII,+. Recall that k denotes the number of "small"
singular values of RE. We invoke the procedure SVD-QRD (R1, RE, k) to complete
the CSD algorithm:

Program CSD (Q, Q2).
begin
QRD (Q1, Q2, gl, RE);
SVD-QRD (RE, R1,0);
NSVD (R_, R1);
SVD-QRD (R1, RE, k)
end.

The overall algorithm requires O(n+ps) time. A numerical example is given in [9].

Acknowledgments. The authors acknowledge valuable suggestions by A. Sameh
and P. Eberlein.
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COMPUTING THE GENERALIZED SINGULAR VALUE DECOMPOSITION*

C. C. PAIGEt

Abstract. An algorithm is described for computing the generalized singular value decomposition of
A(m x n) and B(p x n). Unitary matrices U, V and Q are developed so that UHAQ and VIBQ have as
many nonzero parallel rows as possible, and these correspond to the common row space of the two matrices.
The algorithm consists of an iterative sequence of cycles where each cycle is made up of the serial application
of 2 x 2 generalized singular value decompositions. Convergence appears to be at least quadratic. With the
correct choice of ordering the algorithm can be implemented using systolic array processors (Gentleman,
personal communication). The algorithm can also be used to compute any CS decomposition of a unitary
matrix.

Key words, generalized singular values, CS decomposition, unitary matrices, matrix decompositions,
matrix parallel computations

AMS(MOS) subject classifications. Primary 65F30; secondary 15-04, 15A03, 15A18, 15A23, 65F25

1. Introduction. The generalized singular value decomposition (GSVD) was intro-
duced by van Loan [18]. Paige and Saunders [15] extended van Loan’s idea in order
to handle all possible cases, and presented a form of the decomposition which was
more suitable for computation than that in [18]. This is the GSVD we will consider
here. Van Loan [18] discussed several uses of the GSVD, for example the singular
value pairs (a,/3), see [15], of A(m x n) and B(p x n) solve det (fl2AnA-ot2BnB)=O.
Paige 14] gave an expository introduction to the GSVD and its relation to the general
Gauss-Markov linear model (y, Xb, tr2FFT) used in regression analysis, and showed
how it not only reveals the structure and sensitivity of the model, but provides the best
linear unbiased estimator and the structure of the covariance of the error of this
estimator. For these and other problems there is a need for a good algorithm for
computing the GSVD.

When B is square and nonsingular the GSVD of A(m x n) and B(n x n) corre-
sponds to the singular value decomposition (SVD) ofAB-1. If A or B is ill conditioned
with respect to solution of equations, then computing AB-1 would usually lead to
unnecessarily large numerical errors, and so this approach is not recommended in
general. When B is not square, or is singular, then the SVD of AB+, where B+ denotes
the Moore-Penrose pseudoinverse of B, does not necessarily correspond to the GSVD
of A and B, and a different approach is definitely needed.

If [An, Bn]n is a block of columns of a unitary matrix then the GSVD of A and
B gives what is called the CS decomposition for this partitioning; see Stewart [17].
This decomposition is implicit in the work of Davis and Kahan [3]. It was stated
explicitly in [16] for the slightly restricted case of A(n x n), and was derived in [15]
for the general case, where it was seen to provide one approach to computing the
GSVD of general A(m x n) and B(p x n). Briefly that approach computes the SVD or
similar unitary factorization of general

(1.1) P,RQI Pl-- P21
R(k x k) square and nonsingular, PPI Q1nQ1 I; followed bythe CS decomposition

* Received by the editors June 21, 1984, and in revised form August 15, 1985.
f Computer Science, McGill University, Montreal, Quebec, Canada H3A 2K6. This work was suplborted

by the Canadian Natural Sciences and Engineering Research Council under grant A8652.
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of Pl(m x k) and P21(P x k). Methods for computing the CS decomposition are given
by Stewart [17] and van Loan [19], and these can be combined with (1.1) to produce
the GSVD of A and B, see [15].

The above two stage process for computing the GSVD has definite drawbacks.
First A and B are combined in (1.1), an approach which ignores the good numerical
practice of applying unitary transformations to A and B separately where possible.
Distinctly different scaling of A and B could lead to difficulties. Next a rank decision
must be made in (1.1), and so it is advisable to use the SVD; but again this rank
decision could be affected by the relative sizes of A and B. This results in two separate
iterative algorithms with an important and possibly difficult rank decision between
them, and in difficult cases there will be no clear criteria on which to make this rank
decision. Accordingly we have sought one unified iterative algorithm which applies
unitary transformations to A and B separately.

One approach [1] implicitly applied the QR algorithm for the SVD in [5] to the
equivalent of AB-, somewhat like the QZ algorithm of Moler and Stewart [13] does
for the generalized eigenvalue problem. Although this appeared to work quite satisfac-
torily, it was so complicated we chose not to publish it or to pursue it further. To
obtain some idea of the difficulty, it suffices to note that the QR algorithm for the SVD
of a given matrix C in [5] has two levels of implicitness, one because it implicitly
applies the QR algorithm to CHC while working with C rather than forming CnC,
and a second because it carries out implicit shifts in these QR steps. If now we want
the SVD of C AB- without forming AB-1, this gives a third level of implicitness.
In contrast the QZ algorithm only has two levels of implicitness.

The simplest unified approach we have found comes from an idea of Kogbetliantz
[10], [11], for finding the singular value decomposition of a square matrix. Just as
Jacobi’s method [9] for computing the eigenvalues of a symmetric matrix solves a
sequence of 2 x 2 symmetric eigenproblems, Kogbetliantz’ method solves a sequence
of 2 x 2 SVD problems. It is beautifully simple and surprisingly fast, and apparently
has ultimate quadratic convergence. This has been proven when there are no pathologi-
cally close singular values [21]. However it is not usually as fast as the method of [5]
and [6]. The fine analysis of Forsythe and Henrici [4] not only proved convergence
of the serial-cyclic Jacobi method for the symmetric eigenproblem, but also of the
serial-cyclic Kogbetliantz method, both under restrictions on the choice of the angles
of rotation at each step. Kogbetliantz’ method is discussed further in [8].

The method to be described here computes UnAQ and VnBQ, where unitary U,
V and Q are built up in an iterative manner which when for example B is square and
nonsingular corresponds to a refinement of Kogbetliantz’ method of transforming
UnAB-V to diagonal form. There is clearly only one level of implicitness in this.
The method is similar in approach to that in [8], and owes much to the work on that
paper. In fact reference will be made to that work where appropriate, instead of
repeating some material here.

In 2 we give a brief account of the serial-cyclic version of Kogbetliantz’ algorithm
applied to a general square matrix, and then to the special case of an upper triangular
matrix, an improvement suggested in [8]. We then show how these ideas can be used
to compute the GSVD of square A and B when one is nonsingular. This is the core
of the algorithm, and in 3 it is extended to give an algorithm for general A and B.
Section 4 shows that this extension gives the correct result for 2 x 2 matrices, and 5
uses this to show how the algorithm behaves for general A and B, a summary of the
algorithm being included for ease in following the proofs. Section 6 contains numerical
examples, and some comments are made in 7. Finally as a result of ideas of Gentleman
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[22], it is shown how the algorithm given here can be implemented for parallel
computation in 8. His approach is particularly suitable for systolic array processors.

The GSVD algorithm proposed here can be applied directly to the relevant
submatrices of a unitary matrix to obtain any required CS decomposition.

2. The basic algorithm. Kogbetliantz [ 11] computes the SVD of a square matrix
in an iterative sequence of cycles. In one cycle of the serial-cyclic method, n(n- 1)/2
SVDs of 2 x 2 matrices centred on the diagonal are computed to eliminate elements
in the following order (n 4),

(2.1)

0 1 2 3

1 0 4 5

2 4 0 6

3 5 6 0

We call this the row ordering; there is obviously a column version. The elements
marked 1 are eliminated first, then those marked 2, in which case those marked 1 could
reappear. Of course, the diagonal elements are not eliminated; in fact their sum of
squares does not decrease, and this, together with a restriction we will discuss, ensures
the convergence ofthe algorithm to diagonal form [4]. Convergence is found in practice
to be at least quadratic, and 5 cycles are often sufficient to give full accuracy on for
example the VAX 11/750 using double precision.

The unitary reduction of a 2 x 2 matrix to diagonal form requires a unitary rotation
from the left through an angle b say, and one of the right through ff say. If the
serial-cyclic approach (2.1), or the column equivalent, is used then [4] shows the n x n
matrix converges to diagonal form if each

(2.2) beJ,

where J is a fixed closed interval interior to the open interval (-7r/2, 7r/2). So a
method which just requires the singular values of the 2 x 2 diagonal to be ordered in
a fixed way does not necessarily satisfy this condition.

If the initial matrix is upper triangular then one cycle takes the following form,
where now only one element is eliminated by each 2 x 2 SVD, and is circled immediately
prior to elimination.

(2.3)

x(R)x x x (R)x x (R)--.-->

X X X X X X X X X

X X X X X X

X X X

---> X ---> X .--->

X X ( X X

x xx xxx(R)

x x X

x
xx(R)x

X x x
x

x
(R)x

This leads to lower triangular form. The next cycle uses exactly the same ordering as
(2.1) and produces an upper triangular matrix again This refinement leads to a saving
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in computation, and since this is really the same method as for the full case, the same
comments on convergence hold. A more complete description of these algorithms is
given in [8].

Now we present a method which we will then show implicitly carries out one
cycle of Kogbetliantz’ algorithm on upper triangular C AB-1, when both A and B
are initially upper triangular and B is nonsingular. We first describe what we will
refer to as the (i,j) transformation. If Aij and Big are 2 x 2 matrices, whose elements
lie in rows andj and columns andj of A and B, and U and V are unitary
so that

(2.4) UHAoBIV=S
is diagonal, then

(2.5) UHAij SVHBij.

The dependence of these 2 x 2 U, V and S on and j will not be stated explictly in
these first four sections.

As a result, the first row of UHAi is parallel to the first row of VHBo, and the
second row of UHAij is parallel to that of VHBi. Thus if Q is unitary so that VnBiQ
is lower triangular, that is

X X] X X

then UHAi.iQ is also lower triangular. For n by n upper triangular C AB-1 we carry
out n(n- 1)/2 such 2 x 2 transformations in the same order as in (2.1) and (2.3). The
kth such transformation acting on its relevant 2 x 2 submatrices takes the form, with
Co defined to be AiB-1

ij,

(2.7)

Ao Co Bo
k’

X X X ( X X
k( k’(k-I-! x x l-q x

k" k"
x(R) x x(R)

X X X X X

where k corresponds to Uu, k’ corresponds to VH, and k" corresponds to Q.
Note that we would design Q on the larger of the two possible rows in the figure.

This is the obvious choice for numerical precision, but should be supported by a
rounding error analysis. This kth transformation will be denoted

(2.8)
X X X X X X -- X X X

X X X X X X X X

Using this notation with that of (2.3), and taking n 3 for illustration, one cycle starting
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with upper triangular A and B takes the form

A C B
X X X X ( X X X X -->

X X X X X X

X X X

(2.9)

X

x x x
x

x
x x x
x x

X X

x x x x X

x X

x x
x x () x x x

x x X

X X X

X X () X X X

X X X X X X X X

which results in lower triangular A and B. It can be seen from the above forms of A
and B that the elements of the 2 x 2 Cij AijB are just the elements in rows and
columns and j of C AB-1. The proof that this is true for larger n follows by
induction, noting that after the off-diagonal elements in the first row of each of A and
B have been eliminated, the remaining rotations are designed on the n 1 x n 1 upper
triangular matrices in the bottom right-hand corners of A and B. When A and B are
lower triangular the process is essentially the same and follows the ordering in (2.1),
except now the equivalent of (2.6) is

and the equivalent of (2.8) becomes

X X X --> X X X X X
(2.11)

X X X X X X X X X

so that at the end of the cycle the A and B matrices are upper triangular again.
A comparison of C in (2.9) with (2.3) shows that this process is mathematically

equivalent to applying Kogbetliantz’ serial-cyclic method to upper triangular C AB-1,
and all the previous comments on convergence hold. As a result we have given a
method for finding the GSVD of two matrices, at least one of which is nonsingular.
It will be seen in 6 that this is very effective, giving as much accuracy as the problem
and computer allows, in a reasonable time.

The computational cost per cycle is about the same as the method in [8] for finding
the SVD of the product of two triangular matrices. That is, if we use r-multiplication
rotations, one cycle as in (2.9) costs about rn multiplications and 2n additions just
to form the new A and B. In addition it would require rn3/2 multiplications and n3

additions for each of U, V, and Q that we chose to update. Since the method may
sometimes take more than 5 cycles to converge, but rarely much more, it can be quite
expensive for large n.

To counter-balance this expense it is clear that such methods are ideal for special
architectures such as systolic arrays, and this can result in veryefficient implementations.
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Kogbetliantz’ SVD method [11] for a full square matrix A has been suggested by
Brent, Luk and van Loan [2] for systolic array computation. Their resulting method
requires O(n2) processors and O(n log n) time to execute. On hearing the ideas
presented here, Morven Gentleman [22] showed how the algorithms of the present
paper can be implemented very effectively using systolic array processors.

3. The general case. For A and B square and B nonsingular we saw convergence
of the method in 2 gave UIAB-1V S, a diagonal matrix, with VHBQ triangular.
That is

(3.1) UnAQ SVnBQ, S diag (tr,, , trn),

with the ith row of UnAQ parallel to the ith row of VnBQ. If we ordered the singular
values trl _-> r2_->""-> trn-> 0, and A had rank s, then UnAQ would be zero in all but
the first s rows, and so would be upper trapezoidal if the algorithm took an even
number of cycles.

For simplicity we will take A and B square, by initial unitary reduction to upper
trapezoidal form and adding zero rows if necessary, and extend the algorithm to handle
singular B. We will describe an algorithm which effectively produces on convergence
after an even number of cycles, nonsingular upper triangular R and positive definite
SA and Sa such that

Rll g12 R131}r
R= 0

0

R22 R23} }r2, r= rl + r2,(3.2)
kk

0 R33/}s
(3.3)

(3.4)

(3.5)

(3.6)

SA diag (ar+," ", at), Sa diag (/3r,+1,’",/3),
+

UnAQ SAR22 SAR23
0 0

O 0 0 0

VnBQ O_ SBR22 SBR23 0
0 R33 0
0 0 0

Here 0 is an r x r zero matrix so [SR22, SBR23] in (3.6) is in the same position as
[SAR22 SAR23 in (3.5). These then correspond to the nonzero parallel rows of UHAQ
and VUBQ, in analogy with (3.1). It follows from the theorem in [15, 2] that this is
the GSVD of A and B each with n columns.

To obtain (3.5) and (3.6) for any A(m x n) and B(p x n) we first transform with
unitary matrices U and V and a permutation matrix Q so that UUAQ and VUBQ are
upper trapezoidal; see for example [7]. To the resulting nonzero trapezoids we add
zero rows if necessary to give square matrices. This is not essential but it simplifies
the description and we can apply the algorithm very much as in 2. We will assume
the initial transformations we start with are identically partitioned

(3.7a)
0 0 0
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(3.7b) All, Bll, B22 are upper triangular, All is nonsingular, the nonzero part of
B is at the top and has full row rank, and if q > 0, B22 is nonsingular.

This can be done by designing the permutations in Q first during the reduction of A
until All is produced, then from the part of the reduction of B that gives B22.

The only reason the algorithm of 2 cannot be applied directly here is that some
of the 2 x 2 matrices B0 in (2.4) will be singular. To circumvent this we merely need
to define

(3.8)

where adj stands for adjugate (or adjoint, depending on which book you read last).
So A adj (A)=det (A)I, aij are the elements of A, and/3ij are the elements of B. We
then replace (2.4) by

(3.9) uI’lcov S diag tr,, tr ), o’,, tr >= O,

taking care that

(3.10) U=V=I when Co O.

With these changes the general algorithm then proceeds exactly as the algorithm in
2, and somewhat surprisingly is found in practice to converge to the desired result

(3.5) and (3.6) when we have an even number of cycles, or the corresponding lower
triangular forms when we have an odd number of cycles. An outline of the algorithm
is given in 6; it includes a possible reordering of the elements to ensure (3.2) to (3.6)
result.

This approach treats A and B essentially equally, for if we define

(0(3.11) K
-1

then it is easy to check that

(3.12) B0 adj (Aij)-- KrCrK =adj (Co)ij

so this has the same elements, apart from sign, as (3.8), and both have the same singular
values and eigenvalues. That is, working with (3.8) is essentially the same as working
with (3.12). At first glance (3.5) and (3.6) seem to treat A and B differently, but if W
is unitary so that RW is lower triangular, see (3.2), then if W is applied to the right
of (3.5) and (3.6) the roles of A and B will essentially be reversed. But this is just the
form resulting from the odd-numbered steps of the algorithm, and so we can say A
and B are essentially treated equally in the algorithm.

We have suggested a reasonable method, but now to see if it gives us what we
want, we first show that (3.8) to (3.10) give UnAi and VI-IBo parallel rows, and so
give the GSVD of 2 x 2 Aii and B0. We will then use this result to justify the algorithm.

4. The GSVD of 2 x2 A and B. We will show that (3.8) and (3.9) result in UnAij
and VIIBo having parallel rows, so that (2.10) results in the GSVD of Ai and Bo, see
(3.2) to (3.6). This makes (3.8) and (3.9) a reasonable choice for the 2 x 2 computations
in our algorithm in 3. That is, we compute the GSVD of two general matrices by an
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iterative sequence of2 x 2 GSVDs, in analogy with the Jacobi and Kogbetliantz methods.
We will need the following result.

LEMMA 1. IfA and B are nonzero 2 x 2 matrices, then

(4.1) A adj (B)=0:>A=fd T and B= hd ,
that is, rank (A)= rank (B)= 1 and A and B have the same row space.

Proof. If B= hdT [r/l, r/217"[61, 62] then

(4.2) adj (B) [82, --61]T[T2, --TI].

Thus if A =fd " then A adj (B)= 0. On the other hand if A adj (B)= 0 with A and B
nonzero 2 2 matrices, then rank (A) rank (B) 1. Write B hd , A ftr f[ ’1, ’2],
so that

0= a adj (B)=f. (./-162- ’T261) ITS2
and since f and h are nonzero, det ([ t, d])- 0 so that and d are parallel. The result
follows.

THEOREM 1. IrA and B are 2 x 2 matrices and U and V are unitary so that

(4.3) UnAadj(B)V=S=diag(cr,tr2), cr >- tr2-> 0,

then the ith row of UnA is parallel to the ith row of VnB, i= 1, 2. If also

(4.4) Aadj (B) #0

and U [ul, u2], V [Vl, v2], then

(4.5) uA # O, v2B # O,

(4.6) rank (A) 1 uzHA O,

(4.7) rank (B)= l:=>vB 0.

Proof From (4.3) we see that

(4.8) UIA det (B)= SVnB.
We enumerate all the possibilities:

(i) If A or B is zero the results are trivial.
(ii) If A is nonsingular the results follow from (4.8) and Lemma 1.
(iii) If rank (B)= 1 we write B= hd 7" for nonzero h and d. Together with (4.3)

and (4.8) this gives

(4.9) SVnB=O, Vt’IB=edT", e#O, S=(trl
0

so (4.2) and (4.3) give

(4.10) uA(82) =0.

With this case of rank (B)= 1 we have the following subcases.
(a) If A is nonsingular then tr > 0 in (4.3), and so in (4.9)

(4.11) VB
e_d r e2d r # 0 for some scalar e,
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proving (4.5) and (4.7). But from (4.10) we have nonsingular

(4.12) UI4A
dp2d 7.

for some scalar b2, and so the results follow.
(b) IfA fd 7" then UIA ul-lfd T and VnB VHhd automaticallyhave parallel

rows, but from Lemma 1 (4.4) does not hold.
(c) Finally if

(4.13) A=ftT, B=hd T, det([t,d])0, f0, h0,

then from Lemma 1 Aadj (B)0, so try>0 in (4.3) and again (4.11) holds. But now
(4.10) and (4.13) imply u2Uf=O, and so

(4.14) uHA (plT) (0)VnB
eEd 7r

which are necessarily nonzero with parallel rows. Also (4.4) holds, and (4.14) shows
that (4.5) to (4.7) hold, completing the theorem.

We see that (4.3) corresponds to (3.9) in the algorithm of 3, and so these results
hold for our algorithm. The use of (3.10) in the algorithm leads to another important
result.

THEOREM 2. If (3.8) tO (3.10) hold with unitary U=[Ul, u2], V=[Vl, v2], I
[el, eEl, then

(4.15) e Ao O=:> UEnAo O,

(4.16) eTBo 0VlnBij 0,

U V I if Cij is zero,(4.17) eB =0=>
or V e, eli ifC is nonzero.

Proof. If Co in (3.8) is nonzero (4.15) and (4.16) follow from (4.6) and (4.7). If
Co. is zero (4.15) to (4.17) follow from (3.10). If Co is nonzero then zero eBo implies

B has rank unity and then (4.17) follows from (4.7) and the fact that V is unitary.

5. Properties of the algorithm. One approach to finding the GSVD is to transform
A and B to separate the row subspaces, and then solve the GSVD of two square
nonsingular triangular matrices using the method of 2. This would be an easy method
to follow and a theoretically correct algorithm, but it would require two rank decisions
which in practice could be difficult to make. To avoid this we carry out the QR
factorization of each of A and B as the only preprocessing, giving square A( and
B( of the form in (3.7). Here we can be somewhat casual on the rank decisions and
just use tolerances. We then apply the general iterative algorithm of 3 to these,
resulting in square A(k and B(k after the kth cycle. It is far from trivial to show that
this gives the correct result in theory, and so we will summarize the main results first
before proving the details. We use S(A) to denote the row space of A.

We will show that after the first cycle we will have

/ 11 0 0 }r [B) n(1,
11

(5.1) a(1) / 0 0 }s B(1) ) /2lr(1) -221(1) }$
0 0 0

where r(1 is nonsingular and lower triangular, and B(-1, B(22 are square and lower
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triangular. It follows that

(5.2) S(B. ))

A reordering step in the algorithm also ensures

(5.3) B(21. has full row rank and --22u() is nonsingular.

After every subsequent step we will show we have identically partitioned matrices

where each nonzero block has full row rank and the dimensions are related to (5.1) via

(5.5) r + r2 r.

The even numbered cycles will result in identically partitioned matrices with the row
partitioning of (5.4)

/ a(k) ,t(k) a(k) 0/’!"12 "13/ x-x11 0 0 0 0

0 A(k) t(k) 0 0 l(k) i(k) 0
(5.6) A(k)

O0
"-x22 /-123 B(k) "o22 x23

(k) 00 0 0 0 0 D33

0 0 0 0 0 0 0

k, even, k > 0,

(5.7) nllA(k), -a22A(k), -221(k), /933r(k) nonsingular upper triangular,

while the odd numbered cycles will result in matrices with identical partitioning to (5.6)

al.ll 0 0 0 0 0 0 0

a’-22 B(k) /22 0
(5.8) A(k) |,--21 0 /B(Ekl ,,(k)

0 0 /tt(k) n(k) n(k) k odd, k > 1,

lo o o r;’
(5.9) a’lll’i(k), /’122’t(k), a-221(k), /933r(k)nonsingular low triangular.

In computing (5.6) from (5.8) or the identically partitioned B(), B(3.) is not touched
by the left transformations Vu, while in computing (5.8) from (5.6) A.) is not touched
by the left transformation Uu.

When we have proven (5.1) to (5.9) we can prove the following key result. From
(5.6) and (5.7)

(5.10) S(A(.-I))c S(B(k-1)), k-1 even, k> 1,

so the comment following (5.9) ensures in (5.8)

(5.11) S(A.))cS(B()), k odd, k>l.

But /)33r(k)is nonsingular in (5,8), and so

A(2.) =,2"()n(),2., k odd, k > 1.



1136 c.c. PAIGE

In a similar way we obtain a result for even k, and using (5.7) and (5.9) we have

(5.12) A(2.k) 2""(k)u(k)"2., C(k) nonsingular, k 2, 3, 4,.

where we use (5.2) for the case k 2.
We see that (5.12) gives the common row space of maximum dimension since

u(k) is nonsingular in (5.8) In theory this means that"llA(k) is nonsingular in (5.6), and z,,33
1(k)after the first two cy.cles of the algorithm only the rows of A(2.k) and -,2. are affected

by transformations from the left, and so we have carried out a direct algorithm for
separating subspaces. In practice we can still allow B(3.k) and B(2k). to be combined in
the transformation of (5.6), and A.k) and 2. to be combined in the transformation
of (5.8), giving possibly superior final results in the presence of rounding errors to
those obtained by working with A(2.k) and B(2.k) alone in the iterative part of the algorithm.

In the third and subsequent cycles, an examination of the individual rotations
shows that we are implicitly carrying out Kogbetliantz’ algorithm to diagonalize the
implicitly defined nonsingular trangular matrix C(2k) in (5.12), and this necessarily
converges if the angles of rotation obey (2.2). This means if (5.1) to (5.9) hold then
we have the required proof for this algorithm in the absence of rounding errors.

We summarize the algorithm prior to showing the results of this section hold.
(5.13) ALGORITHM

begin {GSVD algorithm, A, B, n given as in (3.7)}
U := I,; V := I,; Q := I,; {if wanted}
cycle := 0;
while nonconvergence and (cycle < 10) do
begin {general step}

cycle := cycle + 1;
for i:=lton-1 do
forj:=i+l to n do
begin {(i, j) transformation. Here c0 and/3o are the (i,j) elements of A and B

respectively. Uo, V, Q are 2 x 2 unitary matrices.}

A# := B# :=
aji ljj,/ kji [jj’

n adj (Bij) (o’1, 0"2) O" >" > if cycle <=Uj Aj V/ diag or2 0, {where rl or2 2, else
(2.2) should hold}, with Uo Vj I if Aj adj (Bj)= diag (or1,
Choose Qj so UAoQ and ViBoQo are lower triangular if cycle is odd,
else upper triangular;
Let U,, V,, Q, be n x n unit matrices with (i, i), (i, j), (j, i), (j, j) elements
replaced by the (1, 1), (1, 2), (2, 1), (2, 2) elements respectively of Uo, Vo, Qj
respectively;
A := Un, AQ,,; B := Vn, BQ,,;
U := UU,,; V := VV,; Q := QQ,; {as required}

end; {(i, j) transformation}
if cycle 1 then do
begin {reorder}

Let r and s be as in (5.1);
for i:=r+lto r+sdo

if the ith row of B is zero, move it and the ith column to the end of B,
bringing all remaining rows and columns up one;

end; {reorder}
end; {general step}

end. {GSVD algorithm}
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The remainder of this section is hard going. There is undoubtedly a more straight-
forward way of proving that this algorithm works, and I hope someone else can find it.

Theorem 1 proves that both UAi and VBo in the algorithm are triangularized
by the one unitary matrix Qo, and as a result the progress of each odd numbered cycle
is correctly described by A and B in (2.9), with the corresponding result for even
numbered cycles. This means that A(k) and B(k) are lower triangular for odd k and
upper triangular for even k, so (5.1) and (5.6) to (5.9) have the correct triangular form.
But Theorem 2 shows that all the zero rows at the bottom of A(k-l) stay there, so from
(3.7) the leading r rows of Ak in (5.1) and (5.4) have full row rank, and (5.2) holds.
This gives nonsingularity of ,--lal in (5.1) and the A matrices in (5.9). Theorem 2 also
shows that in an (i,j) transformation a zero row of l(k) can be exchanged with a
nonzero row above it, but not with one below it, and a nonzero row cannot be combined
with a zero row to give two nonzero rows. Combined with (3.7) this gives:

RESULT 1. The collection of nonzero rows .of any Bk) has full row rank, and apart
from the reordering step in the algorithm nonzero rows ofB can only move downward.

The insistence that All and BEE if it exists, be nonsingular upper triangular in
(3.7) ensures in (5.1) that the diagonal elements beyond the rth corresponding to
nonzero rows of B1 are themselves nonzero. We prove this as a slightly more general
result which also applies to the cycle which takes (5.6) to (5.8). We see (5.6) is a special
case of (3.7a), and (5.8) is a special case of (5.1).

RESULT 2. Let AI and BEE be nonsingular upper triangular in (3.7a), and let (5.1)
be the result of applying one cycle of the algorithm (5.13) to these, then B1) has nonzero
diagonal elements in the nonzero rows beyond the rth.

Proof. Two classes of (i, j) transformations are relevant. When i<j <- r, Ai is
nonsingular and so the (i, i) and (j,j) elements of A remain nonzero. When i<-_r<j
there is no Uo transformation of Ao, and the Qi transformation gives the (i, i) element
of A size II[ai, O0]112>0 since a, is nonzero. We will show that if the jth row of B
is zero and it is exchanged with the ith row this results in a nonzero (j, j) element of
B, while if the (j, j) element of B is nonzero it stays so. Since initially BEE is nonsingular
upper triangular in (3.7a) this will prove Result 2 by induction. When j corresponds
to a zero row of B it will only be exchanged with the ith row if the top rows of
and B are not parallel; consequently the Qo which makes the (1, 2) element of AQo
zero cannot also make the new (j, j) element of B zero. Next suppose before the (i,j)
transformation that the (j, j) elements of B is nonzero. This implies that A and VBo
have parallel first rows, and since the (1, 1) element ofA is nonzero the (2, 2) element
of VB must be nonzero, since it could only be zero if V were an exchange putting
[0, ,] in the first row. Since AQ has zero (1, 2) element Qi does not exchange the
columns, and VBoQi cannot have zero (2,2) element, completing the proof of
Result 2.

’ in (5.1) and uk in (5.8) are nonsingularBefore we can use Result 2 to say L22 33

we have to show that after the reordering step they are still lower triangular and B2.
in (5.1) and B3.k in (5.4) have no zero rows.

Let B’ be the B matrix prior to the reordering step that results in B(1). Occasionally
the nonzero rows after the rth in B’ will not be adjacent, considerably complicating
our analysis. Here we show that if j > r and the jth row of B’ is zero then so is the
jth column, so the reordering step moves both these to the end. The jth column of
A is already zero, and the exchange has no effect on it. The remaining rows and
columns of B’ each move up one so the triangular form of x221(1) is maintained and
finally (5.3) follows from Result 2. Suppose the jth row of B’ is zero, j > r, but B’ has
at least one nonzero row with higher index. In the (i, j) transformations in any cycle,
zero rows of B can only be moved upwards, and since (j, t) transformations, t>j,
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have Aj, 0, a zero row cannot be moved into the jth row from below. It follows that
the jth row and all below it were zero at the start, and the jth row has remained zero
through all the transformations. Now consider an (i, j) transformation in the first cycle,
with i<j. We must have

0 0
Bq=

0 0

The top rows of these are parallel, otherwise the nonzero ith row of B would be
exchanged with the jth, which we have just shown did not happen. It follows from
Lemma 1 that Uo Vo I, and then A0Q0 and B0Q0 have zero (1, 2) elements, so the
(i, j) element of B is made zero. This ith row can now only be affected in (i, t)
transformations with > j. If the tth row of B were zero it could be made nonzero by
exchanging it with this ith row, but the (i, j) and (t, j) elements would remain zero. If
the tth row of B were nonzero it must have initially been the result of an earlier
exchange like this giving it zero jth element. Clearly if the ith and tth rows of B are
combined in the (i, t) transformation, the (i,j) and (t,j) elements of B are zero before
and after this transformation. It follows that B’ has zero jth column as stated. The
reordering step then gives B(21. full row rank in (5.1) with u221(1) lower triangular and
nonsingular proving (5.3).

We have seen that all the rows of B(k) beyond the (r-4- s)th must henceforth remain
zero, and since no zero rows can be moved downward or combined with nonzero rows,
and the nonzero rows maintain full row rank, B(3.k) in (5.4) must have full row rank
for k> 1. Also if j> r+s, A and B from (5.1), (5.6) and (5.8) have zero second
columns and rows, so these will not be transformed and the columns beyond the
(r+ s)th remain zero after all cycles. This with the full row rank of B(3.k) shows that
B(k) in (5.6) is nonsingular.33

In theory this reordering step can only have an effect immediately following the
first cycle; however in practice with the use of tolerances it could also be useful in
later cycles. We now want to show B(2.k in (5.4) has full row rank.

An (i,j) transformation on (5.1) or (5.8) with 1 <_- <j <_- r transforms a nonsingular
lower triangular Ai into necessarily nonsingular’upper triangular form, while from
Theorem 2 if B has nonzero first row and zero second these are exchanged. Thus if
there are exactly rl zero rows in B. in (5.1), these are all put at the top of B(2) in
(5.6) by the (i,j) transformations with i= 1,..., r, leading to full row rank B(22. in

i(k) in (5.7)(5.4). But with Result 1 this shows B(2.k) has full row rank for all k > 1 so u22

is nonsingular.
n(k) in (5.8), are nonsingular. An,4(k) and A(k)in (5.6) and /)22Now we show that /’Ill z-22

(i,j) transformation on (5.8) with i<j<-r leaves the (i, i) and (j,j) elements of A
nonzero, while with i<= r<j the (1, 1) element of Aij is nonzero and the (2,2) element
of B is nonzero, so with an analogous argument to that in the proof of Result 2, the
(i, i) element of A stays nonzero. This completes the proof of (5.7). A similar argument
completes the proof of (5.9).

It remains for us to support the sentence following (5.9). We see that in computing
(5.6) from (5.8) B3.) could only be affected by the left transformations VH in (i,j)
transformations with r <j <-r + s. But in these A0 has zero last row so corresponding
rows of the lower triangular Ay and B0 are parallel, and from (4.1) A0 adj (B0) =0,
and so Uo V I in the algorithm. The same sort of argument holds for A.k) in going
from (5.6) to (5.8). This completes all the results we required, and so the algorithm is
theoretically correct.
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6. Numerical examples. The examples here were generated using the MATLAB
system of Moler 12] on a VAX 11/750. They were not chosen to be particularly testing
of the numerical stability of the algorithm, but rather to show how it handled different
ranks and common row spaces.

In each of the examples we took A(n x n) B(n x n), with possibly some zero rows
at the bottom, and carried out the QR decomposition to give upper triangular A and
B. We took n 6 and built up our matrices as the products of random matrices of the
ranks we chose to test. Since the algorithm is designed to produce parallel rows, we
used this as a measure of convergence. For two vectors a and b we defined

0 if a < tol or b < tol,

( (a i]11) }(6.1) par(a,b)
[min norm i-+ otherwise;

and if a f and br were the ith rows of our matrices at the end of a cycle, we took as
an indicator of convergence

(6.2) error par (ai, bi).
i=1

Here Ilall (alia) 1/- and we took tol 10-14 for these test problems. We stopped when

(6.3)

and then computed

error <- tol

if a, 0 or b, 0,
(6.4) ri a, ll/II b, otherwise,

to give the equivalent of tr a/fl in (3.3). We write s Itrl,’’ ", trn]. When B is
nonsingular we give as the vector of computed singular values of AB-1 and cond (A)
as the ratio of the largest to smallest singular value of A. One cycle takes A and B
from upper triangular to lower triangular form, or vice versa; see (2.9).

Example 1. Nonsingular A and B, cond (A) 24, cond (B) 21.

cycle 2 3 4 5

error 2.5 .52 .0018 3x 10"*(-10) 2 x 10"*(-16)

s =4.356373396988140 3.492138554949318 1.858034577501202 1.001892079494734
.300018648851983 .197330532251905

=4.356373396988142 3.492138554949318 1.858034577501202 1.001892079494734
.300018648851983 .197330532251905

The algorithm gives as much accuracy as possible, but it does take a while to start
converging.

Example 2. rank (A) 4, rank (B) 3, common row space dimension 2.

cycle 2 3 4 5

error .47 2x 10"*(-17)
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After the QR decomposition the original matrices were"

COLUMNS 1THRU 4
A -1.483754207808792

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

COLUMNS 5 THRU6
A -1.814262790205398

-.263343099599686
-.220470422637046
-.149658467473861
.000000000000000
.000000000000000

COLUMNS 1THRU4
B -2.152554420079003

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

COLUMNS 5 THRU6
B -3.459002749639446

.079934376871628
-.387079235508506
-.000000000000001
.000000000000000
.000000000000000

-2.754569846168734
-.660367822613970
.000000000000000
.000000000000000
.000000000000000
.000000000000000

-2.047678638962671
-.264594139637406
-.284218707808010
-.071714348021438
.000000000000000
.000000000000000

-3.894294758406499
.074280121258419
.000000000000000
.000000000000000
.000000000000000
.000000000000000

-3.411337868703009
.121676462551819

-.368994080158650
-.000000000000001
.000000000000000
.000000000000000

-1.901063717347766
-.558467086690151
-.190188592370571
.000000000000000
.000000000000000
.000000000000000

-2.368033003532614
.133400322312574
.073602580523686
.000000000000000
.000000000000000
.000000000000000

-3.134725173442366
-.472306743711252
-.444428846555170
-.047939573588338
.000000000000000
.000000000000000

-4.429539352490643
.209165610430773

-.176428622793232
.000000000000000
.000000000000000
.000000000000000

Note the small nonzero elements in positions (4, 5) and (4, 6) of B. These have been
introduced by rounding errors.

After 2 cycles of the GSVD algorithm the matrices were:

COLUMNS 1THRU 4
A -.200073697315396

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

COLUMNS 5 THRU 6
A 2.269980552374192

-4.039759246493302
-2.527788530781247
-1.805072397942648

.000000000000000

.000000000000000

COLUMNS 1THRU4
B =.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

-.216325788985202
-.222361539578086
.000000000000000
.000000000000000
.000000000000000
.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

-.138100394035475
.118655281512143
.389711441881607
.000000000000000
.000000000000000
.000000000000000

.000000000000000

.000000000000000

.128833790821756

.000000000000000

.000000000000000

.000000000000000

-.593297250589336
.580017836681617
.218509802415124
.199123441354269
.000000000000000
.000000000000000

.000000000000000

.000000000000000

.072236642683449

.489752152327848

.000000000000000

.000000000000000
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COLUMNS 5 THRU6
B -.000000000000001

.000000000000001
-.835655677041274
-4.439648521477558
6.954830268687245
.000000000000000

s =.000000000000000
000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

000000000000000
000000000000000

3.024916362360086 .406580022992879

Only two cycles were required, since the first separates out the common row space of
dimension 2, and then the second produces parallel rows in this row space. This is
because a 2 x 2 GSVD is solved exactly in one step. Note the small nonzeros in positions
(1, 5) and (2, 5) of B. These were ignored by the use of the tolerance.

Example 3. rank (A) rank (B) 4, common row space dimension 3.

cycle 2 3 4 5

error .33 .003 2x 10"*(-9) 9x 10"*(-17)

After the QR decomposition, the original matrices were:

COLUMNS 1THRU 4
A -1.483754207808792

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

-2.754569846168734
-.660367822613970
.000000000000000
.000000000000000
.000000000000000
.000000000000000

-1.901063717347766
-.558467086690151
-.190188592370571
.000000000000000
.000000000000000
.000000000000000

COLUMNS 5 THRU6
A -1.814262790205398

-.263343099599686
-.220470422637046
-.149658467473861
.000000000000000
.000000000000000

-2.047678638962671
-.264594139637406
-.284218707808010
-.071714348021438
.000000000000000
.000000000000000

COLUMNS 1THRU 4
B -3.123355429329773

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

-5.020366343436982
.207884167869281
.000000000000000
.000000000000000
.000000000000000
.000000000000000

-2.972191466297970
.158033933963608
.107328952460706
.000000000000000
.000000000000000
.000000000000000

COLUMNS 5 THRU 6
B -4.217468529709810

.227500717178881
-.275289576213577
.269744345263956
.000000000000000
.000000000000000

-4.339624584281506
.164471791036765

-.216390069125860
.300087815368396
.000000000000000
.000000000000000

-3.134725173442366
-.472306743711252
-.444428846555170
-.047939573588338
.000000000000000
.000000000000000

-5.812154899974686
.182365676077579

-.021768478702607
.219692246210581
.000000000000000
.000000000000000
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After 4 steps of the GSVD algorithm the matrices were:

COLUMNS 1THRU4
A -.152535367220157

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

COLUMNS 5 THRU6
A -3.535137973645832

-3.172167996024390
1.906135608940945
2.258917563058958
.000000000000000
.000000000000000

COLUMNS 1THRU 4
B =.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

COLUMNS 5 THRU6
B .000000000000000

-.904300687351262
-1.289390033379685
5.722791864318372
8.899102416565753
.000000000000000

s =.000000000000000
.000000000000000

.215310202586866

.427810977395549

.000000000000000

.000000000000000

.000000000000000

.000000000000000

-.277325505745866
-.029228351378672
-.212975875737842
.000000000000000
.000000000000000
.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.121957526020080

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000
-.008332225239963
.144065810553351
.000000000000000
.000000000000000
.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

.000000000000000

-.659393620451283
-.206360377382993
.175581097281234
.194134471721972
.000000000000000
.000000000000000

.000000000000000
-.058827852542294
-.118770414771316
.491824577188100
.000000000000000
.000000000000000

7. Comments. We have suggested a straightforward algorithm for computing the
GSVD of given matrices A(m x n) and B(p x n), or the CSD of a partitioned unitary
matrix. The approach is a unified one whereby the A and B matrices are transformed
separately with unitary transformations (orthogonal transformations when A and B
are real) and no difficult rank decisions need be made during the computation. Because
of its simplicity the algorithm is fairly easy to program, however the proof of correctness
here was long and involved, and it is hoped that someone else can derive a more brief
and straightforward proof.

For most problems the criterion (2.2) need not be enforced, however it would
appear to be theoretically necessary as the following example suggests. Let

(7.1) C c

0

3.507868610954851 1.478323517008020 .394722998252534
000000000000000

Again the algorithm behaved as well as could be hoped.
These examples show that the theoretical behaviour described in {} 5 also occurs

in practice. This is not too surprising since each of A and B is subject to unitary
transformations only. There is one caveat here, and that is that the nonzero singular
values of A and B are all in a reasonable range, so none of the final nonzero rows is
very small. If they were, we would not be able to use (6.3) as our test for convergence,
because rounding errors would stop (6.2) being that small. It is clear that improvements
will be needed in a production code.
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and apply Kogbetliantz’ algorithm to this, exchanging rows and j, and columns and
j, each (i, j) transformation. After 6 such transformations the matrix will be identical
to its starting value (7.1), so there is no convergence.

The numerical behaviour of the algorithm has so far been exemplary. By following
the work of Wilkinson [20] we know that with correct use of unitary rotations our
computed matrices Ak) and Bk) will be the exact result of applying unitary matrices
U(k), V(k) and Q(k) to slightly perturbed initial data A+A(k) and B +B(k), so that
if we obtain convergence we can be confident about our results. We have not proven
convergence in the presence of rounding errors, but all the tests run so far have
converged pleasingly swiftly, rarely taking more than 6 cycles to give full precision
using MATLAB on a VAX 11/750.

The ultimate convergence appears to be at least quadratic. The method implicitly
applies Kogbetliantz’ method, for which quadratic convergence has recently been
proven when there are no pathologically close singular values [21], and work on the
general case is in progress. One delightful observation that may contribute to the
understanding of convergence is the following.

RESULT 3. Kogbetliantz’ serial-cyclic algorithm applied to nonsingular triangular
C also implicitly applies the algorithm to C-1.

This means the algorithm is diagonalizing C and C- in exactly the same way at
the same time, and this could help convergence. The result can be proven by examining
the form of C and C- during the elimination of the of[diagonal elements of the first
row of C as in (2.3), and using induction. Note however that the rate of convergence
is similar for triangular and full C.

For our algorithm the above result means that if A and B are nonsingular the
algorithm is implicitly diagonalizing AB-1 and BA- simultaneously, so that A and B
are treated completely equally, However the iterative algorithm also works with singular
square A and B, and in this case we have the following.

RESULT 4. The algorithm (5.13) implicitly applies Kogbetliantz’ algorithm to both
A adj (B) and B adj (A).

This is not a very significant result if for example the rank of B is less than n- 1,
for then adj (B) 0. However it does indicate that this is an equal opportunity algorithm.

8. Systolic array implementation. A brief sketch will be given here describing how
this GSVD algorithm can be implemented for systolic array computations. This was
first worked out by W. M. Gentleman [22], but since he did not have time to write it
up, this outline is included to round out the presentation. The term "rotation" will be
used loosely to mean either a 2 x 2 unitary rotation or a 2 x 2 elementary unitary
hermitian.

The important step is to implement Kogbetliantz’ basic algorithm in a way that
can be transferred effectively to systolic array processors. The physical ordering
presented in (2.1) and (2.3) cannot be used because it combines rows and columns
and j where the pair (i,j) cycles through (1,2), (1,3),..., (1, n); (2,3),....,
(2, n); (n 1, n), which does not allow a lot of concurrency. The ideal ordering
will only apply rotations to adjacent rows and to adjacent columns. The ordering
suggested by Gentleman starts with an upper triangular matrix as in (2.3), and gives
theoretically identical results to the one in (2.3), but one cycle leaves the matrix in
upper triangular form rather than lower triangular form as in (2.3). In fact if

(8.1) cl sl and c2

Sl Cl S2 C2
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are the nontrivial elements of the left and right rotations respectively for one 2 x 2
SVD in (2.3), then in Gentleman’s ordering the left and right rotations have the diagonal
blocks

()Sl Cl and s2(8.2)
-Cl sl c2 s2

respectively.
Thus the ordering corresponds to the same rotations on the same elements as in

(2.3), with each rotation followed by a permutation. We illustrate this with the equivalent
diagram to (2.3), but include indices which indicate the position of each corresponding
element in (2.3). The element to be eliminated is underlined immediately prior to
elimination.

11 12 13 14--- 22 23 24--- 22 23 21 24--- 22 23 24 21
22 23 24 11 13 14 33 34 33 34 31

33 34 33 34 11 14 44
44 44 44 11

(8.3)
33 34 31 33 34 32 31 -- 44 42 41

22 24 21 44 41 33 32 31
44 22 21 22 21

11 11 11

Thus the rotations are in the (i, j) plane where (i, j) goes through (1, 2), (2, 3), (3, 4),. ,
(n-l, n); (1, 2), (2, 3),..., (n-2, n-l); (1, 2), (2,3); (1,2). Only adjacent rows
or columns are combined, so this is suitable for implementation using systolic array
processors. However, if sequential computations are used, this approach can be made
to give numerically identical results to that in (2.3). This parallels the ordering that
Stewart [23] uses for the unsymmetric eigenvalue problem.

If we refer to (8.3) as the forward cycle, then the next cycle is referred to as the
reverse cycle, and has rotations in the planes (n-l,n); (n-2, n-1),..., (1,2);
(n-l, n), (n-2, n-l),. ., (2, 3);. (n-l, n), (n-2, n-l); (n-l, n). Choosing
the angles correctly will mean that this gives exactly the same upper triangular matrix
as the two cycles described by (2.3) and its following paragraph. Sweep would perhaps
be a more satisfactory term than cycle here.

The way this method can be applied to obtaining the GSVD of A and B, or the
SVD of AB as in [8], is now easy to see. If A, B and C are upper triangular, and Aij,
B0 and Co are 2x2 matrices with the (i, i), (i,j), (j, i) and (j;j) elements of A, B and
C respectively, and j / 1, then

(8.4) A CoB if A CB and

(8.5) C AB if C AB.

Thus if we keep A and B upper triangular throughout the computation, the three
implicitly defined elements of C required for each 2 x 2 SVD in (8.3) will be available
just as they were in (2.7) for example. If we now concentrate on the GSVD of A and
B, the computation corresponding to (2.7) will have the rotation k in (2.7) followed
by a permutation, and the rotation k’ followed by a permutation, but k" will now be
chosen to eliminate the (2, 1) elements of Aij and Bo, rather than the (1, 2) element
as in (2.7). Since with j i+ 1 this gives the correct transformation for C in (8.3), and
keeps both A and B upper triangular, the computations for C in (8.3) can be carried
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through implicitly by only applying rotations to adjacent rows and to adjacent columns
of both A and B. And it can be seen from (2.9) that these occur in exactly the same
order as for C in (8.3). What is more with sequential computations this can be made
numerically identical to the earlier GSVD, since the permutations after k and k’ in
(2.7) ensure the new k" is acting on the same elements as k" in (2.7).

We will leave the details of the systolic array implementation to others. It suffices
here to point out in (8.3) for example, that while the element marked 12 is being
eliminated in this forward cycle, the element in the position marked 34 in that first
matrix can be eliminated as part of the previous reverse cycle. Similarly 14 and 23 in
the 3rd and 4th matrices can be eliminated simultaneously, as can 34 in the 6th and
21 (corresponding to the reverse cycle) in the 7th.

In conclusion this very nice ordering initially proposed by Stewart for the eigen-
problem [23], and now by Gentleman [22] for the SVD and GSVD, is a very natural
and easy one to follow and implement, and appears to be the correct approach to use
in implementing such algorithms using systolic array processors.
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Abstract. An algorithm is developed for computing the singular value decomposition of a product of
two general matrices without explicitly forming the product. The algorithm is based on an earlier Jacobi-like
method due to Kogbetliantz and uses plane rotations applied to the two matrices separately. A triangular
variant of the basic algorithm is developed that reduces the amount of work required.
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1. Introduction. The singular value decomposition is one of the most useful and
powerful tools of numerical linear algebra and arises in many application areas such
as statistical analysis, image processing, and control theory. The singular value
decomposition (SVD) of an m x n matrix A has the form

(1.1) A= VXVr,
where U and V are orthogonal matrices of order m and n, respectively, and X is an
m x n nonnegative diagonal matrix. (For convenience we assume rn->_ n; if this is not
the case, we work with the transpose. We also assume that all matrices are real, but
all of our developments also apply to complex matrices with the obvious changes, e.g.,
unitary replaces orthogonal, conjugate transpose replaces transpose, etc.) The diagonal
elements tri of X are called the singular values of A and by convention are ordered
so that tr >_- tr2->_" or, ->_ 0. The singular values of A are the nonnegative square roots
of the eigenvalues of the symmetric matrix ATA, and the columns of U and V are
orthonormal eigenvectors of AAr and ArA, respectively. For purposes of numerical
computation, however, explicit formation of either of these product matrices is inadvis-
able because of a potential loss of information in finite precision arithmetic, as shown
in the following simple example 11 ].

Let

I1 11(1.2) A= 8 0

0

with 2 < e << , where e is the relative floating-point machine precision. We then obtain
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the computed floating-point result

(1.3) fl(aT"A)=[ 11 1].1
The matrix of (1.3) has eigenvalues 0 and 2, whereas the true eigenvalues of ATA are
82 and 2 + 82. Computing the singular values of A given by (1.2) with a numerically
stable algorithm 11] can be expected to give values at least as good as 8 + O(e) and
(2 + 82) 1/2 + O(e), which is a much more satisfactory result than that obtained by taking
square roots of the eigenvalues of (1.3).

Here we are concerned with the more difficult problem of computing the SVD of
a product

A= BrC
as accurately as possible for given B and C using a given precision. The preceding
discussion indicates that this should be done without first forming Fl(BC). This
problem arises in a number of applications, including the orthogonal Procrustes
problem in statistics [12, pp. 425-426], which determines how closely two subspaces
match under orthogonal transformations. Our interest in computing the SVD of a
product was originally motivated by a problem in control theory that is sketched in
an appendix to this paper; full details will be found in [ 14]. The problem arises more
generally in the following form:

Problem. For a given p x m matrix B and p x n matrix C, find orthogonal matrices
U and V of order m and n, respectively, such that the columns of

(1.4) B=BU and C=CV

form biorthogonal sets.
To solve this problem theoretically, consider the SVD

(1.5) a BTC UYVr,
where U, V, and E are as in (1.1). Then

ucv= UAV=r,,
and the problem is solved. If we consider the angle ffi between the ith columns of B
and , we have

(1.6) / , ,= ,11_ I1,11= cos,,,
so a small tr, could result from a small Ilt;,ll or I1 ,11, or from a , close to r/2. The
cos ffi often provide important information about the problem. For example, they
determine the condition of the problem considered in [14].

A special case of the biorthogonalization problem (1.4) is when each of B and C
has orthonormal columns (such B and C may have resulted, for example, from
orthogonalization of the columns of more general matrices), and then in (1.6) we have
o-i= cos ff, and the are the canonical (principal) angles between the range spaces
of B and C [12, pp. 428-429].

In order to develop an algorithm for computing the SVD in (1.5) accurately, we
first discuss in 2 an algorithm originally due to Kogbetliantz 16] for computing the
SVD of any given matrix A. Although the computational cost of this algorithm on
traditional digital computers appears to be of the same order as that of the standard
SVD algorithm 11 ], in practice it usually requires greater execution time. The algorithm
of Kogbetliantz has the virtue of simplicity, however, so that it is more readily adaptable,
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for example, to parallel computation [ 1 and, most importantly for our problem, it is
ideally suited to computing the SVD in (1.5) without initially forming BrC. In 3 we
discuss the important subproblem of computing the SVD of a 2 x 2 matrix. In 4 we
develop a triangular variant of the basic algorithm which reduces the amount of work
required. In 5 we apply the basic algorithm and triangular variant to compute the
SVD in (1.5). The paper concludes with a discussion of implementation details and
test results and an appendix in which we sketch the application that motivated our
work.

We will use the notation that a matrix Ak has columns ak) and elements ak).

2. A Jacobi-like SVD algorithm. A plane rotation matrix J(i,j, O) of order n is
equal to the identity matrix of order n except for the four elements in the intersections
of rows and columns and j, and this 2 x 2 submatrix has the form

where c cos(0) and s sin(0). These orthogonal matrices are useful tools in numerical
linear algebra because they can be used to introduce zeros selectively into a matrix in
a numerically stable manner, which is an important step toward reducing the matrix
to some simpler form (e.g., triangular or diagonal).

Jacobi’s method is an iterative algorithm for diagonalizing a symmetric matrix
A= A in which at iteration k a plane rotation Jk=J(ik, jk, Ok) is chosen so as to
annihilate a symmetric pair of off-diagonal elements:

(2.1) ,(k+l)
S C Olji --S C otjj

The off-diagonal mass ofthe matrix is thereby reduced at each iteration, the Ak converge
to a diagonal matrix, and the product of the Jk converges to a matrix of orthogonal
eigenvectors. If the off-diagonal elements are annihilated in a reasonable, systematic
order (numerous strategies have been used, the most popular being ofcyclic or threshold
type), then the convergence rate is ultimately quadratic. Jacobi first published his
method in 1845, and it was the standard algorithm for symmetric eigenproblems for
about a century until being superseded by the somewhat more efficient symmetric QR
algorithm. See [12, pp. 303-305] for references to Jacobi’s original work and to the
many convergence analyses, numerical refinements, and generalizations of this fascinat-
ing algorithm. There has been renewed interest in Jacobi’s algorithm in recent years
because its simplicity and compactness lend themselves to implementation on very
small computers or to parallel computation.

Jacobi’s algorithm has been generalized in various ways for nonsymmetric matrices.
These include annihilating only one of the two off-diagonal elements at each iteration
in computing the Schur decomposition and the use of nonorthogonal elementary
matrices instead of rotations in diagonalizing nonnormal matrices. The most interesting
generalization from our point of view is the use of different rotations on each side of
Ak in order to compute the SVD of a (not necessarily square) matrix, in effect reducing
the SVD computation to a sequence of 2 x 2 SVD’s. This approach appears to have
been suggested first by Kogbetliantz [16], has been analyzed by Forsythe and Henrici
[6], has now become a textbook exercise [12, p. 301], and has been implemented for
parallel computation [ 1]. We will refer to it as the Kogbetliantz algorithm.

We now describe the algorithm in more detail. For <j we define an (i, j) reduction
of Ak to be a rotation J(i,j, 01) T applied to rows and j, and another rotation J(i,j, 02)
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applied to columns and j, so that the resulting Ak+l has zeros in positions (i,j) and
(j, i). These rotations are determined from the SVD of the 2 x 2 submatrix

Cl O[.)ik) Ol --S2 C2 0 t.tjj

where c=cos(0), etc. (Strictly speaking, one must generalize either the notion of
rotation or of SVD in order for this statement to be true; we return to this point in
the next section.) For a square matrix A= A, Kogbetliantz [16] suggested applying
such reductions in cycles of n(n-1)/2 steps in row- or column-major order. Thus,
one sweep of the serial version of the cyclic algorithm is given by

for i:= 1,. ., n-1
forj:= i+l,..., n

(2.3) begin
Ak/ := (i,j) reduction of Ak;
k:= k+l;
end;

If A is symmetric, then this is just one sweep of the cyclic Jacobi algorithm for the
symmetric eigenproblem. As with Jacobi’s method, it appears experimentally that this
algorithm has ultimate quadratic convergence, and usually requires fewer than 10
sweeps to converge to within machine precision. Clearly we could use other strategies
for ordering the reduction steps, analogous to those suggested for the Jacobi algorithm.
The algorithm is also applicable to a nonsquare rn x n matrix A if we change the limits
on the for-loops appropriately (e.g., if rn > n, then := 1, , n and j := + 1, , m)
and, in the (i,j) reduction, omit the rotation on the right whenever j > n.

Kogbetliantz introduced his iterative diagonalization not specifically to compute
the SVD, but in order to solve square systems of linear equations involving general
and special complex matrices. He appears to have had a limited awareness of the
importance of the SVD for other purposes. Kogbetliantz tested the algorithm experi-
mentally on a new IBM 701, which diagonalized a 32x32 matrix with "extreme
rapidity" in 23 minutes, including 4 minutes to print out the answers!. He checked the
accuracy of the method by reconstructing the original matrix from the diagonal matrix
and accumulated orthogonal factors, and he found the results quite satisfactory.

3. SVD of a 2 x 2 matrix. Accurate and efficient computation of the SVD for 2 x 2
submatrices is the most important subproblem in the general SVD algorithm described
in 2. Several factors make it less than obvious how best to solve this subproblem.
First, the angles 01 and 02 necessary to annihilate the off-diagonals in (2.2) are not
unique. This ambiguity is usually resolved by restricting the domain of possible angles,
and most rigorous convergence analyses of Jacobi-like methods have been based on
such a restriction. Second, if we follow the usual straightforward recipe for computing
the rotations, the resulting diagonal elements in (2.2) will not necessarily be ordered
by magnitude, nor will they necessarily be nonnegative, and thus we do not have the
true SVD in the strict sense of (1.1). The diagonal elements can always be reordered
by permutations (which are special cases of rotations), but adjusting their signs may
require a reflection. Thus we must either be content with this "unnormalized" SVD or
allow 2 x 2 reflections as well as rotations. We will choose the former approach. A
third factor to consider is that if the 2 x 2 input matrix is badly scaled, the 2 x 2 SVD
computation can encounter numerical difficulties analogous to those for the (logically
equivalent) problem of solving quadratic equations [5]. Thus, we must guard against
overflow, cancellation error, etc.
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Kogbetliantz 16] derived straightforward formulas for the necessary rotations in
(2.2), but gave little attention to possible numerical difficulties. Forsythe and Henrici
[6] suggested an approach to computing the rotations that leads to a numerically robust
but fairly complicated algorithm that is stated in detail as algorithm FHSVD in [1].
A simpler but numerically quite effective approach is suggested by Golub and Van
Loan (see [12, p. 301]), who propose first symmetrizing the 2 x 2 input matrix with a
rotation, then diagonalizing the resulting symmetric matrix with a single rotation
applied on both sides (as in (2.1)). The product of the diagonalizing and symmetrizing
rotations then gives one of the two rotations sought, while the diagonalizing rotation
alone gives the other. A detailed implementation of this idea is stated as algorithm
USVD in [1 ], and this is essentially the algorithm we use. Brent, Luk and Van Loan
1 ] empirically found USVD to be as effective as FHSVD, and also found the "unnor-
malized" 2 x 2 SVD to be just as effective as the standard 2 x 2 SVD in the context of
the Jacobi SVD algorithm. If we want the standard SVD as final result, then after the
Kogbetliantz algorithm has converged we will need to reorder the diagonal elements
of and alter their signs, adjusting the orthogonal factors Uand V accordingly.

4. SVD of a triangular matrix. Efficiency can often be gained in computing the
SVD if the input matrix is first orthogonally transformed into triangular form [2]. This
raises the question of how the Kogbetliantz algorithm behaves when applied to
triangular matrices. The somewhat surprising answer is that one serial sweep of the
form (2.3) transforms an upper triangular matrix into a lower triangular one, or a
lower triangular matrix into an upper triangular one. Thus, as iterations proceed, the
matrices Ak alternate between upper and lower triangular forms. We illustrate this
phenomenon for a 4 x 4 upper triangular matrix in Fig. 1, which shows one complete
sweep of (2.3) with original nonzeros indicated by x, zeros by blank, newly created
nonzeros (fill) by +, and the nonzero to be eliminated next is circled (there is only
one rather than two because the matrix is triangular).

x(R)xx x (R)x x (R)
xxx xxx +xxx +x(R)x

X X X X X X + X X

X X X X

X X

+ x (R) + x + x
+ x x + + x (R) + +

X + X +

FIG. 1. Transformation from upper to lower triangularform by one sweep.

The proof that the same transformation occurs for general n is by induction.
Suppose one serial sw.eep on an (n- 1)x (n- 1) upper triangular matrix results in a
lower triangular matrix. For an n x n upper triangular matrix the (1, 2) reduction
eliminates the (1, 2) element, while for j 3,. , n the (1,j) reduction eliminates the
(1, j) element and introduces a (j 1, 1) element. Thus the trailing n 1) n 1)block
is still upper triangular after these reductions. The remaining reductions serially
transform this trailing block to lower triangular form, and, since these combine only
columns 2,..., n and rows 2,..., n, the off-diagonal zeros in the first row remain.
Thus, the resulting n x n matrix is lower triangular. Applying the reductions to a lower
triangular matrix is equivalent to applying the above process to its transpose, and our
result follows.
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Using r-multiplication rotations, where r 2, 3, or 4 (see [8], [13]), the method
on a full nxn matrix A requires n(n-1)/2 SVD’s of full 2x2 matrices, and about
rn multiplications and n3 additions per sweep to apply the rotations to produce the
new A. For triangular A the method requires n(n-1)/2 SVDs of triangular 2 x 2
matrices, and about rn3/2 multiplications and n3 additions per sweep to apply the
rotations to produce the new triangular A. In either case, we will need an additional
rn3/2 multiplications and n3/2 additions per sweep to accumulate each of U and V
in (1.1), if desired. Since in practice we have found that about six to eight sweeps are
required for full accuracy, even this more efficient triangular variant ofthe Kogbetliantz
algorithm is not competitive with the standard algorithm 11 for large n on a general
purpose computer. However, initial tests suggest that it is just as accurate and reliable,
and therefore its compactness and simplicity may give it some utility for small n on
small computers. An overriding advantage of the Kogbetliantz algorithm for our
purposes is its applicability to computing the SVD of a product of matrices.

Although the triangular variant of the Kogbetliantz algorithm reduces the work
required, it seems to restrict the order of eliminations to the serial ordering of (2.3),
and thus rules out an ordering suited to parallel computation, such as those in [22]
and [1]. However, if the eliminations are accompanied by pairwise interchanges of
rows and columns as in [24], then a parallel implementation is possible, as was pointed
out to the authors by Gentleman [9]. Another interesting possibility suggested by the
triangular variant is to store the matrix in a packed triangular form in a one-dimensional
array (rather than a rectangular array), performing the algorithm in place, and thereby
conserving storage. Unfortunately, such an approach lessens the simplicity of coding
that is one of the nicest features of the algorithm, makes a parallel implementation
more difficult, and is of questionable value since the triangular matrix will usually
have resulted from preliminary factorization of a general matrix that would require
rectangular storage anyway.

5. SVD of a lrotluet of matrices. We now turn to the application of the Kogbetliantz
algorithm to compute the SVD of a product of two matrices. We first describe the
algorithm as applied to A BrC without any initial transformations of B or C. At
step k we have Bk and Ck, and the four elements needed in (2.2) are computed as in

:=

The resulting rotations are then applied separately to Bk and Ck to obtain

Bk+ := BkJ(i, 0) and Ck+ := CkJ(i, 02).

We make several observations about this approach.
1. Since this algorithm is theoretically equivalent to the original algorithm for Ak,

the reduction of off-diagonal mass at each step and consequent convergence
properties are theoretically the same.

2. Only two columns of Bk and two columns of C k are touched (read or modified)
at each step.

3. Only four elements of Ak are computed at each step, and even this can be
improved, since two of the four are always diagonal elements and these may
be known from previous steps. In particular, if we make use of the knowledge

(k-t-l) and ,.,,(k+l)of a ii jj we require four vector inner products in designing the
(1,2) reduction, but only three inner products for each of the (1,3), ,(1, n)
reductions, and only two inner products for each of the remaining reductions
in a sweep.
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4. A seemingly unsatisfactory aspect is that we actually form part of BCk at
each step, and our original aim was to avoid forming BrC. This is not too
dangerous, however, since the few elements we form are used only in designing
the rotations, and the rotations are then applied to the individual Bk and Ck.

(k)Thus, any information lost in computing these a ij may have a small effect on
convergence, but should not affect the ultimate accuracy of the computed
results. A similar situation is encountered in [11] for computing the SVD of
general A.

5. When B C, this method effectively specializes to the one-sided method of
Hestenes [15] for computing the SVD of B. See also [3] and [19].

As with the original algorithm, the cost per sweep can be reduced for the product
algorithm by using the triangular variant described in 4. This requires a preliminary
orthogonal transformation of B and C into triangular form, which we now describe.
Recall that we are assuming that B is p x m and C is p x n, with m => n. Thus there
are two cases:

i). p >-n" Choose an orthogonal matrix Q of order p such that

QTc--[C1]0

with C upper triangular and n x n. If we partition

similarly, then

BT.QQT.C,, 7.=[B ’B]
0

ii). n > p" Choose an orthogonal matrix Q of order n such that

CQ=[C, 0],

with C upper triangular and p x p. Then

BTCQ= [/TC 0]

where in this case we merely take B B.
In either case we now require only the SVD of TC, so we choose an orthogonal

matrix P of order m such that

with B1 upper triangular and either n x n (case i) or p x p (case ii). Thus, all cases
reduce to the problem of computing the SVD of the triangular matrix

(5.1) AI= B’(Cl,
where B1r and C are upper triangular, and all three matrices are either n x n or p x p,
depending on whether n or p is smaller. For definiteness, we henceforth assume that
Band C in (5.1) are n x n. Note that in computing these orthogonal transformations
of the original problem we need make no assumptions or decisions regarding rank.
We simply carry through with standard orthogonal factorization procedures, and any
zero or small singular values will be revealed in the subsequent iterative phase.
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The triangular variant of the Kogbetliantz algorithm is now applicable to A1, but
unfortunately the preservation of triangularity upon which the triangular variant
depends does not hold for the triangular factors B and C1. We therefore use an
additional rotation at each step to restore both factors to triangular form, as we now

(k) andshow. At a given step k, after the (i,j) reduction has implicitly annihilated a 0
t)k)using rotations J(i,j, 01) and J(i,j, 02), we choose a third rotation J(i,j, 03) which
annihilates the (i,j) elements of both J(i,j, 01)rBand J(i,j, O2)Ck. The net result is
that we implicitly have

(5.2) Ak+l {J(i,j, 01)rBJ(i,j, 03) T} {J(i,j, 03)CkJ(i,j, 02)} B[+lCk+l,
with Bk+l and Ck+ having a nonzero pattern which, like that of Ak+l, preserves
triangularity over a full sweep. We illustrate the details of this procedure by means of
a 3 x 3 example shown in Fig. 2, beginning a sweep with upper triangular matrices and
finishing with lower triangular ones. The first two columns of matrices in the figure
show operations explicitly performed on Bk

7" and C k, while the third column shows
"the implicit operations for Ak. Original nonzeros are indicated by x, zeros by blank,
newly created nonzeros (fill) by +, and nonzeros to be eliminated next are circled.

To see why a single rotation J(i,j, 03) suffices to annihilate elements of both B1
and Cl(after J(i,j, 01) and J(i,j, 02) have been applied), consider the first step in Fig.
2. Although the (1, 2) reduction annihilates the (1, 2) element of A1, the (1, 2) elements
of B,r and C1 remain nonzero in general, and their (2,1) elements become nonzero

X X X X X X

X X X

X

(R) x (R) x

+ X -#- X X

X X

X )

+ X + X X X X

X

x (R) (R) x

+ X X + X + X

-#- "4-

X

+ + X X + X

+ X + X X

X X

+ x (R) + (R) +

+ + + + X +

X X X

+ X + X

+ + X + +

FIG. 2. Transformation from upper to lower triangular form.
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as well. If we now design a rotation J(1, 2, 03) based on C1 to make the (1, 2) element
(2) of C is nonzero, then the (1, 2)’12

(2) of C2 zero, and the resulting (2, 2) element 1,22 2
,(2)element P21 of B must necessarily be zero, since

a 11 11 fl]) rll
(2)

0 (2) (2) o(2)] (2) (2)
22 fl2 P22# r2 r22a

If instead the rotation is based on B1 and designed to make the (I, 2) element of B
zero, and the resulting (I, I) element of B2 is nonzero, then the (I, 2) element of Ca
must necessarily be zero. We can choose which of the two matrices to use in designing
the rotation by comparing magnitudes of the flll and T22 that would result. Thus we
can design the rotation on B if, for example,

221

and otherwise on C1. In this way we can guarantee that J(i,j, 03) annihilates the (i,j)
elements of both J(i,j, OI)7"B[ and CkJ(i,j, 02). The proof that this approach works
for higher dimensional matrices is similar to the induction proof in 4.

Because of the form of the Ak, Bk and Ck, we have for each (i,j) reduction

"(5.3)
a a 0 fl fl> ,, 70 I

which is superior to forming three inner products between vectors of p elements each.
In fact, the three rotations J(i,j, 0), J(i,j, 02), and J(i,j, 03) can all be designed from
the six elements in the right side of (5.3). Together they transform (5.3) into

[ (k+l)uii 0 ] [/,-(k+l)=r" ii 0 ] [ (k+l).yii 0 ]0 tt."
(k+l) r-’/jR(k+l) r"jjR(k+l) Yji"

(k+l)
Yjj-
(k+l)

Thus the triangular variant of the Kogbetliantz algorithm is applicable to a product
of triangular matrices, and the triangular form of the factors can be preserved. Note
that the matrices B[ and C k do not converge to diagonal matrices, in general, even
though their product does.

As was remarked earlier, the algorithm we have just presented is theoretically
equivalent to the Kogbetliantz SVD algorithm, the convergence of which is shown in
[6]. In [20] an ultimately quadratic convergence rate for this algorithm is established,
provided there are no pathologically close singular values. Since the matrices B and
C are transformed separately using only unitary matrices, standard error analysis
shows that the computed triangular factors are exact for initial matrices very close to
B and C. Thus, the product algorithm is a numerically stable implementation of a
convergent iteration. A simple bound on the error in the singular values computed by
this algorithm is no better than that for the conventional SVD algorithm applied to
the explicitly computed product, and indeed we expect no greater accuracy for the
larger singular values. If there is substantial variation in magnitude of the singular
values, however, then the product algorithm usually has greater accuracy for computing
the smaller singular values since the error in the computed elements on which the
rotations depend is not necessarily dominated by the errors in the largest elements of
the two matrices. The numerical test results given in the next section bear out these
expectations.

6. Test results and conclusions. We have written a Fortran program implementing
the triangular variant of the product algorithm developed in 5. In our code, the
preliminary orthogonal transformations of BT and C to upper triangular form are
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performed using the orthogonal factorization package of Wright and Glassman [26].
After the preliminary triangularization, the algorithm proceeds in a sequence of double
sweeps, each of which transforms both matrices from upper triangular form to lower
triangular form and then back to upper triangular form. To solve the 2 x 2 SVD
subproblems we explicitly form the triangular 2x2 product in (5.3), then apply
algorithm USVD of 1 ]. Note that the latter takes no advantage of triangularity; indeed,
the symmetrization step destroys triangularity. We have found no numerically stable
approach to the 2 x 2 subproblem which avoids explicitly forming the product (5.3)
and takes significant advantage of triangularity.

An individual (i, j) reduction step is skipped if the 2 x 2 matrix to be diagonalized
is already diagonal to within some relative tolerance, which we always take to be the
relative floating-point machine precision. Convergence is declared if all reductions are
skipped for an entire sweep. By maintaining the two matrices B and C1 separately
throughout, at convergence we have produced two triangular matrices (not necessarily
diagonal) whose product gives the diagonal matrix of (1.5). This product need not
necessarily be formed unless we are interested in the singular values themselves; for
example, we might want merely to compute the matrices in (1.4). The orthogonal
matrices U and V of (1.5) are formed by accumulating the rotations J(i,j, 01) and
J(i,j, 02) from each (i, j) reduction step on the orthogonal matrices P and Q that
initially triangularized/7- and C, respectively.

To test the algorithm we generated pairs of random matrices whose products have
known singular values. Specifically, let 1 and 2 be known nonnegative diagonal
matrices of order p x m and p x n, respectively. Using the technique of Stewart [23],
generate random orthogonal matrices W1, W2, and W3 oforder p, m, and n, respectively.
If we now take

(6.1) B Wl-- W2T and C W1Z2 W3r,
then the singular values of BrC are given by the diagonal elements of E rE2. In this
way we can generate random test problems having whatever distribution of singular
values and whatever relative weighting of the two matrices we may desire.

All computations were carried out on a DEC Vax 11/780, which has a relative
floating-point precision of about 6.0 x 10-8 in single precision and about 1.4 x 10-17 in
double precision. In order to emphasize rounding effects, we tested our algorithm
primarily in single precision. For comparison, we explicitly computed in single precision
the product BrC and then computed its SVD using the single precision LINPACK
[4] routine SSVDC, which uses an algorithm based on [11]. As an accuracy benchmark,
we also computed in double precision the product BrC and then computed its SVD
using the analogous double precision LINPACK routine DSVDC.

In order to make the input matrices B and C as accurate as possible, the
computations in (6.1) were carried out in double precision, and the resulting B and
C rounded to single precision. Even so, the singular values of the product as computed
by any algorithm cannot be expected to agree exactly with those of the input E(E2
due to the inexact representation of the input matrices B and C. Thus, the double
precision results using DSVDC for the same input matrix should be used in judging
the accuracy of the single precision results.

For problems having well separated singular values, our algorithm usually conver-
ges to within machine precision in about three or four double sweeps. For problems
having multiple or nearly multiple singular values, however, convergence can be slightly
degraded as the order and multiplicity become larger. These conclusions are illustrated
in Table 1, which gives the average number of double sweeps required for convergence
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over an ensemble of 20 random problems for each of several orders of matrices (with
p-- m n) and distributions of singular values (tri U[0,1] means that the singular
values are random numbers from a uniform distribution on the interval [0,1]). The
high multiplicity case, in which all of the singular values are about 1 or 2, requires
approximately one extra double sweep for the larger problems to attain the same level
of convergence. See [25] for a discussion of the effect of multiple eigenvalues on Jacobi
type algorithms.

TABLE
Average number of double sweeps for convergence.

Order of matrices
Singular
values 5 10 20 40

tri U[0,1] 2.20 2.95 3.10 4.00
o- -2 2.10 2.95 3.00 3.00

tr - 2.10 3.00 3.00 3.60

o’i 2.05 3.00 3.05 4.00

tr + mod( i,2) 1.65 2.80 3.85 4.70

It is somewhat difficult to monitor the detailed convergence behavior, since in the
normal course of the algorithm we never explicitly form the matrix whose off-diagonal
mass is being annihilated (recall that the factors themselves do not become diagonal).
As a check in our experimental code, however, we computed the off-diagonal mass of
the product after each sweep (i.e., each half of a double sweep) and observed a
quadratic asymptotic convergence rate in all cases, including those having multiple
singular values. By a quadratic asymptotic convergence rate we mean that ultimately
the magnitude of the off-diagonal mass of the product, as measured by whatever norm,
is squared by each successive sweep.

For problems having all singular values well above machine precision, our
algorithm produces results which are similar in accuracy to those obtained by explicitly
forming the product BrC and applying the standard algorithm. Our algorithm shows
the expected superiority, however, in computing accurately very. small singular values
of the product. A typical example, with p m n =6 and tri= 10-2(i-1), is shown in
Table 2, in which the input E1 and 2 are shown, along with the computed singular
values resulting from our product algorithm, SSVDC, and DSVDC. The singular values
computed by SSVDC from the explicitly formed single precision product matrix show
a steady decline in accuracy, the smallest computed singular value having no significant

TABLE 2
Computed singular values.

Prod. Alg. SSVDC DSVDC

1.0 1.0 1.000001 1.000000
1.0e- 1.0- 1.000002e-2 1.000000e-2
1.0e-2 1.0e-2 1.000001e-4 1.000082-4
1.0-3 1.0-3 1.000003e-6 .9988159e-6
1.0e-4 1.0e-4 1.000048e-8 2.843042-8
1.0e-5 1.0-5 1.000767e-10 7.477041e-10

1.00000002514
1.00000003954e-2
.999999359846e-4
.999999805948e-6
1.00002308186-8
1.00005751845e-10
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digits of accuracy. The product algorithm, though suffering some loss of accuracy, still
provides about three digits of accuracy in the smallest singular value despite the use
of single precision computations throughout.

We conclude that the algorithm we have presented is a useful alternative for
computing the SVD of a product of two matrices, and is to be preferred when explicit
formation of that product would cause a serious loss of information in finite precision
arithmetic.

Appendix. The need to compute the SVD of a product of two matrices arises
naturally from a problem in linear systems theory involving the computation of system
(or state) balancing transformations. That problem and related aspects are discussed
in detail in, for example, [10], [18], and [21]. Specific details of the application of our
algorithm to system balancing are described in [14].

Briefly, the basic mathematical computation involved is that of computing a
contragredient transformation T. More specifically, given two symmetric positive
definite matrices F and G, we seek a contragredient transformation T such that

T-1FZ-T TrGT A,

with A diagonal. One approach to this problem is to let F have the Cholesky decomposi-
tion

F= LLr,
then compute the symmetric eigendecomposition

Ur(LrGL)U=A2,
where U is orthogonal and A is diagonal with positive diagonal elements. Then

T=LUA-/2

is the desired contragredient balancing transformation. This method was proposed in
[17] for system balancing and is also the basis for EISPACK [7] routines such as
REDUC2 and REBAKB for the generalized eigenproblems ABx Ax and BAx Ax.

Alternatively, and this is the approach taken in [14], one may start with the
Cholesky factorizations

F=LLr and G=MMr
for both F and G (or these may already be available directly; cf. the application
described in [14]). Now compute the SVD of the product

LTM UAVT

using the algorithm developed in the present paper. Then the contragradient balancing
transformation is given by

T=LUA-/
and note also that

T-=A-/2VTMr

If the Cholesky factors L and M are available, we have, in effect, solved the
generalized eigenproblem FGx Ax without forming any matrix products explicitly,
for it may be verified that

T-1FGT A2,
where T and its inverse are as given above.
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COMPUTING THE POLAR DECOMPOSITION---WITH APPLICATIONS*

NICHOLAS J. HIGHAMf

Abstract. A quadratically convergent Newton method for computing the polar decomposition of a
full-rank matrix is presented and analysed. Acceleration parameters are introduced so as to enhance the
initial rate of convergence and it is shown how reliable estimates of the optimal parameters may be computed
in practice.

To add to the known best approximation property of the unitary polar factor, the Hermitian polar
factor H of a nonsingular Hermitian matrix A is shown to be a good positive definite approximation to A
and 1/2(A / H) is shown to be a best Hermitian positive semi-definite approximation to A. Perturbation
bounds for the polar factors are derived.

Applications of the polar decomposition to factor analysis, aerospace computations and optimisation
are outlined; and a new method is derived for computing the square root of a symmetric positive definite
matrix.

Key words, polar decomposition, singular value decomposition, Newton’s method, matrix square root

AMS(MOS) subject classifications. 65F25, 65F30, 65F35

1. Introduction. The polar decomposition is a generalisation to matrices of the
familiar complex number representation z r e i, r ->_ 0.

THEOREM 1.1. Polar Decomposition. Let A Cren, m >= n. Then there exists a matrix
U (3. .mxn and a unique Hermitian positive semi-definite matrix H C" such that

A UH, U* U I,.

If rank A)= n then H is positive definite and U is uniquely determined.
The decomposition is well known and can be found in many textbook, for

example, [13], [16], [27]. An early reference is [1].
It is well known that the polar factor U possesses a best approximation property

(see 2.2). Less attention has been paid in the literature to the Hermitian polar factor
H. We derive some interesting properties of H which show that when A is nonsingular
and Hermitian, H is a good Hermitian positive definite approximation to A and
1/2(A + H) is a best Hermitian positive semi-definite approximation to A.

In view of the properties possessed by the polar factors of a matrix, techniques
for computing the polar decomposition are of interest. While U and H can be obtained
via the singular value decomposition (see 3.1), this approach is not always the most
efficient (if A U, as explained in 6.2) or the most convenient (a library routine for
computing the singular value decomposition might not be available, on a micro-
computer, for example).

In 3 we present and analyse a Newton method for computing the polar decompo-
sition which involves only matrix additions and matrix inversions. The method is
shown to be quadratically convergent. Acceleration parameters are introduced so as
to enhance the initial rate of convergence and it is shown how reliable estimates of
the optimal parameters may be computed in practice. The stability of the method is
considered in 4. In 5 the relationship of the method to two well-known iterations
is described.

* Received by the editors March 13, 1985. This work was carried out with the support of a SERC
Research Studentship.

f Department of Mathematics, University of Manchester, Manchester M13 9PL, England.
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In {} 6 we describe applications of the polar decomposition to factor analysis,
aerospace computations and optimisation. We show how our algorithm may be
employed in these applications and compare it with other methods in use currently.
A new method for computing the square root of a symmetric positive definite matrix
is derived.

2. Properties of the polar decomposition.
2.1. Elementary properties. We begin by noting the close relationship of the polar

decomposition to the singular value decomposition. Let A Cm", m >-- n, have the
singular value decomposition [16, p. 16]

(2.1) A= P(0) Q*’

where P C"m and Q C"" are unitary and

X diag (0-, 0"2, O"n), 0"1 0"2 =>" 0-n 0.

Partitioning
P- [P1, P2 ], P*IP1 In,

it follows that A has the polar decomposition A UH, where

(2.2) U=P1Q*,

(2.3) H=QEQ*.

Conversely, given the polar decomposition A UH e C"", from a spectral decomposi-
tion H QQ* (Q*Q 1) one can construct the singular value decomposition A
(UQ)EQ*.

Several interesting properties of the polar decomposition are displayed in Lemma
2.1. Our notation is as follows. For A C"")t(A) and 0-(A) denote, respectively, the
set of eigenvalues and the set of singular values of A, and rE(A) 0"/0",, is the 2-norm
condition number. C/2 denotes the unique Hermitian positive semi-definite square
root of the Hermitian positive semi-definite matrix C [20], [27]. A is normal if
A’A-AA* [16, p. 193].

LEMMA 2.1. Let A C" have the polar decomposition A UH. Then
(i) H (3*3) 1/2.
(ii) A(H)=0"(H)=0"(A).
(iii) =(H)= (A).
(iv) A is normal if and only if UH HU.
Proof. (i)-(iii) are immediate. For (iv) see [13, p. 276].

2.2. The unitary polar factor. Our interest in the polar decomposition stems from
a best approximation property possessed by the unitary factor. The following result
displays this property; it is the generalisation to complex matrices of a result in 16,
p. 425] (see also [9], [15], [17], [26], [31]). The Frobenius matrix norm is defined by

IIAII (trace (A’A)) 1/2.

THEOREM 2.2. Let A, B Cm" and let B*A C" have the polar decomposition

B*A UH.

Then for any unitary Z C"",
(2.4) IIa- BUII <-IIa- nZll <= IIa + BUII.
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(2.5) IIA+BUII= E (r(A)2+2r(B*A)+o(B)2).
i=1

An important special case of Theorem 2.2 is obtained by taking m n and B L
COROLLARY 2.3. Let A C"" have the polar decomposition

A UH.

Then for any unitary Z C"",

(o’i(A) 1)2 =][A-UI]F<--]]A-ZI[F<--[[A+U[[F (o’i(A) + 1)2
i=1 i=1

Thus if distance is measured in the Frobenius norm, the nearest unitary matrix
to A C"" is the unitary factor in the polar decomposition of A; and the furthest
unitary matrix from A is minus this unitary factor. This result was established by Fan
and Hoffman 12] for any unitarily invariant norm (thus it is valid for the 2-norm). It
is not hard to show that Corollary 2.3 remains true when A C with rn > n (this
does not follow immediately from Theorem 2.2).

2.3. The Hermitian polar factor. As well as yielding a closest unitary matrix, the
polar decomposition provides information about nearby Hermitian positive (semi-)
definite matrices.

Let A e C"" be Hermitian with at least one negative eigenvalue and consider the
problem of finding a small-normed perturbation E E* such that A+ E is positive
semi-definite. Define, for any Hermitian B,

(2.6) 8(B)=min {[[El[2: B+ E is Hermitian positive semi-definite}.

From the Courant-Fischer minimax theory [16, p. 269], any admissible E in the
definition of 6(A) must satisfy

O-< A,,(A + E) _-< A,, (A) + AI(E),

where h,(. <_-. <_- A l(" ). Thus

(2.7) lIE II,->-la,(E)[ >= X,(E) ->_ -A.(A).

We now find a perturbation E for which this lower bound is attained. Let A have the
spectral decomposition

(2.8) A ZAZ*= Azz*, Z*Z I.
i=1

For

i: Ai<0

(or E =-Aft) it is easily seen that A+ E, is singular and Hermitian positive semi-
definite, with It follows from (2.6) and (2.7) that

(2.9) 6(A) -X,(A) (A,(A) < 0).

Now observe, from (2.8), that A has the polar decomposition A UH, where

(2.10) U Z diag (sign (A))Z*, H Z diag (IAI)Z*.
It follows that

(2.11) Ev=1/2(H-A
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Thus 1/2(A+ H)= A+ Ep is a nearest Hermitian positive semi-definite matrix to A in
the 2-norm. This is a special case of a result obtained by Halmos [ 18] that applies to
general non-Hermitian linear operators A.

We summarise our findings in the following lemma.
LEMMA 2.4. Let A C be Hermitian, with the polar decomposition A UH. Then
(i) 8(A) =max {0,-A.(A)}=1/2IIA-HII=.
(ii) 1/2(A + H) is a best Hermitian positive semi-definite approximation to A in the

2-norm.
(iii) For any Hermitian positive (semi-) definite X C"",

IIA- HII= < EllA
(iv) H and A have a common set of eigenvectors.
The lemma shows that from the polar decomposition of a Hermitian matrix A we

can obtain not only a best Hermitian positive semi-definite approximation to A,
1/2(A + H), but also, ifA is nonsingular, a good Hermitian positive definite approximation
to A, H itself. In 6.3 we give an example of how the positive definite approximation
may be utilised.

2.4. P.erturbation bounds for the polar factors. It is of interest both for theoretical
and for practical purposes (see 4) to determine bounds for the changes induced in
the polar factors of a matrix by perturbations in the matrix. The following theorem
provides such bounds.

THEOREM 2.5. Let A C"" be nonsingular, with the polar decomposition A UH.
If e IIaAIl /llAIl satisfies KF(A)e < 1 then A+ AA has the polar decomposition

where
A + AA U+ A U)(H + AH),

IIHII
_-< (1 +x/)KF(A)e + O(e2).

Proof. Let E (1/ e)AA. Then A+ tE is nonsingular for 0 _<- _-< e. Thus A + tE has
the polar decomposition

(2.12) A+ tE U(t)H(t), 0 <- t<= e,

where H(t) is positive definite. We prove the theorem under the assumption that U(t)
and H(t) are twice continuously differentiable functions of t; a rather similar but
longer proof which does not require this assumption may be found in [22].

From (2.12),

H(t)2 (A + tE)*(A + tE),

which gives, on differentiating 16, p. 4] and setting O,

H/:/(0) +/-:/(0)H A*E + E*A.

Since A UH, this can be written as

(2.13) n(o) +/:/(0)H HF+ F’H,
where

F= U*E.
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Let H have the spectral decomposition

H ZAZ*, Z*Z I.

Performing a similarity transformation on (2.13) using Z gives

AH + HA AF+/*A,
where

z*i:I O Z ,, ),

This equation has the solution

i] Ai]-- +jTA], 1<= i, j <= n.

Using the Cauchy-Schwarz inequality,

from which it follows that

_
Z*FZ (.ij ).

Thus

(2.14) II(0)IIF II/:/11 <--1111- IIFII- IIEII.
A Taylor expansion gives

H + AH =-- H(e)= H(O)+ e/:/(O) + O(e) H+ e/-:/(O) +
so that

IIAHII =< II/:/(0) + o() lIE I1 + o(

The required bound is obtained by dividing throughout by ]IH[[ IIAII and using

Now write (2.12) in the form U(t)= (A+ tE)H(t)- and ditterentiate, to obtain

O(t)= EH(t)--(A+ tE)n(t)-llLI(t)n(t)-1.

Setting 0 gives

(J(O) EH- AH-1I:t(O)H- (E U/-7/(0))H-1,
and so, using (2.14),

0(0)11 -< (1 +)llE I1 IIn-lll (1 +,/)llE I1 IIa-111 .
From the Taylor series for U(t),

Ila uIl, u()- u(o) I1,-<_ 110(o) I1, + o(=)
_<--(1 +)eIIEIIIIA-’IIF + o()

(1 + x/)eKF(A) + O(e2),
which gives the required bound, since IIAUII/II UII= IIAUII/#-ff_--< IIAUII.

3. Computing the polar decomposition.
3.1. Using the singular value decomposition. Our constructive derivation of the

polar decomposition in 2 suggests the following computational procedure"
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(1) compute the singular value decomposition (2.1), forming only the first n
columns P1 of P;

(2) form U and H according to (2.2) and (2.3).
This method requires (when A is real) approximately 7mn2/ ll/3n3 flops to compute
P1, E and Q, if we use the Golub-Reinsch SVD algorithm [16, p. 175], plus mn2 flops
to form U and n3/2 flops to form H (see [16, p. 32] for a discussion of the term
"flop"). Since the SVD algorithm is numerically stable and is readily available in
library routines such as LINPACK [11] this SVD approach has much to recommend
it.

We now develop an alternative method for computing the polar decomposition
which does not require the use of sophisticated library routines and which, in certain
circumstances (see 6.2), is computationally much less expensive than the SVD
technique. The method applies to nonsingular square matrices. If A Cm" with m > n
and rank (A)-n then we can first compute a QR factorisation [16, p. 146] A-QR
(where Q C"" has orthonormal columns and R is upper triangular and nonsingular)
and then apply the method to R. The polar decomposition of A is given in terms of
that of R by

A= QR Q(URHR) (QUR)B =-- UH.

3.2. A Newton method. Consider the iteration (the real matrix version of which
is discussed in [3], [4], [5], [6], [28])

(3.1a) Xo A C"", nonsingular,

(3.1b) Xk+I 1/2(Xk / X-*), k O, 1, 2,"’,

where X* denotes (XI)*. We claim that the sequence {Xk} converges quadratically
to the unitary polar factor in A’s polar decomposition. To prove this we make use of
the singular value decomposition

where

(3.2)

Define

(3.3)

Then from (3.1) we obtain

(3.4a)

(3.4b)

A= PEQ*

=- UH,

(P*P=Q*Q=In)

U PQ*, H QEQ*.

Dk P*XkQ.

Dk+ 1/2( Dk + D-*).

Since Do e R"" is diagonal with positive diagonal elements it follows by induction
that the sequence {Dk} is defined and that

(3.5) Dk diag (dk)) e Rnxn, dk) > O.

Accordingly, (3.4) represents n uncoupled scalar iterations

d cry,
l<__i<-n,
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which we recognise as Newton iterations for the square root of 1 with starting values
the singular values of A.

Simple manipulations yield the relations (cf. [19, p. 84], [21])

d(k+l)-- 1
1

(3.6) _, 2dk)(dk)--l)2, l <--i<--_n,

(3.7)
d(k+l) 1 d tr, 2k+,

__----/i l<i<n._d(+l)+l \d+ cry+

Since A is nonsingular I/il < 1 for each i. It follows that dk)- 1 as k- for each i,
that is, Dk- I, or equivalently, from (3.3) and (3.2)

lim Xk- U.

To analyse the rate of convergence we write (3.6) in the form

Dk+- I --1/2(Dk-- I)D-I(Dk I)

and pre- and post-multiply by P and Q*, respectively, to obtain, from (3.2) and (3.3)

X/,- U 1/2(X- U)X-’(X- U).

Furthermore, using (3.2), (3.3) and (3.7),

II(Xk+, + U)-I(xk+I U)II2 IIQ(Dk+I + I)-IP*P(Dk+,

(D+, + I)-’(D+,- I) I1-
2k+l=max =max i

’<=’<=, \dk) +
Note from (3.3) and (3.5) that d), d(,k) are the singular values of X. We have
proved the following.

THEOREM 3.1. Let A C be nonsingular and consider iteration (3.1). Each iterate

X is nonsingular,

lim X U

where U is the unitary factor in the polar decomposition of A, and

(3.8) [[X II=llXk-- UII@,

( r’(Xk)-I )
2

(3.9) Ilx +,- uIl=-<- IlX+l+ uIl= max
l<-i<=,, tri(Xk) + 1

(3.10) IlXk+l+ gll max
<_<_, r(A)+l

3.3. Accelerating convergence. The quadratic convergence of iteration (3.1) ensures
rapid convergence in the final stages of the iteration: (3.8) implies that the number of
correct significant figures will approximately be doubled on each step. Initially,
however, the speed of convergence can be inordinately slow, as can be seen by
considering A aI, for large lal, in (3.1) and (3.10).

We are led to the idea of scaling the matrix A, or more generally, scaling the
current iterate at the start of each step, with the aim of hastening the onset of the
ultimate phase of rapid convergence.
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Consider the scaling Xk ykXk, Yk > 0. From (3.1b) we have

x/ x/(,l= ,x+x*
(thus / can be regarded as an acceleration parameter), and from (3.9)

(3.11)

where

Ok (3’k) max
")’ktri Xk 1

3’ktr, Xk + 1

A natural choice for Yk is the value yokp which minimises Ok(y). A straightforward
argument shows that

(3 12) k (o.(X,)o.,(Xk))-/,"Yopt

(3.13) Ok( ,(k)x K2(Xk)/2-1
roptl r:,(Xk)l/2+ 1"

One can show that for X,+ Xk+l(’opt),(k)

(3.14)

1 ),<(x,<+,) <- ’<-(x,<) ’/ +

<_(x<)1-.

If this acceleration technique is used at each stage of iteration (3.1) then from (3.11),
(3.13) and (3.14) we have, by induction (cf. (3.10))

1/2k+lK2(A) -1
(3.15) IIX/- U]I2=< IIXk+I+ U[I_ r(A)?Ek,+ 1

The effectiveness of the acceleration procedure is illustrated by the example
A diag (1, 24, 34, 254); with the convergence criterion IIx- uIl=--< 10-9 the unac-
celerated iteration requires twenty-two iterations, while the accelerated version requires
only seven.

3.4. The lraetieal algorithm. It is not feasible to compute yokp exactly at each
stage, since this would require computation of the extremal singular values of Xk, but

(k)a good approximation to yopt can be computed at negligible cost.
Taking A Xk, X- in the inequalities [16, p. 15]

and defining

oh(A) IIAII<- dlIAII,IIAII<- d-IIAII,

<, ,lllxll,llxllo, dllX-’ll,llx-’lloo,

/
k -kest

k

we find, from (3.12), that

1 (k)< (k). 1/4, (k)
1/4 "}’opt )test 1 lopt.
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Making suitable modifications to the derivation of (3.15) one can show that if the
acceleration parameter estimates -(k)

rest are used in the first k stages of iteration (3.1)
then (cf. (3.15))

\[ x/-ff kE(A)’/2k+’

ll )A)1/2+’ +(3.16) IIx/,- ull--< IIx/, + uIl,4-ff
This bound suggests that in the initial stages of iteration (3.1) the estimates -(k)

rest will
be almost as effective as the exact values (k)

"’opt"
We have found empirically that once the error [IXk- UI[2 is sufficiently smallmless

than 10-2, saymit is advantageous to revert to the original, unaccelerated form of
iteration (3.1) so as to secure the desirable quadratic convergence.

Incorporating the acceleration parameter estimates yeskt into iteration (3.1) we
have the following.

ALGORITHM POLAR. Given a nonsingular matrix A Cnn this algorithm computes
the polar decomposition A- UH.

(1) Xo := A; k:=-l.
(2) Repeat

k:= k+l
Yk := X
If "close to convergence" then

"yk := 1
else

:-,/llx II, IIx I1o; :=,/11 Yk II, Yk I1o

Xk+ := TkXk Y
k

Until converged.
(3) U := X+

H1 := U*A
H := (H+H) (to ensure that the computed H is Hermitian).

Cost: (for real A) (s+ 1)n flops, where s iterations are required for convergence.

In step (3) of the algorithm we could implicitly force H to be Hermitian by
computing only the upper triangular part of U’A; the given technique is preferred
for reasons discussed in 4.

A suitable convergence test to apply in step (2) of Algorithm Polar is

(3.17)

where n, depending on n, is a small multiple of the machine unit roundoff u [16, p. 33].

4. Backward error analysis. Consider the SVD approach to computing the polar
decomposition, described in 3.1. Using the backward error analysis for the Golub-
Reinsch SVD algorithm 16, p. 174] one can show that the computed polar factors of
A, U and H, satisfy

O- v/au, IlaUll=_-< ,
K + AH, * =/, Ilanll_ <- llgll=,

VK A+ AA, IIAAII- <---- IIAII=,
where V is unitary, K is Hermitian positive semi-definite (certainly positive definite
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if K2(A)< l/e) and e is a small multiple of the machine precision u. Thus / and
are relatively close to the true polar factors of a matrix "near" to A. This result is the
best that can be expected of any method for computing the polar decomposition in
finite precision arithmetic.

We have been unable to prove a corresponding stability result for Algorithm Polar.
Instead we derive an a posteriori test for stability of the computed polar factors U
and H.

Under mild assumptions one can show that with the convergence test (3.17) U
satisfies

V+AU, V’V--I,
Algorithm Polar computes

where, four simplicity, we ignore the rounding errors incurred in the computation of
H1 and H (these lead to extra terms of order e IIAII=, which do not affect the conclusion
below). Defining

We have

where

^,G 1/2(if, H,

VI2I V(1211 G) V( V* + A U*)A VG A+ AA,

This result is comparable with the result for the SVD method if (changing to the
one-norm)

(4.1a) ,,, e,

(4.1b) IIGlll
(4.1c) H is positive definite.

Thus, in particular, IIGII must be sufficiently small, that is, /)1 must be sufficiently
close to being Hermitian. These conditions are easil tested; one can test (4.1c) by
attempting to compute a Choleski decomposition of H. Note that evaluation of (4.1b)
is computationally much less expensive than the alternative of comparing IIA-
with ,, a II1.

Once the above tests have been performed, the accuracy of the computed polar
factors (that is, the forward error) can be estimated with the aid of Theorem 2.5. The
condition numbers KI(A), ro(A) can be formed at no extra cost during the first step
of Algorithm Polar.

5. Relation to matrix sign and square root iterations. In this section we show how
iteration (3.1) is related to iterations for the matrix sign function and the matrix square
root.

For a diagonalisable matrix A ZDZ-1, D diag (di), Re di # 0, the sign function
is given by [10], [30]

sign (A) Z diag (sign (Re d,))Z-1.

An iterative method for computing sign (A) is [10], [30]

(5.1) Sk+l =1/2(Sk + SI), So A.
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This iteration is essentially Newton’s method for a square root of/, with starting matrix
A (see [21]). We observe that iteration (3.1) implicitly performs this "sign iteration"
on the matrix of singular values: see (3.4) and (3.5). In fact, iteration (3.1) may be
derived by applying the sign iteration to the Hermitian matrix

W=
A 0

whose eigenvalues are plus and minus the singular values of A.
Our analysis of the convergence of iteration (3.1), and of the acceleration para-

meters {y}, applies with suitable modifications to the sign iteration (5.1); cf. [23],
[24], [25], [3O].

Consider now the iteration

(5.2) Yk+ 1/2 Yk + Y- B), Yo B,

for a square root of B C"". In [21] this iteration is shown to be numerically unstable
in the sense that a small peurbation in the kth iterate can lead to peurbations in
succeeding iterates which grow unboundedly.

It can be shown that the sequence {Xk} from iteration (3.1) is related to the
sequence { Yk} generated by (5.2) with B A*A according to

X*k A=-- Yk.

Thus iteration (3.1) implicitly carries out iteration (5.2) on B=A*A, without ever
forming A*A. The techniques of [21] can be used to show that iteration (3.1) does not
suffer from the numerical instability which impairs iteration (5.2).

6. Applications.
6.1. Factor analysis [17], [31]. In psychometrics the "Orthogonal Procrustes"

problem consists of finding an orthogonal matrix Q Rnn which most nearly trans-
forms a given matrix B R’n into a given matrix A Rm, according to the criterion
that the sum of squares of the residual matrix A- BQ is minimised [17], [31] (see also
[9], [32]). Theorem 2.2 shows that a solution to this problem is Q U where BTA UH
is a polar decomposition. If A and B have full rank then BTA is nonsingular and U
may be computed by Algorithm Polar; if either A or B is rank-deficient then U may
be computed via a singular value decomposition of BrA, as described in 3.1 (see
also [16, p. 426]).

6.2. Aerospace computations [2]-[7], [9], [28], [32]. In aerospace systems an
important role is played by the direction cosine matrix (DCM)--an orthogonal matrix
D33 which transforms vectors from one coordinate system to another. Errors
incurred in computation of the DCM result in a loss of orthogonality; an intuitively
appealing way in which to restore orthogonality is to replace the computed DCM D
by the nearest orthogonal matrix, that is, by the orthogonal polar factor of/ (see
Corollary 2.3).

A key feature of this application is that D is relatively close to being orthogonal:
typically II/- UIIF < .1 [2], [3], [4]. From (3.8) we can expect iteration (3.1) to converge
within four iterations, for a tolerance 3 10-16 in (3.17). Of course if U is not required
to full machine accuracy then there is no need to iterate to convergence--just one or
two iterations may yield a sufficiently accurate approximation to U.

For matrices that are as close to orthogonality as D above, computation of U
from Algorithm Polar will require at most 4n3 flops, making this method particularly
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attractive, since the singular value decomposition approach described in 3.1 still
requires approximately 12n flops.

We now compare Algorithm Polar with two other iterative techniques which have
been proposed for computing the orthogonal polar factor of a nearly-orthogonal matrix.

Bjorck and Bowie [7] derive a family of iterative methods with orders of conver-
gence 2, 3,... by employing a binomial expansion for the matrix square root in the
expression U-AH-1- A(A*A)-1/2 (see Lemma 2.1(i)). Their quadratically conver-
gent method is

(6.1a) Xo=A,

(6.1b) Qk I- X*kXk,
k-O, 1,2,

(6.1c) Xk/I Xk(I +1/2Qk),

One step of this iteration costs 3n3/2 flops (for AR""); in comparison iteration
(3.1) requires only n flops per step. Also, while iteration (3.1) converges for any
nonsingular A, a practical condition for the convergence of iteration (6.1) is [7]

0 < tri(A) < v/, l<-i<-n.

The following iteration is proposed in [2]:

(6.2a) Xo= A6 I

(6.2b) Xk+=X,--1/2(XkArXk--A), k=0, 1,2,’’’.

It is shown in [3], [5], [28] that iteration (6.2) is locally, linearly convergent to the
orthogonal polar factor of A. Evaluation of iteration (6.2) requires 2n3 flops per step.
Because of its linear convergence and its computational cost, this iteration is decidedly
unattractive in comparison with iteration (3.1).

We appreciate that flop counts are not necessarily a fair means for comparing
competing algorithms. In fact, because iterations (3.1), (6.1) and (6.2) use only matrix
multiplications, inversions and additions, the flops involved in these iterations may be
significantly cheaper than those in the Golub-Reinsch SVD algorithm, particularly on
the new special computer architectures.

6.3. Optimisation. Newton’s method for the minimisation of F(x), F:"->,
requires at each stage computation of a search direction Pk from

GkPk --gk,

where gk- VF(Xk) is the gradient vector and

Gk =( 02F
\ox, ox (x’)

is the (symmetric) Hessian matrix. Difficulties occur when G is not positive definite
since p, if defined, need not be a descent direction [14, p. 107]. We suggest that in
this situation one replaces G by its polar factor H. H is positive definite (assuming
G is nonsingular) and it has the properties listed in Lemmas 2.1 and 2.4. H may be
computed using Algorithm Polar at a cost of (s/2 + 1)n flops, if advantage is taken
of the symmetry of the iterates (for example the LINPACK routine SSIDI [11] may
be used to compute the matrix inverses). The equation Hpk =--gk may be solved in
n/6 flops by use of the Choleski decomposition.

In 14] several techniques are described for modifying G to give a related positive
definite matrix. One of these consists of computing a spectral decomposition
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Gk ZAZ* and replacing Gk by k ZIAIZ*; from (2.10) we recognize k as the
polar factor H of Gk. This approach yields the same matrix as our suggestion, at a
cost of about 6n flops [16, p. 282].

6.4. Matrix square root [8], [10], [20], [21], [25]. A new method for computing
the symmetric positive definite square root A1/2 of a symmetric positive definite matrix
A is obtained from the observation that if

A= LL, LT= UH

are Choleski and polar decompositions respectively, then (see Lemma 2.1(i)) H A1/2.

ALGORITHM ROOT. Given a symmetric positive definite matrix A"" this
algorithm computes A1/2.

(1) Compute the Choleski decomposition A- LLr [16, p. 89].
(2) Compute the Hermitian polar factor H- A1/2 of Lr using Algorithm Polar.

Cost: (S --)tt flops, where s iterations of Algorithm Polar are required for convergence
(taking into account the triangularity of L).

Note that since we are applying Algorithm Polar to L, the quantity K2(A in the
bound (3.16) is replaced by KE(Lr) r2(A) 1/2.

Algorithm Root is an attractive, numerically stable alternative (see 5) to the
iterations in [10], [21], [25] for the case where A is symmetric positive definite.

7. Numerical examples. In this section we present some test results which illustrate
the performance of Algorithm Polar. The computations were performed using
MATLAB [29] in double precision on a VAX 11/780 computer; the unit roundoff
U 2-56 1.39 x 10-17.

We used the convergence test (3.17) with /5, =4u for n_-<25 and 5o=8U. Once
the criterion IIXk Xk-IlII <- .01 was satisfied Xk+I, Xk+2," were computed using the
unaccelerated iteration (Ts 1, j > k).

In the first test real matrices A of order n 5, 10, 25, 50 were generated according
to A= U,Vr, where E=diag (ri) is a matrix of singular values (tri= i, 2, 4 or 2i)
and U, V are random orthogonal matrices (different for each A), obtained from the
QR decomposition of a matrix with elements from the uniform distribution on [0, 1].
The results are summarised in Table 7.1. The quantity

BERR. Ilnl- n*lll

is the backward error measure derived in 4 (see (4.1b)) and must be of order one
for the algorithm to have performed in a stable manner. For every matrix in this test
the computed Hermitian polar factor/ was positive definite.

TABLE 7.1
Number of iterations.

0"

o.

tr
4

tr 2
max BERR,

n 5 10 25 50

6 7 8 8
7 7 10 9
8 8 10 10
7 8 9 10

.38 .55 2.1 2.8
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The second test compares Algorithm Polar with iterations (6.1) and (6.2) (using
the same convergence test, (3.17), for each iteration). The parametrised matrix

A(a)= 0 1
-1 0

is orthogonal for a 0. The results are displayed in Table 7.2.

TABLE 7.2
Number of iterations.

.001

.01

.1

2

Algorithm Polar Iteration (6.1) Iteration (6.2)

4 4 5
4 4 8
5 5 13
6 10 76
7 diverged diverged

8. Conclusions. From the test results of 7 and the theory of 3 we draw several
conclusions about Algorithm Polar.

The acceleration parameter estimates are very effective. Convergence to a tolerance
t >= 10-17 (see (3.17)) is usually obtained within ten iterations, the computational cost
of one iteration being approximately rl flops.

In applications where A is nearly orthogonal (see 6.2) Algorithm Polar is an
attractive alternative to iterations (6.1) and (6.2)--it is guaranteed to converge (within
four or five iterations, typically) and it will usually be computationally the least
expensive of the three methods.

We have not proved that Algorithm Polar is stable, that is, that the computed
polar factors are relatively close to the true polar factors of a matrix near to A. The
tests (4.1) provide an inexpensive means of monitoring the stability of Algorithm Polar.
Algorithm Polar has performed stably in all our numerical tests, producing, in every
case, computed polar factors which are just as acceptable as those furnished by the
SVD approach.
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IN A SPARSE MATRIX SOFI’WARE*

ZAHARI ZLATEVf, JERZY WASNIEWSKH: AND KJELD SCHAUMBURG

Abstract. The stability of the computational process in the solution of systems of linear algebraic
equations Ax b depends on the condition number of matrix A. Reliable and efficient algorithms for
calculating estimates of the condition number of a matrix are given in An estimate for the condition number

ofa matrix, SIAM J. Numer. Anal., 16 (1979), pp. 368-375. The application of these algorithms in a sparse
matrix software, package Y12M [Y12M-solution of large and sparse systems of linear algebraic equations,
Lecture Notes in Computer Science, Vol. 121, Springer, Berlin, 1981], is discussed. Three algorithms have
been implemented in package Y12M and tested on a very large set of problems. The pivotal strategies for
sparse matrices, which are used instead of the partial pivoting for dense matrices, usually provide reliable
estimates for the condition number when the value of the stability factor u is small, say u [4, 16] (u
for the partial pivoting). It is shown that for the subroutines of package Y12M this is true even if the stability
factor u is rather large. This phenomenon is explained by a careful analysis of the main pivotal strategy in
package Y12M. Very often a special nonnegative parameter, a drop-tolerance, is used during the factorization
of matrix A so that each element, which in the course of the calculations becomes smaller in absolute value
than the drop-tolerance, is considered as a zero element. Both storage and computing time may be saved
in this way for some classes of matrices. The influence of the use of a large drop-tolerance on the reliability
of the condition number estimators is discussed. Some conclusions, concerning the three condition number
estimators, are given.

Key words, condition number of a matrix, Gaussian elimination, sparse matrices, sparse matrix tech-
nique, pivotal strategies for sparse matrices, stability factor, drop-tolerance

1. Statement of the problem. Let An, be a given matrix. Assume that the
Gaussian elimination (GE) is used to obtain a factorization LU A+ E, where Ln-
is a unit lower triangular matrix, U s "" is an upper triangular matrix and E "n
is a perturbation matrix [ 15]-[ 19]. The GE is normally carried out by the use of some
pivoting. Any pivoting can be considered as a multiplication ofmatrix ,4 by permutation
matrices. It is assumed that such a multiplication is performed before the beginning
ofthe GE and the notation A is also used for the matrix obtained after the multiplication.
It is clear that this is not a restriction.

Sometimes it is necessary to calculate an estimate K* of the condition number
K(A) IIAl[ IIA-1II of matrix A. Here it is assumed that A-1 exists and that I1" is some
norm of the matrix under consideration. Algorithms for calculating r* in a cheap and
reliable way are discussed in [2]-[4], [8], [9], [11], [12]. The two algorithms described
in [3] together with the algorithm from [9] will be used in this paper. These algorithms
are based on the following rules: (i) compute ]]A[[, (ii) calculate L and U, (iii) solve
Urw e and Lry w (e being a given vector), (iv) solve Lv y and Uz v, (v) calculate
A* -II ll/llyll (and consider A* as an approximation to IIA- ll) and (vi) set * IIAilA*.

The approximation A* is good when llyll/llell is as large as possible [3, p. 371].
Therefore an attempt to choose the components of e so that Ilyll/llell is large has to
be carried out.

* Received by the editor July 28, 1983, and in revised form August 1, 1985.
f Air Pollution Laboratory, National Agency of Environmental Protection, Ris National Laboratory,

DK-4000 Roskilde, Denmark.
t Regional Computing Centre at the University ofCopenhagen, Vermundsgade 5, DK-2100 Copenhagen,

Denmark.
Department of Chemical Physics, The H. C. rsted Institute, Universitetsparken 5, DK-2100

Copenhagen, Denmark.
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In the first algorithm from [3] (see also [8]) the components of e are determined
as follows. Let el be either 1 or -1. Consider

i--1

(1.1) UiiWi ei- E UjiWj (i 2(1)n)
j=l

and set ei--1 if the sum in (1.1) is negative and ei =-1 otherwise. This algorithm is
implemented in subroutine DECOMP in [8]. This is probably the first subroutine in
which a device for estimating K(A) is implemented.

The second algorithm in [3] is not so simple. Set again el equal either to 1 or to
1. Consider the quantities"

k-1

(1.2) ti , uj,w, (i= k(1)n), e=sign (--tk) e=-e (k-2(1)n);
j=l

d-(1.3) Wk=(e---tk)/Ukk, Wk=(e---tk)/Ukk (k=2(1)n);

(1.4) t=ti+UkiW-, tC,=t,+UkiW- (i=k+l(1)n,k=2(1)n);

(1.5) T+ t-, T-= to, (k=E(1)n).
i=k i=k

Set ek--e if T > T and ek--e otherwise. This algorithm is implemented in
many subroutines of LINPACK [6]. An attempt to avoid overflows and divisions by
zero is carried out in LINPACK by scaling the appropriate vectors during the calcula-
tions. The number of scalings could be reduced for some matrices by a simple
modification of the LINPACK condition number estimator [9].

Three questions should be answered in connection with the implementation of
the above algorithms in sparse matrix software"

(i) How can the sparsity scheme used in the software under consideration be applied
in the calculations within the condition number estimator?

(ii) What is the effect of the pivotal strategy used in the software on the accuracy
of the condition number estimator?

(iii) What is the effect of neglecting some "small" elements in the GE process on
the condition number estimator?

The first question concerns the efficiency ofthe sparse condition number estimators
with regard to the computing time and storage used. It should be stressed here that it
may be very inefficient just to take a code for dense matrices and to modify it for
sparse matrices. The fact that the matrix is sparse must be exploited and special
techniques have to be applied.

The next two questions are related to the accuracy of K*. It should be emphasized
here "that at best we can obtain r(A + E)" [3, p. 373]. Therefore in the calculation of
r* by the use of L and U an assumption that the GE is stable is made. If matrix A
is dense, then it is commonly accepted that "in practice Gaussian elimination with partial
pivoting must be considered a stable algorithm", [15, p. 152], though examples where
this is not true can be constructed, [18]. Thus, in the condition number estimators it
is implicitly assumed that L and U are accurate and that the norm of E is small in
some sense. Experience indicates that this is a realistic assumption for dense matrices.
However, the situation may change when the matrix is sparse, because the accuracy
requirements are often relaxed in the choice of a pivotal strategy and/or because some
small elements may be neglected during the GE (both actions being taken in order to
preserve the sparsity of L and U). Thus some difficulties connected with the accuracy
of the GE process for sparse matrices may arise and a careful examination of the
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influence of the relaxation of the accuracy requirements during the factorization of
sparse matrices on the accuracy of the condition number estimators seems to be useful.

The development of several condition number estimators for package Y12M will
be described in this paper. Package Y12M is fully documented in [28]. The different
algorithms and strategies implemented in this package are discussed in [20], [23], [24],
[26], [30]. The sparse structure needed in the condition number subroutines will be
outlined in 2. The implementation of three algorithms for estimating the condition
number of a matrix in package Y12M will be described in 3. Some results concerning
the dependence of the accuracy of the calculated condition numbers on the stability
requirements in the pivotal strategy will be given in 4. The influence ofthe introduction
of a drop-tolerance (leading to neglecting some elements of A) on the accuracy of the
calculated condition numbers will be discussed in 5. Some concluding remarks will
be made in 6.

2. Application of the storage scheme used in package YI2M. Let ANORM1
The main steps in the calculation of K* are the computation of ANORM1 and the
solution of Uw =e, Ly-w, Lv-y, Uz v. The application of the storage scheme
used in package Y12M in the performance of these steps will be described in this
section. The codes by which the calculations are carried out will also be given.

Let N and NZ be the order of A and the number of nonzero elements in A.
Before the beginning ofthe GE the nonzero elements are stored in the first NZ locations
of a REAL array A(NN); NN >-2NZ. The order of the nonzero elements is arbitrary
but if ao 0 is stored in A(K), 1 <-_ K <- NZ, then RNR(K) and SNR(K) j.
RNR(NN1) and SNR(NN) are INTEGER arrays; NN1 >- NZ. The code for calculat-
ing ANORM1 by the use of this structure and by the use of a REAL array W, of length
at least equal to N, is given in Fig. 1.

ANORM1 =0.0
DO 10I=1, N

10 W(I)=0.0
DO 20I-1, NZ

20 W(SNR(I)) W(SNR(I))+ABS(A(I))
DO 30 I 1, N

30 ANORM1 AMAX1(W(I), ANORM1)

FIG. 1. Calculation of ANORM1 by the use of the storage scheme in package Y12M.

At the end of the GE the nonzero elements of both L and U (with the exception
of its diagonal elements) are stored in array A. An INTEGER array, HA(N, 11), is
used to store pointers for starts and ends of rows and columns, information about the
pivotal interchanges etc. Only the first 3 columns of HA are of interest in this paper.
The nonzero elements of row in L are stored from location HA(i, 1) to location
HA(i, 2)- 1 in array A. The nonzero elements of row in U (without u,) are between
HA(i, 2) and HA(i, 3). There are no free locations between HA(i, 1) and HA(i, 3). If
a nonzero element, either from L or from U, is stored in A(K), then its column number
is stored in SNR(K); 1 <-_ K <- NN. PIVOT(I) contains the pivotal element u,; PIVOT
being a REAL array of length at least equal to N. The codes for solving the 4 systems
involved in the calculation of K* are given in Figs. 2-5.

Let YNORM1 and ZNORM1 be the 1-norms of vectors y and z. The calculation
of these norms is the same as in the dense case. Codes for calculating YNORM1 and
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40
50

W(1 W(1)/PIVOT(I)
DO 50 I 2, N
DO 40 J HA(I- 1, 2), HA(I- 1, 3)
W(SNR(J))= W(SNR(J))- W(I-1) * A(J)
W(I)= W(I)/PIVOT(I)

FIG. 2. Solving UTw e using the storage scheme in package Y12M. It is assumed that e is stored in
array W on entry. The solution vector w is in W on exit.

60

DO 60 I= N, 2, -1
DO 60 J= HA(I, 1), HA(I, 2)- 1
W(SNR(J)) W(SNR(J))- W(I). A(J)

FIG. 3. Solving LTy w using the storage scheme in package Y12M. It is assumed that w is stored in W
on entry. The solution y is in W on exit.

8O

DO 80 I- 2, N
DO 80 J- HA(I, 1), HA(I, 2)- 1
W(I) W(I)-A(J) W(SNR(J))

FIG. 4. Solving Lv y using the storage scheme in package Y12M. It is assumed that y is stored in W on
entry. The solution v is in W on exit.

90
100

W(N) W(N)/PIVOT(N)
DO 100I-N-1, 1,-1
DO 90 J- HA(I, 2), HA(I, 3)
W(I) W(I)- A(J) W(SNR(J))
W(I)= W(I)/PIVOT(I)

FIG. 5. Solving Uz v using the storage scheme in package Y12M. /t is assumed that v is stored in W
on entry. The solution z is in W on exit.

ZNORM1 are given in Figs. 6 and 7. The code in Fig. 6 should be used after the
solution of Lry =w, while that in Fig. 7 should be used after the solution of Uz v.
LINPACK subroutines may be attached to the condition number estimators for sparse
matrices and used instead of codes given in Figs. 6 and 7.

The pieces of codes in the above figures can be connected in an obvious way and
the number ACOND1 ANORM1 ZNORM1/YNORM1 will often be a good esti-
mate K* of the magnitude of KI(A) Ilalllla-llll even if an arbitrary vector e is chosen
in the beginning of the process [3, p. 371], [11, pp. 7-8]. The probability of achieving
a good K* is enhanced when an attempt to choose e so that Ilyll/llell is as large as

70

YNORM1 =0.0
DO70I-1, N
YNORM1 YNORM1 + ABS(W(I))

FIG. 6. Calculating the 1-norm of vector y.

110

ZNORM1 =0.0
DO 110 I=1, N
ZNORM1 ZNORM1 + ABS(W(I))

FIG. 7. Calculating the 1-norm of vector z.
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possible is made [3, p. 371], [11, p. 8]. The implementation of some algorithms with
special choices of e will be discussed in 3.

3. Algorithms for choosing a starting vector: implementation and comparison. The
implementation of the algorithms from [3] and [9] in package Y12M is discussed
below. In all these algorithms the starting vector e is chosen in a special way. The
difficulties arise because the components of e must be determined dynamically in the
process of the solution of system UTw e.

Let X be any subroutine for calculating K * of a dense matrix A. Then the following
strategy seems to be very straightforward in the efforts to obtain a version of subroutine
X for sparse matrices.

Strategy 1. 1). Replace all loops involving the two-dimensional array, in which the
elements of matrix A are stored, by loops involving one-dimensional arrays. The loops
corresponding to the storage scheme in package Y12M are given in Figs. 1-5.

2). Leave the other parts of X unchanged. For example, loops like these given in
Figs. 6 and 7 will not be changed according to this rule; the same is true for the loops
carried out to scale vectors in [6].

Strategy 1 has successfully been applied to obtain a version for sparse matrices
from the algorithm in DECOMP, [8]. This algorithm is called Algorithm 1 below.

Strategy 1 has also been applied to obtain a version for sparse matrices from the
algorithm used in SGECO [6]. The version of the algorithm in SGECO found by
Strategy 1 is referred to as Algorithm 2*. This version is not very efficient. This is so
because the sums (1.5) require too many, 2(n- k + 1), arithmetic operations at stage
k, k 2(1)n. For dense matrices the relations t ti and t- ti are normally satisfied
Vi {k + 1, k + 2, , n} at stage k, k 2(1)n. Therefore the sums (1.5) must be calcu-
lated at each stage when A is dense. For A sparse, however, t t and t-= ti for
many i, i {k + 1, k + 2,..-, n}, at any stage k, k 2(1)n, because many elements Uki
are equal to zero. Therefore the calculation of t and t- by (1.4) is not justified if A
is sparse. A REAL variable SUM is introduced. SUM 0.0 is set before the beginning
of the solution of Urw e. At stage k, k 2(1)n, if t t, then SUM is updated by
SUM SUM ABS(t) + ABS(t). The question whether t ti is not asked because
by the use of the pointers stored in the first three columns of array HA only the indices
for which t? ti are considered. The operations involving t- are considered in a similar
way. The version so found is called Algorithm 2. It must be emphasized here that
Algorithm 2* and Algorithm 2 are two different implementations, in a sparse matrix code
(not necessarily package Y12M), of the LINPACK algorithm applied in SGECO.

The modifications advocated in [9] can easily be inserted in Algorithm 2 (following
the instructions given in [9, p. 385]. This has been done and the algorithm so found
is called Algorithm 3. An attempt to reduce the number of scalings (performed in the
LINPACK subroutines and, therefore, also in Algorithm 2 and in Algorithm 2*) is
carried out in Algorithm 3.

The subroutines in which the above algorithms are applied were run on a wide
range of test-matrices. The number of test-matrices was several thousands. The order
of the matrices varies from 32 to 10,000. Both matrices that arise in practical prob,lems
and matrices that are produced by subroutines that generate sparse test-matrices, [20],
[22]-[24], [28]-[31], were used in the experiments. Matrices arising in fluid dynamics
[5], in thermodynamics [26], in nuclear spectroscopic theory [ 13], 14], [21], in different
chemical processes [1] as well as the Harwell set of test-matrices [7] were used in the
runs.

The matrix-generators used produce matrices depending on some or all of the
following parameters: the number of rows m, the number of columns n, the sparsity
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pattern modifier c, the modifier of the number NZ of nonzero elements r and the modifier
of the magnitude of nonzero elements a. Two such generators, MATRE and MATRF2,
were used. MATRE generates matrices of class E(n, c), [20], that depend on n and c
only. These matrices are symmetric and positive definite (containing 4’s on the main
diagonal, -l’s on the two adjacent diagonals, -l’s on the two diagonals located c
locations away from the main diagonal; all other elements being equal to zero).
MATRF2 generates matrices of class F2(m, n, c, r, a), [29], [30]. This generator will
be used with m n only. If m n, then the nonzero elements of a matrix of this class
are: aii--1 (i=l(1)n), ai.i++s:(-1)S.s.i (i=l(1)n-c-s) and ai,i_n++s-’(--1)S.s.i
(i-n-c-s/l(1)n) for s--l(1)r-1, a.-ll++--jt (i--1(1)11-j, j-l(1)10),
a_ll++, i/a (j= 1(1)11-i, i= 1(1)10). It should be mentioned that (i) the number
of nonzero elements of a matrix generated by MATRF2 is NZ mr+ 110 and (ii)
max (lal)/min (la,l)- 10 (considering nonzero elements a only).

The matrix-generators can conveniently be used to carry out some systematic
investigations by fixing some ofthe parameters and varying the others. This is especially
true for MATRF2; all parameters in this generator were varied in quite large intervals.
The dependence of the reliability of the condition number estimates obtained by
different algorithms on the number of nonzero elements in matrix A and on the
magnitude of the nonzero elements of A is very important. Therefore many tests with
matrices of class F2(m, n, c, r, a) were carried out with different values of r and a.

All experiments were run on a UNIVAC 1100/82 computer at RECKU (Regional
Computing Centre at the University of Copenhagen). All computing times are given
in seconds. The subroutine Y12MFE from package Y12M was used in all runs. This
subroutine carries out the factorization of A and solves Ax b (in our tests b was
always generated so that all components of x are equal to 1) by iterative refinement,
IR; the IR process is discussed in [10], [15]-[19]. Some of the results obtained in our
runs will be given in this and in the following sections. However, it should be pointed
out that our conclusions are drawn by the use of the results obtained in runs of several
thousands of matrices.

TABLE
Comparison of computing times obtained by 4 algorithms for estimating the condition number of a matrix.

NZ is the number of nonzero elements in matrix. A. COUNT is the maximal number of nonzero elements kept
in array A during the factorization. In the column under Y12MFE the computing time used in the solution of
Ax b with IR is given (the numbers of iterations being given in brackets). In the last 4 columns the computing
times for the 4 algorithms are given (the numbers of scalings being given in brackets). The matrix from [29]
is A F2(300, 300, 100, 2, 100.0).

Source Order NZ COUNT Y12MFE Algorithm Algorithm 3 Algorithm 2 Algorithm 2*

[5] 1,000 6,400 16,769 19.45 (21) 0.23 (0) 0.34 (5) 0.34 (6) 10.16 (6)
[7] 1,176 9,864 18,552 17.81 (3) 0.23 (0) 0.23 (4) 0.34 (4) 11.16 (4)
[1] 425 1,339 1,339 0.52 (3) 0.03 (0) 0.05 (6) 0.06 (13) 1.52 (13)
[7] 822 4,028 4,865 2.19 (3) 0.09 (0) 0.13 (8) 0.18 (35) 5.55 (35)

[29] 300 710 710 0.28 (4) 0.02 (0) 0.03 (7) 0.04 (11) 0.77 (t

The results presented in Table 1 show that-Algorithm 2* is not suitable for sparse
matrices. Therefore this algorithm is not used in the other computations. Algorithm
2* performs worse both when the matrix is large (see the results for the first two
matrices in Table 1) and when the sparsity is well preserved (in the case where
COUNT NZ, where COUNT is the largest number of nonzero elements kept in array
A; see the last three examples in Table 1).
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The computing times for Algorithm 2 are normally larger than the computing
times for both Algorithm 3 and Algorithm 1 but the difference is not very large for
many test-matrices. Moreover, the computing times for all three algorithms are as a
rule much smaller than the computing time needed to solve Ax b. Nevertheless, it
must be emphasized that there exist matrices for which Algorithm 2 is rather inefficient.
Several such matrices are given in [9]. An experiment with matrices of class E(n, c)
was carried out with n= 100(100)5,000 and c=2(1)4 for each n. In each of these
examples Algorithm 2 performed about n scalings and, therefore, is very expensive.
It is even more expensive than the solution of Ax b with IR; however, it must be
mentioned that the matrices of class E (n, c) are positive definite matrices with narrow
bands for small values of c and this fact was exploited in the runs by the use of a
special option of Y12M in which the pivotal search is suppressed. Results obtained
in this experiment are given in Table 2.

TABLE 2
Comparison of computing times obtained in runs with matrices of class E(n, c). NZ is the number of

nonzero elements of matrix A. COUNT is the maximal number of nonzero elements kept in array A during the

factorization. In the column under Y12MFE the computing time used in the solution ofAx b by IR is given
(the numbers of iterations being given in brackets). The computing times needed in the calculation of K* are

given in the last 3 columns (the number of scalings being given in brackets).

Order c NZ COUNT Y12MFE Algorithm Algorithm 3 Algorithm 2

2 4,994 4,994 0.95 (5) 0.10 (0) 0.14 (5) 2.18 (998)
1,000 3 4,992 5,989 1.32 (5) 0.11 (0) 0.16 (5) 2.20 (995)

4 4,990 7,978 1.71 (5) 0.13 (0) 0.19 (5) 2.22 (992)

2 9,994 9,994 2.13 (5) 0.19 (0) 0.27 (5) 8.38 (1998)
2,000 3 9,992 11,989 2.64 (5) 0.22 (0) 0.33 (5) 8.43 (1995)

4 9,990 15,978 3.41 (5) 0.26 (0) 0.38 (5) 8.47 (1992)

2 14,994 14,994 3.20 (5) 0.29 (0) 0.41 (5) 18.61 (2998)
3,000 3 14,992 17,989 4.29 (5) 0.34 (0) 0.49 (5) 18.67 (2995)

4 14,990 23,978 5.49 (5) 0.40 (0) 0.57 (5) 18.74 (2992)

Many runs were carried out to compare the accuracy of the estimates calculated
by the three algorithms for matrices with different orders, with different sparsity
patterns, with different numbers of nonzero elements and with different magnitudes
of the nonzero elements. Matrices of class F2(m, n, c, r, a) with m n, n 200(50)300,
c 20(20)n-20, r= 2(7)30 and a 10k (k =0(1)9) were applied in one of the experi-
ments. The LINPACK subroutine SGECO was also used in these runs. "Exact" values
of KI(A) were calculated by the use of the LINPACK subroutine DGEDI (where
double precision is used). The results of this experiment, some of them being given
in Tables 3-5, can be summarized by the following remarks.

Remark 3.1.The estimates K* obtained by Algorithm 2 and Algorithm 3 were the
same for all 1,750 matrices used in this experiment. Therefore only results calculated
by Algorithm 1, Algorithm 2 and the LINPACK subroutine SGECO are given in Tables
3-5. The numbers of scalings in Algorithm 2 were much smaller than n and the
computing times for Algorithm 2 and Algorithm 3 were of the same order (being much
smaller than the computing times needed to factorize A).

Remark 3.2. No relationship between the order n of the matrix and the accuracy
of * was observed for the matrices of this class. Neither was there a relationship
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TABLE 3
Estimates ofthe condition numbers ofmatrices A F2(300, 300, 100, 2, a). The ratios between the estimates

K* and the "exact" r,(A) are given in brackets for each algorithm.

Algorithm Algorithm 2 LINPACK KI(A) IIAIIIIIA-1111

10 7.50 * 101 (0.24) 7.50 * 101 (0.24) 7.50 * 101 (0.24) 3.04 * 102
101 3.72 * 102 (0.44) 3.72 * 102 (0.44) 3.72 * l02 (0.44) 8.46 * 102
102 3.88* 104 (0.61) 3.84* 104 (0.61) 3.84* 104 (0.61) 6.40* 104
103 4.12 * 106 (0.66) 4.12 * 106 (0.66) 4.12 * 106 (0.66) 6.19 * 106
104 4.15 * 108 (0.67) 4.15 * 108 (0.67) 4.15 * 108 (0.67) 6.17 * 108
105 4.16 * 101 (0.67) 4.16 * 101 (0.67) 4.16 * 101 (0.67) 6.17 * 101
106 4.16 * 1012 (0.67) 4.16 * 1012 (0.67) 4.16 * 1012 (0.67) 6.17 * 1012
107 4.16 * 1014 (0.67) 4.15 . 10TM (0.67) 4.16 * 1014 (0.67) 6.17 * 1014
108 4.16 1016 (0.67) 4.16 1016 (0.67) 4.16 1016 (0.67) 6.17 1016
109 4.16 1018 (0.67) 4.16 1018 (0.67) 4.16 1018 (0.67) 6.17 10TM

observed between the sparsity pattern (determined by parameter c) of the matrix and
K*. Results obtained with n- 300 and c 100 are given in Tables 3-5.

Remark 3.3. If r 2, then the estimates of KI(A) found by the different algorithms
are practically the same; the results for n- 300 are given in Table 3. This is not a
surprise and can be explained as follows. The number of the nonzero elements in
nearly all rows and columns of the matrices of class F2 is equal to 2 when r=2.
Moreover, the sparsity pattern is perfectly preserved for such a matrix when the GE
transformations are performed; COUNT NZ 710 for n 300. Therefore Algorithm
1 and Algorithm 2 should perform in a quite similar way; see (1.4)-(1.5) and use the

TABLE 4
Estimates of the condition numbers of matrices A= F2(300, 300, 100, 23, a). The ratios between the

estimates r* and the "exact" r(A) are given in brackets for each algorithm.

Algorithm Algorithm 2 LINPACK rl(A) IIAIIIIIA-1111

10 2.05,103 (0.30) 2.11 103 (0.31) 2.38,103 (0.35) 6.87,103
101 2.02,103 (0.29) 2.12,103 (0.31) 2.26,103 (0.33) 6.87,103
102 2.09 * 103 (0.30) 2.15 * 103 (0.31) 3.75 * 103 (0.54) 6.91 * 103
103 4.41 * 104 (0.45) 5.80* 104 (0.60) 5.91 * 104 (0.61) 9.70* 104
104 3.62 * 106 (0.64) 3.40 * 106 (0.60) 3.65 * 106 (0.64) 5.68 * 106
105 3.37 * 108 (0.63) 3.44* 108 (0.65) 3.44* 108 (0.65) 5.32" 108
106 3.71 * 101 (0.64) 3.67 * 101 (0.63) 3.71 * 101 (0.64) 5.81 * 101
107 8.74 * 1012 (0.61) 8.74 * 1012 (0.61) 8.78 * 1012 (0.61) 1.44 * 1012
108 2.19 * 1014 (0.64) 2.21 * 1014 (0.65) 2.14. 1014 (0.63) 3.40* 10TM

109 3.98 * 1016 (0.70) 3.97 * 1016 (0.70) 3.98 * 1016 (0.70) 5.66 * 1016

TABLE 5
The intervalsfor the ratios R */ r(A) where A F2(300, 300, 100, r, a

with t 10k (k 0(1)9) for each r.

Algorithm Algorithm 2 LINPACK

2 [0.24, 0.67] [0.24, 0.67] [0.24, 0.67]
9 [0.29, 0.68] [0.14, 0.66] [0.26, 0.63]
16 [0.15, 0.67] [0.15, 0.67] [0.30, 0.63]
23 [0.29, 0.70] [0.31, 0.70] [0.33, 0.70]
30 [0.29, 0.71] [0.29, 0.71] [0.33, 0.71]
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fact that for nearly all values of k only one ti is different from t and t-. An element
a can be chosen as pivotal in package Y12M if ulal <- maxk_<j _<_ ([al). Parameter
u is called the stability factor; [20], [23]-[25], [28]. The runs discussed in this section
were carried out with u- 4. Since many rows contain only 2 nonzero elements and
since the ratio of the absolute values of these two elements is normally larger than 4,
the sparse pivotal strategy with u 4 used in package Y12M and the partial pivoting,
where u 1, used in LINPACK perform in a quite similar way when r- 2. The above
arguments are not true for r > 2 and the results obtained by the three algorithms were
different for all r > 2 used in the runs. This is illustrated for r 23 in Table 4. It should
be mentioned that the differences are normally not very large; see Table 4 and Table 5.

Remark 3.4. Let R K*/K(A). For all algorithms this ratio increases when a is
increased from 10 to 104. For a > 104 R varies normally in the interval [0.6, 0.7]. This
means that the behaviour shown in Table 4 is typical for the matrices in this experiment.

Remark 3.5. In all runs R _-> 0.1 was observed for all algorithms. When n- 300
and c- 100 this is demonstrated in Table 5. This shows that the estimates of the
condition number are acceptable according to the criterion in [3, p. 375].

Remark 3.6. The parameter y used in Algorithm 3 (see also [9]) to determine the
proper scaling factors was set equal to 0.001 in this experiment. This is the value
recommended in [9] when an attempt to minimize the number of scalings is carried
out. It should be mentioned that the user has a possibility in varying the value of this
parameter.

4. Sparse pivotal strategies and accuracy of the condition number estimates. The
pivotal element that is to be used at step k (k l(1)n- 1) has to be chosen so that:
(i) the sparsity pattern ofA is preserved as well as possible and (ii) the stability of the
computations is preserved as well as possible. These two requirements work in opposite
directions and cannot be satisfied simultaneously. Therefore a compromise is necessary.
Any compromise leads normally to a relaxation of the stability requirements during
the factorization (compared with the stability requirements in the partial pivoting for
dense matrices). The influence of the relaxed stability requirements on the accuracy
of r* is discussed in this section. A short description of the main pivotal strategy in
package Y12M is needed before the discussion.

Suppose that the kth pivot is to be found. The sets Ak={a(k)/k<ij=i,j <-n}, Rig
{a)/ k <-j <- n} and Ck {a)/ k <- <- n} are called active parts at stage k of matrix

(k)A, row (i k(1)n) and columnj (j k(1)n), respectively. Let a o Ak be an arbitrary
nonzero element in the active part at stage k of matrix A. The integer Mijk
[r(i, k)- 1 [c(j, k)- 1], where r(i, k) and c(j, k) are the numbers of nonzero elements
in the active parts at stage k of row and column j, is called the Markowitz cost of
element ak). Consider the set of row numbers"

(4.1) Ik={il,i2,. ",ip<k)} (k=l(1)n-l, im{k,k+l,’" .,n},m=l(1)p(k)).

Assume that the rows are ordered in nondecreasing numbers of nonzero elements
in their active parts at stage k, i.e., r(il, k)<-_ r(i2, k)<-... <-_ r(ip<k), k), and that the
number of nonzero elements in the active part of any of the other rows in Ak (when
there are such rows) is not smaller than r( ip<k), k), i.e. that : Ik ^ k <- <- n)
r(ip<k), k) <- r(i, k). The rows of set Ik are called the best rows. It is expected that the
sparsity is preserved in a best way if the pivotal elements are in the rows whose row
numbers belong to Ik (k 1(1) n 1). Let

(4.2) Bk {a)/a) Ak A u[ak) <u max (la ff)l) ^ i Ik}, U >-- 1
k<=j
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(4.3)

(4.4)

(k)Mk min (Muk) for a ij Bk,

Ck (a)/a) e Bk ^ Mok Mk).

Set Bk is called the stability set at stage k, the integer Mk is called the optimal
Markowitz cost at stage k and the set Ck is called the set of candidates for pivotal
elements at stage k. The real number u involved in (4.2) is called the stability factor.

The class of improved generalized Markowitz strategies (IGMS’s; [20], [23], [24])
contains all pivotal strategies in which one of the maximal in absolute value elements
in Ck (k-1(1)n-1) is chosen as pivotal at stage k of the GE. The class of IGMS’s
is a two-parameter family of pivotal strategies depending on the stability factor u and
on the number p(k) of best rows among the nonzero elements of which the pivotal
element at stage k (k- 1(1)n-1) must be selected. In package Y12M u [4, 16] and
p(k) min (RPIV, n- k + 1) are recommended (RPIV being a small integer; RPIV< 5
is recommended). An attempt to minimize (locally) the maximal number of fill-ins at
stage k by taking into account the stability restriction (4.2) is made by (4.3)-(4.4).

Consider the minimal Markowitz cost at stage k, M*k =min (Muk) for a) Ak A

ak) 0. It is clear that Mk >= M*k. If Mk M’k, then either there is no nonzero element
in the p(k) best rows for which M0k Mk* (in other words, p(k) is too small) or there
are nonzero elements among the p(k) best rows for which Mijk M*k but the stability
requirement (4.2) is not satisfied for these elements (in other words, u is too small).
This shows that one should expect to preserve the sparsity better by increasing either
p(k) or u. It is not very efficient to carry out the GE with a large p(k) because this
leads to a very considerable increase ofthe calculations in the pivotal search. Moreover,
the elements for which Mijk M* are normally in rows with small numbers of nonzero
elements in their active parts, but cannot be found because of the stability restriction
(4.2). These arguments as well as many numerical tests indicate that as a rule it is not
justified to use p(k)> 4. On the other hand, the sparsity can sometimes be preserved
better by choosing a larger stability factor u. However, the use of a large u may cause
large errors in the factors L and U. Indeed, it is easy to obtain the following bounds
(see, for example, [20]):

(4.5) (k)l (k)l alaj (l+u) max(la; ,) for Ak,

(4.6) (k) l(1)n,bn<-(l+tt)"-lbl, where b.,= max (lai ]), m=
l<=k<_m

(4.7) le,l-<- 3.01b,,en, e being the computer precision, e0 E LU- A.

The bounds show that the norm of matrix E from LU A+ E may be very large.
The commonly used partial pivoting for dense matrices can, roughly speaking, be
obtained from the IGMS’s by setting u 1 and p(k)= 1. The above bounds (the last
one with 2.01 instead of 3.01, see [18]), show again that the norm of E may be very
large also when A is dense. Moreover, examples, where b, 2n-1 bl, can be constructed.
However, it is well known that in practice the norm of E is much smaller than the
norm of A and the computation of K l* for dense matrices A (A / E being actually
used in the calculations) is based on the assumption that this is true, [3, 5]. Thus,
the above bounds are too pessimistic when A is dense and when partial pivoting is in use.
Our experience indicates that this is also true for sparse matrices even when the stability
factor u is rather large.

The experiments from 3, where u 4 was used, were repeated with u 1,024.
In all cases R > 0.1 was found, where R is the ratio between the estimated KI* and the
"exact" (A) obtained by computing A-1 in double precision. Another experiment
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TABLE 6
Intervals for R K*/r(A) when A F2(200, 200, 100, 8, a)

with a 10k, k 0(1)9.

u Algorithm Algorithm 2

4.0 [0.31, 0.67] [0.12, 0.67]
16.0 [0.28, 0.66] [0.30, 0.66]
64.0 [0.30, 0.68] [0.15, 0.68]

256.0 [0.31, 0.66] [0.31, 0.67]
1,024.0 [0.30, 0.67] [0.30, 0.68]

with several different values of u was performed. In this experiment matrices A--
F2(200, 200, 100,8, c) with c=10k, k-0(1)9, were used. The values of u were 2k,
k 2(2)10. The results are shown in Table 6. For the LINPACK subroutine SGECO
the values of R were in the interval [0.27, 0.67] when the same matrices were run.

The results given in Table 6 as well as results obtained for a very large set of
matrices confirm the above statement. An explanation of the fact that the condition
number estimators for sparse matrices give good results even if u is rather large can

(k) (k)be given as follows. Let Uk* be such that u’lai I=max (laij ), k= l(1)n- 1 holds for
the element that will be chosen as pivotal at stage k. The relationship Uk* << U occurs
often in the GE when u is large. The possibility of having U*k << U at stage k is enhanced
by the fact that one of the largest in absolute value elements in Ck is chosen as a pivot.
If this requirement is violated by allowing any element of Ck to be chosen as a pivot
(the resulting sparse pivotal strategy being called a GMS in [20], [24]), then the
accuracy of L and U could be very poor for some matrices even for small values of
u. If this is so, then the calculated solution of Ax- b may be quite wrong [24], [31].

TABLE 7
Estimates of* for matrices A E2(3600, c) obtained by two sparse pivotal strategies and LINPACK.

The largest error in the solution vector is given in brackets; all components of the exact solution are equal to

1. The growth of the elements during the GE is given in the last column for the GMS; the growth factor is

equal to when the IGMS is in use.

c GMS used IGMS used LINPACK (SPBCO) bn/bl

200 5.25 * 102 (8.34,10) 2.89,102 (8.77 10-5) 2.89 * 102 (6.21 10-4) 7.08,107
300 1.89 * 103 (6.31 102) 1.36,102 (3.15,10-5) 1.36 * 102 (2.69,10-4) 2.22,101
400 8.01 * 101 (9.18,10-1) 8.07,101 (2.19,10-5) 8.06 * 101 (8.69 * 10-5) 5.99,107

It is surprising that in our experiments with matrices E(n, c), he[1,000, 10,000],
c [4, n 100], the calculated KI* were not very bad (even when the solution is quite
wrong); some examples are given in Table 7. The matrices used in this experiment are
well-scaled, symmetric and positive definite, not very ill-conditioned and, what is most
important, similar matrices arise often after the space discretization of partial differen-
tial equations. This illustrates the great importance of choosing a pivotal strategy of
the class of IGMS’s. Of course if u is very large, then the accuracy of both the calculated
solution of Ax- b and of KI* may be poor for some matrices; see Table 8. However,
the value of b,/bl and/or the value of the minimal pivot used .in the GE (both are
calculated in package Y12M) will normally give a signal for the trouble. The values
of bn/bl are given in Table 8. For single precision computations on UNIVAC 1100/82
e= 1.49.10-s. Therefore e(b,/bl)O(lO3) for the matrices in Table 8. In all our
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TABLE 8
Estimates oft* for matrices A F2(300, 300, 100, 30, a obtained with u 214 (the growth of the elements

during the GE is shown in the last column).

Algorithm Algorithm 2 LINPACK K, IIAII,IIA-1111 b,/bl

10 3.65 * 105 3.55 * 106 2.69 * 103 8.74 * 103 2.35 * 1011
101 9.75 * 104 8.33 * 104 2.55 * 103 8.74 * 103 1.73 * 101
102 3.12 * 106 6.84* 105 3.49* 103 8.74* 103 5.11 * 1011
103 8.01 * 105 2.63 * 105 4.68 * 104 7.65 * 104 1.55 * 101
104 2.36 * 107 2.19 * 107 2.31 * 106 3.57 * 106 3.75 * 101

experiments the results were always satisfactory when e(bn/b)<O(1). More
experiments are needed in order to decide if such a criterion can be applied in the
judgement of the accuracy of the results obtained by the sparse condition number
estimators.

Our experiments show that good estimates of the condition numbers of sparse
matrices can be obtained when the stability factor u varies in a quite large interval. If
u is large, then it is useful to check b,/b ("the growth factor") and/or the size of the
minimal pivot. It must be emphasized that normally u is varied in [4, 16] and for such
values of u the main pivotal strategy in package Y12M (which is ofthe class of IGMS’s)
gave good results in all runs. Therefore we may conclude that if u [4, 16], then the
sparse pivotal strategy ensures as good estimates K* as those obtained by the use of
partial pivoting in the LINPACK subroutines.

5. Drop-tolerance and accuracy of the condition number estimates. A nonnegative
parameter T, a drop-tolerance, is used in the GE process carried out by package Y12M.
If T> 0 and if lal <_- T, then a is removed from array a (see 2). This means that
this element is considered as a zero element in the further computations. In all
experiments from 3 and 4 a very small value of T (T 10-25) was used. An attempt
to investigate the influence of the drop-tolerance T on the performance of the condition
number estimators for sparse matrices is carried out in this section. Some ofthe matrices
(matrices A F2(300, 300, 100, r, a) with a 10k, k =0(1)9, and with r= 2(7)30) used
in 3 with T 10-25 were also run with large values of the drop-tolerance, T 10-k,
k=3(-1)l and with a stability factor u=4. If a 104, then the estimates K* were
worse than those calculated with T 10-25 but not very bad. The intervals in which
R rl*/(A) varies are given in Table 9 for Algorithm 1 and Algorithm 2; the estimates
calculated by Algorithm 3 were again the same as these calculated by Algorithm 2. If
a > 104, then the estimates are often very bad. Some results for r 9 and T 10-1 are
given in Table 10. Normally R > 1 when a > 104 and when T is large. However,
sometimes R < 0.1 has also been observed; see the second matrix in Table 10.

The conclusion from this experiment and from many other runs (the matrices
from 4 were run with T 10-3) is that the reliability of the sparse condition number
estimators is suspicious when T is large. More precisely, the accuracy of 1" may be
poor for not very ill-conditioned matrices and the estimates are usually very bad when
the matrices are very ill-conditioned. However, the use of a large drop-tolerance has
to be combined with the use of iterative refinement, [23], [24], [31 ]. In this case reliable
information about the result of the solution process is available from the iterative
refinement process, [8, p. 49]. If iterative refinement is not used, then the drop-tolerance
should be small and the sparse condition number estimators work very satisfactorily
when the stability factor u is not very large; see 3 and 4.
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TABLE 9
Intervals for R K*/ (A) for matrices A F2(300, 300, 100, r, a)

with a 10k, k- 0()4 for each r.

T r Algorithm Algorithm 2

2
9

10-3 16
23
30

2
9

10-2 16

10-1

[0.24, 0.67] [0.24, 0.67]
[0.13, 0.62] [0.06, 0.65]
[0.12, 0.61] [0.11, 0.62]
[0.06, 0.59] [0.04, 0.59]
[0.39, 0.60] [0.05, 0.59]

[0.24, 0.67] [0.24, 0.67]
[0.13, 0.60] [0.13, 0.59]
[0.17, 0.60] [0.17, 0.60]

23 [0.34, 0.64] [0.16, 0.64]
30 [0.33, 0.64] [0.33, 0.65]

2 [0.24, 0.67] [0.24, 0.67]
9 [0.09, 0.72] [0.09, 0.68]
16 [0.34, 0.60] [0.33, 0.69]
23 [0.07, 0.59] [0.07, 0.67]
30 [0.04, 0.64] [0.08, 0.64]

6. Concluding remarks. Three sparse condition number estimators have been
developed and attached to package Y12M (see [23]-[25], [27]-[31]). These estimators
have been tested with a large set of matrices. The results of the tests can be summarized
as follows.

Remark 6.1. Algorithm 1 is the most efficient algorithm with regard to computing
time used. Algorithm 2 may be inefficient for some matrices because too many scalings
are carried out. However, this happens very seldom. It was very difficult to find matrices
different from those given in [9] for which the number of scalings is large. Algorithm
3 is more expensive than Algorithm 1 but in general cheaper than Algorithm 2.
Moreover, if the number of scalings is large for Algorithm 2, then it was always reduced
very considerably by Algorithm 3 in our experiments.

Remark 6.2. Algorithm 2 is the safest. A very careful attempt to avoid overflows
and divisions by zero is carried out by scaling different vectors when this algorithm is
applied. Algorithm 1 is not so robust. The computations in this algorithm are carried
out without any scaling. Algorithm 3 is again in the middle: it is not so robust as
Algorithm 2 but is more robust than Algorithm 1.

Remark 6.3. The fact that the accuracy requirements are relaxed in the sparse
pivotal strategies (compared with the accuracy requirements in the commonly used
partial pivoting for dense matrices) seems to be not very important when both the
stability factor u and the drop-tolerance T are sufficiently small. The results obtained

TABLE 10
Estimates * for ill-conditioned matrices A F2(300, 300, 100, 9, a) obtained by the use of T= 0.1.

Algorithm Algorithm 2 LINPACK KI(A IIAIIIIIA-1111
105 6.45 * 109 6.45 * 109 2.20 * 109 3.48 * 109
106 3.24 * 101 3.20 * 101 2.20 * 1011 3.48 * 1011
107 5.23 * 1019 5.23 * 1019 2.20 * 1013 3.48 * 1013
108 4.93 * 1020 4.93 * 1020 2.20 * 1015 3.48 * 1015
109 1.15 * 1022 1.15 * 1022 2.20* 1017 3.48 * 1017
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in runs of several thousands of matrices with u--4 and T 10-25 were acceptable in
the sense that R K*/KI(A) was larger than 0.1 for all matrices tested and for all three
algorithms.

Remark 6.4. It is not very easy to answer the question: which algorithm is the best ?
Examples where Algorithm 1 fails to find a good estimate can be constructed [3].
However, examples in which Algorithm 2 fails to calculate a good estimate can also
be constructed, [2], [4]. This means that no algorithm, the statement being also true
for Algorithm 3, will guarantee a good estimate of the condition number for any matrix.
On the other hand, experience, including here the results of our experiments, indicates
that this situation occurs very seldom (especially when the matrix is large). The situation
is probably similar to that for the partial pivoting: one knows that examples, where the
partial pivoting fails, can be constructed, but experience indicates that this situation will
happen very seldom in practice. More experiments are needed in order to confirm or
reject such a similarity between the condition number estimators and the partial
pivoting.

Remark 6.5. It is also difficult to answer the question: which algorithm should be
kept in a package for sparse matrices ? Algorithm 1 should be chosen if one wants to
keep the cheapest algorithm. Algorithm 2 should be kept if the safety is the most
desired property. Algorithm 3 is a rather good compromise. This shows that each
algorithm may be the best one in special circumstances. Therefore, we decided to keep
temporarily all of them as options in a condition number subroutine. The default
option is Algorithm 2. The reasons for this choice are the following. Normally, this
algorithm carries out the computations with a few scalings only and the computing
time for this algorithm is as a rule very small compared with the computing time for
the factorization. At the same time, the computational process for this algorithm is
very robust (with regards to overflows and divisions by zero).

Remark 6.6. The subroutine for calculating estimates of condition numbers for
sparse matrices is fully documented and is available at the usual costs (for machine
time, magnetic tapes, shipping etc.). Requests should be addressed to J. Wasniewski
(Regional Computing Centre at the University of Copenhagen). It should be mentioned
here that the sparse matrix estimators can be used in connection with package Y12M.
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ON GENERAL ROW MERGING SCHEMES
FOR SPARSE GIVENS TRANSFORMATIONS*

JOSEPH W. H. LIU"

Abstract. This paper introduces general row merging schemes for the QR decomposition of sparse
matrices by Givens rotations. They can be viewed as a generalization of row rotations to submatrix rotations
(or merging) in the recent method by George and Heath 12]. Based on the column ordering and the structure
of the given sparse matrix, we present an algorithm to determine automatically a sequence of submatrix
rotations appropriate for sparse decomposition. It is shown that the actual numerical computation can be
organized as a sequence ofreductions oftwo upper trapezoidal full submatrices into another upper trapezoidal
full matrix. Experimental results are provided to compare the practical performance of the proposed method
and the George-Heath scheme. Significant reduction in arithmetic operations and factorization time is
achieved in exchange for a very modest increase in working storage. The interpretation of general row

merging as a special variable row pivoting method is also presented.

Key words, sparse matrix, orthogonal decomposition, Givens rotation, row/submatrix merging, variable
row pivoting
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1. Introduction. The use of Givens transformations in the orthogonal decomposition
of a large sparse matrix is known to be very effective [6], [10], [12], [19], [20], [27].
Throughout this paper, A is assumed to be a large sparse rn by n matrix (m > n) with
full column rank. A sequence of Givens rotations can be applied to A to reduce it to
upper trapezoidal form, that is,

where Q is an m by m orthogonal matrix defined by the sequence of rotations, and
R is an n by n upper triangular matrix.

In the triangulation of A by orthogonal transformations, it is well known that the
factor R is mathematically equivalent to the Cholesky factor of ArA. Since

ATA=(PrA)T(pA)

for any row permutation Pr of A, the structure of the resulting triangular factor R
depends only on the column ordering, but not on the row ordering of A [17], [20],
[31 ]. Based on the connection between orthogonal and Cholesky factors, George and
Heath [12] recommend ordering the columns of A using fill-reducing orderings for
the symmetric and positive definite matrix ArA, a task with reliable and efficient
algorithms and robust implementations [15]. The use of such column orderings will
have the desirable effect of reducing the number of nonzeros in the resulting factor
matrix R and the number of operations to compute R.
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and by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S. Department
of Energy under contract DE-AC05-84OR21400 with MartinMarietta Energy Systems Inc., and by the U.S.
Air Force Office of Scientific Research under contract AFOSR-ISSA-84-00056. This paper was prepared
using a troff program running on the UNIX operating system.

" Department of Computer Science, York University, Downsview, Ontario, Canada M3J 1P3.
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Assume that the columns of A have been ordered appropriately. George and
Heath also devise a computational scheme, with the advantage of having simple and
efficient data storage management. The method predetermines the sparsity structure
of the factor R symbolically based on the structure of ATA prior to any numerical
computation. After a static data structure has been set up for R, the data matrix A is
accessed one row at a time, and the row is rotated into the static storage for R. Thus,
the scheme can be viewed as one with a sequence of row rotations merging rows into
a fixed upper triangular factor structure. Experimental results in [13] indicate that
their method can be used as an effective practical scheme to solve sparse linear least
s.quares problems.

In this paper, we consider the generalization ofrow rotations to submatrix rotations
in the George-Heath scheme. In essence, instead of having only one (fixed) upper
triangular structure, we allow the use of more than one (necessarily dynamic) triangular
structures in the course of computation. In other words, a row may be annihilated or
merged into one of many templates of upper triangular matrices, which will eventually
be merged together to form one single triangular factor matrix R. We use general row
merging schemes to refer to this approach, which will result in highly efficient and
practical schemes for sparse orthogonal factorization.

An outline of this paper is as follows. In section 2, a submatrix rotation is formally
defined. We also introduce the notion of a row merge tree, which can be used to induce
a sequence of such submatrix rotations. The connection of general row merging with
variable row pivoting methods (Gentleman [10]) is also presented. We can view the
scheme as one that generates a special variable row pivoting sequence.

In section 3, we present an algorithm that will generate an appropriate row merge
tree for sparse rotations. The motivation for this algorithm is also discussed; it is based
on some well-understood observations in the Cholesky decomposition of sparse positive
definite symmetric matrices. There is a close connection between the row merge tree
introduced in this paper and the element merge tree used by Eisenstat et al. [8] and
the elimination tree employed by Dutt [5], and others [21], [24], [30].

Some relevant properties of the generated row merge tree are also presented in
section 3. We show that the entire computation process based on this tree can be
organized into a sequence of merging of upper trapezoidalfull submatrices. Full matrix
techniques can then be used for sparse QR decomposition, as in the case of sparse
Gaussian elimination [5], [28].

Section 4 contains a discussion of the overall sparse factorization algorithm based
on general row merging. Some implementational details are also described.

In section 5, we compare the performance of the row merging scheme with the
George-Heath method. A theoretical analysis on a model problem is provided to
illustrate that the general row merging scheme can be substantially better than the
original scheme. Experimental results on the two schemes for a collection of practical
problems used by George, Heath and Ng [13] are also provided. The use of general
row merging is demonstrated to be efficient, effective and highly competitive. Significant
reduction in arithmetic operations and factorization time is achieved with only a very
modest increase in working storage.

Section 6 contains the conclusions along with some remarks on the relationship
between the algorithm developed in this paper with other known approaches. In
particular, general row merging is closely related to the multi-frontal method by Dutt
and Reid [7] for the solution of sparse symmetric systems. The scheme here may be
regarded as an implementation of the multi-frontal method on the symmetric decompo-
sition of ArA based on the matrix A.
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2. On general row merging.
2.1. Row merge tree and submatrix merging. We assume that the reader is familiar

with the basic operation of a sparse Givens rotation on a pair of matrix rows. After a
plane rotation on two sparse rows with common first nonzero subscript, the first nonzero
of one of them will become zero and the structure of the two transformed rows becomes
the union of those of the original [4], [10], [19], [20], [27].

It is helpful for our discussion to extend the domain of a plane rotation, which
involves only two rows. A row rotation has been used by George and Ng [17] to refer
to the sequence of.plane rotations that will annihilate a given row into an upper
triangular factor matrix. Here, we extend this further to submatrix rotation or merging,
which refers to the sequence of row rotations annihilating the rows of a given submatrix
one by one into an upper triangular matrix. The end result will be another upper
triangular matrix, with possibly difterent zero-nonzero structure due to contributions
from the rows of the first submatrix. It should be clear that the overall sequence of
plane rotations will be completely determined by the initial structure of the upper
triangular matrix, and by the structure and the row ordering of the submatrix.

In this context, the George-Heath scheme may be regarded as using row rotations,
merging each row from the original matrix into the partially formed upper triangular
factor matrix, whose final structure has been predetermined. The scheme proposed in
this paper using row merge trees can be viewed as using the more general submatrix
merging operations. In this paper, the readers are assumed to be familiar with notions
related to trees: subtree, forest, parent node, children nodes, leaf nodes, tree traversal
(see, for example, 1]).

A row merge tree for an m by n matrix A is defined to be a strictly binary tree
with m leaves, each corresponding to a row in the matrix. We now describe how the
structure of a row merge tree will induce a computational sequence for performing
Givens rotations.

Consider any node x in a given row merge tree. It defines a subtree rooted at x,
which in turn specifies a set of leaves (or rows) in the subtree. Let us then associate
with x an upper triangular matrix obtained by the orthogonal reduction of the corre-
sponding rows in its subtree. Note that the structure of this upper triangular matrix
can sometimes be very sparse with possibly many zero rows, and is completely specified
by the structure of the rows associated with the leaves in the subtree (irrespective of
the order in which the rotations are applied). Moreover, the upper triangular matrix
associated with the root of the overall row merge tree will be the factor matrix R to
be determined.

The upper triangular matrix associated with an interior node of the row merge
tree can be computed simply by a submatrix merge operation on the two submatrices
associated with its left and right children nodes, provided that they have been formed.
Since the rows in the leaf nodes are already in upper triangular form (with many zero
rows), a recursi.ve argument can then be used to compute the triangular matrix for any
interior node in the row merge tree, and hence the factor matrix R associated with
the root node. Indeed, each interior node in the tree represents the computational task
of a submatrix rotation, which merges an upper triangular matrix into another upper
triangular matrix.

In other words, the structure of a row merge tree can be used to specify a sequence
of tn 1 submatrix merging operations (since there are rn- 1 interior nodes in a strictly
binary tree of rn leaves), the result of which is the triangular factor matrix R.

strictly binary tree is a binary tree where each interior node has both a left and a right child node.
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FIG. 2.1. An unbalanced row merge tree.

We should point out that the George-Heath scheme, which rotates rows into a
fixed triangular matrix, can also be interpreted in the form of a row merge tree. The
tree structure is unbalanced, and its general form for a matrix with m rows is illustrated
in Figure 2.1. Throughout this paper, we use the notation At. to represent the r-th row
of the matrix A.

123456789

X X X X

2X X XX

3x x xx
4x x xx
5 x x xx
6 x x xx
7 x x x x
8 x x x x

9 x x x x
10 x xxx
11 x XXX

12 x XXX

13 x X X X

14 X X X X

15 x x x x
16 x x x x

FIG. 2.2. A 16 by 9 matrix example.

2.2. A matrix example. Figure 2.2 contains a 16 by 9 matrix example. This example
will be used throughout the paper. In this section, we shall use it to illustrate the
different notions presented in section 2.1. A row merge tree is specified for this matrix
in Figure 2.3.

R

FIG. 2.3. A row merge tree for matrix in Fig. 2.2.
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Consider the formation of the triangular matrix associated with the node x in
Figure 2.3. It can be obtained by the merging of the following two submatrix structures"

2 3 4 56 7 8 0 23 4 5 6 7 8 9
X X X X X X X X

X X X X X X

X X Merge x x
x x

It should be clear that these two triangular structures are associated with the left and
right children nodes of x respectively. Indeed, the first matrix structure corresponds
to the factor resulting from the reduction of the first four rows of the original matrix,
the second structure to the next four rows. To aid a better understanding of the matrix
merging operation, we display for this example the resulting structures of the row
rotations from the four rows of the second matrix into the first. An ’,’ is used here to
indicate those nonzeros actually involved in each row merging operation. The rows
being merged are illustrated and they are enclosed in brackets.

123456789 123456789

X X X X X X XX

X X X X X X X X

X X X

X X

X

x x xx) x xx)

123456789 123456789

x x X x x X x x

x x x x x x x x

x X xx x x x x

X XX X x X

X X

x x) x)

Note that there are two rows completely unaffected by the merging. In effect,
there are three non-trivial row rotations, and six plane rotations are used to annihilate
six nonzeros during the process. One of the annihilated nonzeros is an intermediate
fill, which is created from a previous plane rotation. It should be emphasized that the
term "merging" is used in this paper to refer to the sequence of row rotations, whereby
nonzeros are annihilated. In some sense, the two matrices are assembled to form one
upper triangular matrix through the annihilation process.

It is instructive to compare the use of the unbalanced row merge tree in Figure
2.1 and the merge tree in Figure 2.3 on this example. Figure 2.4 shows three selected
stages in the decomposition process when the unbalanced tree (that is, the George-
Heath scheme) is used. Here, we use ’0’ to represent a Givens rotation that reduces a
nonzero in the original matrix, an T for a rotation that annihilates an intermediate fill
(a nonzero created in the course of computation). As before, an "." is used to depict
a nonzero matrix value involved in the merging operation. For clarity, we have enclosed
each submatrix associated with a merging operation in a rectangle. Figure 2.5, on the
other hand, illustrates some intermediate stages if the balanced merge tree of Figure
2.3 is used.

The use of the more general merge tree reduces the number of plane rotations
from 46 to 42. This can be attributed to the reduction of intermediate fills that need
to be annihilated. This example shows that savings in computational cost can be
achieved by generalizing row rotations to submatrix merging based on some appropriate
row merge trees. However, it is only fair to point out that a reordering of the rows
can make the unbalanced merge tree competitive in arithmetic cost for this particular
example (reordered in increasing order of last column subscript). This example is
selected here because it serves to illustrate other interesting points throughout the
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123456789
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XXX 0 ***
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xxx 0 000!

x x x x x x x

x x x x x x x
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123456789

x x x

x x x x

x x x

X X X

0 0|00

0 OlO0

0 OiO0

FIG. 2.4. Merging by the unbalanced merge tree in Fig. 2.1.
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123456780
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FIG. 2.5. Merging by the balanced merge tree in Fig. 2.3.

paper. In section 5, substantial reduction in arithmetic costs will be demonstrated on
some practical problems.

2.3. An interpretation: variable row pivoting. The notion of using submatrix merging
based on the structure of a row merge tree in sparse orthogonal decomposition is new,
but it is related to some existing sparse techniques. We shall discuss its connection
with variable row pivoting in this section.

Consider the George-Heath scheme [12]. The rows of the matrix are rotated one
by one into the static data structure previously set up for the factor R. Since the pivot
row always comes from R, the scheme can be regarded as one using fixed pivots [4],
[31]. In view of the choice of pivot row, we shall refer to it as a diagonal row pivoting
scheme. It is well known in the literature [4], [20], [27] that any sequence of plane
rotations will produce the same structure for R (with a fixed column ordering). But,
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a judicious choice of rotation sequence can sometimes result in drastic reductions in
the number of plane rotations and the number of arithmetic operations. Choosing
a good row ordering is one such technique for diagonal row pivoting methods
[16], [17].

Variable row pivoting is another technique. It was first proposed by Gentleman
[10], and later considered in [4], [31]. Unlike the diagonal row pivoting method where
the pivot row is predetermined by the location of the nonzero to be annihilated, this
method allows a variable choice of pivot rows. The added flexibility can lead to
substantial savings in the sparse case. Indeed, Gentleman [10] illustrates impressive
savings in the use of variable row pivots for an example arising from the least square
analysis of factorial design.

The use of variable row pivoting schemes has not been popular even though the
idea was conceived back in 1975. This is primarily due to two reasons: there is no
efficient and effective automatic scheme to generate the sequence of variable row pairs
for rotations, and the organizational details in performing the numerical computation
are apparently complicated. It should be pointed out that Duff [4] suggests a scheme
based on some local minimizing criterion to generate a variable row pivoting sequence,
but his experimental results indicate that the generated variable sequence does not
provide much improvement over the diagonal pivoting scheme.

Now let us consider the submatrix merging technique on a row merge tree as
described in section 2.1. Since each submatrix merging is a sequence of row rotations,
each of which is a sequence of plane rotations, the overall scheme is a sequence of
plane rotations using variable row pivots. So, the general row merging approach can
be regarded as a special case of variable row pivoting, and the determining factors are
the structure of the row merge tree and the order in which submatrices are to be
merged. As we shall see in this paper, the use of submatrix merging helps to resolve
the apparent difficulties mentioned above in the variable pivoting approach.

Figure 2.5 shows three different stages in the factorization process for the matrix
example in Figure 2.2 using general row merging. That it uses variable row pivots can
be readily seen from the matrix sequence. The relationship among the different notions
can be summarized as follows"

Row Merge Sequence of
Tree Submatrix Merging

Sequence of
Variable- Pivot Rotations

3. Generation of row merge trees.
3.1. An algorithm for row merge trees. Naturally, we want to generate row merge

trees that will induce submatrix rotation sequences so that the amount of computation
in the overall QR decomposition is minimized. In this section, we provide a simple
algorithm that will generate effective row merge trees based on the given matrix structure
and its column ordering. Though it may not always minimize the number of arithmetic
operations, the scheme works extremely well in practice. This is not surprising as we
shall see that it is motivated from some well-understood observations in sparse Cholesky
factorization.

Let the column ordering of the given m by n matrix A be fixed. We first describe
the algorithm in terms of (triangular) submatrix merges. Throughout the course of the
algorithm, a set F of sparse upper triangular matrices will be maintained. Consider a
row At* with the first nonzero in column f. It is associated with an upper triangular
matrix with all zero rows except for row f, which is the same as At.. Let F be initialized
with the set of these m triangular matrices.
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The algorithm can then be described as follows:

for column c := 1 to n
begin

Merge all triangular matrices in F with nonzero column c;
Replace these matrices in F by the resulting triangular matrix;

end;

At the end of the above algorithm, the upper triangular matrix factor R can be obtained
directly from the set F. On the surface, this approach may look similar to the diagonal
row pivoting scheme, with the rows arranged in ascending order ofthe column subscript
of the first nonzero. The merging sequences in Figure 2.4 and Figure 2.5 should illustrate
that they are indeed ditterent. The merging sequence in Figure 2.5 is using the above
algorithm. The first matrix pattern shows the execution corresponding to loop index
c 1, 2, 3, 4; after which the set F will contain four upper triangular matrices. The
second pattern illustrates the merging of matrices involving columns 5 and 6 respec-
tively, so that two matrices will be left in the set F.

The generation of the merge tree structure corresponding to the above matrix
merging sequence is quite straightforward. The structure can be determined by working
logically on the column subscripts. For completeness and for later reference, we describe
it as follows.

Let Xl,X2,... ,x, denote the columns of A, and for each row At*, let qr be the set
of nonzero column subscripts in the r-th row, that is

qr--{xcla,.cO}.

The following algorithm will generate a row merge tree structure (not necessarily
binary!) from the set of rows {q}. It maintains a forest F containing a set of labelled
trees (rather than a set of triangular matrices). The label of each tree node is a subset
of the column set {xl, x2,..., xn}. The forest F is initialized to contain m labelled
trees, each having one single node labelled by qr, r= 1,..., m respectively.

forc:= lto n
begin

Find all trees in F, whose root includes xc in its set label;
Replace these trees, say, T1,..., Tt having set

labels V1,..., Vt in their roots, by a new labelled tree:

Label the new root by the column subset (V1 U... t.J V)
end;

In general, at the end, the forest F may still have more than one tree. That will
correspond to a structurally reducible ATA. For simplicity, we assume that F is a tree
at the termination of this algorithm. The results in this section can be extended quite
easily to the general case.

Note that the tree generation algorithm is column driven, and the structure of the
merge tree depends on the column order x,..., xn and the row structures. The merge



1198 JOSEPH W. H. LIU

tree formed has m leaves, each labelled by a column subscript set of a row of A. There
are n interior nodes, each of which can be associated with a column of A. If an interior
node is associated with the column xc, we shall use S(xc) to denote its set label. Each
is formed by simply taking the union ofthe labels of its children nodes. Their significance
in the computational process will be considered later in the section.

It should be noted that the tree obtained from the algorithm may not always be
a binary tree (since in general, n m 1). For example, the application ofthis algorithm
to the matrix structure in Figure 2.2 will give the following merge tree"

$ 6)

So, strictly speaking, it is not a row merge tree. However, it can be transformed into
a binary tree by introducing additional interior nodes (binary splitting) if a node has
more than two children, and by removing those parent nodes that have only one child.
For example, the row merge tree used in Figure 2.3 can be regarded as one such
transformed binary tree for the above tree structure.

Needless to say, there are a number of different ways to perform binary-splitting.
To find the best possible splitting in the context of sparse QR decomposition is an
interesting problem. There are matrix examples in .which an effective binary-splitting
transformation is of great importance to the overall efficiency of the method (e.g. the
one used by Gentleman in [10] to demonstrate savings by using variable pivots).

As we shall see in section 4, a simple binary-splitting method is used in this paper.
It will be shown to give an effective overall scheme for the practical problems tested,
when compared with the George-Heath method. More sophisticated splitting strategies
based on some local minimization criterion (e.g. [4], [31]) should be promising. More
will be said about this in section 4.

3.2. Properties of row merge trees generated. In this section, we study some properties
of the row merge tree generated by the algorithm in the previous subsection. We shall
establish the important observation that the actual numerical computation based on
such row merge trees can be organized as a sequence of (upper triangular) full submatrix
merging operations.

Recall that the structure generated is a tree with m leaves and n interior nodes.
Each leaf node corresponds to a row in the original matrix, and each interior node to
a column. Moreover, in the course of the algorithm, each interior node is assigned a
label S(x), which is a subset of column subscripts. For convenience in the discussion,
we shall use S(xc) to refer to the node with this label in the tree.

Consider the subtree rooted at the node S(x). Let the set labels of the children
of this node be

V1, V2,..., Vt.
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Consider the matrix merging operation associated with the node S(xc). We assume
that at this stage the submatrices associated with its children nodes have already been
computed. The following observations are quite obvious, and we list them without any
proof.

Observation 3.1. For j, (ViVI Vj) O{Xl, Xc-1}-",.
Observation 3.2. c=min {k[Xk VlVI...V1Vt}.
Observation 3.3. In the submatrices of the children nodes, if the first nonzero of

a row is xy, with f< c, then this row is the computed row of Rr in the factor matrix
R.

Observation 3.4. The matrix merging operation associated with the node S(xc)
only involves columns in the set

S(x) C {x, x}.

In other words, for each child Vi, only the part of the submatrix with columns
Vf’) {x,..., x,} is involved in this merging operation.

Observation 3.5. The subscript set S(x) f) {x,..., x,} corresponds to the nonzero
structure of the c-th row of the (upper triangular) Cholesky factor obtained by the
symbolic factorization on the structure of ATA.

It is appropriate here to point out that in general, the Cholesky structure obtained
by the symbolic factorization of ATA may overestimate the structure for the orthogonal
factor R [3] (though, mathematically they are the same). However, in this paper, we
shall assume that the two structures are the same. It is reasonable, since any (sparse)
matrix can be reordered to a block upper triangular form where each block diagonal
submatrix has this property. Readers are referred to the paper by Coleman et al. [3]
for details. With this assumption, the subscript set in Observation 3.5 now corresponds
to the structure of the row R c. in the factor R.

The structure of the row merge tree formed can be characterized simply by the
following two observations.

Observation 3.6. The node S(xy) is the parent node of a leaf node qr if and only
if

f min { k Ixk q r}"

Observation 3.7. The node S(x) is the parent node of an interior node S(xc) if
and only if

f= min {kl Xk S(xc) -{x,..., x}}.

To aid our further discussion, we introduce some new terminology. Let T be a
sparse upper triangular matrix. If bot.h the i-th row and the i-th column of T are zeros,
the removal of them will result in a smaller upper triangular matrix. Consider the
removal of all such zero row/column pairs; if the resulting matrix is full upper
triangular, then T is said to be essentially full If the remaining matrix is full upper
trapezoidal, then T is an essentially full upper trapezoidal matrix.

Such a matrix structure can be characterized by the number v of non-null rows,
and the set V of subscripts of non-null columns. We shall use the notation TZ(v, V)
to denote the structure of such an essentially full upper trapezoidal matrix. In the
notation, for convenience we further assume that the set V is represented as an array
V[,] containing the subscripts in ascending order, that is, V[k] < V[k + 1], for k
1,..., v-1.

In the merging of two essentially full upper trapezoidal matrix, if every (non-null)
row is involved in a non-trivial rotation, then the resulting upper trapezoidal matrix
is again essentially full. The next lemma provides a simple sufficient condition.
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LEMMA 3.8. The merging of TZ( u, U) and TZ( v, V), with

U[1]= V[1]
gives the structure TZ( w, W), with

w=min {u+v, [WI} W= UU V,
provided that

u + v > max { u’, v’}

where U[u] W[u’], and V[v] W[v’]. (That is, u’ {v’} is the location of the subscript
U[u { V[ v]} in the array W[.].)

The following example shows that the merging of two essentially full upper
trapezoidal matrices may not always give rise to one that is essentially full.

2347 260

X X X X X X X

X X X X X
Merge x

TZ(2,U) TZ(3,V)

234670

X X

x

TZ(5,W)

Note that for this example, the condition in Lemma 3.8 is not satisfied: u’ is 2 since
U[u]=3 appears second in the W-sequence, while v’ is 6 since V[v]=9 is the sixth
subscript in W, so that max {u’, v’} 6 and u + v 5.

Even though, in general, the resulting matrix from the merging of two essentially
full upper trapezoidal matrices is not essentially full, the condition in Lemma 3.8 holds
when there are more rows than columns. In particular, it holds for upper triangular
matrices, so that the merging of essentially full upper triangular matrices always gives
an essentially full upper triangular matrix (since max {u’, v’} w< u+v). For all
practical purposes, we can assume that the resulting upper trapezoidal matrix after
the merging operation is essentially full. Indeed, in instances where it is not, the
bookkeeping overhead incurred will offset the advantage gained in treating the resulting
upper trapezoidal matrix as sparse.

The result of Lemma 3.8 can be applied in the context of submatrix merging based
on the row merge tree generated from the last subsection. The submatrix associated
with each leaf in the merge tree corresponds to a row in the original matrix, which is
obviously an essentially full trapezoidal matrix. By Lemma 3.8, the merging of two
rows with common first subscript always generate an essentially full upper trapezoidal
matrix (since u + v 2 and u’= v’- 1).

In general, consider any interior node S(xc) and the submatrices associated with
its children nodes with set labels V,..., Vt. By Observations 3.2-3.5, we can remove
rows involving columns before x from these matrices and then merge the remaining
portions of the submatrices together. If these remaining submatrices are essentially
full, that is,

TZ(Ul, Vl’{Xc,...,Xn})... TZ(ut, Vtf{Xc,...,x,})

where u,..., u, are the respective number of rows, then based on the remark after
Lemma 3.8, from a practical standpoint, we can treat the result of the merging as
another essentially full upper trapezoidal matrix: TZ(u, S(xc) fq {xc,..., x,}).

In summary, in the numerical QR factorization of an m by n sparse matrix, we
can first determine a row merge tree using the algorithm in section 3.1. Then, using
its structure, we can organize the computation as m- 1 major steps, each being a
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submatrix rotation of two essentially full upper trapezoidal matrices to yield another
matrix with the same property.

3.3. Graph theoretic interpretation and motivation. In this section, a graph theoretic
interpretation of general row merging in QR decomposition will be presented. This
helps to provide the motivation for the row merge tree generation algorithm described
earlier. This section can be skipped without breaking the continuity of the paper.

Readers are assumed to be familiar with graph theoretic terminology associated
with sparse matrix computation. In particular, the concepts of undirected graphs
associated with symmetric matrices, nodes, edges, adjacent sets, cliques, and reachable
sets are assumed. Readers are referred to [15] for formal definitions.

Consider the orthogonal decomposition of the given sparse matrix A. As noted
in the introduction, the triangular factor matrix R corresponds to the Cholesky factor
of the symmetric matrix M ATA, so that its structure can be obtained by the symbolic
factorization of the symmetric graph G(M) using the elimination graph model [29].

The determination of the elimination graph sequence for a symmetric graph is
well known [15], [29]. When a node y in the symmetric graph G(M) is eliminated
from the graph, the set of adjacent nodes of y becomes a clique (complete subgraph)
in the new elimination graph. In other words, all the cliques containing the node y
will be merged to form a new clique after the elimination of y. This process of clique
merging is the basis in the study of Gaussian elimination for symmetric positive definite
systems.

To make the connection between the matrix structure of A and the graph structure
of G(M), we note that each row in the matrix A can be identified as a clique in the
symmetric graph G(M) 17]. This is because each row Ar* is used in an outer-product
(Ar.)T(Ar.) in forming M. We can therefore say that each row of A is a representation
of a clique in G(M).

Since the node elimination sequence of the graph G(M) provides a natural way
of specifying a clique merging sequence (see [8] for a discussion of element merge
tree), and each row in A corresponds to a clique in G(M), the row merge tree generated
by the algorithm in the previous subsection corresponds to the clique merge sequence
as defined by the node elimination sequence. This observation can be best illustrated
by an example. Consider the matrix structure (same as that of Figure 2.2) and its
corresponding symmetric graph in Figure 3.1.

123456789

x x x x
2 x x x x

3 x x x x

4 x x x x

5 x x x x
6 x x x x

7 x x x X
8 x x x x

O x x x x

10 x x x x

11 x x x x

12 x x x x

13 x x x x

14 x x x x

15 x x x x

16

G(ATA)

X X X X

FIG. 3.1. Matrix structure A and its symmetric graph (ArA).
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Node Eliminated Cliques Merged Clique Formed

FIG. 3.2. Clique merging in node elimination.

Figure 3.2 contains the node elimination sequence and the clique merging
operations. It also displays the clique merges in the form of a tree. Its correspondence
with the row merge tree in Figure 2.3 should be clear. In the elimination of the node
x the resulting clique formed after merging corresponds to the subscript set

S{x) Cl (x, x,}

which is associated with the nonzero structure of the row Re. in the factor matrix R.
The success of the row merge tree approach in sparse QR decomposition depends

on the choice of the column ordering. Following George and Heath [12], we choose
the column ordering to minimize fill in the symmetric decomposition of M ArA; the
practical ones are the minimum degree ordering and nested-dissection type orderings
[15]. In these ordering schemes, at each step, a node is picked for elimination if the
resulting clique size is small. In the context of (essentially full) submatrix merging,
the clique size corresponds to the size of the essentially full trapezoidal matrix. By
keeping this size small, this will help to reduce the number of intermediate fills and
the amount of computation required to perform the merging operation. This explains
why such ordering schemes are appropriate column orderings for the general row
merging scheme.

In the study of symmetric Cholesky factorization, a tree structure, called an
elimination tree, has been used in many different contexts: the multi-frontal method
[7], [28], parallel elimination [21], compact row storage scheme [24], and relative
row-index storage scheme [30]. Without going into the details, we merely state that it
follows quite readily from Observation 3.7 that the row merge tree constructed by the
algorithm in section 3.1 with the leaf nodes removed is the elimination tree for the
symmetric matrix ArA. This connection is useful from a practical view, since there is
already an efficient algorithm to generate the elimination tree from the structure of a
symmetric matrix [24]. The row merge tree can thus be determined by forming the
elimination tree of ArA.

4. An overall sparse orthogonal factorization scheme. In this section, we put all the
observations on row merging into the overall perspective of a scheme for performing
sparse QR decomposition.
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In the row merge tree, the numerical computation of matrix merging associated
with an interior node can be performed so long as the submatrices associated with its
children nodes have already been computed. In other words, if we view the computa-
tional sequence in terms of a tree traversal sequence (see e.g. [1]), the children nodes
have to be visited before the parent node. Following the multi-frontal method by Duff
and Reid [7] for symmetric decomposition, we shall visit the nodes in the merge tree
systematically in a depth-first order (that is, a postorder traversal of the tree 1]). This
will enable us to manage the numerical merging by means of a stack ofupper trapezoidal
essentially full matrices. The stack is used to store all the partially formed trapezoidal
matrices, and the next one required for submatrix merging is always at the top of the
stack. Indeed, in the computational scheme, we either merge an incoming row from
the original matrix or a trapezoidal matrix from the top of the stack into a working
upper triangular matrix.

Since there is a one-to-one correspondence between columns of the matrix and
interior nodes in the row merge tree, a postordering on the merge tree, in effect,
corresponds to a column reordering of the original matrix A. It should be noted that
this reordering is equivalent to the previous column ordering in terms of fills in the
factor matrix.

The overall scheme is described as follows"
Stel 1"(Column Ordering)

Find a fill-reducing ordering Pc (e.g. the minimum degree ordering) for the
structure of ATA. Obtain the structure of APe using Pc as the column ordering.

Stel 2" (Row Merge Tree)
Generate the (not necessarily binary) row merge tree based on the structure
of APe by the column-driven algorithm in section 3.1.

Stel 3: (Column Reordering)
Generate a postordering of the row merge tree (by a depth-first search). Let
Pc be the corresponding equivalent column ordering of A. Order the columns
of A using

Stel 4" (Symbolic Factorization and Storage Allocation)
Perform the symbolic factorization on the symmetric structure of (A/So) T(A/c),
and obtain the structure of the corresponding factor R. Create a static storage
for the rows of R based on the information computed.

Stel 5: (Row Ordering)
Sort the rows of APe in ascending order of its first column subscript; let the
corresponding row ordering be Pr.

Stel 6: (Numeric Factorization)
Initialize a stack of essentially full upper trapezoidal matrices;
for i:=lto n
begin
From the structure of R, let i, il, i2,...,
be the locations of the nonzeros in row R i*;

Obtain working space for a full / 1 by / 1 upper triangular matrix;

If the top upper trapezoidal matrix on the stack has as its first subscript
then Pop it from the stack and merge it into the working triangular matrix;

While the next row from PrAPc has as its first subscript
do Merge the row into the working triangular matrix;

Save the first row of working triangular matrix as the row R
into the static storage set up for R;
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Consider the remaining non-null rows of working matrix as one upper
trapezoidal matrix with the subscript set: il,...,

If the top upper triangular matrix on the stack has as its first subscript
then Merge the remaining working matrix into this top matrix
else Push the remaining working matrix onto the stack;

end;
In step 2, the row merge tree can be generated by forming the elimination tree of

the symmetric matrix A’A, as described in section 3. The elimination tree generation
algorithm in [24] can be used.

Step 6 describes the main steps in the overall numerical computational phase.
Some minor details are omitted for clarity; for example, more than one row from the
working triangular matrix may be fully formed, so that they can be saved simultaneously
before the remaining rows are pushed onto the stack. The algorithm as described, uses
a specific binary-splitting method for parent nodes with more than two children nodes.
It should be clear that the splitting strategy can be depicted by the following example:

b/norj/ spritting

Here, the shaded nodes represent rows from the original matrix. This splitting has the
advantage of low non-numeric computational overhead, simple implementation, and
relatively small stack storage requirement.

The author has experimented with other splitting methods. In the problems tested,
there is little or no improvement in the overall execution time, although in some cases,
the operation counts are noticeably reduced. This can be attributed to the extra
bookkeeping overhead for the more complicated strategies, which offsets the reduction
in arithmetic operations. Therefore, in the implementation the above simple splitting
strategy is used, and it will be shown to be quite effective in the experiments reported
in section 5. The author is still looking for other practical ways of finding good and
reliable splitting transformations based on the row structures.

In the above algorithm, we assume that the factor matrix R is stored row by row
in a compact form. Moreover, the structure of R is represented using the compressed
subscript scheme. We assume that the reader is familiar with these representations and
is referred to [15] for details.

It should be noted that in the numerical factorization phase, the temporary storage
required for the working upper triangular matrix in the numeric factorization phase
can overlap with the storage for the part of R remaining to be computed. There is
always enough room in this part of R for the current working matrix. However,
additional storage is needed for the stack of upper trapezoidal full matrices. The
amount required can be determined symbolically based on the structure of the matrix
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PrAPc. In this way, stack space can be preallocated in step 5 before numerical
computation begins.

Each submatrix in the stack can be specified by its number of rows and its column
subscript set. Each such column subscript set can be identified as a row structure in
R. This piece of information can, therefore, be obtained from the structural representa-
tion of R, and it is not necessary to store it explicitly. Furthermore, the sizes of these
full trapezoidal submatrices are given by the number of nonzeros in the rows of the
factor matrix R (see Observation 3.5).

5. Comparison of general row merging with the George-Heath scheme.
5.1. Theoretical comparison on a model problem. In this section, the general row

merging strategy is analyzed when applied to a model problem. This problem arises
typically in the natural factor formulation of finite element methods [2]. It is quite
suited to the new approach, and we use it to demonstrate the possible substantial
savings in arithmetic cost.

Consider the k by k regular grid with (k- 1)2 small squares. Associated with each
of the k2 grid nodes is a variable. Associated witheach square (called an element) is
a set of s equations involving the four variables at the corners of the square. The
assembly ofthese equations results in a large sparse overdetermined system of equations

Ax=b

where the dimension of the matrix A is m by n, with

m- s(k-1)2, n k2.

Note that the regular grid reflects the structure of the symmetric matrix ArA. Each
row in the matrix A can be identified with an element in the grid. The example in
Figure 3.1 is the 3 by 3 model problem.

For the analysis, we assume that the columns of the matrix A are numbered by
the nested dissection ordering 11]. Based on this dissection column ordering .(that is,
variable ordering in the regular grid), we use the general row merging algorithm as
described in section 4. We further assume that the s equations associated with each
element are initially reduced to an upper triangular submatrix. If s >-4, each requires
4s- 10 rotations; in total, this initial phase takes (4s- 10)(k- 1)2 rotations. As we shall
see, this step does not affect the order of magnitude of the counts in the overall scheme.

Let G(k) be the number of Givens rotations required to perform the orthogonal
decomposition of the matrix A using the general row merging algorithm. Furthermore,
let O(k) be the corresponding cost. In the analysis, following [17], we use the number
of nonzeros in the transformed pivot row as the cost to perform a sparse plane rotation.
Note that the actual number of multiplicative operations is usually a multiple of this
cost. These quantities can be computed by solving a set of recurrence relations. Since
the derivation is quite straightforward, we shall omit the details. The results are stated
in the following theorems, and readers are referred to [22] for the analysis.

THEOREM 5.1.

THEOREM 5.2.

G(k) ,3. k2 log2 k + 4sk2 + O(

O(k) =829 k3 + lOsk2 + O(k2 log2 k).
84
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It is interesting to compare the result with that of the George-Heath method,
which uses the diagonal row pivoting approach. In [26], Ng shows that the diagonal
pivoting scheme on the model problem requires no more than

1419sk3 + O(klog2k)
224

number of operations. Note that in this case, the high order term depends on the value
of the parameter s. For s =4 (typical in finite element application), the constants of
proportionality for diagonal row pivoting and general row merging are 25.33 and 9.87
respectively. For s > 4, the difference is more dramatic.

To demonstrate the actual difference, we count the exact number of Givens
transformations and the exact cost to do the sparse QR factorization. Table 5.1 contains
these counts for the George-Heath scheme (diagonal row pivoting) and the general
row merging method on the model problem with s- 4. The matrix column ordering
is obtained by the theoretical nested dissection scheme as described by George [11].

TABLE 5.1
Theoretical results on the k by k grid problem, with nested dissection column ordering.

20
30
40
5O
60

Diagonal Row Pivoting

Rotation / k21ogk

20282 11.7
58802 13.3
121690 14.3
212698 15.1
332154 15.6

Cost / k

201057 25.1
781082 28.9
1944957 30.4
4003334 32.0
7117352 33.0

General Row Merging

Rotation / k21ogk

12076 7.0
31625 7.2
61502 7.2
102275 7.3
154437 7.3

Cost / k

80440 10.06
273504 10.13
.636269 9.94
1243867 9.95
2137404 9.90

We observe from the Table 5.1 that the theoretical savings in rotations and
operations are quite substantial when the general row merging scheme is used. In the
60 by 60 grid problem, the diagonal scheme uses more than twice the number of
rotations, and more than three times the arithmetic cost required by the new scheme.
We /lso note that for the k by k model problem, the working stack storage requirement
is of the order of k2.

5.2. Numerical experiments on some practical problems. The algorithm as described
in section 4 has been implemented and in this section, we provide numerical results
from experimental runs of the code. We compare the performance of this code with
the implementation of the George-Heath scheme by George and Ng [18] in the
SPARSPAK-B package for solving linear least squares problems.

For both schemes, the minimum degree ordering is used for the matrix column
ordering. It is the most popular general-purpose fill-reducing ordering strategy for
symmetric matrices. The recent modified version of the minimum degree algorithm in
[23] is used in our experiments.

For row ordering, in the row merging scheme, the rows are arranged in increasing
order of the first nonzero column subscript, as described in the algorithm of section
4. On the other hand, in the George-Heath scheme, the rows of the matrix are ordered
in increasing sequence of last nonzero column subscript. This row ordering strategy
has been recommended by George et al. 16] for the diagonal pivoting scheme when
the columns are arranged by the minimum degree ordering.
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In the results tabulated, only multiplicative operations are accounted for in the
operation counts, and the times reported are in CPU seconds of an VAX 11/780 with
a floating point accelerator. Single precisions are used in the experiments. There are
two sets of test examples. The first set consists of the model problem with different
values of k. The numerical results are tabulated in Table 5.2. They show that the savings
in computation are realized in computer implementations. Indeed, for k- 50, the
George-Heath scheme, compared to the new row merging approach, requires four
times more CPU time and seven times as many arithmetic operations.

It should be noted that the operation counts in Table 5.2 include some trivial
multiplicative operations in the actual orthogonal factorization. These operations can
be avoided by testing for zero operands. However, there would be little or no improve-
ment in CPU time. The reason is that we are only trading trivial multiplicative operations
for logic in zero operand detections, and the amount of other non-numeric overhead
stays the same (George and Ng, private communication).

TABLE 5.2
QR factorization statistics for model problems with minimum degree column ordering.

10
20
30
40
50

SPARSPAK-B

Factor Opcount Factor Time

160352 2.33
2197730 24.78
7851479 84.34

20934178 219.26
42867428 432.72

General Row Merging

Factor Opcount Factor Time

50824 1.80
418484 9.97
1320864 26.73
3157880 55.01
6106096 97.13

The second test set consists of the ten problems used by George, Heath and Ng
in their comparison paper on methods for solving sparse linear least squares systems
[13]. They represent a wide variety of structures arising from practical applications;
readers are referred to the comparison paper for details about the problems. We list
them in Table 5.3 for reference.

TABLE 5.3
Matrix problems for the second test set.

Problem

2
3
4
5
6
7
8
9
10

Number of
Rows Cols Nonz

313 176 1557
1033 320 4732
1033 320 4719
1850 712 8755
1850 712 8638
784 225 3136
1444 400 5776
1512 402 7152
1488 784 7040
900 269 4208

Problem Description

Sudan survey data
Analysis of gravity-meter observations (well-conditioned)
Analysis of gravity-meter observations (ill-conditioned)
Similar to Problem 2, but larger
Similar to Problem 4, but larger
15 x 15 grid problem
20 x 20 grid problem
3 x 3 geodetic network with 2 observations per node
4 x 4 geodetic network with observation per node
Geodetic network problem provided by U.S. National
Geodetic Survey (ill-conditioned)
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In Table 5.4, we tabulate the statistics for the orthogonal factorization by the two
methods on the ten test problems. "Column Order Time" for SPARSPAK-B is the
time used to generate the minimum degree ordering for ATA; for general row merging,
it includes the time for the minimum degree column ordering, the row merge tree
generation and the postordering of the merge tree. From the results tabulated, the time
used for the extra processing is not very significant.

TABLE 5.4
Factorization statistics on ten test problems.

Problem

2
3
4
5
6
7
8
9
10

SPARSPAK-B

Column QR Fact QR Fact
Order Time Opcount Time

0.43 98289 1.76
3.15 412132 6.44
3.24 419323 6.64
5.79 2955637 34.03
5.86 2983343 33.74
0.34 750547 9.22
0.61 2197730 24.94
0.42 723103 11.12
0.80 760795 11.38
3.08 1228537 14.18

General Row Merging

Column QR Fact QR Fact
Order Time Opcount Time

0.59 56004 1.93
3.52 234056 6.47
3.58 236580 6.35
6.47 754444 15.62
6.64 755724 15.24
0.51 167004 4.97
0.90 418444 10.09
0.67 361340 9.61
1.35 395088 10.30
3.36 710532 11.02

For all ten problems, there is an impressive reduction in arithmetic operation
counts. Although the reduction in execution time is not commensurate with the
reduction in operation counts due to non-numeric overhead, the saving in time is still
substantial. For problems 4 and 5, the CPU time is reduced by more than 50%.

The reduction in execution time is achieved at the expense of an increase in
working storage to manipulate a stack of full upper triangular matrices. In Table 5.5,
we tabulate the size of the stack required to perform the numerical factorization for
these ten problems. "’Maximum Stack Size" is the maximum number of real values
ever stored at one time in the stack during the course of the numerical computation,
and "Max No. of Stack Entries" refers to the maximum number of triangular matrices
ever pushed onto the stack. The additional storage required by row merging is given

TABLE 5.5
Working storage requirement for general row merging.

Problem

2
3
4
5
6
7
8
9
10

No. of
Nonz(A)

1557
4732
4719
8755
8638
3136
5776
7152
7040
4208

No. of No. of
Nonz(R) Subscript(R)

1627 499
2575 901
2573 915
7410 3261
7415 3267
2786 1129
6118 2171
4091 1268
8300 2666
4697 1867

Maximum Max No. of
Stack Size Stack Entries

213 4
428 4
428 4
1341 7
1341 7
982 6

2322 6
611 6
845 6
953 4
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by the sum of "Maximum Stack Size" and three times "Max No. of Stack Entries".
These numbers are rather modest when compared to the number of nonzeros in the
original matrix A or the orthogonal factor matrix R. For completeness, we have also
included the number of compressed subscripts required to represent the structure of
R in the table under the heading "No. of Subscript(R)".

We have not included the time to do the symbolic factorization, the row ordering,
and the solution back-substitution in the table. The respective times required by the
two schemes are roughly the same, and they are insignificant when compared with the
numerical factorization time.

6. Concluding remarks. In this paper, we have introduced general row merging
schemes for the sparse QR decomposition using Givens rotations. The merging sequence
can be represented conveniently in the form of a tree, which we have called a row
merge tree. An algorithm is provided which will automatically select the rows to be
merged, based on the column ordering and the structure of the given sparse matrix.
The tree constructed is closely related to the element merge tree and the elimination
tree used in the study of sparse Cholesky factorization. This approach of general row
merging can also be interpreted as a special type of variable row pivoting (as opposed
to diagonal row pivoting).

The advantages of this approach are two-fold. Firstly, it can be used to reduce
the computational cost in doing the sparse QR factorization. An analysis of the scheme
on the k by k model problem shows that it is significantly better than diagonal row
pivoting schemes, which includes the recent George-Heath method. Secondly, we have
shown that the computation using this approach can be organized into a sequence of
reductions oftwo upper trapezoidal full submatrices. This has some significant practical
implications in the implementation of this scheme. Experimental results on practical
problems show that substantial savings in operations and CPU time can be achieved.
It should also be noted that fast Givens [9] can be used in the matrix merging operations
in the implementation.

Finally, we provide some remarks on the scheme developed in this paper with
other known approaches.The recent work by George, Heath and Plemmons [14] on
out-of-core solution of large sparse least squares problem can be interpreted in the
context of a row merge tree. Our work here shows that the technique can be exploited
even in the in-core solution.The work in [25] by Manneback, Murigande and Toint
on the solution of large sparse least square problems arising from geodetic Doppler
multi-station adjustment using elimination of local variables at data collection centres
is related to general row merging in a similar way. It can be regarded as doing the
computation associated with some subtrees of the row merge tree in a distributive
computing environment.

The recent practical scheme by George and Heath is simple and efficient in terms
of data and storage management, and adapts extremely well to row-by-row processing.
The scheme proposed in this paper by general row merging may be considered as
generalizing row rotations to submatrix rotations/merging in their method. The result-
ing scheme compares very favorably with the George-Heath method. Indeed, our
implementation generally requires less time to perform the sparse QR decomposition
on all the problems tested, with a very modest increase in working storage. On some
problems, the CPU time reduction is substantial.

General row merging can also be viewed as a special type of variable row pivoting
method. Work has been done by Duff [4], and Zlatev [31] to study the use of variable
pivots. They have devised column and row ordering strategies appropriate for variable
pivot selections, and dynamic storage methods to implement the numerical factoriz-
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ation. The method proposed in this paper differs in several aspects. Our choice of
column and row orderings (and hence the variable pivots) is modeled from the structure
of ATA, while they work directly on the structure of A. In view of the relation between
orthogonal and Cholesky factors, our choice generally produces good orderings and
effective variable row-pairs for rotations. Secondly, we have organized the computation
as a sequence of full matrix rotations (merging), which can be managed orderly by
means of a stack. Thirdly, some of the intermediate fills created in a submatrix merge
will be annihilated during this merging operation, so that they need not be kept. The
rest will be pushed as a full trapezoidal matrix onto the stack. Experiments in section
5 indicate that the amount of stack storage required is quite small. The dynamic storage
methods proposed in [4], [31] apparently do not have these features.

Another related work is the multi-frontal method by Duff and Reid [7] on the
solution of sparse indefinite systems. The execution sequence determined by the row
merge tree in this paper can be viewed as performing the computation on multiple
fronts. Indeed, general row merging may be regarded as an implementation of the
multi-frontal method on the sysmmetric decomposition ATA based’ on the matrix A.
Our scheme for sparse orthogonal decomposition and the TREESOLVE package by
Reid [28] for sparse Cholesky factorization of large finite element systems use similar
techniques on two different classes of problems. It is interesting to point out that in
the multi-frontal method [5], [7], the basic operation is the factorization of a full
submatrix, and for the scheme in this paper, it is the merging of two full submatrices.
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A LINEAR TIME IMPLEMENTATION OF PROFILE
REDUCTION ALGORITHMS FOR SPARSE MATRICES*

L. MARROW

Abstract. The profile reduction method is intended for time and storage reduction in solving a linear

system of equations Mx b using direct methods.
A Frontal Increase Minimization strategy (FIM strategy) is a generalization of the so-called King’s

numbering criterion. This class of strategy is used in some other classical algorithms (Levy’s, Snay’s, Gibbs’s

algorithms).
Although efficient, these algorithms are far greater time consumers in their original implementation

than other classical profile reduction algorithms (e.g., Reverse Cuthill McKee algorithm).
In this paper we first apply the principles given by the authors to propose a unified "classical"

implementation of the above mentioned algorithms. Then we provide some time complexity estimates for
this implementation.

Secondly, we describe an improved implementation of the FIM strategy algorithms using a new insight
into the numbering process and best appropriate data structures. This implementation is proven linear in
time complexity with respect to the number of nonzeros in M for all the above-mentioned algorithms.

Finally, we provide practical execution times on a collection of test problems, highlighting the improve-
ment achieved by the new implementation and its efficiency for small problems. The evaluation of the
performance/cost ratio of the FIM strategy algorithms in the new implementation shows that they are
competitive compared to other classical profile reduction algorithms.

Key words. G.1.3 [numerical analysis] numerical linear algebra, sparse and very large systems; G.4
[mathematics of computing] mathematical software, algorithm analysis

1. Introduction. A profile (or envelope) reduction method is intended for time
and storage reduction in solving a linear system Mx b by direct methods, where the
n n matrix M is sparse and structurally symmetric (mij 0 itt rnji 0). We assume
that M fulfills the necessary conditions for numerical stability of the Gauss algorithm
and that it is irreducible.

Sparse matrices normally suffer some fill-in when they are factored, i.e., the
triangular factor matrix will have nonzeros in some of the positions which are zero in
M. A wise selection of a n x n permutation matrix P can often drastically reduce fill-in
and in turn imply a reduction of factorization cost. We solve, then, the equivalent
problem pMpt)(px) Pb.

Profile reduction methods are one of the most widely used for fill-in reduction
(see for example (George 1981)). Roughly speaking, the objective is to order the
matrix so that the nonzeros of PMP are clustered on the average, nearest possible to
the main diagonal. We define f =min {Jl rnij# 0} for i= 1,..., n. This locates the
leftmost nonzero element in each row. The envelope of the matrix M is Env (M)=
{rnij [f <=j < i}. The profile is then defined as the number of elements in Env (M).

We study the problem using graph theory concepts. Given M we can construct
an ordered undirected graph G (S, E, c), where S is the set of vertices, E the set
of edges and c a numbering of the vertices from 1 to n. Each vertex v of S corresponds
to a row of M, and each edge v, v;] corresponds to a nonzero m of M. The unordered
undirected graph G (S, E) corresponds to the equivalence class of matrices PMPt.

The problem of profile reduction has already been seriously investigated and
several efficient (in the practical sense) algorithms are available for solving this problem.
Among those, we shall pay special care to the following ones" King’s algorithm (King

* Received by the editors May 15, 1984; accepted for publication (in revised form) October 30, 1985.

" Computer Science Department, Aerospatiale Cannes, 06322 Cannes, La Bocca, France.
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1970), Levy’s algorithm (Levy 1971), Snay’s algorithm (Snay 1976) and Gibbs’s
algorithm (Gibbs 1976a). These algorithms have been proven very effective for profile
reduction in certain cases (see numerical results in (Everstine 1979), (Marro 1980)
among others) but unfortunately they are great time consumers compared with other
classical profile reduction algorithms such as the Reverse Cuthill McKee algorithm
(see (George 1981)) or the Gibbs, Poole and Stockmeyer algorithm (Gibbs 1976b).

Recently, Lewis (Lewis 1982) presented a new implementation of the Gibbs’s
algorithm which improves execution times with respect to the original implementation
given by Gibbs. Empirical experiments show a significant improvement, the new
implementation appearing as faster than the original GPS algorithm. However we shall
see that the Lewis implementation does not achieve linearity.

The first part of our work is an accurate analysis of King’s, Levy’s, Snay’s and
Gibbs’s algorithms. We shall prove that the first three algorithms and a restricted form
of the last one use the same numbering criterion: at each step, the vertex to be numbered
is the one that minimizes the increase of front size, where the front will be defined as
the set of vertices adjacent to at least one numbered vertex. Thus, this strategy is to
be referred to hereinafter as "Frontal Increase Minimization strategy" (FIM strategy),
and the above-mentioned algorithms as the "classical FIM strategy algorithms". We
will see that they essentially differ in the definition of their individual search sets, i.e.,
the set of vertices in which the vertex to be numbered is sought at each step.

This synthesis will allow us to propose a unified implementation of the above-
mentioned algorithms which is a framework for all FIM strategy algorithms and will
be referred to as the "classical FIM strategy implementation" as it is obtained applying
the principles given by the authors in their original papers.

We are providing an estimate of the time complexity of this implementation
together with its worst case time complexity and corollaries results for King’s and
Gibbs’s algorithms.

The second part of our work describes a more efficient implementation of FIM
strategy. To improve efficiency we use a new insight into the numbering process as
well as a more appropriate data structure. The time complexity analysis shows that
the execution time is linear in the number of edges of G for all the classical FIM
strategy algorithms, and, more generally, when the search set can be updated in linear
time for one numbering.

This time complexity is the same as the one given for the RCM algorithm by Chan
and George (Chan 1980). Numerical results show that the implementation is in practice
more efficient than the classical one when the dimension of the set S is greater than
one hundred.

Finally, we give a brief comparison of profile results and execution times of the
FIM strategy algorithms in the new implementation with those of some other classical
profile reduction algorithms.

An outline of this paper is as follows. In 2, we introduce the necessary definitions
using the graph theory formulation. In 3, we analyze King’s, Levy’s, Snay’s and
Gibbs’s algorithms with respect to the FIM strategy. In 4, we describe the classical
FIM strategy implementation and we give the corresponding time complexity results.
Section 5 is devoted to the description ofthe new implementation, which is subsequently
analyzed. Section 6 presents some numerical results and practical considerations.

2. Definitions and preliminary results. For classical definitions of the graph theory,
the reader is referred to (Berge 1973).

Let G (S, E) be a simple, undirected graph, assumed to be connected, where S
is a finite nonempty set of n vertices and E is a finite set of rn edges. Each edge is
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denoted by [ u, v], u, v S. The vertices u S and v S are said to be adjacent (neigh-
bors) lit [u, v]E. V(x) is the adjacent set of vertex x, i.e., V(x)-{ySl[x,y]E}.
If X c S we denote V(X) the set of the neighbors of the vertices belonging to X.

The adjacent set to X is Adj (X)- V(X)- X. We call the degree of the vertex x,
denoted by deg (x), the number V(x)l, (where Ixl denotes the number of elements
in X). We will denote deg maxims [deg (x)].

We will denote by d(x, y) the distance from vertex x to vertex y in G, and if
XS, yC:X,d(y,X)=min,x[d(y,x)]. A level structure denoted by LG
{No, N,..., Np} is a partition of S into subsets N such that N-1- b, Np+- 4) and,
for all 0<-_ i<-p Adj (N) N_ (.J N+. The N sets are called levels and p is the
depth ofthe level structure. The width of LG will be w(L) maxo_<_<=p[IN]]. A descending
level structure is a level structure such that all the vertices belonging to level N must
have a neighbor in level N_I, i, 1 <= <_- p. Equivalently if x N, d(x, No) i. Thus a
descending lever structure is fully determined by the level No and will be denoted
LG(No). A level structure is said to be rooted at r S and denoted by L(r) if L is
a descending level structure and No {r}.

A numbering of G is a bijective mapping a" S-> [1, n] ([1, n] denoting the set
of integers {1,..., n}). We denote N(G) the set of numberings of G and G where
a N(G), the graph numbered by a. The numbers k, k [1, n], are assigned in
increasing order and the step k of the numbering will be the selection of vertex x such
that a(x)= k. A vertex x such that a(x)- 1 will be called the starting vertex of the
numbering. We define Vx S, p(x)=min[minyv(,(a(y)), a(x)]; then the envelope
of G is the set

Env (G,) {{x, y}[p,(x)<- a(y) < a(x), Vx, y S}.

The profile of G will be II4 (G) [Env (G,,)[.
In this paper, we consider only algorithms without backtrack i.e., each number

is set once and only once to a vertex. It is the general case for classical numbering
algorithms.

Let SN(k) be the set of numbered vertices at step k. We have [SN(k)[ k; by
convention SN()= b and SN()= {x}, x being the starting vertex of the numbering.
We define SF)= {x S-SN(k)ld(x, SN(k)) i}. SFk) will be called the numbering
front (or simply front) and we denote Lk ]SFk)[. At each step we have SFk)=

Adj (SN(k)). We define SR(k) S (SN(k) tA SFk)).
Figure 1 illustrates these different subsets of S.
The numbering process develops in the following way: First number a vertex, i.e.,

build SN(k), and then this defines SFk) and SR(k).
The search set at step k denoted by ER() is the subset of S-SN(k) in which the

vertex to be numbered at step k+ 1 is sought.
All the classical algorithms use a search set although it is not explicitly defined.

For example, the choice criterion of the Cuthill-McKee algorithm (at each step vertex
with the lowest numbered neighbor is selected) implies that the vertex to be numbered
belongs to the front. Other algorithms can specify an explicit search set, for instance
Snay’s algorithm specifies that the vertex to be numbered must belong to SF) t.J SF(2k).

We introduce below a classification of N(G) based on the definition of the search
set for each class of numbering. A progressive numbering is an ordering in which the
vertex numbered at step k 4-1 is chosen out of S-SN(k) (global search). A p-frontal
numbering is a numbering where the selected vertex at step k + 1 must belong to the
set (.JP SFk). A 1-frontal numbering will be simply called a frontal numbering.i=1
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SN

SF

(..
FIG. 1. The sets SN(k), SFk), SR(k).

Let Lo {No, N1,’’’, Np} a level structure of G. A numbering .a will be said
consistent with Lo if the vertices number of each level form an interval in [1, n], i.e.,
when one vertex x of a level Ni is numbered, all the vertices of this level must be
numbered prior to any vertex not belonging to Ni. Note that this type of numbering
does not necessarily take account of the order of the level.

A numbering consistent with a level structure which follows the order of level
will be called an ordered consistent numbering.

If Lo(No) is a descending level structure, an ordered consistent numbering with
L(No) will be called a descending numbering with respect to L(No).

Let L(r) be a rooted level structure of G. A rooted descending numbering with
respect to L(r) is a descending numbering such that r is the starting vertex of the
numbering.

We denote by Np(G), NF(G), No(G), NRo(G), the sets of progressive, frontal,
descending, rooted descending numberings of G.

Note that we have NRO c NF Np. This implies that properties true for progressive
numberings will be also true for p-frontal and rooted descending numberings.

We define now an important notion for our work. We call the front evolution set

at step k for a given vertex x the set F(x)= {(x)LJ V(x)} f’)SR(k-). We denote yx

Ir x l. k, r will denote the set F(x) at step k and 3’k IFkI
The concePt of front plays a primary role in our analysis. It had been recently

introduced for profile reduction studies by several researchers ((Marro 1980), (George
1981), (Amit 1982)). Theoretical results have shown the close connection between
reduction of computational cost when using the envelope method for the Gauss
decomposition and the minimization of the front size on the n steps of the numbering
(see Theorem 2.3 below). Using graph theory, we can infer from these results lower
bounds for space memory (profile) and for number of operations needed for these
methods (Marro 1980). R. Amit and C. Hall provide a space memory estimate for
frontal and envelope methods (Amit 1982).

In the following the front concept will be used to improve the knowledge of the
numbering evolution providing us with an improved means to achieve the necessary
updates during the numbering.

We give below some results we need in this paper. Detailed proofs and comments
can be found in (Marro 1980).

The following lemma precisely describes the numbering process.
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LEMMA 2.1. Let c be a numbering of G. Then we have

SN() , SF) , SR) S

and V k 1, n ], let x S such that a x k. Thus

SN) SN-U {x},

SF) SF-’) O r
SR(k) SR(k-l)

Proof. The result is immediate from the definitions.
The following lemma states an interesting property of the front evolution set.
LEMMA 2.2. Let a Np( G). The sets Fk) for k 1,. ., n (such that F(k) )

form a partition ofS=,k= 3’k n and Yk=l Y,r(’l V(Y)I 2m.
Proof See (Marro 1980).
The following result connects the profile obtained by a numbering with the front

size at each step. It is a key result to justify the use of front in the studies of profile
reduction numberings.

THEOREM 2.3. The profile II(G) obtained by a numbering c is the sum on the n
steps of the size of the numbering front at each step

k---1

Proofi See (Marro 1980).

3. Classical algorithms of FIM strategy. In this section we first define the FIM
strategy, and secondly, study some previously published profile reduction algorithms
with respect to this strategy.

We call Front Increase Minimization strategy (FIM strategy) the following num-
bering strategy: "The vertex numbered at step k is the one that minimizes Lk from
Lk-l". From Lemma 2.1 we note that this is equivalent selecting at step k the vertex
with minimum 3’x. Theorem 2.3 proves that FIM strategy is effective as a local
(step-by-step) one for profile reduction.

The first author who (formally) set up a similar criterion for profile reduction is
King (King 1970). He defines the front evolution set (x) as being V(x)f3 SR(k) and
number at step k / 1 a vertex with minimum I(x)l- /x belonging to SFk). We note
that King’s definition of the front evolution set is identical to the one we give in 2
for vertices belonging to SFk) but differs if x belongs to SR(k). With King’s definition
we have if x SFk), Lk+ Lk / /x- 1 and if x : SFk), Lk+ Lk / /x. Thus, in this
definition, the front increase differs for equal value of and if we want to apply the
FIM strategy with a general search set we have to introduce another parameter to take
account of that set to which vertex x belongs. This had been done by Snay (Snay 1976)
who introduced a parameter nx- 1, if x SFk) and n-0 if x SR(k) and selected
the vertex with minimum - nx].

Snay proposes the search set U 2 SFk).i=1

However, only a global search can lead to a correct step-by-step front minimization;
thus Levy (Levy 1971) proposes to search for vertex x with minimum / (the King
definition) in the set S-SN(k).

Summarizing the above discussion, we can state the following result from Lemma
2.1.
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PROPOSITION 3.1.
King’s algorithm implements the FIM strategy for frontal numberings.
Snay’s algorithm implements the FIM strategy for 2-frontal numberings.
Levy’s algorithm implements the FIM strategy for progressive numberings (with

Yx being defined as in 2).
Numerical studies ((Gibbs 1976c), (Everstine 1979), (Marro 1980)) show that

these FIM strategy algorithms are very efficient on certain classes of graphs; but
unfortunately they sometimes lead to very poor results. Such "unstable" behavior
happens when the minimization at each step does not complete a global optimization.

These "unstable" behaviors of the FIM strategy justify Gibbs (Gibbs 1976a) in
writing a so-called "hybrid" algorithm: according to the analysis of the author, the
algorithm builds an ordered consistent numbering with a precalculated general level
structure, applying the King criterion for the selection of the vertex to be numbered.
Thus this algorithm is known as the Gibbs-King algorithm (see for example (Lewis
1982)). However this designation must be considered with care. In Gibbs’s paper the
vertex to be selected must belong to the first level with unnumbered vertices (e.g., level
Ni) and is the one which has fewest connections with the set

N,+I (N,+I f’l SFk)).
For a general level structure this is different from King’s criterion. See, for example,

Fig. 2.

X X

d

0 0
vertices already numbered
SFk.)

0 level Ni+

FIG. 2

For the FIM strategy and King’s criterion ya 1, yb=2, yc=2. For Gibbs’s
criterion Ga 1, Gb-- 1, Gc 0. Thus FIM and King’s strategy number vertex a and

Lk+l Lk, Gibbs’s algorithm number vertex c and Lk+l Lk + 1.
Similar case may occur for general level structures and for descending level

structures for the .numbering of vertices belonging to No. For a rooted descending
level structure, Gibbs’s criterion is always King’s (and in this case the FIM strategy
criterion). Hence we have

PROPOSITION 3.2. Gibbs’s algorithm implements the FIM strategy for rooted
descending numberings.

Justification and efficiency of the various search sets described above is a subject
so far hardly studied, which would deserve some in-depth investigation. We can make
the following remarks.

The only search set a priori theoretically satisfactory for a proper implementation
of the step by step minimization is the Levy search set.

King’s search set and Snay’s search set are proposed to reduce the computation
time for one numbering. Numerical results show that these two search sets seem to be
not too restrictive, that is, almost in each step a vertex with minimum yx belongs to
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these search sets. However, it is not difficult to find cases in which such search sets
lead to very unsatisfactory results (e.g., star tree for the King algorithm).

The search set proposed by Gibbs is governed by another type of motivation as
it is designed to direct numbering on a privileged path. Gibbs’s search set is particularly
effective wherever local optimization is insufficient to achieve global optimization of
front size. But this search set is sometimes too restrictive as the Gibbs’s algorithm gives
poor results in some cases where other FIM strategy algorithms are very efficient such
as network test cases or some finite elements problems (Marro 1980).

4. General implementation of FIM strategy. We describe here a general
implementation of the FIM strategy which is a generalization from the analysis of 3
of the implementation given by the above-mentioned authors.

Procedure GENERALFIM
Input An undirected graph G (S, E)
Output A numbering a of vertices of S
Begin

1. INITIALIZE
2. (,Main Loop,). For k := 1 to n do

Begin
2.1. COMPUTE For each y belonging to ER(k-l)

compute yy;
2.2. SELECT Choose a vertex belonging

to ER- such that
yx minyR->[ yy];

2.3. Number x by k; SN(k)
(- SN(k-l) (.J {x};

delete x from ERk-1)"

2.4. UPDATE Update of the sets SFk), SR(k)’,
Build ER(k)"

End;
End GENERALFIM

4.1. Implementation details. In the initialization step we need to build ER(). For
a progressive numbering this set is S and thus is known immediately. The first vertex
numbered will be a vertex of minimum degree which gives, for step 1, the minimum
increase of front. For other types of numbering we need to build ER) explicitly and
thus these algorithms require a starting vertex. In practice, such vertex is selected in
such a way as to provide a global approach to front size optimization. Of course, this
feature may be used for a progressive numbering.

Given a starting set D (possibly the empty set or a selected vertex) and a parameter
ERK to choose through the different algorithms, step INITIALIZE may be written
as follow"

Procedure INITIALIZE D, ERK
Begin
SN(o) <_.

SF)
SF(2) <--

SR() <-- S
Case of (ERK) King, Levy, descending, Shay

Label King ER() - DLabel Levy ER() S
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Label descending
Label Snay

End INITIALIZE

The computations made in steps COMPUTE and SELECT do not depend on the
search set used. The step COMPUTE may be implemented as follows.

Procedure COMPUTE
Begin

For all y ER(k- 1) dO
Begin 3’y - I({Y} t_l V(y)) ffl SR(-)[;;

End COMPUTE

As we compute each yy for y belonging to ER(k-l), step SELECT is straightforward.
For the UPDATE step, the partition SFk), SR(k), SN(k) of S can be maintained

using a three-state array of length n. Update of Levy’s search set is straightforward
and Lemma 2.1 provides the King search set with an immediate update. For the Snay
search set we will use the definition of SFk). For a descending algorithm we admit
that the considered level structure is built independently by a Breadth First Search
algorithm and that it is available throughout the numbering. Thus step UPDATE can
be implemented in a general manner for classical search sets. Let x be the vertex
numbered at step k, and ERK be the same as in the INITIALIZE procedure.

Procedure UPDATE (x, ERK)
Begin

1. r(x) - ({x} U V(x)) fq SR(k-1);
SFk <-- SFk- o F(k-- {x};
SR(k) - SR(k-1)_ I’(k).

2. (,update ER(k) from its definition,)
Case of (ERK) King, Levy, Descending, Snay.

Label King ER(k) - SFk);
Label Levy ER(k) - SFk) U SR(k);
Label descending Ni - Ni-{x};

If N,
then ER N,;
Else ER) N,+;

Label Snay SF Adj ($F) f’l SR;
ER) SF I,.J SF);

End UPDATE

4.2. Complexity analysis. This implementation is O(m) for storage requirement
using the classical representation of a graph by adjacency lists.

For execution time we note that for classical search sets except Snay’s,
the step UPDATE is executed in O(deg (x)) independently of the size of ER-.
For Snay’s algorithm step UPDATE is O[ySF(deg(y)] for one step, thus

--(k)O[k= LySe1 deg (y)] for one numbering.
Hence, for one numbering step UPDATE is O(m) for King’s, Levy’s and descend-

ing algorithms. For Snay’s algorithm the time complexity of step UPDATE can be
bounded by (degM Y,k=l ISFI).

The step COMPUTE requires a O[deg (y)] loop, which has to be executed at
each step IER(k- times. For one numbering step COMPUTE is

-k=l yER(k- deg (y) _--< degM k=l IER(k-I. Clearly, for all the classical search sets
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including the Snay one, step COMPUTE dominates the time complexity of the above
implementation. Hence we have the following result:

PROPOSITION 4.1. The time complexity ofthe above implementation of FIM strategy
is O[degu E=I IERk-1)I].

This result shows of[ the role of ER() in the time complexity estimation. We note
that if we decrease the search set, we improve the time complexity bound.

However, expressed in terms of the size of the problem, Proposition 4.1 leads to
an overestimated result: for all the search sets, it is possible that IER(k)[ n k whereby
E"=, [ER-II is O(n-); as degM may be O(n), Proposition 4.1 will give an O(n3)
worst case time complexity bound. To obtain a better bound for sparse graphs, we
note that, at each step ER(k)_ S, thus yR deg (y)<--_ys deg (y) which may be
bounded with respect to the number of edges in the graph (a classical result). For
Snay’s algorithm we have also ,ySF, deg (Y)----<ys deg (y)--2m. Hence the follow-
ing result:

PROPOSITION 4.2. The above implementation of the FIM strategy is in the worst
case O(m. n) for the time complexity of one numbering.

We note that for the Levy algorithm this time complexity bound is always achieved.
For King’s and descending algorithms we set up other complexity meaningful para-
meters.

For the King algorithm we have k=l IER(k-1)[ II(G) by Theorem 2.3. Hence"
CORO’LLARY 4.3. The time complexity of the above implementation of King’s

algorithm is O[degM. II(G)].
Let Lo(No) be a level structure. For a descending algorithm with respect to Lo(No)

we have

p IN, 1

k=l i=1 j-1 i=1

<w(L) iNil n
w(L)

2 i=l 2

Hence we have:
COROLLARY 4.4. Let Lo(No) be a descending level structure. The time complexity

ofthe above implementation of FIM strategy algorithm, descending with respect to Lo( No)
is O[degM. n. w(L)].

In the above implementation, the SELECT step is performed during the
COMPUTE step. However, we note that, if the two steps are done independently, the
step SELECT requires the reading or sorting oflER(k)l values at each step. This separate
process occurs in the Lewis implementation of the Gibbs-King algorithm (Lewis 1982).

Thereby, the time complexity of this implementation, independently of the starting
O Pvertex selection, is at least [i=11NI2] i.e., O[w(L). n], which is not linear.

5. Improved implementation of the FIM strategy algorithms.
5.1. Principles. We have seen in our analysis of classical implementation of the

FIM strategy that the most costly operations were the computation of Yx for each
vertex belonging to ER(k) at each step and the test on ER(k) for finding the vertex to
be numbered. Each of these operations requires the perusal of the whole set ER(k).
The basic idea of our improvement has been to disconnect these two operations from
the size of ER(k). To implement this idea, we used two types of techniques, say:

man insight into the numbering process,
man efficient data structure.
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In our implementation, from a proper initialization value, the yx values for those
vertices x which belong to the search set are put in ascending order and, at each step,
only a few values of this parameter are recomputed and reordered. All the classical
search sets are updated in a way that is irrespective of their sizes. Now the selection
of the vertex to be numbered is immediate.

5.2. General presentation.
Analysis of the numbering process. A detailed analysis of the numbering process

has done away with the computation of all )’x values for all vertices belonging to ER(k)

at each step. We use the following two lemmas, whose proofs are straightforward.
LEMMA 5.1. Let a Np( G). At step k 1, we have

Vx S, F(x) {x} U V(x)=# /x deg (x) + 1.

LEMMA 5.2. Let a e Np(G). Vy e S, yy is modified at step k, iffy e F (k) U V(F(k)).
Thus, from the initialization value of Lemma 5.1, we update at each step only the

value of yy for vertices belonging to the subset of S as defined in Lemma 5.2.
From the analysis of 4.2 we need to improve the update of the Snay search set.

We use the following lemma.
LEMMA 5.3. Vk e 1, n] and x such that a (x) k, we have

SF(2k) SF(2k-l) J [Adj (F(k)) [ SR(k)] SF(k-l) f-I [{x} V(x)].

Proof. From the definition we have

SF(k)= Adj SFk)) f’l SR(k).

Using Lemma 2.1 we write

SF(k)= Adj (SFk-l)) f-I SR(k) U Adj (F (k)) f-I SR(k)- Adj (x) ffl SR(k)

as Adj (x) SR(k)= ; and applying Lemma 2.1, we have

SFk)= Adj (SFk-l)) SR(k-1)U Adj (F (k)) SR(k)

-Adj (SFk-’) F(k,

SFk SFk-’ U Adj (F(k) SR(k

-Adj (SF-’) [SR(k-l) ({x} U V(x))],

whence the result.
Data structure description. To do away with accessing the whole ER(k) set to be

able to select the veex to be numbered, we intend to reach only those veices with
minimum Ty belonging to ER(k. To achieve this goal we use a classical data structure:
re,ices having the same Ty are stored in a doubly-linked list. The entry points of each
list are stored in ascending order with respect to the value of Ty using arrays ORI (for
the head) and FIN (for the tail) of length deg + 1. The first veex with Ty is in
ORI (i); the last vegex is in FIN (i). Note that this organization allows us to manage
each list as a queue. This point will be used later. Deleting and inseing (at one end)
a veex in these lists is easily done in a constant number of operations independent
of the size of the list, because the values managed are identical to the addresses in the
arrays of forward and backward pointers. The same analysis and results which provide
us with the update of ER, allow us to update the lists at each step in such a way
that they include only re,ices belonging to ER(k.

This data structure is depicted on an example in Fig. 3.
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2 9 II

4 5 IO

ORI

FIG. 3

NEXT

I0

PREV FIN

Now, we immediately select a vertex of minimum yy by maintaining a pointer to
the first nonzero entry in ORI and picking up the first vertex because any vertex of
this list belongs to ER(k). A special feature is provided for vertices such that yy O,
that are stored in a stack data structure to be numbered immediately.

Thus we note that using this data structure, the crucial steps become the update
of yx and of the search set. Another example of an application of the same type of
data structure in a numbering algorithm can be found in (George 1980).

5.3. Description of the new implementation. We give here an overall plan of the
new implementation of the FIM strategy algorithms. Details will be given in 5.4 and
an evaluation of its complexity in 5.5.

Procedure NEWFIM
Input An undirected graph G (S, E)
Output A numbering a of vertices of S
Begin

1. (,Initialize,)
1.1. INITIALIZE
1.2. Vy ER. Build the doubly-linked lists using

/y deg (y) + 1;
2. (,Main Loop,)

Fork:=lto ndo
Begin
2.1. SELECT

If :ly ER-1 such that ),y 0
Then x - y;
Else
x the first vertex of the first nonempty list;

2.2. NUMBER Number x by k; SN(k)- SN(k-) U {x};
delete x from ER-"
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2.3. UPDATE
Begin
If ’/k 0 then

Begin
F<)

_
; V(F<)) ;

2.3.1. UPDATE.1 Update yy for each
y IF(k) U V(F(k))];

2.3.2. UPDATE.2 Update SFk, SR(k, ER(k;
2.3.3. UPDATE.DLL Update the doubly-linked lists

for y [F(k U V(F(k)] ER(k;
End;

Else;
End UPDATE;

End;
End NEWFIM;

5.4. Implementation details. The INITIALIZE procedure is the same as the one
for the classical implementation.

In 5.2 we noted that step UPDATE is crucial for the complexity of the new
implementation. Given x the vertex numbered at step k, we build the sets F (k) and
V(F(k)) updating the value of 7y for vertices belonging to these sets. It is important
to note that each vertex is easily included once only in these sets. Once these sets are
known, SFk) and SR(k) are updated in the same manner as in the classical implementa-
tion. The search sets are also updated in the same manner except for the Snay one for
which we use Lemma 5.3. For vertices belonging to IF(k) [.J v(r(k))] ["1ER(k) the update
of the doubly-linked lists is done in classical mode. We do not describe here the
necessary instructions (see, for instance, (Aho 1974)). The procedure UPDATE.DLL
is used to update the value of /min and to pick up the vertices with 39 0 which will
be numbered first. Such vertices are stored in a stack data structure IZER.

From Lemmas 5.2 and 5.3, procedures UPDATE.l,. UPDATE.2 and
UPDATE.DLL can be implemented as follows.

Procedure UPDATE.1 (x)
(,build {F(k)u V(F(k))} and update yy for y belonging to this set,)
Begin
For each y {{x} U V(x)} do

Begin
If x SFk-1) then 39 - 7y- 1;
If y : SN(k) [.J SFk-l)

Then begin
F(k) F(k) U {y}; 7y ’- ’)/y 1;
End;

Else;
End;

For each y F(k) do
Begin
For each x V( y) do

Begin
V(F()) (- V(F()) U {z}; % % 1;
End;
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End;
End UPDATE. 1

Procedure UPDATE.2 (x, F(k), V([’(k)), ERK)
(,the parameter ERK has the same meaning as in classical implementation,)
Begin
SFk) SF(k-I) U F(k)-- (x);
SR(k)

(__ SR(k-)_ F(k).
Case of (ERK) King, Levy, descending, Snay

Label King ER(k) - SEek);
Label Levy ER(k)

(- SFk) SR(k);
Label descending Ni - Ni {x};

If Ni then ER(k) - Ni;
Else ER(k) - Ni+l;

Label Snay SF(2k) - SF(2k-) U [Adj (F(k)) fq SR)]
SF(k-’) fl [{x} U V(x)];
ER(k) SFk) U SF(2k);

End

Procedure UPDATE.DLL
Begin
IZER
For each y {F (k) U V(F(k))} (q ER(k) do

Begin
delete y from the old list;
If ),y 0 then IZER- IZERU { y};

Else
Begin
Insert y in the new list yy;
If yy _<-min then ’min <’- y; Else;
End

End;
End UPDATE.DLL;

The SELECT procedure is straightforward. The vertices (if any) with yy =0 are
first numbered. If not, the first vertex in the list with yy ’min is chosen.

Procedure SELECT
Begin
If IZER then x -HEAD (IZER);

Else
Begin;
Q -list of vertices with /y Ymin;

x - HEAD (Q);
End;

End SELECT;

5.5. Complexity analysis. The implementation is O(m) for storage requirement
using adjacency lists for graph representation. The partition of S is updated in an
array of length n, as the values of )’x. The doubly-linked lists need two arrays of length
n and two arrays of length degM + 1.
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As noted before step UPDATE is crucial for the time complexity of the algorithm.
(In the following x will be the vertex numbered at each step.)

Clearly step UPDATE.1 is O(IV(x)uUyr(x V(y)l). As in the classical
implementation, the operations done in step UPDATE.2 are O[deg (x)] for King’s

(and Levy’s search sets. For descending algorithm step UPDATE.2 is O i=, INil) and
thereby O(n) for one numbering. Update of the Snay search set is now
O(ILJyr(x) V(y)I) for each step of the numbering. Step UPDATE.DLL has the same
time complexity as step UPDATE.1.

Hence, for one numbering, the time complexity of step UPDATE for all classical
search sets:

T(S) 2 E V(x) U
xeS yeF(x]

-<2 IV(x)l+2 2
xS xS

V(y)

U
yF(x)

-<_4m+3 E E Iv(y)l.
xS yeF(x)

+L
V(y)

U
yr(x)

V(y)

U V(y)
yeF(x)

Now, the key result to demonstrate the linearity of the above implementation is
F(k) forms a partitionLemma 2.2, which states that Yxs Yyr()IV(Y)I 2m, since U k--,

of S.
Therefore we have T(S)<= 10m, i.e. step UPDATE has a time complexity of O(m)

for one numbering.
Steps SELECT and NUMBER are O(1); hence we have the following result.
THEOREM 5.4. The above-described implementation is O(m for the time complexity

of all classical FIM strategy algorithms.

5.6. Additional remarks. If the FIM strategy is to be implemented with precision
for descending numberings, step SELECT has to be modified. In effect due to the
numbering of vertices such that y 0 as soon as they are present, the new implementa-
tion does not exactly achieve descending numbering. However, this modification can
only improve the results as it decreases the front size as early as possible. Therefore
it is used in the algorithm tested below.

Often numbering algorithms use a second choice criterion for tie breaking among
vertices with the same value of ),. For instance King (King 1970) proposed to select
a vertex having the maximum waiting time in the front, i.e., that vertex which came
in first in the front. Such strategy improves on the whole the results obtained by the
algorithm (see (Marro 1980)).

In our implementation such a feature will necessitate reading the whole list of
min. The number of such readings is difficult to estimate; in the worst case it is
bounded by n- k at step k, whereby step SELECT should have a time complexity in
O[Y=, (n k) leading to an O(n2) worst time complexity for the algorithm. To avoid
this drawback we may perform orderly insertion of vertices in the procedure
UPDATE.DLL, in accordance with the second choice criterion. In this way the time
complexity of step UPDATE will increase to O(m log2 n), through management of
the lists as AVL-trees (see (Aho 1974)), O(m log2 n) now becoming the time complexity
of the implementation.

However the numerical results show a very small influence on the running time
of the first method for tie break strategy (Marro 1982).

For the numerical tests presented below, we implement another second choice
strategy which retains the linear time complexity of the implementation. We manage
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each doubly-linked list as a queue data structure (see 5.2) inserting the new vertex
at the end of the list and selecting the vertex to be numbered at the head of the list.
Such strategy can be formulated as "in case of tie, select that vertex for which the
value of ’x has not been modified over the greatest number of steps".

This strategy leads to results which are on the whole equivalent to those obtained
using the waiting-time criterion.

6. Numerical results. In this section we give numerical results in order to demon-
strate the practical efficiency of the new implementation. We also compare the perform-
ance/cost ratio of the new implementation of FIM strategy algorithms with other
classical profile reduction algorithms, the RCM and GPS ones. These results evidence
that FIM strategy algorithms become competitive in this field even for large problems.

Our test set consists of three kinds of data, in that they are arranged as 39 finite
element tests (ranging from n- 59 to n 2680), 3 network tests (n 118, 1723, 5300),
and 9 graded-L-shaped tests (ranging from n--265 to 2233).

The finite element test set is an outgrowth of the Everstine collection (Everstine
1979) excluding the nonconnected tests and including tests from structural analysis
models studied at Aerospatiale Cannes (Marro 1980). Network tests are those used
by Lewis and Poole in their comparative study (Lewis 1980). The L-shaped tests are
from George’s collection (George 1981).

All these tests can be obtained from I. A. Duff or J. G. Lewis.
All execution times displayed in the tables below are given in CPU seconds on a

CII HB IRIS 80 computer (about 0.75 Mips).

TABLE 6.1
Execution times for the Levy search set on the

graded L-shaped tests.

Time/m
N Time x 10-’)

265 0.54 7.2
406 0.83 7.1
577 1.20 7.2
778 1.62 7.2
1009 2.11 7.2
1270 2.54 6.8
1561 3.12 6.8
1882 4.03 7.3
2233 4.87 7.4

Table 6.1 displays the results from our implementation of FIM strategy algorithms
with Levy’s search set on the graded L-shaped tests. We give the execution times for
one numbering and the execution time/m ratio for this numbering with a view to
providing an evaluation of the new implementation’s run time complexity constant.

The Levy algorithm, which is the FIM strategy algorithm used by Everstine for
his comparative study, is currently used in such Finite Element computer programs
as NASTRAN (Everstine 1979).

Sparse matrix test problems. Contact:
I. A. Duff, Numerical Analysis Group, Computer Sciences & System Division, Bldg. 8.9, AERE, Harwell,

Oxfordshire OX11 0RA, U.K.
J. G. Lewis, Boeing Computer Service Co., Mail Stop 9C-01,565 Andover Park West, Tukwila, WA 98188.



PROFILE REDUCTION ALGORITHMS FOR SPARSE MATRICES 1227

TABLE 6.2
Execution times for the King search set.

Classical New
N implementation implementation Timeod/Timenew

59 0.07 0.08 0.9
61 0.12 0.09 1.3
66 0.06 0.10 0.6
72 0.06 0.09 0.7
87 0.12 0.13 0.9
96 0.30 0.17 1.8
118 0.13 0.13
144 0.25 0.19 1.3
161 0.51 0.30 1.7
162 0.30 0.26 1.2
187 0.95 0.33 2.9
193 1.66 0.46 3.6
209 0.82 0.35 2.3
221 0.45 0.39 1.2
229 1.20 0.39 3.1
245 0.63 0.37 1.7
256 2.22 0.44 5.0
268 1.83 0.48 3.8
292 2.02 0.51 4
307 1.68 0.56 3
310 0.67 0.57 1.2
361 1.18 0.70 1.7
419 1.80 0.71 2.5
445 4.14 0.85 4.9
503 6.92 1.05 6.6
592 3.50 1.07 3.3
634 14.34 1.27 11.3
715 7.38 1.40 5.3
758 2.32 1.31 1.8
838 14.91 1.62 9.2
869 3.46 1.66 2.1
878 3.76 1.79 2.1
918 15.58 1.65 9.4
992 7.44 2.16 3.4
1005 21.04 1.52 13.8
1007 5.07 2.00 2.5
1054 22.06 1.90 11.6
1072 20.10 1.91 10.5
1242 13.41 2.38 5.6
1723 8.77 2.13 4.1
2680 35.64 5.52 6.4
5300 60.87 8.43 7.2

Total 289.7 48.2 6.0

In Table 6.2 we compare the execution times of King’s algorithm in its classical
versus new implementation on the finite element and network test cases. Execution
times are given for one numbering, excluding the starting vertex selection running time.

The classical implementation is coded using a doubly-linked list to manage SFk).
Vertices such that yy 0 are numbered as soon as they are detected without further
reading, and thus step COMPUTE involves a number of readings not greater than
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II(G). In this way, the classical implementation tested can be considered as a good
conventional one. The waiting time in front is used as the second choice criterion.

Results in Table 6.2 demonstrate the superiority of the new implementation. Total
execution time is divided by a factor 6. The Timeod/Timenew ratio, while it varies with
m and the profile obtained, is greater than 1 however, as soon as n is greater than 100
and it increases with n. This demonstrates that the new implementation is efficient for
small and large problems alike.

Theorem 5.4 proves that all classical FIM strategy algorithms are of linear time
complexity in the new implementation. However change in the search set may have
an influence on the practical running time, for instance on how many times the loop
in the procedure UPDATE-DLL is executed. To estimate such influence, we run the
new implementation with the Snay search set on the 42 tests above. For one numbering
in each individual case the total running time is 58.8 s. Thus, we note only a slight
increase of the execution time. Because the whole set updated is included in SFk)

SF(2k), practical time complexity is the same for Levy and Snay search sets.
The question is now raised whether the FIM strategy in the new implementation

becomes competitive, in terms of profile reduction performances/execution times ratio,
with other profile reduction algorithms such as RCM or GPS algorithms.

As clues toward an answer, we present here some results of the GPS, RCM,
2-frontal and descending FIM strategy algorithms on networks and large finite elements
tests (N > 600 in our collection).

For the GPS algorithm we use the FORTRAN code given in (Crane 1976). For
the RCM algorithm we use the implementation given by Chan and George (Chan
1980) which has been proven linear in time complexity.

Profile reduction performances of all the algorithms tested are very sensitive to
the starting vertex chosen. The problem of selecting efficiently the best starting vertex
is not an easy one and will not be considered here. All the results given below are
obtained using the vertex selected by the GPS algorithm.

In order to be consistent with the GPS results, the execution times given include
starting vertex selection and computation of profile results. In FIM strategy algorithms,
direct results are computed using Lemma 2.1 and Theorem 2.3, which is faster than
the graph permutation used in the GPS algorithm. For the descending FIM strategy
algorithm, direct and reverse numberings results are computed as in the Gibbs-King
algorithm (Gibbs 1976a). The FIM strategy algorithms use the tie break criterion
described in 5.6.

Table 6.3 displays average profile and execution times of the above-mentioned
algorithms on network test cases. The results are given for symmetric data.

It is clear, from the results in Table 6.3, that descending algorithms are inefficient
on network test cases. Snay’s algorithm is now by far prevalent in term of perform-
ance/cost ratio. The results are quite convincing as regards use of this algorithm on
network models.

TABLE 6.3

FtM- FIM-2-
GPS RCM descending frontal

N Time Profile Time Profile Time Profile Time Profile

118 0.22 6.10 0.17 6.60 0.26 6.17 0.27 5.9
1723 4.16 40.3 1.77 43.1 5.56 36.1 3.59 16.6
5300 15.43 108.3 5.62 125.30 14.19 102.75 13.14 49.32
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TABLE 6.4

FIM- FIM-2-
GPS RCM descending frontal

N Time Profile Time Profile Time Profile Time Profile

634 2.7 59.6 2.0 56.9 3.1 55.0* 3.1 66.3
715 8.3 57.5 7.7 53.0 8.9 50.5 8.9 37.5*
758 3.2 9.9* 1.6 10.3 3.1 10.4 2.8 10.6
838 3.8 44.9 2.8 45.1 4.2 44.3 4.2 43.4"
869 4.2 17.8 2.9 18.5 4.6 18.6 4.4 16.2"
878 4.4 21.7" 3.4 24.1 5.2 23.0 5.0 24.3
918 3.9 22.2* 2.7 25.6 4.4 23.1 4.5 48.9
992 11.1 33.3* 9.4 37.4 11.8 35.3 11.2 36.6
1005 2.8 41.9 1.7 42.0 3.7 39.3" 3.0 77.4
1007 5.4 21.6" 4.1 23.8 6.3 23.5 5.0 23.2
1054 4.7 51.1 3.4 39.3 5.2 36.9* 5.0 59.6
1072 6.4 69.1 5.2 52.0 6.9 47.5 7.1 39.1"
1242 6.2 43.9 4.8 43.6 7.1 40.0 6.9 35.6*
2680 10.3 37.9 5.3 38.5 11.1 36.0* 10.6 46.6

Total 77.4 532.4 57.0 510.1 85.6 483.4 81.7 565.3

* Best results.

Table 6.4 provides the same data as Table 6.3, this time on large finite element tests.
For this set of problems, the situation is less clear. The fastest algorithm is the

RCM one. The use of the GPS code described in (Lewis 1982) will reduce the GPS
execution time by about 50%. Due to the descending level structure generation and
the computation of reverse results the FIM-descending algorithm is more costly than
the 2-frontal one. However all the execution times are now acceptable.

The 2-frontal FIM strategy algorithm, while presenting some "unstable" behaviors
(n =918, 1005) and being the least efficient on the whole, performs significantly better
than the descending algorithms in some cases (n 715, 1072, 1242).

The descending FIM strategy algorithm performs best on the whole in profile
reduction. It clearly becomes competitive with GPS and RCM algorithms in terms of
performance/cost ratio. From (Marro 1980) we note that the Gibbs-King algorithm
performs slightly better than the FIM-descending algorithm except on one case n 838.
On this collection of test problems the sum of the average profile for the Gibbs-King
algorithm is 485.5.

This comparative study demonstrates that the profile reduction performance of
FIM strategy algorithms are crucially dependent on the fitting on the search set used
to the numbered graph.

This well substantiated finding strongly appeals for further improvement of the
FIM strategy algorithms, namely in that the search set should be allowed to vary
depending on the case handled. In (Marro 1985) we described an implementation of
such variability as to fit the search set into the numbered graph and respond to the
evolution of numbering. This leads to a significant overall improvement of the FIM
strategy results. A forthcoming paper will present our work on the subject.

7. Conclusion. In this paper we have described a new implementation of those
FIM strategy algorithms used in sparse matrix profile reduction which is more efficient
than the classical implementations.
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The linear time complexity for all classical search sets justifies selecting search
sets only for the purpose of efficiency obtained for profile results with only a limited
increase of time. Numerical results demonstrate that FIM strategy algorithms are now
competitive in terms of performance/cost ratio with other classical algorithms such as
RCM of GPS one. Such an improved implementation offers several characteristics
which are attractive for further developments.

The local update of the /x values and of the search set, and the fast selection
procedure for the vertex to be numbered were instrumental in providing the opportunity
to design a FIM strategy algorithm in which the search set can vary throughout the
numbering process. Such a "dynamic allocation" of the search set amounts to a
significant breakthrough from the classical algorithms, in which the search sets are
preassessed, nonflexible ones. Such adjustment of the search set to the graph to be
numbered and to the evolution of numbering leads to significant improvements of
results (Marro 1985).

In another domain of application, we may note that the FIM strategy has been
recently rediscovered by various authors (Pina 1981), (Hoi’t 1982), as a renumbering
strategy to improve the efficiency of the Gauss Frontal method (Irons 1970). We feel
that the implementation we described here above could also be used in this field with
a few adjustments.

Acknowledgment. The author is most thankful to professor Max Fontet for his
many apt suggestions for the fulfillment of this work, as they considerably improved
the original draft.
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THE OPERATOR COMPACT IMPLICIT METHOD FOR FOURTH ORDER
ORDINARY DIFFERENTIAL EQUATIONS*

JEFFREY C. BUELLf

Abstract. Two fourth order accurate approximations to general linear fourth order two-point boundary
value problems with Dirichlet boundary conditions are evaluated. The first is a new implementation of the
operator compact implicit (OCI) method. Its derivation will be given along with proofs of theoretical
convergence and stability properties. In particular, it will be shown that it has no formal cell Reynolds
number limitations. The second is centered second order differencing with Richardson extrapolation. Overall
computational efficiency and the results of several numerical tests are discussed. Some comments are made
on extending the OCI method to other boundary conditions and to nonlinear problems.

Key words, operator compact implicit, Richardson extrapolation, ordinary differential equations, trunca-
tion error

AMS(MOS) subject classification. 65L10

1. Introduction. We consider here fourth order approximations to the linear two-
point boundary value problem

(1.1) y(4)(x) =f(x, y(x), y(1)(X), y(2)(X), y(3)(X))

g(x) a(x)y(x)-- b(x)yl)(x) c(x)y2)(x) d(x)y)(x),

with the Dirichlet boundary conditions

(1.2)
Y(1)(O)-- BI’ y(O) BE,

y(1)(1) B3, y(1) B4,

where y R, x [0, 1], and y<k)(x) denotes the kth derivative of y. We derive first the
operator compact implicit (OCI) method for this problem, and then review centered
second order (SO) differencing with Richardson extrapolation (RE) to fourth order.
It is the intent here to evaluate the OCI method with respect to the RE method.

In implementing standard schemes for solving (1.1), (1o2), each derivative is
represented independently. The OCI method presented here, on the other hand, takes
advantage of the operator f so that each derivative may be approximated to higher
order without expanding the mesh star. The method is "implicit" since values of the
operator are required at three points of the five point star.

A possible alternative to OCI or RE methods is to approximate each derivative
individually to fourth order using centered differencing. However, it soon becomes
apparent that there are many disadvantages to this procedure. The scheme yields a
seven band matrix which requires more than twice the arithmetic to solve than a five
band matrix and results in an approximation that is considerably less accurate than
the RE method. At the boundaries, either noncentered differencing is required for the
two highest derivatives (which increases the truncation error by an order of magnitude
and destroys the matrix structure) or fictitious points must be created. Finally, it can
be shown that oscillations may be introduced at a relatively small cell Reynolds number.
Another possibility is to implement a scheme based on deferred corrections, but this
has many of the same disadvantages. Neither of these methods is considered further.

* Received by the editors March 1984 and in revised form August 1985.
f Department of Mechanical, Aerospace and Nuclear Engineering, University of California, Los

Angeles, California 90024.
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Early research on high order compact difference schemes was performed by
Osborne [1] in 1967. The coefficients in his approximations were determined by
requiring that a certain set of interpolation functions satisfy both the differential
equation and difference equations. Since then, his analysis was generalized by Doedel
[2], and Lynch and Rice [3], among others. Swartz [4] complements the latter paper
by providing suitable approximations for general side conditions. These papers con-
sidered arbitrary order operators, however they were implemented only for second
order operators. Also, they require the solution of a set of algebraic equations at each
grid point in order to construct the difference equations. Furthermore, they usually
require evaluating the coefficients of the differential equation at points between the
mesh points. If the coefficients are not analytic functions (that is, they are known only
at the grid points), then the additional step of defining and evaluating a high order
interpolation function will have to be made.

Much work has been done on the second order problem corresponding to (1.1),
(1.2) (see, for example, [1]-[8]). Ciment et al. [5] traced the development of"compact
implicit" schemes for second order operators. They solved a 3 x 3 block tridiagonal
system of equations for a fourth order approximation to the dependent variable and
its first two derivatives. Alternatively, the second derivative can be eliminated to yield
a 2 x 2 block tridiagonal system. However, this formalism does not allow reduction to
a scalar tridiagonal system. They then developed an OCI scheme for parabolic equations
by finding a relationship between the spatial operator and the dependent variable and
substituting the result into the differential equation. A fourth order accurate tridiagonal
system is obtained, but the method has a cell Reynolds number limitation of R <- 121/2.
A multi-parameter family of OCI methods are developed by Berger et al. [6], where
they allowed certain error terms to be O(h4), rather than zero. By varying these
parameters, the methods can be optimized for high cell Reynolds number problems.
The above methods, as well as the one considered here, are all based on Taylor series
expansions of the truncation error. They are also of "polynomial type" since the
difference equation coefficients are polynomials in the differential equation coefficients
and the mesh spacing. It has been shown (see [6], [7], and references therein) that all
polynomial type schemes yield O(1) errors at the edges ofboundary layers for moderate
cell Reynolds numbers even though the methods may be formally stable. Uniform
consistency can be achieved only by implementing a method of "exponential type,"
as is done by Leventhal [7]. Applying this idea to fourth order differential equations
with high cell Reynolds numbers will be the subject of a future investigation.

These schemes are derived very differently from the OCI scheme of Stepleman
[8]. The differential equation that he solved was in the form of (1.1) (that is, not
parabolic), except that it was second order instead of fourth order. The operator in
this case consists of everything except the highest order derivative and is used directly
to find consistent approximations to even higher order derivatives. These derivatives
are then substituted in Taylor series expansions to obtain fourth order approximations
to the lower order derivatives. This procedure is followed here and will yield a fourth
order accurate approximation to (1.1), (1.2) from the solution of a pentadiagonal
matrix. In a similar manner, Katti [9] treated a nonlinear fourth order equation that
did not contain any first, second, or third order derivatives. He was able to achieve
sixth order accuracy with a five band matrix, but the lack of intermediate derivatives
in his differential equation limits the usefulness of his results. For maximum simplicity
of implementation, we require here that the matrix elements be defined analytically
as a function of the differential equation coefficients evaluated only at the grid points,
and the mesh spacing h. The schemes of Stepleman and Katti satisfy this requirement
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with little modification when applied to linear equations. The formalism of Ciment et
al. [5] and Berger et al. [6] could also be used to develop OCI schemes for fourth
order equations. In some sense these are equivalent to the formalism of Stepleman,
but here the individual derivatives are easily recovered, which is advantageous for
solving nonlinear equations or systems of equations.

In 2 we give some of the details of the derivation of the OCI method applied
to (1.1), (1.2) and consider the local truncation error. Much of the notation here follows
Stepleman 8]. All the proofs in 2 are based on Taylor series expansion and straightfor-
ward (but sometimes lengthy) algebra, so most of them are omitted. In 3 we obtain
the stability results for the methods considered, and we compare their truncation errors.
In 4 the methods are tested on three representative problems. In 5 we summarize
our results and consider extensions of the OCI method to non-Dirichlet boundary
conditions, and to nonlinear equations.

2. The operator compact implicit method. We would like to approximate (1.1),
(1.2) to fourth order using a pentadiagonal matrix representation. In order to achieve
our goal, Taylor series expansions are needed for various terms, and it will be seen
’that f and y must satisfy certain conditions. In particular, we assume that

(a) there exists a solution y(x) CS[I] to (1.1) and (1.2),
(b) f is bounded (that is, a, b, c, d, g are bounded),
(c) b(x), c(x), d(x) are Lipschitz continuous (for example, [b(x2)-b(xl)l <

LblX2--Xll, Xl, x2 [0, 1], Lb is the Lipschitz constant for b(x)).
Let xi (i 1) h, h 1/(N 1), 1,. , N, and N some positive integer. Also

let yi y(xi), yk)--y(k)(xi) and ai a(xi), etc. Here, C"[I] is the space of n-times
continuously diiterentiable functions on the unit interval 0 -< x _-< 1. We consider first
centered discretizations that use no more than five grid function values. Define

(2.1)

(2.2)

(2.3)

(2.4)

(:.5)

(2.6)

y (y,+l-Y,-1)/2h,

y’ (y,_l- 2y, + Y,+I)/hE,
yO= (Y,-2- 8y,-1 + 8Y,+l- Y,+2)/12h,

yTO (-Y-2+ 16y_- 30y + 16y+-Y+2)/12h2,
y,[,o (-Y,-2+ 2y,_ 2y,+ + Y,+2)/2ha,

=(y-z-4y-+6yi-4y++y+z)/h’.
Well known Taylor series arguments show

LEMMA 1. Let y C8[I]. Then

h4 y5) 6)y y)+y3)+1i + O(h

hE h4 y6)y, y}2)+i- y}4)+3- + O(h6)’

h4 y5)yO=y)__ + O(h6),

h4
ttoy, y2)___ y6)+ O(h6),

h2 h4,,,0 y3)+ 5) (7)y, --y. +-y, +O(h6),
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h2 h4

y,) y4)+__ y6)q___ y8)+ O(h4).

The higher order error terms are given here explicitly for later use. In 3 we
assume that y C9[I] so that the last error term in the last expression above becomes
O(h6). Clearly, if we have second order approximations to the fifth and sixth derivatives
that are contained in the five point mesh star, then (2.5) and (2.6) can be corrected to
fourth order. We introduce some noncentered differencing first. Define

(2.7) y- (-3y_ 10y + 18y+ 6y+2+ y+3)/lZh,

(2.8) Y+ (-Y,-3 + 6y,-2-18y,_1 + lOy, + 3y,+l)/12h,

(2.9) y’- (1 ly,_l 20y + 6y,+l + 4y,+2- Y,+3)/12h2,
(2.10) Y’+ (-Y,-3 + 4y,_+ 6y,-1 20y, + 1 ly,+)/12h2,

(2.11) y’/’-= (-3y,_ + lOy,- 12y,+ +6y,+2- y,+3)/2h3,

(2.12) Y,"+ (Y,-3 -6y,-2 + 12y,_ lOy, + 3y,+l)/2h 3.

A Taylor series expansion of the terms on the r.h.s, of (2.7) shows that

h4 y5)y- y)+- + O(hS).

Later we will need ’-y_, but with the error term evaluated at x. Thus we use another
Taylor series argument to obtain

h4,- yl)+ 5) + O(hS).Yi ’A similar analysis of (2.8) through (2.12) yields
LEMMA 2. Let y C8[I]. Then

h4,- f5). :.l_ O(h S),Yi YI) +’- Yi+,

h4y+ y)+- Y}5-)1 + O(hS),

h 11 -4 (6)) + + O(hS),y,- y2)-’i- i+1 n Y,+I

h,,+ y5)1 11 -4 (6)
Y y2)+’i +-- n Yi-1 + O(h ),

h2 h’(5) (7).yT- y3)-- y,+-- y,+. + O(h ),

h2 h4y,,.,,+ y3)

___
y5_) -- y7) / O(h).

We note that in the last two expressions ofLemma 2 there are no terms proportional
to h3, which is unusual for noncentered differencing. We are now ready to use the
operator f to find the higher order derivatives we need in Lemma 1. Let

(2.13) f =f(x,, y,, y, y’ "+"
",Yi ),
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(2.14) f/-= f(x,, y,, y, yT, y’-),

(2.15) yO)= (fi-i-fi-_l)/2h.

Substituting (2.13) and (2.14) into (2.15), using Lemmas 1 and 2, and (1.1) yields

[ (4). (4)_ (bi+ (3) b,_ly3__))Y")= Yi+,--Yi- " 1i+1

h2 h2

y,) di_ly5))]/2h+O(h3).
Taylor series expansions give

where

h (3) )y4) -(4)
Pi ---i (bi+l- bi-1)yi --- (bi+l + bi-1 (Ci+l- ci-1)Yi

hE h
-2- (Ci+l + c,-1)y5)+ (d,+l- d,_)y5).

If b(x) is Lipschitz continuous, then b+l-b_ O(h). With a similar argument for
c(x) and d(x) we obtain

LEMMA 3. Let y C8[I] and b(x), c(x), d(x) be Lipschitz continuous. en

Pi O(h2).
(6)We proceed to find a second order approximation to y Define

.to h2
(2.17) yO= y, _y,

ht- ,,,-+y, =y,

h2

(2.19) y+= y’++y.

Lemmas 2 and 3 combined with (2.17) through (2.19) give directly
LEMMA 4. Let the hypothesis of Lemma 3 hold. en

+
,-

We need four more definitions:

(2.20)

(2.21)

(2.22)

(2.23)

tO ttO tOf=f(xi, Yi, Yi y Y ),

f;-=f(x,,y,,y, ,y, ,y-),
V+f+=f(xi, Yi, Yi ,yi ,Y+),

Y"’) (f’--,- 2f +f,l)/h2.
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Substitute (2.20) through (2.22) into (2.23), and use the four Lemmas and (1.1) to obtain

where

(4). (4) (4). 2y’)= (y,_,-2y, -F yi+-F hEo’i)/h +O(h2),

h2 h
tr, -- (3 b,-1 + 4b, + 3b,+l)y5)- (C,+l- c,-)y)

h2

360
h2

(11 c,-1 + 8c, + 11Ci+l)y6) --- (3 d,_l + 4d, + 3d,+l)y7)

1- (d_ + 2d + di+)p.

A Taylor series expansion yields

(2.24) y,,,) (6) h2
=y, +y8)+tr,+O(h2).

Again, the last term in (2.24) becomes O(h3) if y C9[I]. We thus have
LEMMA 5. Let the hypothesis of Lemma 3 hold. Then

yVi)__ y6)q_ O(h2).
Combining (2.3), (2.4), (2.6), (2.17), and (2.23) with (1.1) yields our difference

approximation to (1.1)

h2

Y --’ -Jr- Ti,

or

(2.25) -(f;Z1 + 4f/ +f[++l) ’t’i,

where zi is the local truncation error. Our final local truncation error result follows
from Lemmas 1 through 5.

THEOREM 6. Let y C8[I] and b(x), c(x), d(x) .be Lipschitz continuous. Then

"/’i O(h4).
In order to implement (2.25) we set ri 0 and let vi be an approximation to y.

After substitution of the appropriate lefinitions and rearrangement we have a set of
equations of the form

(2.26) mi_2Di_2
q- mi,i_1Di_ -- mi,il) 4r- mi,i+ 1Di+ -- mi,i+21)i+2 ri, i=2,..., N-I,

where the matrix elements mi.j and the right-hand side vector elements r are given in
the Appendix, in terms of the coefficients of (1.1) and h.

We turn now to the treatment of the derivative boundary conditions (1.2). We
cannot use (2.3) because it introduces too many image points. Use of (2.7) and (2.8)
will yield a fourth order approximation, but we found from numerical experiments
that the truncation error (Lemma 2) leads to a global error larger than that due to the
interior discretization alone. We thus use the approximation to the fifth derivative
(2.15) to improve the truncation error of (2.7) and (2.8) to fifth order without expanding
the mesh star:

(2.27)
h4

y(1)(O y’---f y2) + O(h),
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(2.28) hays)__ + O(h5).Y(1)(1) Y--d
Both of these approximations are written out in full in the Appendix. As is common
in finite difference methods, these two equations are used to eliminate the image points
Vo and v+l from the two interior equations (2.26) that contain them, yielding the
desired pentadiagonal matrix. We note that even though (2.27) and (2.28) are fifth
order accurate., the size of the truncation error is still comparable to that of the interior
approximation (for reasonable h). This is due to their one-sided nature, and appears
to be unavoidable. However, the error term is proportional to the sixth derivative, so
(2.23) can be used to correct (2.27) and (2.28) to sixth order, but this probably would
not help much.

The other commonly encountered Dirichlet boundary condition is obtained by
replacing the first derivative in (1.2) by the second derivative. The procedure and
comments above still apply, except that the order of accuracy is reduced by one. That
is, (2.15) is used to correct (2.9) and (2.10) to fourth order accuracy, and (2.23) is used
in addition for fifth order.

3. Accuracy and stability of the methods. In this section we compare the local
truncation error and stability of the OCI and RE methods. Even though y C8[I] is
sufficient for O(h4) accuracy for both methods, we assume that y C9[I] so that the
coefficient of the h4 error term is well defined. The results of the previous section yield
the local truncation error for the OCI method (suppressing the subscript i):

(3.1)
h4 h2 h2d

,FOCI__ --Y(8)-h4jy(7) h4Cy(6) h4by(5)-m tr + O(h5)
60 --- 3---0- 6 --- p

We can simplify O and cr by noting (from Assumption (c)) that bi+l + hi-1 2b + O(h),
etc. Thus, eliminating p and or, we write (3.1) as

(3.2)

y(5) y()"FOCI h4 1 y(8) d y(7).+, c y(6).F Ac b-- 36-- 360 7- 180

d ( Ad Ac

_
+ -3 y(5) cy(5) y(4)
288 -h- +2 +--- +4by(4)+2 y(3))] + O(hS),

where Ab Abi b+l- b_l, etc.
For the RE method (see Keller [10]), we substitute (2.1), (2.2), (2.5), (2.6) into

(1.1) and solve the resulting system twice, once on a h-grid and once on a 1/2h-grid.
The two solutions are then averaged in such a way that the O(h2) errors cancel. That
is, if v(h) is the approximate solution on the h-grid, we take

(3.3) v (4v(1/2h)- v(h))/3.

The resulting local truncation error is easily seen to be

[ 1 y(8)_ d (7) c y(6)_ b ](3.4) "/’RE--" h4 -- 16--- y 1440 48--- y(5) + O(h6).

We note that if b c 0 and d const., then
4(3.5) rocI rRE.

Otherwise, we cannot make a direct comparison but it is evident that if b, c, and d are
large and variable, roci may be many times larger than rRE.
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We now consider the spatial stability of the two methods. A method is considered
to be spatially stable if the numerical solution exhibits the same qualitative behavior
as the exact solution. In particular, instability is characterized by oscillatory solutions
or a growth rate of the opposite sign as the true solution. We use the test problem

(3.6) y(4) + dy(3) O, d const. > O,

which has solutions of the form

(3.7) y K e-d" + K2x2 + K3x + K4,

where the Ki’s depend on the boundary conditions. We assume that the numerical
solution varies like

(3.8)

and substitute it into the difference equations. For the OCI method, we have (from
the Appendix)

(1 +1/2R +2R2)K4- (4+ R +RZ)r / (6 +1/2R2)r 2

(3.9)
-(4- R +1/2R2)r + (1-1/2R+R2) 0,

where we have multiplied through by /<2--i and have defined the cell Reynolds number
R dh. The above can be factored to yield

(3.10) (-1-
The four roots of (3.10) are

12R ) )312+6R+R (-1 =0.

12R
(3.11) /<1 =/<oc 1

12+6R + R2’ /<2 /<3 /<4 1.

Clearly, the /<’s correspond to the solutions in (3.7). For second order differencing
the same procedure yields

2R
(3.12) /<so =/<1 1

2 + R’ /<2--- /<3-" /<4-- 1.

If we ignore the last three/<’s, then the RE method applied to (3.8) using (3.12) yields

4( 27R)2’ 1 ( 2R )iv,= 1-
4 - 1-+ R

or

(3.13)

Taking i= 1 we define

1-4+R] -- 1-2+R

(3.14) /<RE= 1-4+R - 1-2+R
The exact solution corresponding to/<oci and /<RE is found by letting K2 K3 K4 0,
K1 1, and can be written

(3.15) yi=e-Ri.
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We thus want to compare KOCI, KRE and e-R. These three quantities plus Kso are plotted
in Fig. 1. As shown there, centered second order differencing has the well known cell
Reynolds number limitation of R-<_2 due to oscillations. Richardson extrapolation
relieves that limitation but introduces another at R 12 / 8x/- 25.86 where the numeri-
cal solution (3.8) begins to grow instead of continuing to decay. The OCI method has
no cell Reynolds number limitation in the sense that the numerical solution to (3.6)
(with the appropriate boundary conditions) will monotonically decay for all R.
However, it is noted that neither of the two methods will be accurate beyond the
minimum of their respective K vs. R curve (these minima occur at about R 3.14 for
the RE method, and R 3.46 for the OCI method). But, we see that the behavior of
the RE method may be fortuitous: The form of KRE may depend strongly on (1.1). In
particular, we would expect that for some problems with a large cell Reynolds number
(R > 2) the oscillations from the second order method will carry over through the RE
method, instead of canceling out as they do for (3.6). On the other hand, the OCI
method does not rely on cancellation of oscillations so the stability results obtained
here should be more universal. Thus, we expect the OCI method to be, in general,
more "robust."

a::" 1.0

<1: 0.5

>- 0.0

<1:-0.5

KOCI

-1.0
0 5 10 15 20 25 30 35

/SO

5/3

4O

CELL REYNOLDS NUMBER, R
FIG. 1. K Vs. R for the OCI, RE and SO methods. Values of K as R oo are shown at the right.

4. Numerical tests. Here we compare the OCI and RE methods in terms of
computational efficiency and accuracy for three sample problems.

Shown in Table 1 is a comparison of the amount of work required to solve (1.1),
(1.2) for fixed N. The number of coefficient evaluations for the RE method depends
on whether the evaluated coefficients can be saved from the first pass through the
second order method to the second. For many applications this is not possible or
practical, which results in 15N coefficient evaluations. If these evaluations require few
multiplications, then the total arithmetic for the two methods is very comparable.
However, if the coefficients are expensive to compute (for example, requiring external
function calls) then the RE method may require up to two or three times the arithmetic
as the OCI method.
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TABLE
Work comparison for the OCI, RE and SO methods.

OCI RE SO

Coefficient evaluations 5N

Multiplications to construct difference approximation 44N

Multiplications and divisions to solve algebraic equations I0N

10N-15N 5N

18N 6N

30N I0N

We now consider some sample problems. The following differential equations
with the given boundary conditions were solved using both methods

(A) y(4) + xSy(3) 7x4y(2) 7x3y(1) 10xEy 5040X6 + 10xlE,
y(0)=y1(0)=0, y(1)=l, yl(1)=10;

(B) y4_ 37r sin (27rx)y3 / 6r2 cos (2rx)y2- 16r4y 47r4,
y(0) yl(0) y(1) y(1) 0;

(C) y4+ 2a(x 1/2)y3 + 12ay2 / 1232(x 1/2)yl / 1232y 0, a 22,

y(0) e-/4, y(0) ae-/4, y(1) e-/4, yl(1) -ae-’/4.

The solutions are

(A) y x,
(B) y sinE (Trx),

(C) y e-x-1/2)2, a 22.

All computations were performed on an IBM 3033 in double precision. Table 2 lists
the maximum error for the two methods and for second order differencing, for each
problem and three different N. The numbers in parentheses refer to the exponents, for
example, 1.3(-3) means 1.3 x 10-3. The results from (A) and (B) indicate that the first
two methods are globally fourth order accurate and have comparable absolute accuracy.
Problem (C) is somewhat pathological in that the differential equation is homogeneous
and the boundary conditions are very small; but it has an O(1) solution. In other

TABLE 2
Accuracy comparison for the OCI, RE and SO methods.

Error, max-norm

Problem N OCI RE SO

11 1.3(-3) 1.8(-3) 1.0(-1)
A 21 6.5 (-5) 1.2 (-4) 2.7 (-2)

41 3.1 (-6) 7.4 (-6) 6.8 (-3)

11 6.2(-3) 1.6(-2) 3.0(-1)
B 21 4.9 (-4) 8.0 (-4) 6.4 (-2)

41 3.0 (-5) 4.8 (-5) 1.5 (-2)

21 2.4(-2) 3.3 (-1) 8.2(-1)
C 41 1.3 (-3) 6.7 (-2) 4.5 (-1)

81 8.0(-5) 6.8(-3) 1.6(-1)
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words, it is "nearly" singular. Both methods can solve this problem for any a and any
desired degree of accuracy provided N is sufficiently large. However, the OCI method
can solve (C) to within 2.4 per cent with 21 grid points while the RE method requires
about 57 for the same accuracy. For large N the former is about 100 times as accurate
as the latter. The RE method ran into trouble with N 21 even though the maximum
cell Reynolds number was only about one. As one would expect, the OCI method is
favored even more if the problem parameter "a" is larger (that is, the problem is
closer to being singular), while the methods are comparable for smaller t. The
conclusion is that (as we conjectured in 3) for some problems the RE method will
not work properly if the second order differencing does not result in at least qualitatively
correct solutions, while the OCI method does not require this. Furthermore, an
examination of the local truncation error cannot be used reliably to predict the relative
accuracy of the methods. For problems (A) and (B), the maximum of ’oci is about
four times larger than the maximum of ’RE, and even for (C), the former is somewhat
greater than the latter.

We note a characteristic of the present implementation of the OCI method that
was alluded to earlier. Many problems were solved with a wide variety of N in order
to gain experience with the method. In most cases t was observed that the order was
actually a bit greater than four, while the RE method gave very consistent fourth order
convergence. This is because the truncation errors due to the boundary and interior
discretizations are about the same size, but the former is fifth order while the latter is
fourth order accurate.

5. Summary. We have presented here an implementation of the OCI method for
solving general linear fourth order ordinary differential equations, and have compared
it to standard second order differencing with Richardson extrapolation. In particular,
for some problems involving large and variable coefficients, the latter will have a
smaller local truncation error. However, the numerical examples showed that this does
not necessarily lead to a smaller global error; it still remains to find a strong relationship
between the local and global truncation errors in order to explain the observed behavior.
An operation count showed that if the coefficients are expensive to evaluate, then the
OCI method will require less arithmetic for a fixed number of grid points. Also, this
method will be preferred for problems where the cell Reynolds number is not small
and for problems where centered second order differencing does not yield at least
qualitatively correct solutions. For high cell Reynolds number problems neither method
is good (from Fig. 1, we expect very diffusive-looking solutions and O(1) errors). For
this case, it would be very worthwhile to develop a method of exponential type
analogous to the schemes considered in [7] for second order operators.

We have not considered non-Dirichlet boundary conditions or nonlinear differen-
tial equations, but these are straightforward extensions of the work presented here.
For the former, third order derivatives are introduced into the boundary conditions.
The differential equation is required to be satisfied on the boundaries, and an additional
image point is introduced. This allows us to approximate the boundary conditions in
the same manner as the differential equation derivatives (that is, using (2.3), (2.4) and
(2.17)). Since the noncentered approximations (2.7)-(2.10) are not used, we expect
the method to perform even better than for Dirichlet conditions. The behavior of
centered second order differencing (and thus RE) does not depend, in general, on the
type of boundary condition imposed. The OCI method for non-Dirichlet boundary
conditions assumes that (1.1) is defined at x =-h and x 14- h. The RE method does
not require (1.1) to be defined outside of[0, 1], which may be helpful for some problems.
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Nonlinear differential equations are solved most easily by quasilinearization. We
require existence and certain smoothness ofthe Frechet derivatives off. The coefficients
of (1.1) then become functions of the derivatives of y at the previous iteration as well
as of x. These derivatives must be evaluated with fourth order accuracy, thus, (2.1)
through (2.19) should be used. Recent results with a system of nonlinear differential
equations (solved one at a time and coupled by iteration) have shown that the overall
efficiency ofthe OCI method and ease of its implementation carry over to more complex
problems.

Appendix. The matrix elements (2.26) for the OCI method are given here in terms
of the coefficients of (1.1) and the mesh spacing h.

h [ 2
h2

m,.,_2 1- d,/ (3d,_-2d,-d,/)/-(llC,_l-4C,-C,/l)

]-7- (3b_-4b, + b,+) + z,(-3d,_- d,+l -i- 2hc_- hb,_)

h3 [ h2
m,.,-i -4+ hdi + h-c,-- b, + (5d,_1 2d,- 3d,+) +]- (-5c,_1 2c, + c,+)

h h
+3-Tt (-5b,_l + 2b, + 3b,+l)+-7-t a,_l

+ 2z(5d-i + 3di+l- 2hCi_l + h ai-1)],
h2 h

m,., 6 2h2c + h4a,+ h d,+ d,_ +- C,_ + 4C, + c,+ + -- b,_ b,+

h4---- a, + z,(-12(d,_l + d,+l)+ 2h(c,_1- i+1) -" h2(b,- + b,+l))

m,.,+2 1 + d,+ (di-1 +2d,-3d,+l)+(-C,_l-4C,+ llc,+)

h3 _hEbi+l)]+ (bi-1-4bi + 3bi+l) + zi(-di-l-3di+1-2hci+
72

r=h4gi+Ih-(gi_l+2g+g+l)-2h3z(gi+l-g_l)],
where

h2

z, (d,_ 4d, + d,+) and 2<-i<-N-1.
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We note that centered second order ditterencing is recovered if everything within the
square brackets is deleted. The matrix elements for the nonderivative boundary condi-
tions are

ml, 1, r BE,

ms,u 1, rs B4.

The approximations using (2.27) and (2.28) to the derivative boundary conditions are

vo -3 +- (3d + d 2hc + hb)

"- 1)1 -10--i- (5d d- 3d 2hCl d- h3al)

+I)2 18+--(12(dl + d3)+2h(c3-c1)-h2(b1+ b3))

-}" 1)3 -6--- (3dl d- 5d -I- 2hc3- h a3)-- 1)4 1 +-- (d + 3d + 2hc d- h2b3)

12hB1 +1- h4(g3- gl),

,r- -1 +- (3d_2+ d-2hc_+hb_)

+ v_ 6-i’- (5dr_2 +3d 2hcr_+ h3aN_:)

+ 1)r- -18+- (12(d_+ d)+2h(c cr_)- h2(b_+ b))

+ 1)r lO--i--d (3dr_+ 5d + 2hcr ha)

+1)+ 3+- (d_+3d +2hc + hbr)

12hB3 +.3--2 h4(grv gN-2)-
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Abstract. This paper investigates the absolute stability properties of numerical methods for initial value
O.D.E.’s based on second derivative formulae where the regular iteration matrix, which is of the form
(I-flohJ-yoh2j2), is approximated by a perfect square matrix of the form (al-bhJ)2. For the problem
y’(t) Ay(t), y(to) specified, it is shown that the region of stability depends not only upon the underlying
implicit formula, but also upon the way in which y’ and y" are determined, the choice of a and b, the
number of iterations, and the type of predictor formula used. In some cases, the method has a bounded
region of stability while the underlying formula is A-stable. The stability regions of methods using different
values of a and b, with a varying number of iterations are presented.

Key words, stiff ordinary differential equations, second derivative formulae, absolute stability

AMS(MOS) subject classification. 65L05

1. Introduction. Second derivative and related formulae (such as the blended
formulae of Skeel and Kong [12]) have been put forward frequently as candidate
formulae for numerical methods intended to solve stiff initial value ordinary differential
equations (O.D.E.’s) (see for example, Enright [6], Skeel and Kong 12], and England
[5]). The general form of a second derivative formula is

k k k

(1.1) Yi ajYi-j + h fljY -j "Jr- h2 _. "Yjy -j.
j=l j=O j=0

To be suitable for stiff O.D.E.’s, the formula must at least be stable at infinity, and
hence must be implicit (see Dahlquist [4]), with /o# 0. The implicit nature of the
formulae means that a system of nonlinear equations must be solved on each step.
This is done using a Newton-like iteration, with an explicit formula used as a predictor
to start the iteration. On the autonomous problem

(1.2) y’(t) f(y(t)), y(to) =Yo,

each iteration involves solving a system of linear equations with a matrix of the form
(I-flohJ-3,oh2J2), where J is an approximation to the Jacobian Of/Oy. Forming J2 is
often undesirable, for example, when J is sparse j2 may be dense. One way to avoid
forming J2 is to approximate (I flohJ y0hEj2) by a perfect square matrix (aI bhJ)2,
where a and b are real (an approximation with a- 1 was first suggested by Skeel and
K.ong [12]), and then to solve two systems of linear equations with the same matrix
(aI- bhJ) in each case.

The purpose of this paper is to investigate the stability properties of second
derivative methods that use a perfect square approximation to the iteration matrix.

The iteration scheme for second derivative formulae is discussed in detail in 2.
In 3 the absolute stability properties of the methods are analysed. (A method is
absolutely stable for a given step-size h and a given differential equation if the change
due to a perturbation of size 8 in one of the mesh values yi is no larger than K8 in

* Received by the editors November 8, 1983, and in revised form May 20, 1985. This work was supported
in part by the Natural Sciences and Engineering Research Council of Canada.

f Chr. Michelson Institute, Department of Science and Technology, Fantoftvegen 38, N-5036 Fantoft,
Bergen, Norway.
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all subsequent values yj,j> i, where K does not depend on j. For the ditterential
equation y’= Ay, where A is a complex constant, the region of absolute stability is that
set of values of hA for which the method is absolutely stable. See Gear [8].) It is shown
that the choice of predictor, the values of a and b, .and the number of iterations carried
out, all affect the stability properties of the methods. Indeed, in certain cases, the
stability region associated with the method using a perfect square approximation is
bounded, while the underlying implicit formula is A-stable. (A formula is A-stable if
the region ofabsolute stability contains the entire left half hA-plane.) Section 4 considers
the rate of convergence ofthe methods for linear problems. Several illustrative examples
of the stability regions that result when different predictors and different values of a
and b are used with a varying number of iterations are presented in 5. Practical
implications and conclusions are discussed in 6.

2. The iteration scheme. Consider the second derivative formulae

k k k

(2.1) Predictor: y[O) jyi_+h E fiYi-+hE’ gY,-J,A,,
j=l j=l j=l

k k k

(2.2) Corrector: yi E otjYi-jq- h flyy$_+ hE Y ),yi"_y,
j=l j=0 j=0

applied to the initial value O.D.E.

(2.3) y’(t)=r(y(t)), te[to, tf], r(to)=yo.

The solution of the corrector satisfies the nonlinear system of equations

(2.4a) F(y) =0,

where

(2.4b)

with

0f
r(y) y- hflof(y)- hE

3o S- (Y)f(Y)- g,-,,
ay

k k k

(2.4c) gi-1 Y ajy,_+ h ]3y_+ h2 TjYi’Cj.
j=l j=l j=l

Applying Newton’s method to (2.4) leads to the iteration scheme

(2.5) w(r)(r) -F(y(r-1)), r 1, 2,. , y(O)

where

of {0 }2 o2f
W<r)= F’(y<r-l)) I flohy (y<-l)) Toh2 (yr-)) Toh2 (y-))f(yr-)).

dyE

In practice a modified Newton’s method is usually considered with W<) replaced by

(2.6) W I ohJ /oh2j2,

in which J is an approximation to the Jacobian matrix (3f/Oy)(y<r-1)), and the term
involving (02f/dy2)(y<r-)) is ignored, see Liniger and Willoughby [ 10] and Sacks-Davis
[11].
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Convergence of the iteration scheme (2.5) with W(r) replaced by W is seldom a
problem and the simplification leads to substantial reductions in cost. To illustrate
this, SECDER (see Addison [1]) was run on the nonlinear STIFF DETEST problems
(see Enright and Pryce [7]) using three different iteration schemes. The first was the
iteration scheme (2.5) with W(r). The analytic Jacobian was used and the 02f/0y2 was
found using differences. The second version used W(r), ignoring the 02f/0y2 term. The
final version used W in place of W(r). The W matrix was only re-evaluated when the
step-size or order changed or when the rate of convergence was deemed inadequate.

Of these three versions it was found that the version using W(r) including the
02f/0y2 term and the version using W(r) neglecting 02f/0y2 required roughly the same
number of steps for each test problem but the first version required about twice as
much execution time as the second. The second version frequently required fewer steps
than the third version, with W, but was almost always slower, typically requiring
one-and-a-half times as much execution time. Thus the savings made in computation
time by using W can be substantial, but there are still difficulties and explicitly forming
W is undesirable in many situations.

The calculation of W involves forming j2. This requires O(n3) operations, and
the advantage of a matrix J with special structure, such as sparseness, is usually lost.
Modifications ofthe iteration scheme which avoid forming j2 and allow full exploitation
of any special structure have been suggested. For example, Enright [6] factors W into
-To( rI hJ)(I hJ) where r -(flo/2 7o) + i( (flo/2 To)2 (1/ To) 1/2, and uses com-
plex arithmetic. This modification has the disadvantage of requiring twice as much
storage and being up to four times slower than real arithmetic (see Addison [2]). An
alternative modification, suggested by Skeel and Kong [12] in the context of blended
linear multistep methods, is the approximation of the iteration matrix W by a perfect
square matrix (I-chJ)2, where c is real and is chosen to minimize the rate of
convergence of the iteration scheme applied to the test equation

(2.7) y’(t) hy(t),

Re (h) <_- 0, y(to) Yo.

A third modification, and the one considered here, is the approximation of W by
a perfect square matrix (aI- bhJ)2, where a and b are chosen to yield iteration schemes
with the best possible absolute stability properties.

The notation M(P, C, a, b, m) will be used to denote the method resulting from
a predictor formula P, and a corrector formula C, of type (2.1) and (2.2) respectively,
applied using the perfect square iteration scheme,

(2.8)

of
(aI- bhJ)()= -y(-) +/3ohf(y(-)) + 3,oh y (y(-))f(y(-l))+ gi-1,

y(O)= yO), r 1, 2,. , m,

in place of (2.5), with yi =y("). In the following analysis, m is assumed fixed. This
simplifies the analysis and still provides useful insight since in practice the same number
of iterations is taken on several successive steps. Three cases will be considered"

y,Case 1 in which Y i, are chosen using the differential equation, that is

Ofy f(y,), y’ -y- (y,)f(y,);
oy
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Case 2. in which y’ is chosen to satisfy the corrector formula (2.2) with

y! f(yi),

Case 3. in which y[ is chosen to satisfy the corrector formula (2.2) with

Mx(P, C, a, b, m), I 1, 2, 3 will be used to distinguish the cases. It should be noted
that in Cases 2 and 3, yi, y, y"i satisfy the corrector formula. This is not true in general
for Case 1. Also, Case 3 does not lead to an efficient implementation because of the
need to "invert" flohI + Toh2 (Of/Oy)(y(m)) at every step.

3. Absolute stability properties of MI(P, C, a, b, m). When the linear test equation
(2.7) is considered, the iteration scheme (2.8) can be written as

(3.1) (a bhA)2y(’) ,(hA)y(r-1) + g_, r 1, 2,. ., m
where

u(hA (a bhA )2_ (1 flohA 3’oh2A 2) (a2 1) + (/30- 2ab)hA + (3’o + b2)h2A 2,
is the difference between the perfect square iteration matrix and W. If ab > 0, then
(a- bhA) 0 and the rate of convergence of the iteration is determined by 0(a, b)=
a bhA )-2 t,(hA ).

For the three above cases, the resulting iteration schemes are as follows:
Case 1.

k

(3.2a) yO)= (cj + hA/j + h2A2)y,_,
j=l

(3.2b)
k

(a- bhA)2yr)= (hA)yr-) + (otj+ hAfl.i+ h2A23"j)y,-j,
j=l

Case 2. Here

r=l,2,...,m.

(3.3a) y[ Aye,

and in order that the corrector formula (2.2) be satisfied,

(3.3b) h2 3’oY,’-’ y,- hoy- g,-1.

Since g,-1 can be written as (a-bhA)Zym)- t,,(hA)ym-), (3.3b) can be rewritten as

(3.3c) y’ A2ym)_v(hA (ym)_ym-)),h2 3"0

and hence the following iteration scheme is obtained:

(3.4a)

(3.4b)
(a-bhA)2y")= (hA)yr-1) + ., (a.+ hAfl.+ h2A23)y,-.

j=l

’(hA 3" (ym_] (m-l)
Yi-j ),

j=l 3’0
r=l,2,. .,m.
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Case 3. In this case

(3.5a)

(3.5b)

hflo -1- h23/oA )Y Yi gi-1,

y"=,

provided flo+ hhyo O. Substituting for gi-1 as in Case 2, (3.5) can be rewritten as

(3.6a) y by,- (hflo+ hE’oh )-1 v(hA )(y) y-l)),

(3.6b) yT h :y, hflo+ hEToh )-l v( hh )h y) y-)),

and the iteration scheme s

k k ( + hh) (y (m-l)(3.7a) y=E (+hh+ hEhE)Y’-- (hh)E - -Y’- )’

k

(a-bhh)Ey= (hh)y-+ (a+ hhfl+ hEhE7)y,-
(3.7b) =

-u(hA) k (+ hays) (y?-y_-)), r= 1 2,... m.
= (o+ hXyo) -

If the matrix W is used instead of the perfect square approximation, the three cases
are identical.

Using the notation

tzj( hA aj + hhfl + hEA 2
/j, A(hh t + hh/ + hEA 2^

k k

(o,) y ,o-, a(,)= E a,o-,
j--0 j=l

k k

t(,,,) 2 t/o"-,, t(,o)= E t,o ,
j--0 j=l

with ao =-1, the following stability polynomials are established.
CASE 1: THEOREM 1. If the second derivative formulae (2.1) and (2.2) are applied

to the linear scalar differential equation y’(t)= hy(t), y(to)= Yo, h complex, using the
perfect square iteration scheme with m iterations on each step and with the derivative
values y, y’.’, chosen to satisfy the differential equation Case 1), then the absolute stability
properties ofy") are determined by the moduli of the zeros of the stability polynomial

(3.8)

m-1 k

Ql(tO; hA) (a bhA)2mtok ., ,(hA)"-l-’(a bhA)2" m(hA)tok-J
r=0 j=l

k

9(hA )" Y’, /2g(hA )to k-g.
j=l

Proof. Let x, (y,,), y,,-l, yl), yO, Y,-,, Y,-2, Y,-k+l).
Then x contains the information that results from the ith step, together with all

information from previous steps that is required to advance from t to t+l. It can be
verified that x satisfies the following system of equations:

(3.9) Tx Sxi_l, Xo given,
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with

/J,l(hA) 0 0

/Xl(hA) 0 0

o o
1 0 0

0 0 0

0 0 0

0 0 0

1
0 1 0

T

and

m+l

-v(hX) 0 0(a-bhA)

’(v(hA)
0 0 0 1

0 0

0 0

k-1.
0 0"

0 0

T

The first m equations represent the m iterations of the corrector, equation (rn + 1)
represents the predictor step, and the remaining k- 1 equations are identity equations
included to match across steps.

The method is stable if and only if the eigenvalues of the generalized eigenvalue
problem,

(3.10) (S-ooT)z=O,

have modulus less than or equal to one with only simple eigenvalues of modulus one,
see Gear [8].

Let

where zi gm) i> 1 then from (3 10)
k

(3.11a) (tx,(hA)-to(a-bhA)2)z"’)+tov(hA)z’-l)+ ., /zj(hA)z=0,
j=2

k

(3.11b) IZl(hA)zm)-(a-bhA)2z(m-P)+av(hA)zm-v-’)+ E /zj(hA)z3=O,
j=2

p 1,2,. ., m-l,
k

(3.11c) Il( hA )gm)-g)+ 2 /j(hA)z =0,
j=2

(3.11d) gm) (.Og2 0
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(3.1 le) zj_l tozj 0, j=3,4,... ,k.

Hence, from (3.11e) and (3.11d),

(3.12a) zy to k-Jzk, j 2, 3," ", k,

(3.12b) zm)"- tok-lzk,
and from (3.11c) and (3.11b),

(3.12c) toz) { /2(hA)tok-J} Zk,
j=l

and

(3.12d)

k

to(a- bhA )2z"-P)= tov(hA )z]’’-p-I)+ Z m(hA )tok-Jzk,
j=l

p=l,2,...,m-1.

From (3.12c) and (3.12d), multiplying by powers of (a- bhA)2 and combining terms,
k p-I

to(a-bhA)2Pzp)= v(hA)p A(hA) + E v(hA)P-l-i(a-bhA)2i

j=l i=0

p- 1,2,..., m-1

(3.12e)

and hence (3.11a) multiplied by (a-bhA)2(m-) becomes

(3.13)

k m-1

m-l-i( 2iu( hA )" , A(hA )tok- + u(hA a bhA
j=l i=0

From (3.13), either Ql(to; hA)=0, where Ql(to; hA) is given in (3.8), or else Zk=O,
which implies to 0 since z 0 is not a valid eigenvector. The matrix T has full rank
m+ k, and since S has rank at most k, eigenproblem (3.10) possesses at least m
eigenvalues equal to zero.

CASE 2: THEOREM 2. The stability polynomial for Case 2 is

m--1

QE(to; hA) (a bhA)E"toky(to)_ ,. u(hA)"--r(a bhA)2r
r=0

(3.14) x tok{(a(to) + hAft(to)) yo- (Ceo+ hAflo) y(to)}

u(hA)"{(t(to) + hA/(to))y(to) (a(to) + hAfl(to))(to)}.
CASE 3" THEOREM 3. The stability polynomial for Case 3 is

m-1

Q3(to; hA)=(a-bhA)2"tok(fl(to)+ hAy(to)) E u(hA)"-’-"(a-bhA)2"

r=0

(3.15) x tok(c(to)(/30+ hAYo)- ao(fl(to) + hAy(to))}

v(hA)"{t(to)(/3(to) + hAy(to))-a(to)((to)+ hA(to))}.

The proofs for Theorems 2 and 3 are essentially the same as for Theorem 1, with
.(,,-1) ..,yO) (m- rx, (Y"), yi Yi-1, Yi-2, Yi-k+l, Y’i),- Yi--2’(m--1), Yi-k+)
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The matrices T and S are now of size m- 1 + 2k, with T of full rank and S of rank
at most 2k.

If the perfect square iteration schemes converge, that is, if [O(a, b)]< 1, then it
can be shown in all three cases that

lim/Xo( hA Q, (to; hA
,,-o (a bhA)m (a(to) + hAft(to)+ h2A2y(to))p,(to; hA)

with

I=1,

tOi tO hA Yoto
k I 2,

(flo+ hAYo)to k, I=3.

Notice that (a(to) + hAft(to)+ h2, 2/(to)) is just the stability polynomial for the correc-
tor formula (2.2), and so if the iteration schemes converge then the absolute stability
properties of the methods are identical, in the limit, to those of the underlying corrector
formula.

The stability polynomials given in the above theorems can be used to determine
whether or not the methods are stable at the origin and at infinity.

The methods are stable at the origin (zero-stable) if the roots of Q;(to; 0) are less
than or equal to one in modulus, with only simple roots of modulus one.

(3.16) Qt(to; 0)

and in the case a 1

Q,(to; O) -a (to)tokyo,
--()/3o,

1--1,
I 2,
I =3,

where the methods are zero-stable if and only if the underlying second derivative
formula (2.2) is zero-stable.

As hA o, the stability polynomial Ql(to; hA) tends to the term involving the
largest power of hA, say Rx(to)(hA) N, with N=<2m+2 for I=1 and N-<2m+l for
I 2, 3. R(to) is of degree k for I 1 and of degree 2k for I 2, 3. Stability at infinity
is determined by the polynomial R(to); the methods are stable at infinity if and only
if the roots of R(to) are less than one. If the leading coefficient of R(to) is zero, then
R(to) has a root at infinity and the method is unstable at infinity. Tables 1, 2 and 3
summarize the various cases that arise, giving the polynomials whose roots determine
the stability at infinity for three types of predictor:
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TABLE
Case 1.

for some j

-0 Vj

0
for some j

for some j

yo+ b2# 0

’yo+ b2 =0 m>2

yo+ b2 # 0

,yo+ b2 =0 m>-2

yo+ b2 # 0

"Yo+b =0

m 2 flo- 2ab # 0

flo-2ab =0

m flo-2ab #0

flo-2ab=O

m flo-2ab #0

flo- 2ab =0

a2-1#O

a2-1 =0

unstable

unstable

unstable

where

rl(to) -ToT(to)+ (flo- 2ab)2(to),
r2(to) y(to)+ (a2-1)(to),
r3(to) /(to) + (flo- 2ab)/(to),

{ To(’o+b2) }r,()=V(to)+ (,Yo+b2)m_b2m (C’(to)--tok),
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TABLE 2
Case 2.

for some j
yo+b2#O /(m)(to)

-()(o) # o
unstable

(to)a(to)
-()V() 0

/(,o)(,o)
-(to)v(to)=0

yo+ b2=0 m>_-2

m=l (to)/3 (o) flo-2ab#O r6(to)
-g()(o) o

flo 2ab 0 y( to

(,o)#(,o)
-()r() =o

j=0 Vj "yo+ b2 # 0 unstable

for some j
Yo+b2=0 m>_-2 y(to)

m= flo- 2ab # O r7(to) y(to)

flo 2ab 0 y(to)

=g=o w yo+b2#O

for some j
yo+ b 0

where

(To+ b2)
b2m

{()(o)- ()(o,)},

r6(to) T(to)tok + (/3o- 2ab)
b2 {()3()-/(),/()},

r7(o ’yok +(o-2ab)(w),

r8(eo) eo k
(To+ b2)

b2 (o).
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TABLE 3
Case 3.

for some j

- g o vj

for some j

To+b2#O

o+ b2-- 0

o+b2#O

3to+ b2=0

,o+ b2# 0

3/0+ b2 0

ra(to) y(to)

rs(,o),(,)

Stability at infinity of the underlying corrector formula (2.2), is determined by the
polynomial y(to). From Table 3, Case 3, for all three types of predictor, it can be seen
that when yo+ b2=0 the methods are stable at infinity if the underlying corrector
formula is stable at infinity. When Yo+ b2# 0 stability at infinity depends on rs(to) or
rs(to)y(to), and as m increases both of these polynomials tend to toky(to) if Yo < 0 and
-Yo < 2b2. The condition Yo < 0 is satisfied if the corrector formula is to yield a unique
solution for stiff O.D.E.’s, and the condition -yo<2b2 is satisfied if IO(a, b)l<l as
hA -> oo, so rs(to) and r8(to) y(to) converge to tok3,(to) in all practical cases.

However, for Cases 1 and 2 stability at infinity is very dependent on the type of
predictor. With Case 1, Table 1, when 3,0 / b2 # 0, the methods with predictors involving
past first or second derivative values are unstable at infinity for any finite m. Therefore,
the stability regions are bounded and these methods are not A-stable for any finite
number of iterations, even if the underlying corrector formula is A-stable. However,
if the predictor involves only past approximations to the solution, stability at infinity
depends on r4(to), and as m increases r4(to) converges to 3,(to) when 3,0 < 0, -3,0 <2b2.
When 3’0+ b2= 0, stability at infinity of Case 1 methods with predictors involving first
or second derivative values is determined by 3,(to) for m ->_ 2 or m ->_ 3 respectively. For
smaller m, stability at infinity is determined by 3,(to) only for certain choices of a, and
so again the method may be unstable at infinity even if the corrector formula is stable
at infinity. When only past approximations to the solution are used in the predictor,
and still assuming 3,0+ b=0, stability at infinity is determined by 3,(to) for any values
of rn and a.

The situation is very similar for Case 2, Table 2. Ifthe predictor involves derivatives
and 3,0 + b2 0, the methods will be unstable at infinity, except in the special case when
(to)/3(to) fl(to)3,(to) =0. When 3,0+ b2=0, stability at infinity is determined by
for m->_ 2 and for some special cases with rn 1. If the predictor involves just past
approximations to the solution, stability at infinity is determined by rs(to)3,(to) when
3,o+b2#0, and by 3,(to) when 3,o+b2=0. AS m increases r8(to)3,(to) converges to
o3,(o).

4. Convergence of the iteration scheme. It is important that the values of a and b
chosen on the grounds ofgood stability should not give rise to poor rates of convergence.
To assess the rate of convergence of a perfect square iteration scheme MI (P, C, a, b, m),
we consider the maximum rate for the linear test equation (2.7).

For a given hA with Re (hA)_<-0, the iteration scheme (2.8) is convergent if
IO(a, b) < 1. Furthermore, by the maximum modulus theorem, since O(a, b) is analytic
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for Re (hA)-<0, the max [O(a, b)[, denoted (a, b), is attained for Re (hA)=0, and
Re(hA)_<--O

(a, b)= max
(a2-1)+(flo-2ab)i-(yo+ b2)2

a bi)2

or equivalently,

(4.1) (a, b)2- max

Let

2(a, b, :)=

((a2 1) (3,0 + b2)2)2 + (/30- 2ab)22

(a2+ b22)2

((a2-1)- (yo+ b2)2)2+(o-2ab)2sc2
(a2 + b22)2

Differentiation with respect to : yields extrema at

a2((flo 2ab)2 2( a2 -1)( yo + b2) 2b2(a2 -1)b2

=0, -=-, :=, := bE((flo-2ab)E-2(a2-1)(yo+ bE)) 2(yo+ b2)2’

the last denoted 2. Only real : are of interest and so the extrema sc2= -b2/a2 and
20 are not relevant. Thus,

(4.2)

(a -1)2 (yo+ b2)2}
(a, b)2=

max a4 b4
if 2 < 0,

{ (a2-1)2 (’YO+b2)2 }max a4 b4 (I)2(a, b, ) if20.

Therefore (a, b) provides some indication of the convergence properties associated
with using a and b. As a consequence the values of a and b should be such that
(a, b) is small, so that good rates of convergence are achieved at least for linear
problems.

5. Numerical results. To illustrate some of the results of 3 and 4, the following
second derivative formulae are considered:

(5.1a)
h h2

C(3)"
Yi Yi-1+ (2y’i + Y,-1)’ --6- y"

(5.1b)
h h2

C(4): y, y,_l +- (29y + 20y_1-y-2)-- Y’.

C(3) and C(4) are respectively the third and fourth order formulae derived by Enright
[6]. Both formulae are A-stable and their regions of absolute stability are shown in
Fig. 1. (As stability regions are symmetric about the real axis, only the half-regions
with Im (hA)_-> 0 are shown in the figures.)

Three types of predictors are considered"
1) the third and fourth order explicit second derivative formulae of the Enright

type:

(5.2a)
h 5p3). yO)= Yi-1 +’ (2y’i_l + Y-2) +g n’2y"i_l,

(5.2b) p4). yO)=y,_l+_.4_(lly:_1+44y:_2_7y_3)+_ n Y,-1;
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3

h-plane
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2) the third and fourth order Adams-Bashforth formulae:

h
(5.3a) p23): yO)= Y,-1+ (23y_1-16y_2/ 5y[-3),

h
(5.3b) p24), yO)= Y,-1 +- (55y_1- 59y_2/ 37y[_3- 9y-4);

3) the third and fourth order explicit formulae based only on past Yi values:

(5.4a) p33): yO)= 4y,-1- 6y,_2 + 4y-3 y,-,

(5.4b) p34), yO)= 5y,-1-10y,_2 + 10y,_3 5y,-4+ Y,-5..

It should be noted that the predictor has to have the same order as the corrector if
a # 1, so as to maintain the order of the method.

Since Enright’s formulae (5.1) only involve the second derivative y’, the stability
regions for Cases 1 and 2 are identical whenever the predictor does not involve second
derivatives, that is for the P2 and P3 predictors (5.3) and (5.4).

For each method MI(C, P, a, b, 1) the values of a and b which give rise to the
"best" region of stability were obtained. In the case of unbounded regions this was
done by minimizing the horizontal distance d, from the imaginary axis to the boundary
of the stability region in the left half plane, and maximizing the angle a for which the
method is A(a)-stable, subject to the constraint of zero stability. The optimization
was performed using the code NLPQL (see Hock [9]) which implements a nonlinear
programming method with quadratic or linear least squares subproblems. For methods
with bounded regions, that is Cases 1 and 2 with predictors P1 and P2, the "largest"
region was obtained by maximizing d subject to the constraint of zero stability, and
maintaining a connected region.

The values of a and b are given in Table 4 together with the values of d and
r/2-a where applicable, and the values of b(a, b). The results for m =2 are also
given. Figures 2-6 illustrate some of the regions of absolute stability.

tto0-

h- plane
Unstable

-6.0 -5.2 -q.q -3.6 -2.8 -2.0 -1.2

Real

FIG. 2. Stability region ofM(Pa), C(), flo/2b, (--y0)1/2, 1).

3.6-

3.2-

2.8-

1.2

0.8

O.q

Imag.
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Corrector Case Predictor

C(3) p3)

Cta) 2 Pa)

C(3) l&2 P(23)

C(3) l&2 P(33)

C(3) 3 p3)

C(3) 3 P(23)

C (3) 3 P(33)

C() p4)

C(4) 2 p4)

C(4) l&2 P(24)

C(4) l&2 P(34)

C(4) 3 p4)

C(4) 3 P(24)

C(4) 3 P(34)

o/2b

0.9129

0.7253

0.9354

0.8509

0.9130

0.9253

flo/ 2b

(9/10) /2

0.8600

0.9682

0.9015

0.9541

TABLE 4

b m d

(-yo) ’/2 5.9753

2 A-stable

(-’yo) 1/2 A-stable

2 A-stable

(--y0) 1/2 0.1748

2 A-stable

0.3968 0.2705

2 A-stable

0.4064 0.0730

2 A-stable

0.3812 0.0225

2 A-stable

0.3953 0.0778

2 A-stable

(-70) ’/2 2.6953

2 A-stable

(-yo) /2 7.9540

2 0.0008

(--’0) I/2 1.7530

2 A-stable

"rr/ 2 a th a, b) Fig.

0.0971 0.1429

0.0400 0.3812

0.0211 0.1996

0.0569 0.1681 4

Bounded 0.3698

Bounded 0.1111

0.0005

0.4594 0.3521 5

0.6337 0.0860

0.0151

0.1366 0.2305 6

0.2207 0.0984

0.0004

0.2008 0.16350.9271

2 A-stable

0.1210 0.9007 3

0.2000

0.3448 0.8129

2 0.0005

0.3482 0.4546

0.3502 3.6697

2 0.0279

0.3434 0.3143

2 A-stable

Bounded 0.5 2
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Imag.

Stable h- plane

Real

-’-(3) C(3) 1/2FIO. 3. Stability region of M,2(r’2 ,0.7253, (-3’0) 1).

6. Conclusions. The purpose of this paper is to demonstrate the effect that certain
implementation strategies can have on the stability properties of second derivative
formulae. These and related formulae are of interest mainly because of their good
stability and accuracy properties. A major disadvantage of these, as mentioned at the
beginning of the paper, is the cost associated with using them. It has been shown
analytically that one suggestion for an improvement in efficiency, namely the use of

tt00-

Imag.
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160-
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80-

tt0-
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h plane

’’-1.60 O. 80 3:’20 5.’60
Real

9.56-

7.65-

5.7q

1"91t

8.00
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perfect square iteration matrices to approximate the regular iteration matrices, can
have devastating effects on the stability properties of the resulting method. If the a
and b used in the perfect square iteration matrix are not chosen carefully, the resulting
method may possess a bounded stability region irrespective of the number of iterations
performed. The test examples illustrate the variations that can arise even when a and
b are chosen carefullymchosen in an attempt to obtain the best stability region possible
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after one iteration. This is because the choice of predictor and the way in which the
past derivative and second derivative values are obtained (either from the differential
equation or somehow from the formula) also affect the stability. Usually, but not
always, using the formula to obtain an estimate of the derivatives leads to a .method
with stability properties equivalent or superior to those of a method where the differen-
tial equation is used. The comparison of the results from Cases 1 and 2 provides some
weak support for this, but the main support comes in comparing the results obtained
from Case 3 with those from Case 1. In Case 1 with predictor types 1 and 2 (which
involve past derivative values) reasonable stability properties can only be obtained
with b (-To) 1/2. Any perturbation of b from this value results in a method with a
bounded stability region. The results for Case 3, on the other hand, vary continuously
with the values of a and b in a neighbourhood about the reported values, with the
stability regions for Case 3 generally as good as or superior to those of Case 1.

Unfortunately, even in Case 3, A-stability is usually not attained until at least two
(and in some instances three) iterations are performed. This is important because it
suggests that instability could become a major problem (in the best of situations) if
several successive steps of the integration are taken with only one iteration per step.
Two iterations ofthe perfect square approach require 4n2 real operations plus 4 function
evaluations, whereas one iteration of the complex arithmetic approach requires the
equivalent of at most 4n2 real operations plus 2 function evaluations (see Addison
[2]). Consequently, if a minimum of two iterations is required with the perfect square
approach for stability reasons, the cost of performing the iterations, independent of
matrix factorizations, may be more expensive than using complex arithmetic. On the
other hand, the perfect square approach has more modest storage requirements and
so may be preferable for this reason.

When dealing with true second derivative formulae, the situation is even more
pessimistic than it might at first appear, since Case 3 does not lead to an efficient
implementation with these formulae. Case 3 is really only relevant when considering
blended formulae as implemented in Skeel and Kong [12], or the hybrid formulae of
England [5], in that with both of these formula types it is possible to obtain efficient
implementations akin to Case 3. Further details of the stability properties of blended
formulae can be found in Addison and Hanson [3].

The intention in this paper is not to suggest that perfect square iteration matrices
are inadequate approximations to the general quadratic iteration matrix, but rather
that extreme caution be taken when using them. The theoretical results required to
compute the stability regions of any particular implementation of second derivative
formulae have been presented, and aspects of the implementation which might be
worth altering to improve the stability region, if found inadequate, have been suggested.
Moreover, in instances, such as with the blended formulae, in which an implementation
akin to Case 3 is practical, it is recommended that it be adopted. Finally, if the second
derivative code is to be used in applications in which A-stability is critical, then it is
recommended that the use of complex arithmetic to solve the system of equations on
each step be thoroughly examined before opting for a perfect square iteration matrix.

Acknowledgments. The authors would like to thank Drs. R. D. Skeel and I.
Gladwell for their very helpful comments and suggestions.
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Abstract. We describe numerical methods for the detection of multiple bifurcations on solution paths
of certain gradient maps, and for effecting the branching off via appropriate local perturbations. Our model
problems are quasi-linear elliptic boundary value problems, and their discretizations via finite differences
and finite elements. Sample numerical experiments are reported.
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1. Introduction. In this paper we describe methods for the numerical approxima-
tion of bifurcation curves which satisfy equations of the form

(1.1) F(u, A) =0,

where F: B R-->/2, U B1, A R is a smooth mapping with 0 B2 a regular value,
B1 and B2 are two real Banach spaces, and R is the real line.

If the assumption that 0 is a regular value is not satisfied, that is, the Frechet
derivative DF is not surjective, then F-l(0) may contain bifurcation points.

Equation (1.1) arises in many different areas, for example, homotopy methods
and nonlinear eigenvalue problems (see [2], [6]). We will only discuss the latter in
this paper. In this case, B1 and BE are infinite-dimensional spaces of functions with
certain smoothness conditions.

To solve a nonlinear eigenvalue problem numerically by the continuation method,
it is necessary to first discretize the differential equation, for example, by a finite
difference method or a finite element method. In both cases, (1.1) is approximated by
a finite-dimensional problem

(1.2) H(x, A) =0

where H’Rr x R-R, x R, , R is a smooth mapping. Viewing h as the continu-
ation parameter, the continuation algorithm can be implemented to follow the solution
curves of (1.2). Of special interest here are singular points such as turning points and
bifurcation points. Various techniques for the-numerical treatment of bifurcations have
been developed and numerically tested (see, for example, [11]-[13], [15]-[17], [24]).
Among the methods for effecting a change of branches, perturbation is perhaps the
simplest one, since it requires no extra computation when incorporated with Newton
iterations and it may still succeed where branches are tangent. Most numerical experi-
ments in the literature have been restricted to simple bifurcation where one secondary
curve branches off the primary curve. To the writers’ knowledge, few experiments have
been published concerning multiple bifurcation points.

In [24] Rheinboldt proposed sophisticated methods to handle multiple bifurca-
tions, but the method does not seem to have been implemented or tested. Kearfott
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* Department of Applied Mathematics, National Chung-Hsing University, Taichung, Taiwan, Republic
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[15] gave a numerical report of double bifurcation by determining tangent directions
there. In the latter method, large amounts of computation are necessary, particularly
when the dimension becomes large.

Our main point here is that local perturbation techniques can still be used to
handle multiple bifurcations in the above cases. The theoretical foundation is based
on a version of a generalized Sard’s theorem. The choice of perturbation vectors plays
a key role in this method.

This paper is organized as follows. In 2 we briefly outline a predictor-corrector
type continuation method. A criterion for testing for simple and multiple bifurcations
is also given there. The application of perturbation to continuation methods is given
in 3. In 4 we give details concerning numerical implementation. In 5 sample
numerical experiments are reported on nonlinear eigenvalue problems of the form

Au+ Af(u) 0 in f,
(1.3)

u 0 on

where is a compact domain in R2 with piecewise smooth boundary and f" RI R1
is a smooth, odd map. Both finite difference methods and finite element methods have
been used. Perturbation techniques have been successfully used to handle simple and
multiple bifurcation in our numerical experiments.

2. The numerical continuation method.
2.1. Basic theory. Let H be defined as in (1.2) with zero as a regular value in

It follows from the implicit function theorem that H-l(0) is a 1-dimensional manifold
which is the disjoint union of smooth curves c(s) which are diffeomorphic to either
1 or S1. We denote c by

(2.1) c {y(s) (x(s), ;t (s))lH(y(s))= O, s I}.

Here I is any interval in R1. We assume a parametrization via arc length is available
on c. By differentiating the equation H(y(s))=0 with respect to s, we obtain

(2.2) DH(y(s)). ))(s) 0,

where p(s)=((s),’A(s))r denotes a tangent vector to c at y(s) and DH(y(s))=
(D,H(y(s)), DaH(y(s))) is the N x (N+ 1) Jacobian matrix of rank N. It follows from
(2.2) that the augmented Jacobian matrix

(2.3) A(y(s))
.f,(s) T ,]

is nonsingular for all s e L If an orientation is given, and a starting point y(0)=
(x(0), h(0)) is known, then one can numerically trace c by solving the Davidenko
initial value problem

Dn(y(s)). )(s) 0,

(D) II(s)ll 1,

y(0) (x(0), A (0)).

2.2. Predictor-corrector type continuation method. Let Yi (xi, Ai) N+I be a point
which has been accepted as an approximating point for c. A new point zi+l,1 is predicted
either by interpolation [29] or an Adams-Bashforth predictor [6], [12]. The Euler
predictor [2], [4]

(2.4) z+l,1 Yi A- t u
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is the simplest one which has been used. Here i > 0 is the step length, and ui is the
unit tangent vector at yi, which is obtained either by solving the linear system (see [2],
[4], [26])

(2.5) A(yi)

or

(2.6) e ] ui=

where ek is the kth standard basis vector of v+l such that

le. u,_l max {]ef. u,-l,j= 1,..., N+ 1}.

To maintain orientation and control the local curvature, we also require

(2.7) ui" ui_l > 1 a > 0 for some a (0, 1).

Either direct methods or iterative methods can be used to solve (2.5) or (2.6).
The accuracy of approximation to the solution curve must generally be improved

via a corrector process. This may be done by choosing a hyperplane which is orthogonal
to (s) at zi+,l and performing Newton iterations constrained to the hyperplane. In
practice, the modified Newton’s method with constraint

(2.8) (DH(zi+,)) (-H(z,+,j)) j=l 2,3yr wj= 0

is solved. Two possible choices for the constraint vector y are"

(i) the current unit tangent vector,
(ii) the standard basis ek of v+l defined in (2.6).

One can solve (2.8) by the same methods for solving (2.5) and (2.6).
If yi lies sufficiently near c, then the Newton process (2.8) will also converge for

step size hi > 0 sufficiently small. This criterion, as well as others concerning curvature
and distances are the factors which govern the step size selection process. For more
details concerning predictor-corrector continuation methods, see, for example, [2],
[4], [6].

2.3. Testing for bifurcation points. As was discussed in 1, if 0 is not a regular
value of H (or correspondingly of F), then one may encounter points on c where DH
has a positive rank deficiency. Let us distinguish turning points and bifurcation points.
The turning points of c are the critical points of A(s), that is =0. However, unless
DH(y(s)) also has a positive rank deficiency, where A 0, we shall not call a turning
point a bifurcation point. A necessary condition for a bifurcation to occur at a point
y(s*) c is that DH(y(s*)) should have a positive rank deficiency, or what is equivalent,
the augmented Jacobian

{DH(y(s*)))A(y(s*)) \ (s*)7"
should be singular. By a familiar theorem of Crandall and Rabinowitz 10], a sufficient
condition for a bifurcation to occur at y(s*) is that the rank deficiency of DH(y(s*))
should be odd, or what is correspondingly equivalent, det A(y(s)) changes sign on all
sufficiently small neighborhoods of y(s*). For even rank deficiency, bifurcation does
not necessarily occur. M. S. Berger [7] has given a sufficient condition for bifurcation



1268 E.L. ALLGOWER AND C.-S. CHIEN

to occur at points y(s*) c where DH(y(s*)) has an arbitrary rank deficiency: If F
is an odd gradient map with respect to u and DF(u(s*), A(s*)) has rank deficiency
m, then at least m branches bifurcate from c at (u(s*), A (s*)). In the finite-dimensional
context, in order for Berger’s result to apply, D,H should be symmetric and
DxH(-x, A) -DxH(x, A) should hold.

Thus, the task of numerically detecting possible bifurcations from a solution curve
cc H-l(0) reduces to monitoring the rank of DH(y(s)) or of A(y(s)). Perhaps the
simplest criterion to monitor for bifurcation is whether

(2.9) det A(y,) det A(y,+l) < 0

for two accepted consecutive approximations Yi and Yi+l. Criterion (2.9) or some
variation thereof has been employed by several authors (for example, [2], [6]-[11],
[16]). Since in general a reduction of DH(yi) is necessary to obtain the unit tangent
u, the evaluations in (2.9) are performed at very little additional cost. By the Crandall-
Rabinowitz result, at least one "odd" bifurcation from c occurs between y and Yi+l.
Assuming that y and Yi+l are sufficiently near one another so that only one bifurcation
from c occurs between them, it is not certain whether this might be a multiple bifurcation
of odd multiplicity.

Kearfott [15] has used the monitoring of the condition number of DH(y) via
singular value decompositions to detect possible bifurcations. At points y c where
the condition number of DH(y) warrants, the functional [[H(y) ]] is minimized subject
to the constraint ]]y-y]] 8 to obtain potential bifurcating directions. The potential
bifurcating directions are then used to obtain predictors in the continuation method
attempt to locate a bifurcating branch. Although this method appears to be generally
successful and is fairly exhaustive, it appears to be too costly to be applied when the
dimension N is large. On the other hand, when H represents a discretization of an
operator equation, it is generally necessary to select a large N in order to obtain a
reasonably good truncation error.

Since we have assumed that DxH is symmetric, we will exploit this fact to detect
the singular points of A(y(s)) while a reduction process is done to determine the unit
tangent u(s) to the curve c at y(s). To begin our discussion, let us write DH(y)=
(DxH(y)DH(y)). If we perform a series of row operations upon DH(y) to reduce it
to upper triangular form, this series may be represented by a nonsingular matrix P(y)
so that

(2.10) P(y)(Dn(y)) (P(y)D,,H(y)P(y)DH(y))= (hll hlN Cl )0 hvv cN

To obtain a unit tangent, it is necessary to solve (DH)w- 0 or equivalently,

(2.11) (P(DxH)P(DH))w 0

(where we have now suppressed the y-dependence). From (2.10) and the symmetry
of DxH, we have

(212) p(DxH)pT= (hl, O )0

(If diag (D,,H) 0, we make a preliminary transformation (I + eef)(D,cH)(I + eel) r
for any j with (DH)I 0.) Hence, if we set

W 0T ),
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then from (2.11),

(2.13)

From (2.10), (2.12), (2.13) it follows that

h

(2.14) ".. 0
0 hNN

or equivalently,

(2.15)

P(DxH)PT"P(D;H))v =0.

O,
CN DN+

hjjvj + cjvN+ 0 for j 1,- , N.

There are three basic cases we should distinguish in (2.14) or (2.15):
(i) hj # 0 for j 1,. , N. In this case dim (f(DH)) 1, that is, y is a regular

point of H. The null space of M=(P(DxH)PTP(DH)) is spanned by v=
(v,..., v+)T with /)N+I 1 and v =-c/h, j 1,..., N.

(ii) hj # 0 for j # k, hkk =0 and ck # 0 for exactly one k {1, , N}. In this
case (M) is spanned by v ek +1, where ek is the kth standard unit vector. In
this case, too, y is a regular point of H, but it is also a turning point relative to the
variable h.

(iii) After further row operations (if necessary) M (P(DxH)PrPDxH) is of the
form that

(2.16) h # 0 only for j 1,. , N- m and c # 0 only for j N- m + 1.

Then it is easily seen that {e_,,+jj=l is a basis for (M). If, for example, m 1,
then y is a simple bifurcation point by the Crandall-Rabinowitz theorem. If DxH(x, A)
is odd in x, then by Berger’s theorem at least m curves bifurcate from c at y.

It should be noted that in the course of traversing c numerically, it is rather
unlikely that precisely such a point will be obtained where cases (ii) or (iii) occur.
The detection of turning points is relatively easy, since changes sign at such a point.
However, the detection of multiple bifurcation points is more difficult, and in general,
also more interesting. To accomplish this, we will make use of Sylvester’s Law of
Inertia, which we now briefly recall for the reader.

Let A be a symmetric N N matrix and let p(A), n(A) denote the number of
positive and negative eigenvalues of A, respectively. The number tr(A)= p(A)- n(A)
is called the signature of A. Sylvester’s Law of Inertia (see, for example, [20, p. 377])
states that or(PAP’) tr(A) and

(2.17) p(PAP) =p(A)

whenever P is a nonsingular matrix.
Now we may apply (2.17), (2.12) and (2.16) to detect multiple bifurcations in the

course of following a curve c via the above sketched numerical continuation process.
To see this, suppose that yi-l, yi are successive approximations to points on c=
{y(s)ls[O, $)}. Suppose that the current step size h>0 is sufficiently small so that
only one singular point of DxH(y) lies on C between y(si_) (-yi). Suppose that

(2.18) Ip(D,H(y,_,))-p(D,H(y,))l m.

Then exactly rn eigenvalues of DxH(y((s))) change sign at some point y. =y(s.)
between y(s_) and y(x), that is, at a point "between" y_ and y. By the above-
mentioned theorem of Berger, if D,H(x, A) is odd in x, then at least m branches
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bifurcate from c at y(s.). Furthermore, the precise difference in signature (2.18) can
be easily detected, since it is equal to the change in signature of the corresponding
diagonalized matrices

(2.19) IP(Pi-,DxH(Y,-,)PL,) P(PDxH(y,)P

It is possible to determine a basis ofN(DxH(y.)) by ordering the diagonal elements
of

P-IDxH(y,-1)PL1 and PDH(y,)Pf

in descending order in order to determine which eigenvalues change sign at y. and
then using (2.16) to determine a basis for N(M), and finally applying the transformation

This basis can be used to determine bifurcating directions via a Lyapunov-Schmidt
process as discussed in [24] or [28]. However, we shall not pursue this approach, since
it is our aim to utilize local perturbations to effect branching at detected bifurcations.

3. Branching via local perturbations. The use of local perturbations to implement
numerical branching was described in 11 ]. For completeness, we briefly review them.
One of the results used is a generalized version of a theorem of Sard (see, for
example, 1 ]).

THEOREM 3.1. Let Vc R", Wc RP be nonempty open sets and let dp V x WR
be a smooth map with m >= n. If 0 is a regular value of dp, then for almost all d W, 0
is a regular value of the restricted map alP d(. )= alp(., d).

For our particular application of the above theorem, we set m N+ 1 and p N.
Now suppose that y(s*) is a detected bifurcation point on the curve cc H-l(0). Let
URN+I be a bounded open neighborhood of y(s*). Let f:RN+I_R be a smooth
map such that f(y)-O for y U and f(y)>0 for y U. Then the following result
holds 11 ].

LEMMA 3.2. For H, U, f defined as above, let Hd :Rr+l _Rv be defined by

(3.1) Hd(y)= H(y)+f(y)d.

Then Hd(y) has 0 as a regular value for almost all d -{0}.
Let us suppose that c H-l(0) has been numerically traversed until two successive

approximations Y-I and y have been obtained for which IP(DxH(y_))-p(DxH(yi))I
is an odd integer. Then by the Crandall-Rabinowitz theorem, there is a bifurcation
point y(s*) on C between y(si-1) Y-I and y(si) y. Let U be a bounded open set
such that y(s*) U and Yi-1, Y U. Letfbe a smooth map such thatf(y)= 0 for y U
and f(y)> 0 for y U. Then by Lemma 3.2 and the implicit function theorem there
are for almost all d n-{0}, smooth curves C and C such that

(i) CU C+
d = HI(0),

(ii) CS fq C/

d (,

(iii) y(si-1) C- and y(s) C-.
Figure 3.1 illustrates this case.

In the case of multiple bifurcations the task of obtaining all of the bifurcating
curves will require the use of more than one type of perturbation when the local
perturbation technique is used. We illustrate this first with a simple example.
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FG. 3.1

Example 3.3. Let H: 3...)2 be defined by

n(x, x, x’
X A 2

The solution curves for H(xl, x2, )- 0 are the four lines parametrized by Xl

(3.2) c= {(x,, +x, +x,)lx u}

where the corresponding sign patterns are taken on both sides of (3.2).
Now let

[Xl--X+al)H H+d=\x_X:+d
Then the solution curves for Hd (Xl, x2, 0 vary according to d as follows. Suppose
dl> 0 and dl > d2. Then the solution curves may be parametrized by xl

(3.3) C {(X1, q-fX + d d2, q-/X + d,)lx, },

where again corresponding sign patterns are associated together. Notice that each of
these curves crosses x- 0, but cannot cross the planes x2 0 or 0.

Continuing to follow this convention, we have that as

x,- +0% C is asymptotic to (Xl, ::t:[Xl[ -I"[Xl[

(See Fig. 3.2.) Let us note that although the total set (3.3) approximates the total set
(3.2) arbitrarily closely as d->0, it is nevertheless not possible to switch branches
arbitrarily. Indeed, it is possible to switch between C++ and C-- via C+ and C-,
and between C+- and C-+ via C- and C+, but it is not possible to switch between
C+- or C-+, since on C+ or C- the last two coordinates never vanish, and maintain
the same sign. Similarly, it is possible to switch between C+- and C-+ via C- and
C+, but it is not possible to switch to C++ or C--.

On the other hand, if dl< 0 and dE 0, then the solution curves for Ha(xl, x2, A 0
may be parametrized by A:

C+= {(+/A:-dl, +x/A2-dE,  ve}.
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d
1

d

> 0

> d

x

FIG. 3.2

Now as

A +c, C+ is asymptotic to +/-1 1,
This time the curves all cross A 0, but cannot cross x, 0 or x2 0.

It is now possible to switch between C/+ and C/- via C/ and C- and between
C-- and C-/ via C- and C/, but it is not possible to switch between C// and
C-- or between C/- and C-/ via any perturbation with dl < 0 and d2 < 0.

Now let us examine D,H on the various solution branches. Since

we have on C++

and

Similarly, on C/-

OxH(x1, x2, A) (2

D,,H(x, x, xl) (2

p(DxH(Xl, X, x)) {20

P(D,H(Xl, X, -x)) [20
Also on C-+ and on C--

DxH(x1,--Xl, +Xl) (2

if X > 0,
if x<0.

if xt > O,
if xI<O.

and p(DxH(x,,-x,, ::]::X1) 1.
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However, in the latter case, both eigenvalues have reversed their signs as xl passes
through 0. Thus, this particular bifurcation would go undetected unless the positions
of the elements in the diagonalized matrices

P(y,-1)DxH(y,_I)P(y,) r and P(y,)D,,H(y,)P(y,) r

are also accounted for. We will return to this question below. Before doing this, let
us remark upon the choice strategies for perturbations. As the above example shows
and our numerical examples below also confirm this, the oscillation pattern of the
components of the perturbation vector d, generally is mirrored in the oscillation of
the components of the solution branch. This is again plainly seen in Fig. 3.2 for
Example 3.3.

4. Practical implementation.
4.1. Solving the symmetric linear systems. Our primary objective here is the detec-

tion of multiple bifurcations and the implementation of branching. For this purpose
it is often sufficient to discretize operator equations with a relatively coarse mesh so
that the resulting matrix DxH is of a size N =< 500. In this event it is reasonably practical
to use an elimination process, or in some cases, a block elimination process (see, for
example, [8], [9]).

Let us first discuss some particular matters of the elimination process discussed
in 3. To begin with, let us examine the elimination process when no pivoting is
performed and suppose that DxH(y)ij=hij(y). If hll(y)0, then with pj=

-h(y)/h(y)
N N

I-I (I + pljel ef)(DH) I-I (I + pjeje)
j=2 j=2

is of the form

(11 )(4.1)
h (1) 0

0 H()
/4(2) := h (2) h() hwhere i i 1.

This process may be analogously repeated if h(k)kk 0 to obtain successively

kk

0 H(k+l) 0 h

By Sylvester’s law of inertia, there is a one-to-one correspondence between the
eigenvalues Aj(y(s)) of DxH(y(s)) and the elements h)(y(s)) such that

(4.3) A)(y(s))hJ)(y(s)) >- 0

and if equality holds, then both factors are zero. In particular, if as s (or y) varies,
h])(y(s)) changes sign, then so does A)(y(s)). Thus,.if no pivoting is performed, or if
the same pivots are performed in performing the reduction processes for DxH(yi_I)
and DxH(y), bifurcations are detected whenever

(4.4) h)(y,_ h)(y, <= 0
holds for some j {1,..., N}. Furthermore, the number of indices for which (4.4)
holds generally determines the order of the bifurcation, assuming that a sufficiently
small step size is used.

Since the reduction process (4.1)-(4.2) is a symmetric one, a pivoting amounts to
permuting two rows and the corresponding columns. This means that only the diagonal
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elements h(k, k>-_j can be pivot elements. Thus, in monitoring (4.4) the diagonal
elements should be correspondingly repermuted. If h(k 0 for k >_-j, then the device
mentioned in (2.12) may be employed.

4.2. Implementing perturbations. For a numerical implementation of the perturba-
tion device it is not really necessary to produce a smooth map f as in Lemma 3.2.
Suppose that in the process of traversing c with a tolerance e > 0, two points Yi-1 and
yi are obtained for which a bifurcation point between Yi-1 and yi is detected. A branching
off from c is numerically achieved as follows:

(i) Choose a perturbation vector d RN--{0} with Ildll _-< e/2.
(ii) Replace the map H by Ha- H / d and the tolerance e by 2e.
(iii) Using the starting point and vector Yi-2, Ui-2, and continuation process 2.2,

trace the curve Cd c HI(0) having Y-2 Yo Cal.
(iv) When a point 37 is obtained such that

min {]]fi-yi_lll, II-y, ll} > 211y,_l-y,

then replace Hd by H and e by e/2.
(v) Perform the corrector process

solve \ r ]wj= 0

set

until

z(-+) z(j) + w., z()= )7, j O, 1,’’’

(vi) Resume the continuation process 2.2 for H, e > 0 with starting point and
vector z+), a.

Remark. The implementation of the perturbation device in 4.2(iii) is very con-
venient to make, since with Ha H+ d, the same formulae for calculating DH still
apply for calculating DHa.

5. Numerical results. The above-described methods have been implemented and
applied to a wide variety of problems. Since we are primarily concerned with illustrating
the capability of handling multiple bifurcations, and to make this section somewhat
brief, we will concentrate on discretizations of problems of the form

Au+Af(u)=O onlY=[0,1]2

(5.1)
U lon 0

where f: R is an odd smooth map. The eigenvalues and corresponding eigenfunc-
tions of the linear problem

Au+Au=O onI=[O, 1]2
(5.2)

U lon 0

are known [18] to be

(5.3)

(5.4)

Am, (m2 / n2)Tr2

Um,,(X, y) +/-sin mrx sin tory for m, n 1, 2, 3, .
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If m n, then Am.. is a simple eigenvalue, whereas if m n, then Am,. is at least a
double eigenvalue. Indeed, for m2+n2=85, we have solutions (m, n)= (2,9), (9, 2),
(6, 7), (7, 6).

For the standard central difference approximation ofthe Laplacian using J interior
mesh points on the x-axis and K interior mesh points on the y-axis, the eigenvalues
and corresponding eigenvectors are (see, for example, [14])

(5.5) tZp,q=4[(J+l):sin:Z-(j p )+1 +(K+I)sin- K+I

for l <=p<=J, l <=q<=K.

(5.6)

foI"

Up.q(Xj, Yk)= +sin (..jp’tr.... sin ( kq’’rr’
\J+l] \K+I]

(j(xj’Yk)= J-I’K+I l <-_.hp<-J, l <-k, q<-_k.

Now if J K N, then [d,p,q-- [d,q,p and the multiplicity of eigenvalues for the discrete
problem mirrors that of the continuous problem. On the other hand, if J K, then the
eigenvalues (5.5) are generally simple, but those which correspond to multiple eigen-
values, that is, p q will be separated by a distance which is proportional to the
truncation error, at least for p<< J and q<< K. In any event, the central difference
discretizations of (5.1) offer a rich source of multiple bifurcations or closely spaced
simple bifurcations.

The particular example which we treat here is the two-dimensional plate buckling
problem

Au +,X sin u =0 on 1- [0, 1]2,
(5.7)

t/IC 0.

Our first discretization of (5.7) utilizes the central difference scheme with J K 7,
for which the bifurcation points are given by (5.5). The resulting system of nonlinear
equations is

(5.8) IN ".. IN + 1.--"--i =0
0 IN AN \f(UN)]

where f(u)= sin u, IN is the N x N identity matrix and AN is the N x N tridiagonal
matrix with

The solution set to (5.8) is followed throughout with accuracy tolerance e 10-3.
The first bifurcation point for (5.8) occurs at /Zll 19.57. Figure 5.1 illustrates the
perturbed curve Cd where di 5 x 10-4 and f(u)= u. In all figures, c is the curve of
trivial solutions. In Figs. 5.2-5.3, the bifurcating solutions to the finite difference
discretization with f(u)= sin u are portrayed. Figure 5.2 shows the solution Ca which
bifurcates at /z1.1 with di 5 x 10-4. Figure 5.4 shows the solutions bifurcating from
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MAXIMUM NORM OF U

_5-3.0-2.5-2.0-1.5-1.0-0.51I 0.0, ..0"5, 1.0 1.5 2.0, 2.j5 3 0 3.5

FIG. 5.7. Double bifurcation has been separated.

FIG. 5.8. Contour of the buckling problem. 21 nodal points, lambda 51.23, finite element method.
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/-/’1,2 41.7434 and //2,1 46.8627 when J 7 and K 3. This illustrates how the double
bifurcation corresponding to ’1,2-" 5"rt’2 has been separated via the nonsquare mesh.
Figure 5.5 shows the solutions bifurcating at 1,2 46.79 when J 7 K. Both bifurcat-
ing solutions were obtained by choosing d so that Idil_-< 5 x 10-4 and the components
oscillated correspondingly to those of the bifurcating solutions. Figure 5.6 illustrates
the bifurcating solutions which were obtained by different perturbations.

The buckling problem (5.7) was also discretized via finite elements. The domain
f=[0, 1]2 was supplied with 32 elements and the 49 interior nodal points (xj, Yk)---
(j/8, k/8), j, k 1,..., 7. Figure 5.7 shows the split-up bifurcation at Vl,2, v2,1 when
a nonsquare mesh with J 3, K 7 is used. Figures 5.8 and 5.9 show the corresponding
contours of these solutions.

FIG. 5.9. Contour of the buckling problem. 21 nodal points, lambda 53.44, finite element method.

The above numerical experiments were performed on the computing facilities
(CDC CYBER 720, CYBER 205 and CYBER 170) at Colorado State University.
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ON THE RECONCILIATION OF CLASHING BOUNDARY
CONDITIONS IN CELL DISCRETIZATION*
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Abstract. In most physical problems, there are conservation laws which take the form of integral
identities. Some of these are "flow balance" conditions across interfaces. In the process of discretization,
some or all of the integral identities may be lost, thereby leading to violations of material or energy balance,
etc. In the cell discretization (CD) method, it is possible to impose the necessary conservation laws across
interfaces as part of the discretization process. However, the variational procedure, on which the CD method
is based, can induce "natural interface conditions" which are inconsistent with the imposed conditions. The
aim of this work is to derive the necessary "nullifier" to be added to the variational functional, so as to
cancel automatically the unwanted induced condition. This nullifier is derived for the classical continuous
formulation, and then for the CD formulation, where it is shown how the rank of the discrete nullifier can
be reduced to a minimum. The limitations of the nullification procedure in the discrete context are discussed.

Key words, discretization, variational methods, partial differential equations, conservation laws, natural
boundary conditions
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1. Classical conservation laws. For most of the physical systems described by
partial differential equations, there are so-called conservation laws; that is, there are
quantities related to the dependent variables in the equations which bear relations to
each other of a particular form. If x is a vector of independent variables in R N, S(x)
is a source term and J(x) is a vector current, then the typical form of a conservation
law in a domain f/is

(1.1)

S may or may not contain time derivatives; in this treatment we shall consider the
steady state only, wherein time derivatives do not enter. V J indicates the divergence
of the vector J, and is equal to i OJi/Oxi in terms of components. Note that if (1.1)
holds for any arbitrary subdomain of l-l, then the "local," or differential form of the
conservation law holds, viz.,

(1.2) S:V. J.

The second integral over the interior of f in (1.1) can be transformed into a
surface integral over the boundary F of by the application of the well-known integral
identity

(1.3) fnV Jd= f, n.

which is variously called Gauss’ theorem or Green’s theorem. The vector n is the
outward normal to the surface F. Equation (1.1) now becomes

(1.4) f.sa=f,JoaF,.
where J, stands for the normal component of J given by n. J.
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Let us now partition the domain f/into two subdomains, f/ and f/2, separated
by a common interface 172. That part of F which belongs only to f/ we shall denote
by F, and the part of F which belongs only to 1"/2 we shall denote by 1-"2. Hence, the
conservation law (1.4) "divides" into two separate laws:

Icz Sl dl Ir Jl"dFl+Ir JlndI’12,

I S2d’2-’IF J2ndr2"+IF J2nd[’12"
12

(1.5)

When we add these two together, we should recover (1.4). In fact, using the obvious
facts that

(1.6) S1 dl + $2 d-/2 Sd
’1

and

the sum of the two equations in (1.5) reduces to

12

Since the f/’s and F’s are arbitrary (except, of course, that the F’s are the boundaries
of the f/’s), it is clear that, if (1.8) is to match (1.4), we must have

(1.9) J1. +J2. O,

which shows that the currents must (in general) balance across an interface. (We have
found it more convenient to change the sign of one of the normals at each interface.
With this convention, (1.9) becomes

(1.10) J. J2..)

The main reason we have gone through this well-known elementary derivation of
the conservation across interfaces is to emphasize that it depends on the validity of
the analytic identity (1.3). In the process of discretization, with which we are primarily
concerned, the conservation across interfaces may be lost. Our aim is to investigate
the conditions under which we may still enforce it (and in what form) as part and
parcel of the discretization process.

When a partial differential equation is derivable from a variational formulation,
the variational process itself may sometimes interfere with the validity of the interface
conservation law. We shall show by example how this may occur. Let us therefore
consider the functional [u], which is the integral over f/ of an integrand F, the
Lagrange function, which contains only the coordinate vector x, the dependent variable
u(x), and its gradient Vu. We then have

(1.11) q)[u]--

The standard procedure of the calculus of variations (see [1]) consists of adding a
multiple e of an arbitrary function b to u, and calculating the change (to the first
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order in e) induced in thereby. Thus, we replace u by u + eb(x), substitute this into
u], and compute the derivative of with respect to e at e 0. The result is ([ ], p. 153)

o Ou
cd+ V. d,

which is the sum of the integrals of an Euler variational derivative and of a divergence
expression. The latter can be transformed into an integral over the boundary F by
means of (1.3), so that (1.12) becomes

(1.13)
0 OF_7. OF

bd+ n. bdF.

We are now in a position to write down the necessary condition for a stationary
by simply setting O/Oe to zero. But first, for conciseness, we shall condense the

notation by defining

ouou
Ou

(1.14) un. A.

OF OF

Ou
A is a dyadic which corresponds to the Hessian matrix of F with respect to the u’’s,
and u is the covariant normal derivative (sometimes called the coderivative) of u. We
are defining OF/Ou as a shohand for the right-hand side of the last equation, but if
F is quadratic in V u (the most impoant case), then the equation is really an identity.
With this notation, the necessary condition for stationary takes the form

(.5)
oF

a r Ou
dF O.

The standard argument of the Calculus of Variations continues by making use of
the relative arbitrariness of , and various lemmas based on it. In rough outline, we
first assume that vanishes identically on F, and everywhere in , except in a small
neighborhood of an arbitrary point x. The basic argument (see ]) of the Fundamental
Lemma of the Calculus of Variations then shows that the first integrand in (1.15) must
vanish at x, hence everywhere in . Thus,

(.
Ou

at every point x in the interior of and this is, of course, the Euler equation. Hence,
the integral over in (1.15) vanishes, and we are left with the integral over F. We
then consider a variation whose suppo is contained in F alone, and which also
vanishes everywhere on F except for a neighborhood of an arbitrary point s. The same
lemma then shows that

OF
(.7 -0

Ou
holds at the point s on F and hence, everywhere on F. This is, of course, the natural,
or induced, boundary condition.
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When El is partitioned, as before, into two subdomains f and g2, the same
variational process described above leads to the pointwise relation on the interface F2,

(1.18)
oF OF

Ou’O’l ln

provided u(x) is assumed to be continuous across F:. In selfadjoint problems, OF/Ou’,
may be readily identified with the normal component of the current, but in nonself-
adjoint problems, this is generally not so. It may therefore be necessary to impose the
interface constraint in some form.

In the case of boundary conditions, an imposed condition may clash with the
induced condition, particularly if the imposed condition is ofinhomogeneous Neumann
or of mixed type. In the next section, we shall consider the reconciliation of such
inconsistent boundary conditions before returning to the treatment of interface con-
servation relations within the framework of Cell Discretization (CD). In the latter, we
may sometimes wish to impose the interface conditions corresponding to conservation
relations, in case they are not induced by the variational procedure. In that case, we
may have the task of reconciling conflicts which might arise with the interface conditions
which are thereby induced. If this can be done, the conservation relations can be "built
in" to the discrete version of the problem, while preserving its consistency and hence,
well-posedness.

2. The nullification of induced boundary conditions. So far, we have said little of
the boundary conditions which might be imposed on the dependent variable u(x) in
a given problem. Let us assume that such a condition has the form

(2.1) U(u,u’,,)=R,

where u and u’, are evaluated on the boundary F (and hence are functions of s). We
need not assume that U is linear or homogeneous in u or u’,, but only that it be
differentiable with respect to either of them. The "inhomogeneous part," R, is assumed
to be independent of u and u’

In the most elementary variational treatment, when Dirichlet conditions are
imposed, b is constrained to vanish on the boundary, so as not to disturb the values
of u(s) there. For our purposes, it is convenient to incorporate our boundary condition
as an a posteriori constraint, and to let the function b, which appears in the variational
procedure, be arbitrary in f and on F. We shall therefore add to the original functional
in (1.5) a term containing a F-integration, so that we have

dF.
F

When we calculate the necessary condition for stationary , corresponding to
(1.10), we find

dl)+ bdF- .h b+Oub dF=O.

As before, we shall assume the Euler equation to be satisfied, and are left with the
F-integrations, which we regroup to obtain

I( I,,. ou---.- 4) dr- ou--. 4)’. dr o.

Since b is assumed to be arbitrary, it is not. hard to show that it can be chosen so that
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its normal derivative vanishes everywhere on F, while the support of b itself is an
arbitrarily small neighborhood of some point on F. Likewise, it can be shown that a

b can be constructed which vanishes everywhere on the boundary, but the support of
whose normal derivative is also an arbitrarily small neighborhood of some point on
F. Hence, the integrands in both integrals in (2.4) must vanish individually. Rearranging
factors, we thus have

oU OF oU
(2.5) h A =0.

Ou Ou’,,

This is an overdetermined system (of two equations) for the unknown A. Hence,
there is either no solution, or an infinity of them. In order to ensure that there is a
solution, the right-hand side of (2.5) must satisfy the Fredholm condition, viz., it must
be orthogonal to all left null-vectors of the coefficient matrix on the left. Since the
latter is only a (2 x 1) matrix, there is only one such vector (up to an arbitrary factor).
A convenient one is the vector L, given by

(2.6) L
Ou’,,

-OU]
If we premultiply (2.5) by L, the left-hand side clearly vanishes identically;

therefore, the product of L with the right-hand side must also vanish, so that we have

(2.7) 0
OU OF
OU 011 "

We note in passing that if (2.7) is satisfied, a solution for A could be obtained by
premultiplying (2.5) by the "other" vector (OU/Ou, OU/Ou’,) with the result

Ou Ou’,,

It is clear from (2.7) that, if U is "Dirichlet-like," i.e., if it does not contain u’,,
there is no problem, since the right-hand side also vanishes identically. On the other
hand, if U is "Neumann-like or "mixed," in that it does contain u’ then OF/Ou’
must vanish. This is just the natural boundary condition. Only if this condition happens
to be equivalent to (2.1) is the boundary value problem consistent; otherwise, there is
a contradiction, and the problem is not well posed.

It is well known that, in order to rectify this contradiction automatically, additional
surface integrals must be added to the functional @ in (2.2). We shall give a somewhat
more detailed treatment of this device than is usual, to make it easier to relate it to
the Cell Discretization procedure. We add a term consisting of the F- integral of a

function N(u, u’,), which we call a nullifier, since its purpose is to nullify the unwanted
induced boundary conditions. @ thus becomes

(2.9) [u]=-IaF(x’u’Vu) di)-Ir h(s)U(u’U’n)dF+II’N(u’u’)dF"
Note that the added term does not involve a constraint, as does the second term, nor
does it contain an undetermined multiplier. Our aim is to determine the form of N so
that the variationally formulated boundary value problem is consistent.
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We therefore repeat the preceding steps of calculating the variation of and
setting the result to zero to obtain

(2.10) u-V" 4df+ b dF- + dF

+ +’ dF=0.

When the terms are regrouped, the result is

OU ON OF OU ON
(2.11)

du du du" du’ du"

This is still an overdetermined system oftwo equations for the unknown A. We therefore
apply the same left null-vector L to (2.11), as before, to obtain the following consistency
constraint on N:

UN UN 0U F
(.) u u u u u u"
This is a linear, first-order p.d.e., for which the general solution can be found by a

standard procedure (the method of characteristics) [2]. The result can be expressed
as follows" The equation U(u, u)= r is first solved for u, and the result expressed
in terms of the inverse function H, viz.,

(.3) n(u, )= S[u, U(u, u;)] u;.
If we next denote F/u by G(u, u), then the general solution of (2.11) is given by

(.4) N(u, u;)= 6{s, His, U(u, u)]} as+A[U(u, u)].

The first term is an indefinite integral with respect to the dummy variable s, and u is
its upper limit. The second term consists of an arbitrary function A of the argument U.

We shall illustrate this procedure with an example. Let

The application of (2.14) yields (provided Q 0)

1
(.)

In [3], A was chosen to be a multiple of the square of U so that some attempt could
be made to minimize the degradation of the positivity of due to the addition of N.
A convenient form of N was found to be

1 P
(.pQ_l)u2+(.PO_l)uu:+(2.17) N(u,u)=-

and various choices were made for , based on the magnitudes and signs of P and
Q. In [4] and [5], these nullifiers were applied in Neumann and mixed boundary value
problems. The computed solutions to these problems were grossly incorrect without
nullifiers, but correct with them. However, even though this "classical" nullifier works
well enough, it is not really integrated with the basic technique of cell discretization,
and amounts to an "overcorrection" of the functional (i.e., its rank is too high).
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So far we have said nothing about the treatment of more domains than one, and
have not really considered true interface conditions, rather than merely boundary
conditions. In fact, under fairly general circumstances, the interface correction problem
can be reduced to the boundary correction problem which we have just solved in
undiscretized form. To ascertain when this can be done, let us consider a more general
interface condition, involving cells 1 and 1)2 with interface F2, of the form"

(2.18) U(u, Un, U2, U.n)= R.

The nullifier for this imposed condition will then have the general form

(:.19) N=- N(u., u,, u2, Un),

so that those pas of the functional for this problem, which have to do with 1, 2
and F12 are as follows:

[u,,ud f F2(x, u2, Vu2) d2

(2.20)

+ [ N(u, ul, u, u) dry:.
12

en we repeat the procedure previously described for obtaining the equations
for A, we get

(2.21) X Ou
[ I ON OF2

The coecient matrix in (2.21) has three left null-vectors, since its rank is only unity.
These vectors are not unique, but are determined only up to independent linear
combinations. However, a convenient choice of the three vectors with useful symmetry
(which we shall combine into a matrix L) is the following:

Ou 0 0

OU
0 OU

Ou
(2.22) L

0 ou

Ou2

Applying the Fredholm condition for consistency again, the result of premultiplying
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the right-hand side of (2.21) by L must be zero. This yields the following system of
constraints on N:

(2.23)

OU oN OU ON OU OF

Ou Ou Ou’ ou Ou’
OU ON OU OU OU OF2

oU oN oU oN
--0.

Ou’ Ou’ Oul Ou
We must now determine whether the system (2.23) is consistent, and does in fact

have at least one solution for N. The simplest way to do this is by replacing N by a
new function M which satisfies the homogeneous equations corresponding to (2.23)
with the right-hand sides set to zero. The inhomogeneous part of N is derived in a
manner analogous to that described for the boundary correction, except that we now
have two functions H and H2 defined by solving U(u u’1, u2, u)= z first for u’
and then for u. The results are"

H,[u,, "r, u2, u] H,[u,, U(u,, u, u:, u), u2, u]-=
(2.24)

H2[u2, 7", ul, u’ U(u u1] Hz[uz, 1, uz, u), u,, u,] =- u.
and G2(u2, u) OF2/Ou2, and calculate the twoWe next define G(u, u) =- OF/Ou,

functions J(u, u, u2, u’2) and Jz(u, u’1, u2, u) as indefinite integrals

J1 al{o" Hi[o- U(u u’1, u:, u), u2, u]}
(2.25)

J2-= G{r, H[r, U(u,, u,, u, u’2), u,, u]} def.

We then assume N to have the form

(2.26) N J + J2 + M.

Bearing in mind that the equations in (2.24) are identities in u, u, u2 and u, it
can be worked out that M satisfies the equations:

OUOM OUOM
O,

Ou Ou Ou Ou

OUOM OUOM
(2.27)

OU aM OU OM
Ou’ Ou’ Ou Ou’

=0,

which is a linear homogeneous system, and may be tested for consistency by a standard
method [6]. The equations turn out in fact to be consistent, and to have a single general
solution of the form

(2.28) M(Ul, u 1, u, u)= A[ U(u, u’,, u, u)],

where A is an arbitrary function of its single argument.
It thus appears that an interface nullifier can be found for the rather general class

of imposed interface conditions shown in (2.18). Unfortunately, the nullifier is very
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complicated to apply and, to a large extent, spoils the cellwise treatment of discretization
described in [4]. However, if U(u, u, u2, u’) happens to have the special form

(2.29) U(u,, u, u, u)=- U,(u,, u)- U:(u,_, u),

then N can be similarly split, and the part associated with each cell can be treated
independently of the other, in the manner described for boundary corrections.

Fortunately, practically all imposed interface conditions in physical applications
are of the form (2.29). Obviously, any linear interface constraint can be put in this
form, but even most nonlinear constraints can as well, the best-known example being
the very important Rankine-Hugoniot shock conditions [7]. Hence, we shall only
concern ourselves further with interface constraints which decompose into paired
boundary constraints.

It is thus only necessary to discuss the boundary correction for a single (typical)
cell, with the understanding that other, contiguous cells might lie on the other sides
of some or all of the segments of its boundary. Rather than describe the full apparatus
of CD applied to many cells [4], we shall indicate briefly in 6 how the presence of
neighbors would be incorporated into the nullifier for the single cell.

3. Discretization procedure for linear problems in one cell. Because of its difficulty,
we shall defer to a later report the discussion of general nonlinear problems--those
for which F(x, u, Vu) and U(u, u’,) have an arbitrary functional form. Linear prob-
lemsuthose for which F is quadratic in u and V u, and U is linear in u and u’,--are
of course much simpler and better understood. Moreover, the treatment of linear
problems will introduce various auxiliary quantities in a natural way, and generaliza-
tions of these quantities are useful in making headway on the nonlinear (or quasilinear)
problems. As a further simplification, based on the discussion of "separable" interface
conditions in the previous section, we lose little generality by restricting the discussion
to one (typical) cell.

We shall therefore assume

(3.1)

and

(3.2)

F(x, u, Vu) 1/2Vu" A(x) Vu+1/2b(x)u2-c(x)u

U(u, U’n) =- P(S)u+Q(s)u’,.

The quantities A, b and c may depend on the independent variable x, defined as lying
inside the domain f, and P and Q may depend on the variable s, defined as lying on
the boundary F. Note that A(x) must be a diadic, but the rest of the coefficients are
scalars.

The first step in the CD process (described in [4]) is to select a representation of
u(x) which has a predetermined functional form in a given cell, but depends on a
finite set of M parameters {0r; 1,..., M}. Thus,

(3.3) u(x) d/(x, O) in .
For linear problems, the obvious and best choice is

M

(3.4) (x, 0)= Odp(x).

We shall refer to the set of b’s as the basis functions in f. Since they are subject to
our choice, we assume that they are linearly independent in 12, though not necessarily
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mutually orthogonal, and that, in the limit as /z , they form a Schauder basis in
the Sobolev space H(f), within which must be contained.

Substituting this representation of into (1.11) with the F defined in (3.1), we
obtain the discretized form of ,

ix

with appropriate ranges for/z and v. The coefficient arrays are defined by

(3.6)

and

f
(3.7) Tix J, cbix dO.

We must obviously include the boundary conditions somehow, as constraints on
the O’s. In the CD method, this is done by means of the special type of collocation
we refer to as moment collocation [4]. This type of collocation calls for a set of weight
functions {w(s); a 1,..., L}, defined on F. The boundary condition (2.1) is then
discretized by requiring only the finite set of conditions

(3.8) Ir w(s)( U(d/, d/’)- R) dF=0, ct 1,. , L

instead of the infinite set consisting of having (2.1) satisfied at every point on F.
Since we are in a position to choose the w’s, we naturally assume that they are

linearly independent on F, though not necessarily mutually orthogonal. We also assume

that, in the limit as L , they form a basis in some appropriate function space defined
on F (this will be touched on later).

When we substitute for according to (3.4), the discretized boundary condition
(3.8) takes the form

M

(3.9) Y Uix 0ix W 0,
/=1

where

(3.10)

and

U,=- w(s) P(s)ix(s)+Q(s) on (s) dr

f
(3.11) W Jr w,(s)R(s) dF.

The sets of constraints (3.9) may be incorporated into via a set {A} of Lagrange
multipliers as follows"

(3.12) 1/2 . , SixoOixOo- TixOix - A,( Uix Oix W)
ix ix

The problem of minimizing is thus a constrained minimization problem, instead of
an unconstrained one. We shall later find a way of undoing this, so that we have to

solve only an unconstrained minimization problem. The necessary conditions for a
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stationary are derived from the composite by differentiating with respect to 0.,
with the result

(3.13)
c90 -o S,vOv- T,-Y AU, 0,

which, combined with (3.9), constitute the requisite number of equations to solve for
the 0’s and A’s.

We are now confronted with the task of formulating a reasonable and natural
analogue of the continuous nullifier derived in the previous section. A fundamental
point was made in the first paper on the cell method [8] which is peinent to our
present problem. It was emphasized that the classical limiting process of analysis maps
an infinity of discrete formulations of a given problem into a single continuous one
(when this is properly done, the discrete version is said to be consistent, see [9]).
Unfounately, the reverse mapping, i.e., back from continuous to discrete, is one-to-
many, where the "many" are infinite in number. is state of affairs makes the
construction of any discretization scheme ambiguous in the extreme, so that it is
necessary to fall back on such heuristic criteria as "naturalness" and "reasonableness,"
to reduce the number of possibilities to manageable size.

We shall proceed by first restoring the continuous expressions which defined the
discrete quantities in (3.13), and then try to relate them to the classical continuous
variational procedure outlined in 2. Substituting the quantities defined in (3.6), (3.7)
and (3.10) into (3.13), we obtain

(3.14)

U[,] is an abbreviation for the contents of the bracket in (3.10). We next apply
integration by pas and Gauss’ theorem to the first integral in (3.14) to obtain

(3.15)

Before incorporating this result into (3.14), we shall make more substitutions so as to
render the result more concise. We use (3.4) and the definition in the second line of
(1.14), and then rearrange the factors to obtain

{-. (.
(3.

When we compare (3.16) with its continuous analogue (2.3), we see that the sum
over represents the discretized form of 1(s). In other words, 1w(s) is the
expansion of I (s) in terms ofthe weight functions used to define the moment collocation
of the boundary condition, viz., (3.8). In fact, (3.14) could have been derived by simple
differentiation of an appropriate functional. This functional is a linear version of (2.2),
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which has the form

(3.17) []---- V. a. V0+b02-cff aft- Aw,(s) (U[]-R) dr.
F

We would derive (3.14) simply by differentiating this with respect to 0.
It is easy to recognize the expression in the brace in (3.16) as the analogue of the

variational derivative of F in (3.1). In the latter equation, b stood for the variation
or, in modern terms, the test function. In (3.16), b stands for a basis function, of
course, but it plays the role of a "variation" or test function, in the discrete context.
Our next step in the continuous case, as in the argument following (1.15), would be
to use the arbitrariness of b to show that the variational derivative should vanish in
f. However, in the discrete case, the qb’s are not arbitrary. If the b’s are chosen a

priori without special regard for their satisfying either the Euler equation or the
boundary condition, then no linear combination of them can be selected which will
support an argument that would force the variational derivative to vanish pointwise.
If such a combination did not vanish identically inside f, it would not in general
vanish identically on F, and conversely.

What can we then substitute for the classical Fundamental Lemma of the Calculus
of Variations in the framework of cell discretization? To arrive at a "reasonable" and
"natural" heuristic solution, we must make somewhat of a detour. In the following
section, we shall try to establish a convincing formal analogy between the continuous
and the discrete versions of the variational problem, so as to facilitate a natural choice
for the discrete form of the boundary correction.

4. Some analogies and interpretations. Our help comes from the matrices V and
Z, introduced in [4] for the purpose of "pretransforming" { 0,}. The crucial assumption
was made there that U is of full rank (or "nondegenerate"), i.e., that its rows are
linearly independent. If, on the contrary, U is degenerate, the entire apparatus of CD
fails. Accordingly, we assume that U is not degenerate, in which case matrices { V,o}
and {Z,} can readily be found (see [4]) with the properties"

(4.1) E U, v, 8, E u,z,, o.

The ranges of the indices are" a, fl 1,. , L,/ 1, , M and -= 1, , N, where
N M- L. These relations, in matrix form, appear as follows:

(4.2) UV I, UZ O.

V and Z are not unique; V is a right-generalized inverse of U, and Z is a collection
of linearly independent right null-vectors of U. By introducing the vector variables
{try} and {p}, the vector {0,} was expressed in [4] as the linear combination:

(4.3) O Vo’,, +. Zp.
Equation (3.9) then becomes

(4.4) E 8,,tr +E O" p,
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This remarkable simplification suggests that the V and Z matrices might also play
a significant role in the continuous form ofthe representation . We must first, however,
develop further the analogy between the CD formulation of the boundary value
problem, and the classical continuous formulation.

First of all, the matrices U, V and Z, and the functions {b,(x)} and {w,(s)}
introduced in [4] do not form a "complete" complement of quantities for discussing
this question. We must also introduce the matrix Y, of order N x M, with the properties:

(4.5) YV 0, YZ t

These relations complete a set, the other half of which is (4.2). It is clear, because
(4.2) and (4.5) can be collected in the form

(4.6) (yU)(v Z)=( 0i)
that Y is the "other part" of the inverse of (V, Z). Reversing the order of the factors
in (4.6) yields the result

(4.7) VU+ZY I,

and because

(4.8) (VU)(ZY) V(UZ) Y O, (ZY)( VU) Z(YV) U O,

the products (VU) and (ZY) can be interpreted as projection operators whose sum is
the identity.

There are also certain functions missing, and they must be added .to the b’s and
the w’s, so as to enable a symmetric, complete relationship to be set up between the
discrete and continuous forms. We shall denote these functions by {e(x)} where ’, as
before, runs from 1 to N. It is important to recall that we have assumed that the b(x)’s
were linearly independent in 2, and that the w(s)’s were linearly independent on F.
Likewise, we assume now that the e(x)’s are linearly independent in f/, but do not
have any a priori relationship to the b’s. We can then find sets of "dual" functions
{x,(x)}, {y(s)} and {’(x)} which are biorthogonal to the b’s, the w’s and the e’s,
respectively, so that we have

x
(x)6(x)

(4.9) Ir w(s)V(s) dr=,
e,(x)(x) dO ,.

Rewriting the definition (3.10) with emphasis on the operator nature of U, we have

(4.10) U, --- Ir w(s)U[6(x)l(s) dr,

which suggests that we can also consider the effect of U as that of an integration
involving a kernel U(s, x) as follows:

(4.11) Uf-- U[f(x)](s) f U(s, x)f(x) df
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so that (4.10) becomes

(4.12) U=-Irltw(s)U(s,x)dp(x)dfdr.
This form, in turn, suggests the "inverse" bilinear expression for the kernel U(s, x) in
terms of the matrix elements U,

(4.13) U(s,x)=, Z y(s)U,x,(x).

Similarly,

(4.14) Y( y, x) Y. Y. ,( y) Y,x(x)

and for the "pseudoinverse" operators,

(4.15) V(x, s)=ZZ qb,(x) Vw(s)

and

(4.16) Z(x, y)=.. Z dp,(x)Ze,(y).

Corresponding to the discrete equation which is the first line of (4.1), we form
the composite kernel UV(s, t), which we derive formally by applying U(s, x) to V(x, t)"

UV(s, t)=- In U(s, x)V(x, t) df

fZZZZ ,(s)U,x(x)o(x)Vw(t) d
da fl

(4.17) =ZZZ T(s)U, V,awa(t)

=Zr(s)w(t)

a(s, t).

We have made use of (4.9), (4.1). The notation A(s, t) indicates that the final sum is
a truncated version of a formal series expansion for the delta-function, which follows,
also formally, from the biohogonality of the y’s and w’s. Along similar lines, one
can derive

(4.18)

UZ(s, y)=- In U(s, x)Z(x, y) d=0,

YV(y, s)= In Y(Y’ x) V(x, s) df 0,

YZ(y, z)=- Ia Y(Y’ x)Z(x, z) dI A(y, z).
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Thus, the operator kernels U, Y, V and Z obey the same formal relations as their
matrix counterparts in (4.6).

V is evidently a right-hand inverse of U, and Z a fight-hand inverse of Y. We
recall the fact that U is a trace operator, and thereby acts as a projection of a function
6(x), defined in 12, into another function, defined only on F. We can therefore regard
V(x, s) as an extension operator, which imbeds functions defined on F into the set of
those defined over 12. The corresponding interpretations of Y and Z will be taken up
in the next section.

It will be necessary to maintain a clear distinction between the boundary condition
operator U and the more direct "restriction" trace operator E, which has the effect

(4.19) Ef(x) =f(s),

so that its matrix elements are

(4.20) E,= Ir w(s)E,(x) dr= Ir w(s),(s) dr.

E is the trace operator which maps f(x), defined in fl, into the set of its limiting values
on F; we are using the word "restriction" in this sense. We shall find E useful in
helping to interpret the relationship between the continuous and discrete versions of
the induced boundary condition. Its bilinear representation is similar to that of U(s, x):

(4.21) E(s, x)=Z Z 7,(s)E,X,(x)

and it has a corresponding extension kernel F(x, s)

(4.22) F(x, s)=Z Y’. qb.(x)F.,w,(s)

with

(4.23)

5. The analogue of the classical variation. To complete our complement of special
functions, we need add only two more. These are defined as follows:

(5.1)

where a, r and/z have the same ranges as before. These functions have the interesting
properties

(52)

(s)
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and

(5.3)

Similarly, it may be shown that

(5.4) Y,,(x) O, Yq(x) (y).

It also follows from (4.17) and (4.18) (or it can be derived as above) that

(5.5) (x) Vy(s), q(x) Z(y).

We now have everything we need to interpret these relationships. Let us first
suppose that U were simply the restriction operator E. In that case, (5.2) would have
the meaning that y(s) is the restriction of (x) on F. But more interesting is the
interpretation of (5.3): namely, that every r/(x) vanishes on F. This is what corresponds
to selecting a variation, in the continuous context, which vanishes on the boundary,
but not in the interior of f. The use of such a variation is implicit in the argument
leading to (1.16). In the discrete case before us, we are not able to select an arbitrary
variation, but only those which are linear combinations of the r/’s. We may, however,
think of r/ as "vanishing on F", even when the trace operator U has the more general
form (3.2), instead of simply being E.

The "dual" of U is Y, in the following sense: Let us consider the set of functions
into which Z maps all functions defined in f. The result of applying the trace operator
U to any of these functions will yield zero, viz., the function which is identically zero
on F. The reason for this is, of course, that UZ O, as shown in (4.18). Thus, we may
regard the "Z-extension" of any function as one with a null trace on F. In a similar
sense, the "V-extension" of any function defined on F has vanishing Y-projection, or
"Y-trace" in , because of the fact that 0. In this sense, any function which is
a V-extension "vanishes in , but not on F" (i.e., its suppo is F). This appears to
be the closest we can come, in the discrete context, to the classical variations whose
suppos can be specified arbitrarily, and which were used to derive (1.17).

In order to derive the variational equations corresponding to these two classes of
discrete variations (viz., with suppo in and on F, respectively), we need only
postmultiply (3.16) by Z and V,, in turn, and sum over to obtain

{-V (A. V)+b-c}n, da+
(5.6)
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and

{-V .(A .V 0) + bqt c}: all + n dr

(5.7)

With the help of (5.3), (5.2) and (4.9), we reduce these to

and

(5.9) {-V.(A.Vq)+bq-c},dO+ dr=x.
We emphasize again the fact that the set of variations (or test functions) is only

a finite set (i.e., linear combinations of {b,(x)}), so that the arguments necessary to
derive (1.16) and both equations (2.5) cannot go through. We must therefore identify
(5.8) and (5.9) with the equations (2.4), (2.7) and (2.8), in some manner. The most
reasonable choice is to identify (5.8) with both (2.4) and (2.7), and (5.9) with (2.8).
The finiteness of the set of possible discrete variations prevents us from disentangling
the volume and surface terms in (5.8). In fact, we shall look to the nullifier which must
be added to , to cancel some of the surface components, and thereby to force the
Euler equation to be satisfied (in the discrete sense). Thus, we shall adopt the position
that the sets {r/(x)} and {sc (x)} correspond to the classical continuous variations from
which the Euler equation and the induced boundary condition are respectively derived.
With this identification, it also appears that Z corresponds to the null vector L in
(2.6), and V corresponds to the "other" vector leading to (2.8). These various correspon-
dences place us in a position to proceed further with the construction of a discrete
nullifier.

Equations (5.8) and (5.9) can be derived in a more direct manner by using a more
convenient representation of 0(x). Using (3.4), (4.3) and (5.1), we can obtain

(5.10)

(x, o)--Z

q(x; , p),

which is just another parametrization of q in terms of tr and p. If we now substitute
this form of 0 into (3.17) and differentiate with respect to p,, we obtain (5.8). This
observation makes the derivation of the discrete boundary nullifier more direct, as we
shall see in the next section. We also note that if we differentiate the same expression
for with respect to tr, we obtain (5.9). These results are not hard to obtain, given
the apparatus already set up.
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6. The discrete nullifier. In the discrete context, there seems to be nothing that
corresponds to the independent variation of 4 and ad/an, such as appears in (2.10).
It is therefore not clear how the variation of a nullifier N, considered as a function of
b and ad/On, should be handled. We are therefore forced to fall back on the approach
of dealing directly with the discrete form of N, considered as a function of tr and p.

The functional , as defined in (3.17), depends on and various of its derivatives.
By substituting for q according to (4.3), becomes a function of the tr’s and p’s. The
result of differentiating this function with respect to p is given by the left member of
(5.8) (as explained in the previous section). The p-derivative of the composite func-
tional, including N, is thus given by

(6.1) Ia Ir ab aN
{-V. (A. Vg,)+bg-c}rldf+ _--n, dr+=0.

on

Our strategy, as indicated in the previous section, is to nullify the surface integral with
N, so as to make the second line in (6.1) vanish, insofar as possible. Thus, if we set

(6.2)
aN Irad/ap, -n n" dF

we are left with the "projected" Euler equation corresponding to the r/ in question.
Before proceeding further, however, we must reinterpret, in the discrete context,

the role of the boundary correction. We imposed the vanishing of certain weighted
integrals (the moments) of the boundary condition, as shown in (3.8). The induced
(natural) boundary condition is presumed to clash, i.e., be inconsistent, with the
imposed condition. Therefore, we do not wish to nullify the entire induced condition
(ag,/an in the linear case) as was done in [3], but only that part corresponding to the
imposed moments.

We have a clue as to how to identify this, in that the A(s) in the continuous
formulation (2.9) was replaced by the finite expansion Aw(s). We can interpret
this as meaning that A was "projected" into the subspace spanned by {w(s)}. We
shall therefore take the position that any function that occupies a corresponding place
in an integral should be similarly projected.

It will be more concise, in what follows, to use a bracket notation to represent
the integral of a product of functions on F. Thus

(6.3) (F, G) Ir F(s)G(s) dr.

Our first step in reducing the right member of (6.2) is to expand 0 and r/in terms of
the b’s. Referring to (3.4) and (5.1), we obtain

(6.4)

so that we now have to consider the projection of ack,/an. As indicated previously,
we expand ack/an as a linear combination of the w’s, thereby obtaining an approxima-
tion to it,

(6.5) ack,., Gw(s);an
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and, in order to evaluate the G’s, we multiply by 78 (s) and integrate over F to obtain

=E G(w, >
(6.6)

with the help of (4.9). Thus, we get for

n / n w(s)

This equation has a form which suggests that the function A(s, t) can be thought of
as the kernel of a projection operator

Next, we substitute from (6.7) into (6.4), and obtain

n "Z E O,G,,, w,(s), 4, Z
I

(6.8) E E E

E E O,HoZo,,

where we have made use of the definition (4.20). The set of quantities {H,o} is given
by

(6.9)

-J’fr
This is in contrast to the corresponding "unprojected" formula derived in [3], which
(implicitly) reads

0(6.10) H,,= -O-y ar .
Recalling that a 1,. ., L, it is clear from the form of (6.9) that the rank of H,

is at most L. On the other hand, H can clearly have a rank of as much as M, since
and v range from 1 to M. Hence, we have already succeeded in reducing the rank

of the nullifier, inasmuch as it depends on H,. We shall see later that we can sometimes
reduce the rank of N(r, p) still further.
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We next substitute for 0, in (6.8), according to (4.3), to obtain (note that the
variable tr and the index tr are not related)

(6.11)

so that B and C are given by

(6.12)

Equation (6.2) now reduces to

(6.13)

This system of equations can be integrated only if C is symmetric, because the
manifestly symmetric cross-partial 02N/OpOp, is just equal to C. From the definition
(6.12) it is evident that the symmetry of C depends on that of H,,o. Unfortunately,
the latter is not a priori symmetric, so it appears that we can only nullify that part of
the induced boundary condition involving the symmetricpart of C. We shall therefore
replace C by cS in (6.13), where cS is defined by

c=-1/2(c+c)

(6.14)
la,

-EE Z,,Hi. Zt).r
IX

This forced symmetrization of C=, represents a setback in our program of nullifying
induced boundary constraints in the discrete case. We shall return to an examination
of the effect of this symmetrization later, and try to ascertain the extent of the damage.

The altered equation corresponding to (6.13), viz,

ON_ ( o.,B,,+p,CS.),(6.15)
Op,

may now be solved to yield

(6.16) N(cr, P) =-EE o-,B,p.-1/2 EE p,cS,p,+A(o),

where A() is an arbitrary function of the ’s, coesponding to the arbitrary function
in (2.14). As in the continuous case, the most reasonable choice for A is a quadratic
function of the ’s. If we denote the symmetric matrix of coefficients also by A, (6.16)
becomes

(6.17) N(, p) E EBp EE PCs
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Our next and final step is to rewrite N(tr, p) in terms of the original variables
{0}. This can be easily done because

(6.18) =Y 8tr+ 0.p,

and

(6.19) Y. 0. r +E .P.

flo-

so that N(0) can be written

(6.20) N(0)=
With obvious identifications, N(O) may be written in matrix form as follows:

N(0)= oT{--UTBy--yTcSy+UTAU}O
oT{-(UTBy+ yTBrU)-yTcSy+UTAU}O

(6.2)

--oT{(VU) TH(ZY)+ (ZY) THT(VU)
+(ZY) THS(ZY)- UTAU}O.

The second line of (6.21) follows from the fact that any matrix of coecients of a
quadratic form is automatically symmetrized, the third line is a result of substituting
for B and C from (6.12), and the last line is merely a regrouping of the third.

This expression may in turn be transformed to another interesting form by recalling
from (4.7) that VU+ ZY I and also by making use of the decomposition of H into
the sum of its symmetric and antisymmetric pas: H HS+HA. After some routine
algebra, N(0) can be written

(6.22) N(o)=-or(n*zr yTzTHA+HS--(vU)THs(VU) UTAU)O.

Since U spans only a subspace of R, it is clear that only that pa of H lying in the
U-subspace can be altered by any choice of A. us, any negative eigenvalues of H
associated with eigenvectors in the Y-subspace cannot be removed, so that the nullifier
N(, p) may, in some cases, degrade the positivity of the functional . However, A
may still be chosen so as to adjust those eigenvalues of H associated with the
U-subspace.

By the "interior projection" of (06/On)(s)(s) by A(t, s) to form Ho, as
exhibited in (6.9), we reduced the rank of H from M to L. We can reduce it still
fuher by taking cognizance of the fact that we only wish to nullify that pa of the
induced boundary condition that conflicts with certain moments of a ceain imposed
boundary condition. In the discrete context, the imposition of more boundary con-
straints than one is not forbidden, so that if the "primal" constraints were of Dirichlet
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type, involving moments of only the values of $, it would still be permissible to impose
other "secondary" constraints involving, for example, the normal derivative of . It
is only the moments of the constraints induced by the latter that we would want to
nullify.

For most of the cell boundary segments, the unwanted induced conditions would
be associated with imposed interface conditions associated with the presence of other
contiguous cells. Each of these would be on the other side of some boundary segment
of the original cell. It is possible to characterize this situation simply by restricting the
supports of the weightfunctions to one or another of the segments of the cell boundary.
As the index a ran over its range, one after another of the boundary segments will be
the support of the weight functions. Accordingly, the number L is then the sum of the
individual collocation counts for all the boundary segments of the cell, whether they
are interfaces or parts of the true boundary F.

In any case, we may assume that the index a in (6.9) associated with "nullifiable"
induced conditions ranges over a smaller number of values than the total L of all
collocations. Let a’= {a, a2,’’ ", aL,}, where L’< L. Then (6.9) becomes

(6.23)
,\On

Irlr ObOn_-7-- (t)A’(t, s)6o(s) dV, drs

and this H’ generates the nullifier of minimum rank.

7. More on the symmetrization diserelmney. We return now to examine the effect
of the symmetrization of C. The difference between the correct C in (6.13) and the
symmetrized Cs in (6.15) is just the antisymmetric matrix C,A which is given by

(7.1)

Taking note of the definition (5.1) of the r/’s, we have

(7.2) c,A - y. (w, rl" E. \On’ " (w. rl,

Equations (6.9) and (6.10) suggest that the expression for CA is related to the
difference oftwo boundary integrals which appears in the well-known Green’s theorem.
The generic form of this which we shall use is

(7.3)
n (s)K(s) dr- -n (s)s(s) dr

fn (V" A" VJ)(x)K(x) ell-fn (v. A. VK)(x)J(x) dO.

We shall try to construct a reasonable cognate form of this in the discrete context. The
first step is to transform a sum of bracket products like those in (7.2) into integral
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form. We have

n/(s)(’)(s) dry.

We have used the definition of A(s, t) in (4.17), and have interpreted A in the last line
as an operator. In order to be able to relate this integral over F to one over fl, we
must find a function of x in whose "restriction," or E-trace, is (A)(s). We can
construct such a function by using the extension operator F whose kernel was defined
in (4.22). Thus, we define

(F.)(x)IrfrF(x,s)(s,t).(t)dr, dF

(7.5)

P,(x).

The second line reflects the fact that (s) is just the E-trace of (x). The last line
defines the "inner" projection P(F AE), which, operating on (x), returns an
"attenuated" (x), which reflects the reduction in rank of A(s, t) in the discrete case.

Ifwe now identify, in (7.3), K(s) with A, J(s) with AH, K(x) with P(x), J(x)
with P(x), and otherwise J and K with and , respectively, then the following
special form of Green’s theorem is valid:

(7.6)

I (V "A V)(P,)-I (V A "V,)(P) d".

This is the "exact discrete Green’s eorem." Taking into account (7.2), (7.4) and
(7.6), it results that an alternative form for CA is

(7.7) C={In (V A. V)P,(x) d-I (V A. V,)P(x) d}
in terms of integrals over .

This residual induced boundary condition appears to be irreducible in the discrete
case. The flexibility of the variation in the continuous case would allow us to set the
trace of to zero on F, thus eliminating CA. If, in fact, the trace operator U is the
same as the restriction operator E, CA vanishes because U vanishes for all U’s, so
that E will vanish identically. Otherwise, it would appear that it would be necessary
to select a basis set for each of whose members the generalized Laplacian (in the
brackets) would vanish. This is reminiscent of the Trefftz strategy for the solution of
paial differential equations (see 10]). The lack of generality in placing such stringent
a priori constraints on the ’s makes this approach seem rather unpromising.

A more promising, algebraic approach to reducing the symmetrization discrepancy
relies on the fact that there is a residue of arbitrariness in the definitions of Z, Y and
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the vector functions e(y)= {e(y)} and ’(y)= {’(y)} introduced in 4. Let Q=- {Q}
be an N x N nonsingular matrix, and transform Z, Y, p, e(y) and (y) as follows:

Z-> ZQ,

y_ Q-1y,

(7.8) RQ-IR,
e(y)-> Q-le(y),

(y)-> Q( y).

Then all the relations (4.3), (4.4), (4.6), (4.7), (4.8), (4.9), (4.14) and (4.16) are
unchanged. However, CA is transformed as follows:

(7.9) CA=- ZT"HAZ --> QTZT"HAZQ QTCAQ.

The rank of Z is N, so that no column of the N x NQ-matrix can be a right
null-vector of Z. However, as indicated at the end of 6, the rank of H is L’ and that
of HA may easily be less. In case H is of odd order, this will often be the case, because
one of the eigenvalues of HA will have to be both real and imaginary, so that it can
only be zero. If the corresponding eigenvalue of H did not vanish, the rank of HA

would be less. In the important case of H being rank-one, which would be the case
if the imposed boundary condition were an overall conservation condition applied to
an entire segment of F, thereby involving only one moment, HA would vanish identi-
cally.

In any case, it may easily happen that L’< N, so that although the Q-matrix
cannot contain a right null-vector of Z, it could be constructed so as to contain all the
right null-vectors of CA. In this case, the rank of the symmetrization discrepancy would
be reduced and, in some cases, might be eliminated.

There thus appears to be room for further improvement of the discrete nullifier
in terms of the reduction of its symmetrization discrepancy.

Acknowledgment. Thanks are due to the referee for many helpful comments on
the manuscript. Although he is quite right in feeling that a worked numerical example
would be welcome, we are not at this time in a position to supply one, since there will
unfortunately be no opportunity for the modest reprogramming of our Fortran program
which would make this feasible. By way of mitigating this shortfall, we can again point
to the fact that examples of the beneficial effect.of the full rank boundary correction
have been published in [4] and [5].

On the other hand, the connection that has been drawn between the continuous
and the discrete forms of the basic variational formulation of the CD method is quite
interesting and significant in a general sense, and has several conceptual "spinofts"
that we hope will prove useful in the future in constructing a convergence proof.
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LINEAR INVERSION OF BAND-LIMITED
REFLECTION SEISMOGRAMS*
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Abstract. We present a method for the linear inversion (deconvolution) of band-limited reflection
seismograms. A large convolution problem is first broken up into a sequence of smaller problems. Each
small problem is then posed as an optimization problem to resolve the ambiguity presented by the band-limited
nature of the data. A new cost functional is proposed that allows robust profile reconstruction in the presence
of noise. An algorithm for minimizing the cost functional is described. We present numerical experiments
which simulate data interpretation using this procedure.

Key words, inverse problems, ill-posed problems, regularization, band-limited deconvolution, reflection
seismology, optimization
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1. Introduction. In this paper, we examine the problem of linear inversion of
band-limited reflection data.

Suppose that wave propagation is modeled by the wave equation

(1.1) A(s)utt=(A(s)Us)s, t>O, s=>O,

where u u(t, s) is the particle displacement at time and travel-time depth s. The
coefficient A(s) (with A(O)= 1) is the acoustical impedance as a function of travel
time s, and is the desired unknown. The system is probed by a wavelet f(t) which is
described here as the boundary condition,

(1.2) us(t, s=O)=f(t), 0<-_ t<= T.

The reflection seismogram is given by the surface particle velocity, i.e.,

(1.3) ut(t, s=0)= h(t), 0 <- <- T.

The problem then is to find A(s) for O<=s<= T/2 given the data pair {f(t), h(t)}.
In linear inversion, one takes A(s) 1 + a(s) and u(t, s) Uo(t, s)+ ul(t, s), where

a(s) and u(t, s) are small perturbations. With the choice that Uo(t, s) satisfy (1.1) with
A(s) 1, the above inverse problem (1.1)-(1.3) becomes

(1.4) tltt-’tllss+Ot’(s)f(t--s), t>0, s-->_O,

(1.5) u,s(t,s=O)=O,

(1.6) u,t( t, s O) h(t) +f(t) =- g(t), 0 <= <= T.

The inverse problem is to determine a(s) from f(t) and g(t). The problem is linear
and can be recast into a convolutional equationas

(1.7) g(t) f(t-’)a’ d.

* Received by the editors February 7, 1985, and in revised form December 6, 1985. This research was
sponsored by the Office of Naval Research under an SRO-III grant, contract number N-000-14-83-K0051.

f Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853.
Present address Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716.

Department of Mathematical Sciences, Rice University, Houston, Texas 77001.
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Defining r(t) as the impulse response, we have

(1.8) g(t) =f(. r(. )(t).

If we know r(t) in 0_<-t <- T, we have A(s)= l+a(s) in O<=s<= T/2 because

1.9) a r(t) dt.

As we can see, the problem of linear inversion amounts to solving the convolution
equation (1.8) for the impulse response r(t). We note here that r(t) has a similar
meaning to what is commonly called reflectivity function (see, e.g., Oldenburg et al.
[1983]). We prefer the above formulation because it is consistent with nonlinear
inversion (equations (1.1)-(1.3)) which is treated in our previous work (Santosa and
Symes [1983]).

In most seismic applications the wavelet f(t) is usually band-limited, i.e. has most
of its energy concentrated within some passband. This either leads to nonunique
solutions of (1.8) or ones which are very sensitive to noise. In particular, if low frequency
information is missing, the trend information about the impedance a (s) is also missing.
In either case the resulting inversion leads to ambiguous results.

Various remedies for the ambiguity based on a variety of assumptions and preju-
dices have been proposed. In particular, the use of minimum /-criterion has been
shown to be very useful in seismic applications. Before proceeding with the discussions
of some results in literature, we cast (1.8) in matrix form. That is, we assume that the
data have been sampled and we have time series vectors g, f and r, each in R. Define
the N x N matrix F as

=> j,
(.10) F=t0 ’

Then our problem amounts to solving the linear system

(1.11) Fr=g.

Taylor, Banks and McCoy 1979] pose the following optimization problem: Find
r which minimizes

(1.12) b,(r) -Ilrlll / A IIFr- gll,

where the /-norm of an vector is defined by
N

i=l

This approach is discussed in Claerbout and Muir [1973], and has been shown to
display robustness; that is if g contains a few very noisy components, the/-criterion
produces consistent estimates of r. The first term in (1.12) forces the solution to have
a small /-norm, and has the effect of constructing a solution which has the least
number of nonzero components in r; i.e., a sparse spike train. The parameter A is a
measure of the relevance of the data fit and hence the irrelevance of the sparse spike
criterion. We emphasize here that if the unknown impulse response is a sparse spike
train, and the data is noiseless, the use of the minimum/1-criterion will produce, under
many circumstances, the correct result even when the data is band-limited. Hence in
many situations, trend information about the impedance can be recovered by using
this criterion even with a low frequency cut off. We will discuss this property in more
detail and precise mathematical terms in the next section.
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Levy and Fullagar [1981], and Oldenburg, Scheuer and Levy [1983] cast the
problem in the discrete Fourier transform (DFT) domain. The underlying assumption
for the use of DFT is that the matrix F is circulant, i.e. instead of F in (1.10), a matrix
F is constructed,

(1.13)

and f has been periodically extended: f-N =f =f+N. This assumption is certainly
justified if f and g decay to zero. Writing the DFT of f and g as f and , we can find
the pass band solution of r by Fourier division. This solution is the least squares
minimum solution if we set outside the pass band to zero. To be more specific, we have

fk f exp
j=l N

and similar definition for ffk. The passband solution for is

if ]fkl >- e,
(1.14)

0, if Ilk] < e.

The above-mentioned authors proposed other ways of determining the cutoff in (1.14).
In any event, the idea is to use re as constraints in an optimization problem. The
problem they pose is:

Find r which minimizes

subject to

^P "PRe rk) a6k < Re rk < Re rk) + a6k
(1.15) for Ifkl-->-- e,

Im () t6k _<-- Im (k) ----< Im () / Cr6k
where [ is the DFT of r. In the event that the data is noise-free, one can use [P as
equality constraints by setting =0 in (1.15). When noise is expected, the data are
used as inequality constraints by appropriately choosing a and k above.

Problems (1.12) and (1.15) can be solved using a linear programming algorithm,
and both approaches have yielded very good results which can be found in the references
cited. Our approach is similar. We propose to find r which minimizes

(1.16) b3(r) llrll, + A lIFr-g[122.
The /E-norm is chosen for several reasons. First, the /2-space is appropriate for data
space as errors are normally estimated in percent RMS. Second, our approach will
subsequently be used to solve nonlinear problems (1.1)-(1.3) where all the known
results about the properties of the map from r(t) to A(s) are given in L2 spaces (Symes
[1983]). Finally, we choose this norm because it makes use of the data globally (as
opposed to (1.15) where each frequency is used to describe a feasible region in the
optimization space). The parameter A plays the same role as in (1.12).

It will be difficult to say which of these methods is the best for all purposes; each
one of them will be most suited to solving a certain type of problem. In the case where
there are "wild" data points in g the cost functional in (1.12) is preferred. However,
when there is a good global fit to the data, (1.16) should work better because the set
{r: IlFr-gll--< c} is smaller than {r: IIFr-gl]22<- c} for small c > 0. Hence it is likely that
a solution with smaller Ilrll, could be found using b3(r as cost functional. The cost
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functional q2(r) is suited for situations in which knowledge about Fourier components
of is available, so that c and tk may be prescribed appropriately.

We will proceed by discussing the validity of using the/i-criterion for deconvol-
ution in 2. In many physical applications, the wavelet is of a small time duration.
We will use this fact and the linearity of the problem to our advantage, and show that
the deconvolution problem can in fact be approximated by recursion of small optimiz-
ation problems, as described in 3. In 4, we display examples in which the/i-criterion
produces noise-sensitive results when the data are used as constraints, and a pathologi-
cal example in which the/-criterion does not resolve the ambiguity due to the existence
of nontrivial nullvectors for F. A brief qualitative description of the properties of the
cost functional (1.16) and results of numerical experiments are presented in 5. In
6, we describe the algorithm for the optimization. A new algorithm has been devised

as the optimization problem (1.16) cannot be solved using any standard methods. An
algorithm that uses the recursive structure of the problem is described in 7, where
we also give numerical examples. Some concluding remarks are made in 8.

2. The l-criterion. It has been shown by several authors (Levy and Fullagar
[1981], Oldenburg et al. [1983]) that it is possible to construct a sparse spike train
from part of its spectrum using the minimum /-criterion. This well-known (and
believed) property of the /-criterion can in fact be demonstrated in a mathematical
way. We proved this property in Santosa and Symes [1983]. We repeat the proof and
discuss the implications of the results.

We consider the optimization problem in (1.15). Instead of inequality constraints,
we take a 0 and arrive at the following constrained optimization:

minimize Ilrll
(2.1)

subject to FOr g,

where F is circulant. Because we can use DFT to decompose the convolution, we can
cast the problem in terms of Fourier components. Define the index set I=
{k I" Ilk[ 0}; the complement I can be thought of as the passband of the vector f.
Then we can equivalently pose the following optimization:

minimize
(2.2)

subject to rk k/k for k e I.
So, in this problem, we restrict the search to the subspace defined by Fourier components
whose index is in I.

We want to show that the minimum of (2.2) occurs when r is a sparse spike train.
That is, at r equal to a spike train, moving in any direction on the subspace defined
by the index set I increases the/i-norm of r. This is true under certain conditions to

be made explicit later. We need to show that for a spike train r of v spikes located at

(2.3) r=
rl----1

any addition to r in (2.3) of the form

1 ( 2ri(j-1)(k-1))(2.4) trj =’- kI 8k exp S

will increase the/l-norm.
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The way we showed this property was to estimate lower bounds of Ir + 8rl for
j =j, and j j,. From the triangle inequality and the fact that lexp il- 1 we obtain

and

K

J#Jn J#Jn

where K is the number of elements in I (hence can be interpreted as the number of
missing components). These two inequalities lead to the estimate

(2.7) IIr+ rll e Ilrll,+ + IIll,

In terms of reconstructing a spike train from pa of its spectrum, (2.7) can be
used as a rough guide to when the/-criterion would work. The estimate states that if
the number of spikes () times the number of missing components (K) is less than
N/2, then using the /-criterion would lead to the complete reconstruction of the
missing spectrum. In arriving at (2.7), we have not used the fact that the spikes may
be separated by large distances, nor the nature of the subspace in (2.4) defined via the
Fourier transform. Hence, it is most likely (as numerical experience has shown) that
the estimate is suboptimal and pessimistic.

The requirement K > N/2 paints a grim picture of the situation, especially when

IAI 0 for k small as well as large (recall that K is the number of elements in I).
However, if we are willing to sacrifice resolution to obtain low frequency information,
i.e., trend in the impedance, we can use a resampling t6ck.

Let f(t) be a continuous time signal with f(t<0)=0, and =f((j-1)t) for
j 1, 2".- N. The Fourier transform of f(t) is

f(w) f(t) exp (-2iwt) dr.

Suppose that the suppo (pass band) of f(w) is supp [](w)] [w, w]. If we sample
at t increments, the Nyquist limit of the D is =t. Thus if we set w w,
ort w, then we arrive at a situation in which only theDcomponents correspond-
ing to low frequencies (w < ) are missing. This procedure reduces the number K to
approximately K wN/2w. In terms of realistic numbers, say that the wavelet has
energy concentrated in the 10 to 40 Hz band. This tells us we should sample at t s,
and the number K/N. Using (2.7), we conclude that the number of spikes in r
that generated the data must be 4 or less for the/-criterion to completely reconstruct
the spectrum of r from 0 to 10 Hz. Even though this prediction is on the pessimistic
side, it reveals that without incorporating other a prio information, the /1-criterion
by itself may lead to nonsensical results. This phenomenon has been obseed by
Oldenburg et al. [1983] and uses of other information have been proposed (see also
Oldenburg 1984]).

To conclude this section, we generalize the result we proved above slightly to the
case of noncirculant F. We write the singular value decomposition of F (cf. e.g. Golub
and Van Loan [1983], and Stewa [1973]) as

F UAV"r
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where U and V are N x N orthonormal matrices, and A diag (or1, or2," , crN) where
cri are the singular values. The object is to show that perturbations of the form

(2.8) 6r= Y. 6kVk

kl

where yk is the kth column of V, to the spike train r defined in (2.3), will increase the
/i-norm. Note that this problem reduces to the previous one with

(t)k)Inexp {2rri(k-1)(n-1)}N
if F is circulant.

We estimate as before

(2.9) kItll-- X trkt)j <- g sup sup Ilvklloo
kI kl kl

and

(2.10)

Now we make uniformity assumptions" there exist c > 0 so that for k
and J, 1 -<-jl -<j --<jl + J -<- N

1
Z I  l=<-clN.(2.11)

j

This means that the local average of the components of V
k is not very far from the

total average of the components, which is 1! N. This is a version of the uncertainty
principle: the eigenvector vk is perfectly concentrated in spectral coordinates, but must
be spread quasi-uniformly in configuration coordinates. In the circulant case, it is a
consequence of le’W[ 1.

Notice that the requirement (2.11) must hold for vk, k L In particular, if I
corresponds to the low frequency components ofN, we expect the uniformity assump-
tions to hold. It follows from (2.11) that we will have, for some (other) c > 0,

(2.12) I1, 11 _-< cN-1/2,
for k /, hence (2.9) becomes

<- gc sup ISPkIN-1/2

and (2.10) becomes

<-- cll rll,N-1/’.

With these estimates in hand, we can repeat the rest of the argument given above and
obtain

(2.13 [Jr + tSrl] "rJ’ +
x/- (1-c 2K)SUPki

For matrices like the Toeplitz matrices considered here, which are nearly circulant,
we expect c- 1, so we would expect to be able to recover roughly the same number
of spikes as before.

3. Recursive structure and small optimization problems. In many applications, the
size of the convolution problem is normally very large. However, it is possible to reduce
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the large problem into a sequence of small problems if we are willing to take a ditterent
point of view. The size of the small problem depends on the duration of the wavelet.

Suppose the trace V is of length M and the duration of the wavelet f is of length
n. The matrix equation describing the convolution is displayed as

(3.1) F=T

where T is the desired impulse response, and , an M x M matrix, is lower banded
of bandwidth n (see Fig. 1). This is a size-M problem.

’2 FI 0 r2

F FL r3

0

r T

FIG. 1. The source wavelet f is assumed to be of length m. The convolution equation for the entire trace
is written in matrix form F T, where F and T are RM, and is M x M. The trace and the unknown is

partitioned into gi and ri of length m. The matrix is made up of blocks ofm x m lower triangular F and upper
triangular F2. The convolution equation is written as g Fr, g2 Fr2 + F2r_l for > 1.

We proceed by partitioning F and T into pieces of length m, n <_- m <_- M namely
vectors gi and ri respectively. Because of the banded nature of , we can express it
as a union of copies of two m x m matrices F1 and F2. Clearly, (3.1) can be rewritten
recursively as

(3.2) gl Flr, g F2r_l + Flri.

We take the attitude that F is in the range of, i.e., an exact fit is possible. When
F is not in the range we can filter out outside passband components of F to put it in
the range. Thus our view is that whatever is outside the passband is taken as noise. If

has no null space, i.e. f full band width in Fourier components, then is nonsingular
and F1 is nonsingular (see e.g. Stewart [1973]). In this case, the system (3.2) can be
solved by backsubstitution recursively from knowledge ofF-1. Moreover, the solutions
of (3.1) and (3.2) are identical, i.e.,

T TIr. ,r. ,etc.].TT [r, , ,

However, if has a null space, we have many solutions and we must make a
choice to pick out a particular solution using some criterion. For example, we can take
as a solution to T in (3.1), the solution with the least /2-length, or the solution with
the least/i-length as we have discussed. Let us take the/-criterion: we seek T* which
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minimizes

(3.3) IITII1 subject to T: F.

It is tempting to pose, equivalently, for (3.2):

For i= 1, 2,. ., find r* which minimizes

(3.4) IIr, ll
subject to Flri gl F2r*_l for > 1

(with the convention to* 0). This preserves the recursive structure of the problem and
subsequently decouples the constraints on ri. However, it is likely that the solutions
T* and r* are unequal, i.e.,

T* r [r*l TI’*I’2 TirT etc.].

We display this fact in an example.
Let $, and subsequently F, and F2 be

0 0 0 0

We will use singular value decompositions to analyze the matrices , F, and F. By
solving the eigenvalue problems forr and r, we can decompose into

0 0 0 1- 1 0 0 0 1 0 0 0-

We take a vector Tr= (0 1 1 1) which is in the range of . The solutions to T F
can be parameterized as

(3.7) Tr=(1 1 1 0)+(0 0 0 1);

the first pa of the solution is the pa obtained by applying the pseudo-inverse +
on F, and the second pa corresponds to the null space component (the component
that does not effect the data F). The value is to be determined by requiring ITII1
minimum. This requirement forces =0. Hence, we have the solution to (3.3)

(3.al *=( 0.

Using the same tool, we find that F1 can be written as

We break up F into gl (0 1) and g2 (1 1). The solution to Fr g is

(3.10) r=(1 0)+a(0 1).

Therefore, we take c 0 and rl*r= (1 0). Next apply F2 to rl* and solve
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Apply again F] to the above and obtain

(3.11) rf=(1 0)+a(0 1).

The /-criterion forces a 0. Hence

(3.12) (r*Tlr*T)=(1 0 1 0)

and not equal to T*. In fact, with (3.12), we no longer have an exact data fit; a residual
has been introduced.

Despite this example, we can envision circumstances under which the solution of
the problem (3.4) might accomplish the desired task that is, retrieve a sparse spike
train from its discrete convolution with a noninvertible kernel--even when (3.3) fails
because the estimate (2.7) is violated. Suppose we assume:

(i) the target spike train is sparse;
(ii) the small singular values of F1 have uniformly distributed singular vectors.
We shall quantify these notions and give a plausible argument (not a proof!) that

(i) and (ii) ought to imply the recovery of the target reflectivity T by means of (3.4).
We will give examples in 7, which support our contention.

We shall take the sparseness of T to mean precisely that the segments ri of the
target reflectivity have only a few (significant) nonzeros. Assumption (ii) means that
the singular vectors associated with F1 are uniformly distributed in the sense of the
discussion at the end of 2, especially inequality (2.12). We expect this property to
hold for slowly varying (low-frequency) singular vectors because, for such vectors, the
action of F differs little from the action of the related circulant matrix. Indeed if F
were circulant, then the singular value decomposition would be given by the discrete
Fourier transform, and the characterization in terms of low frequencies would have
the usual meaning. As we have mentioned earlier, the impossibility of localizing energy
is just the discrete version of the uncertainty principle. We assume the same property
for the SVD of F1.

Let ri, the subvectors of T, be sparse, and T satisfy (3.1) (hence (3.2) also). We
reconstruct the first segment r from the optimization problem in (3.4), i.e., we find r*
which minimizes

Ilpll subject to Fp=g.

We argue that r* must be identical to r. The constraints allow us to write p Po+ P’,
where Po F] g and Fp’ 0. Since we have assumed uniformity for the nearly-null
vectors, hence for the null vectors, of F1, we have the result of 2: if the coset Po+ ker F1
contains a vector with few enough nonzeros, then the vector is the minimizer of the
/1-functional on the coset, i.e., rl*. On the other hand, we have assumed that r consists
of few nonzeros: if we define few to mean the number of nonzeros

(3.13) v < m/2kc

(cf. (2.13)). Hence, we must necessarily have r =r*.
Here k dim ker F. Since F and @ are both assumed to represent discretizations

of the same convolution operator at the same sampling rate, we would expect the ratio

n! k to remain roughly constant, at least if n is not too much smaller than M, and
approximately the same as M/K. Ifthe significant nonzeros are spread out more-or-less
uniformly over T, then (3.13) will be satisfied as soon as n is small enough.

Since we have correctly recovered the first segment r of T, we can now go to the
second segment. The problem for the reconstruction of r2 is to find r2* which minimizes

subject to Fp g2 F2r.
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The sparseness of r2 and the uniformity of the nearly null singular vectors of F1
guarantee that rE* rE. The process is repeated until we have completely recovered T.

It is interesting to note that, if T has correctly placed gaps (in its support) of
width greater than or equal to the bandwidth of the matrix , then the product F2rl
vanishes and the problem completely decouples. As the identification of such gaps is
a substantial issue, this observation is probably not too important.

The main question, which our heuristic reasoning leaves completely open, is
whether a subdivision, that is, the number m, can be chosen so that rl has few enough
spikes, and yet the nearly null vectors of F1 closely enough resemble those of in
their uniformity estimates. This is a complicated condition, involving the SVDs of
submatrices of and the sparsity structure of T. We take the attitude that this question
is best investigated numerically at present. We give the results of numerical experiments
in7.

Note that the 4 x 4 example given above violated stricture (ii) rather grossly: the
null vector (0, 0, 0, 1)T was not evenly distributed. In general, it is impossible to write
lower-triangular (noncirculant) band matrices with uniformly distributed null-vectors.
For instance, the periodic m x m first-difference operator

1 0 0 -1

-1 1 0 0

0 -1 0 0

0 0 1 1

has the normalized null-vector (ml/2, ,mU2)T--v. Its noncirculant relative F,
obtained by setting the (1, m) entry to zero, is actually nonsingular, but

Thus v resides mostly in the small singular subspaces of F1 as m oo. This example
indicates that we should expect the considerations outlined above to be predictive
when the sampling is fine enough that the lower end of the spectrum of F comes to
resemble that of the related periodic convolution.

Finally, we remark that the recursive structure may be taken advantage of in
reconstruction techniques where the data is used as penalty or inequality constraints,
such as those discussed in the introduction. For the/E-penalized problem, we pose for
i- 1, 2, 3,. ., find r* which minimizes

(3.14) b (r,)

(with the convention r* 0). We expect that a sparse spike T train can be recovered
by solving (3.14) in the presence of noise in the data gi. Further discussion can be
found in the next two sections. Numerical examples are displayed in 7.

4. Use of data as constraints. In 2, we showed that a sparse spike train can be
reconstructed from part of its spectrum. The idea is to use the passsband data as
constraints, and seek a solution with the least/-norm. In other words, we are required
to solve"

Find r* which minimizes

(4.1) Ilrll
subject to Fr g.
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In this and the next section, we will attack the small subproblems that arise in
using the recursive structure outlined in the previous section. We will return to solving
the big problem in 7.

As an example of using (4.1) we took a sparse spike train displayed in Fig. 2a
(shown also is a(s), the impedance correction) convoluted it with the band-limited
wavelet f in Fig. 2b, to obtain the data g in Fig. 2c. We use an algorithm devised by
Bartels, Conn and Sinclair 1978] to solve an overdetermined system of equations. To

2.0

5 10 1,5 20 2,5 ,30 ,3,5

index

1.5

1.0

0.,5

0.0

-0"’50 ,5 10 1,5 20 2,5 ,30 ,35

index

FIG. 2a. The generating sparse spike train r. The trace is oflength 32 points. Shown below is the corresponding
impedance correction a ).
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FIG. 2b. The source wavelet f used in generating the data in Fig. 2c. When f is put in matrix form for
convolution, 10 out of 32 singular values were found to be below tolerance of 0.005.

0.8

0.6

0.4

0.2

0.0-

-0.2

-0.4

-0.6

-0"80 5 10 15 20 25 30 ,35
index

FIG. 2C. The data g Fr.

be able to use their procedure, we incorporated the equality constraints into the cost
functional. This can be accomplished in several ways (see e.g. Bartels et al. [1978]);
however, we choose to make use of singular value decomposition on F.

For our example, we took f, r and g to be vectors of length 32. The wavelet
duration is 12, i.e., f has 12 nonzero components. The matrix F then is 32x32 and
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lower banded of bandwidth 12. We write F in terms of two orthonormal matrices U
and V, and a diagonal matrix A diag [hl, h2,’" "], h -> A2 >- h3" ". The matrices U
and V are partitioned into parts Up and Vp (32x p matrices) Uo and Vo (32 x (32-p)
matrices) corresponding to small singular values hi < e for i> p.

We construct a least length pseudo-inverse with Up and Vp in the usual manner.
The constraints can then be written as

(4.2) r F/g+ Vox
where x is a (32-p)-vector. The optimization problem is

(4.3) minimize F/g/ Voxll .
Once the optimal x* has been found, we put it in (4.2) and obtain the optimal r*. We
note here that we have found numerical evidence which shows that IIF+(Fr)II <
This happens when (i) F has too many zero singular values and (ii) r not a sparse
spike train (cf. (2.13)). In any case, when this occurs, we cannot hope the/1-criterion
will help.

1.5

1.0

0.5

0.0

-1"50 5 10 15 20 25 30 35
index

FIG. 2d. Reconstruction of using g and f in Figs. 2b and 2c. The data is used as constraints and the
solution with the smallest l-norm is sought.

We emphasize here that had we simply taken r F’g, i.e. taking the least-squares
minimum-length solution (equivalently passband Fourier division), we would have a
profile t(s) with no trend in it. We display this in Fig. 2e.

The result of applying this procedure is displayed in Fig. 2d. The size (32-p) 10
for this problem; for e 0.005. Observe that if we have noise in the data g which is
in the orthogonal complement of the range of F, the optimum will clearly be unaffected
because F/ will simply project g back into the range of F, and the matrix Vo will remain
the same. However, if the noise is in the range of F, F/g will be altered, and hence
tle constraints will be changed.
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FIG. 2e. The profile t(s) corresponding to SVD-inverse solution of Fr=g. Notice the lack of trend

information.

To display the effect of noise in g in the range of F, we took the sparse spike in
Fig. 2a, and introduced small perturbations to it. The resulting trace is shown in Fig.
3a, Next , is generated by a convolution. We apply the same procedure as outlined
above and obtained as an optimum, the curves in Fig. 3b. To show that we have not
altered the constraints too much, we plotted both F/g and F+, where , is noisy in

1.5

10

0.5

O.OI
-0.5

-1.50 5 10 15 20 25 30 35
index

FIG. 3a. The generating which is not a sparse spike train. We convolved f with to simulate a noisy
data trace g. The 12-relative error of and , is 18 percent.
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FIG. 3b. The constrained optimum from noisy data, and corresponding a(s), compare with Fig. 2a.

Fig. 3c. This exercise shows that the constrained minima of (4.1) may be very sensitive
to perturbations in the constraints. This is one of the reasons we choose to incorporate
the data Fr =g as penalty instead of constraints.

Next we demonstrate that under some circumstances, the/1-criterion, or variants
of it, will not resolve the ambiguity in the problem. We consider a 2-D example:

minimize I:,:, +
(4.4)

subject to x2 =1 (1 + e)xl.
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FIG. 3c. Comparison of the constraints using noise-free and noisy data. Plotted are the vectors F+g and F+.

So, the family of solutions to our "data" is the set of points on X2 1 -(1 + e)x. Now,
we want to "resolve" the ambiguity by choosing a solution with the least /1-norm.
Notice that the level sets of Ixl+lXE[ in the first quadrant are 45 lines as shown in
Fig. 4. The set of points satisfying the data also lie on a line inclined at nearly 45 for
e small.

We make the following observations on the optimal solution of (4.4).
(i) for e 0, optimum x2 1 xl, nonuniqueness,

x2 L

\\\\
\\\\

2- I (l-e)1

FIG. 4. Drawn with dashed lines are the level sets of Ix, + Ixl. The "’data" requires the solution to lie.on
the line given by x2 (1 + e)x When e O, the line becomes parallel to the level set, when e > O, the line
is steeper, and when e < O, the line is flatter than the level sets.
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(ii) for e > 0, optimum xl 1 / (1 + e), x2 0,
(iii) for e < 0, optimum xl 0, x2 O.

Thus we get three very different results for three very small changes in the data.
This phenomenon occurs when the bottom of the cost functional of IIF+g + Vox[l

is fiat; a small perturbation in g changes the shape of the bottom and hence displacing
the optimum by a large amount. The ambiguity may be resolved in real physical
situation by incorporating more a priori information as constraints. Ideas along these
lines are explored in Oldenburg [1984].

5. Use of data as penalty. From the results of the constrained problem, we observe
that when the data g is perturbed, the optimization produced a solution which has a
larger/1-norm than the unperturbed solution. This is so because the former is forced
by the constraints to attain its minimum /l-length at a point with many nonzero
components (compare Figs. 2d and 3b). If the solution had been allowed to be displaced
slightly away from the subspace defined by the constraints, its/1-norm could be reduced.

To remedy this situation, Levy and Fullagar 1981] propose inequality constraints
in place of equality constraints. These inequality constraints require the Fourier
components of the solution in the passband to be within some bound from the values
determined by Fourier division (cf. (1.15)). We can pose an equivalent optimization
problem in terms of singular values and singular vectors for our problem as we have
mentioned, and take advantage of the recursive structure. Our approach here is to use
the data, i.e., the convolution equation in a penalty term as we have described earlier.

The problem we choose to solve then is:

Find r* which minimizes

(5.1) Ilrll + A liFt- gll.

The reasons for choosing this cost functional have been discussed in the Introduction.
Thus, in (5.1), we measure the deviation of the vector r from the subspace defined by
Fr=g in /2-norm. Hence, A is a measure of how much weight (faith) one should put
on the data. A rough estimate is that A should be inversely proportional to the square
of the assumed /2-noise in the data. In exchange for the violation of the equality
constraints, we can now find a solution with a smaller /1-norm than the constrained
optimum.

In the following examples, we took again the same wavelet as in Fig. 2b and
generated two data vectors g using the impulse response traces r in Figs. 2a and 3a.
We solved the optimization problem in (5.1) for various values of penalty parameter
h. The results are shown in Figs. 5 and 6. Displayed at the bottom of each figure is
the generating impulse response. Plotted above these are the solutions of (5.1) for
decreasing h’s. Also shown in Figs. 5b and 6b are the profiles a(s) corresponding to
the impulse responses in Figs. 5a and 6a. We see that for noisy data as is decreased
the profiles come closer and closer to piecewise constant curves with less and less
major jumps.

The observation to be made is that when h is large, we get the constrained solution.
But as A is decreased, we put less and less importance on the smaller nonzero
components in r. The smaller the , the more zero components we will have in the
optimum. Until the limiting case when h 0, we get r=0. However, observe that we
get a very good estimate of the unperturbed constrained solution at about h 20. This
suggests that a prudent choice of h for a certain noise level will produce robust estimates
of the model impulse response from noisy data.



1324 FADIL SANTOSA AND WILLIAM W. SYMES

2,5

GENERATING

TRACE

FIG. 5a. The optima of b(r) Ilrll / A IIFr-gll
for decreasing values of the parameter A. The data
vectors are f and g shown in Figs. 2b and 2c. The
bottom trace is the generating time series r. Observe
that as A is decreased, the smaller spikes disappear.

FIG. 5b. Companion to Fig. 5a, plots of a(s) as
a function of A.

6. Optimization algorithm. Recall that our objective is to minimize a cost func-
tional

(6.1) b(r) -Ilrll, / A ]lFr- gll
for r and g in R", and F m x m matrix. The matrix F has a null space, so, the 12-part
will be ill-conditioned. In fact, the second term has a geometric interpretation of a
long "trough". The /i-part on the other hand, although nonsmooth, has a simple
structure.

If we simply take a modified restricted gradient approach of Bartels, Conn and
Sinclair [1978],we will end up zigzagging along the bottom of the trough because of
the /E-part,. So, we need to have two strategies:

(i) Move parallel to the null space of F until we find a constrained optimum.
(ii) At this point we are transverse to the null space of F, and we use a gradient

type algorithm.
The above procedure is repeated until convergence is achieved.

The justification for the above strategy comes from the fact that at the constrained
optimum, we are already close to the minimum of &(r).
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2,5 --
2O

GENERATING

TRACE

FIG. 6a. The optima of b(r) Ilrll + A IIFr-gll
for decreasing values of A. The data vectors are f and
g Fr, where r is displayed at the bottom (also Fig.
3a). Observe that the effects of noise are diminished
as A is decreased and sparse spike train solutions are
recovered.

__fi A

FIG. 6b. Companion to Fig. 6a, plots of a(s) as

function of h. Target profile is in Fig. 5b.

The graph of b is a stratified variety in RN+L:
graph b U Vs

where the union ranges over all functions s: { 1, , N} -> {- 1, O, 1 } and

V. {(x, 6(x)): xi 0 if s(i) 0, else xi/lxi[ s(i)}.

The interior {(x, t): > b(x)} is convex, so that the infimum of b lies at an extreme
point. Because F has a nontrivial null space, the minimum is guaranteed to lie on a
lower-dimensional stratum. Since each V is open in its closure, a constrained optimum
point lies in its interior. Generically, V intersects the constraint set transversely, as
do nearby constraint sets. Therefore a step along the gradient -Vb projected on V is
possible and results in a decrease in b. One hopes that the angle between the tangent
space of V and the constraint set {Fr= const.} is large enough that the constrained
(to Vs) optimization problem for b is well conditioned. Then the constrained {Fr=
const.} step presumably accomplishes the same objective as a large number of uncon-
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strained gradient steps for b, which tend to oscillate around the "trough", slowly
building a constrained step.

In the algorithm explained below, the constrained /1-search and the projected
grad (k-search are alternated. To avoid occasional difficulties encountered in projected
gradient methods ("dead points"), we intermittently restart the algorithm after a small
pseudo-random perturbation.

Let us describe the procedure which we summarize in algorithmic form at the end
of the section. Suppose our initial guess is ro. Now we want to displace ro to ro+P
such that Fp-0, moving parallel to the null space of F. We write p in terms of the
null vectors as in 4. We solve:

(6.2) minimize Ilro / Voqll

The optimum is indicated by rl ro+Voq. In particular, at rl, we have the index set

(6.3) Z {i Z: (r), =0},

and its complement Z. To this index set, we associate a subspace of r given by

(6.4) Sl {re S: (r), =0; Z}.

The projector onto this null space is a matrix which sets the components Z, of a
vector r e m to zero, and is easily found to be

(6.5) P= Y e,e,
iEZ

ei is the ith directional unit vector.
Now we go back and try to find the minimum of (6.1) in S, i.e.,

minimize b(r)
(6.6)

subject to r S.

As we have mentioned, on S, we are transverse to the null space of F, so we expect
(6.6) to be better-conditioned than (6.1). We start with r=r, and move r to r +p
where p+ S. Suppose p is small so that

(6.7) sgn (r + P)i sgn (ri)i for Z.
Then p can be found by taking the gradient of b(r). The gradient is

(6.8) h= Y sgn(rl),e,+Fr(Fr-g)+FrFp.
iEZ

To find the search direction p, we set the projection of h onto S to zero,

(6.9) Ph=0.

Along p, we have a one-dimensional optimization probtem. We vary a in tk(r+ cp)
until we find its minimum. If the minimum lies at a vertex, i.e., at a point where

(6.10) (r + ap)- 0,

we add the index j to Z.
We repeat the process by beginning at (6.6) with a new subspace S and index set

Z. The algorithm arrives at p 0 in finite steps. Let r2 denote the point where p 0.
At this point, we add a small random vector to r2, and begin the process again. When
we have reached a stable fix point, we terminate the procedure.
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We can summarize the optimization scheme in the following algorithm.

(o)
(1)
(2)

(3)
(4)
(5)

(6)

(7)

initial given to(liFt- gll small)
SVD of F
minimize Ilro+Voqll (using Bartels, Conn and Sinclair algorithm) arrive
at rl, index set Z1 and subspace S
evaluate h in equation (6.8)
solve for P iz[/3iei by requiring Ph =0, if p=0, go to (7)
search for minimum of b(rl + ap)
(a) minimum is at some j such that (r + ap)j 0
(b) else
rl - rl + ap
if (a) Z1 Z1 + {j}
return to (3)
r= r2, add small random vector n: r2+n return to (2).

Our experience with the numerical experiments indicate that this algorithm is
efficient, although improvements can be made. No proofs of convergence exist for this
algorithm. However, we find repeatedly the same fix points in all the experiments with
slightly different initial guesses. Step 7 is normally taken once or twice before a stable
fix point is found.

7. Recursive algorithm. In 4 and 5, we treated the small optimization problems
that arise when we use the recursive structure and partition the large problem. These
small subproblems are described in (3.14), and an algorithm for solving them is
presented in 6. In this section, we describe the complete algorithm, which exploits
the nature of the convolution.

We use the notations in 4. Again, suppose we have a wavelet f of duration (n).
The data vector F is of length M. From f, we have an M x M convolution matrix ,
the problem is to find T, also an M-vector, in T F. The algorithm to solve this
large problem is"

(o) from wavelet vector f, construct the submatrices F and F2, each m x m
(m > n) where

0,
(F1)ij--

f/--j+l,

{,(F2)iJ fi-j+,+l,

O>=i-j+l> m,
m>= i-j+l >0,

0>= i-j+ n+ l > m,
m>=i-j+n+l>O.

See Fig. 1.
(1) partition F into m-vectors g, i= 1, 2... L, Lm M
(2) for 1, 2- L, solve

Find minimizer r* of

(r0* =0)
Algorithm in 6
(3) augment r* to reconstruct T; rT (r T’ ’Ir:l. .).

This algorithm accomplishes the task of extracting a sparse spike train from a
noise-corrupted data. Moreover, it is efficient because we solve a sequence of small
problems (size-m), instead of the entire problem all at once (size-M). If the minimum
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FIG. 7a. The generating noisy "sparse" spike train.

of the size-M problem is desired, we claim that our algorithm provides a good initial
guess at a very low cost.

We coded the algorithm above and solved a 48-point problem in 2 steps of size
24. The wavelet in our example is shown in Fig. 2b. When noiseless data, generated
using the noiseless version of the spike train in Fig. 7a, are used as constraints, we
recover the spike train exactly in 2 steps. This exercise verifies our argument in 3.

More interesting is the case when the generating trace is contaminated by noise.
We display the data I’ in Fig. 7b. The target profile, the primitive of T, is shown in
dots in Fig. 7c. This is our solution when the data is noise free and used as constraints.
In our example, is a 48 x 48 matrix which has 14 singular values of less than 0.005.
We took the noisy data as penalty with A -20, and used our algorithm to solve first
the size-48 problem (taking m 48), and second, two size-24 problems (taking m 24).
The results are displayed in Fig. 7c for comparison. Shown in the dashed line is the
result of solving the large problem, and in the solid line is the result of solving the
problem in two recursions. In this experiment, the recursive algorithm produces a
solution which is very close to the solution of the large optimization.

In terms of computation time, it took 280 seconds to solve the 48-pt problem (on
a Prime 750), and 31 seconds to solve each of the 24-pt problems. This algorithm
allows us to envision solving 1024-pt problems, which are typical in seismic experiments.
As a comparison, we also display in Fig. 7c the primitive of the least length solution
ofT I" (shown in dash-dot).

8. Conclusions. We have proposed a cost functional to be used in resolving the
ambiguity in the linear inversion (deconvolution) of band-limited data for seismic
exploration purposes. The method represents an alternative to those proposed earlier
by other authors. It uses as a measure of data-fit the/2-norm, which can be shown to
be advantageous in certain situations. The choice of the parameter to weigh the data
is left to the user of the algorithm, and hence the method is suited for interactive data
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FIG. 7b. Noisy data fiom reflectivity in Fig. 7a. Noise level is 15 percent in 12-norm.

interpretations. We have also proposed to take advantage of the recursive structure of
convolution equations, and show that solving a sequence of small problems, which is
advantageous in terms of computational requirement, produces a good estimate of the
solution to the large problem. An algorithm for the optimization process has been
constructed for this purpose.

2.0
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1.0

0.5

0.0
\1 \.il \1 I.. \\1I.

-0"50 10 20 30 40 50
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FIG. 7C. Shown in dots is the target profile t(s) corresponding to noiseless version of reflecti:it)" in Fig.
7a., The solution to the 48-point optimization is given in dashes, and to the 2-step recursion in solid. For
comparison, the profile corresponding to the SVD-inverse is shown in dash-dots. Observe that in-range (pass
band) noise effects the determination of out-of-range (low frequency) components ofprofile.
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Numerical results are presented to display various features of the problem. It must
be noted here that although the requirement that the solution of the deconvolution
problem has the least feature (small/1-norm), the trend of the profile is still constructed
erroneously when the data is noisy. This indicates that information about the trend of
the profile, when the low frequency components of the data are missing, must be
supplied by incorporating other a priori information.
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Abstract. In this paper we analyze error propagation in layer-peeling inversion methods. A bound for
the error in recovering the reflection coefficient at a certain depth is given in terms of the estimated reflection
coefficients. The error propagation results are then used to discuss some practical inversion algorithms that
exploit available prior information on the reflection coefficient sequence.

Key words, inverse scattering, recursive profile identification, error propagation analysis
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1. Introduction. Inverse scattering problems arise in a wide range of fields such
as geophysics, transmission-line synthesis, speech research, physics, digital filter design,
biomedical research. It is therefore not surprising that a great deal of effort has gone
into the study of such problems. We shall study the inverse problem that calls for the
identification of a layered wave propagation medium, from a set of scattering data,
usually the recorded response of the medium to some probing signals; this problem
is a prototype of a host of one-dimensional inverse scattering problems.

The one-dimensional problem is by now well understood, and several approaches
for its solution have been devised [1]-[5]. The most recently studied approaches are
the so-called direct dynamic deconvolution or layer-peeling or differential methods,
which exploit in a straightforward manner the underlying model of the scattering
medium. The recursive solutions provided by layer-peeling approaches use causality
to identify and conceptually remove the effect of one medium layer at a time [6]-[ 12].
While the resulting algorithms are fast and numerically stable [13]-[15], a basic
assumption in deriving them is that the scattering data are noise free. If the data are
corrupted by noise, the sequential nature of the identification process seems to predict
a catastrophic accumulation of errors; because of this, geophysicists, the first ones to
derive layer-peeling methods, refrained from using them and returned to indirect
methods, based on solving integral/matrix equations. It was a common belief that such
approaches have an implicit noise smoothing effect. However, given infinite precision
computation, it is obvious that the integral equations-based methods, when applied to
noisy data, will yield exactly the same results as the layer-peeling procedures do. In
this work we will show that the noisy-data situation is not hopeless. In fact, a careful
analysis of error propagation in the inversion algorithms reveals that, in many practical
cases, the error accumulation is slow enough to enable reliable identification up to a
reasonable depth into the medium. Furthermore, additional assumptions on the medium
parametrization should help in getting better estimates. For example, in some geophys-
ical problems, in which the discretized medium is parametrized by the so-called
"reflection coefficients," it may be known in advance that the reflection coefficients
are close to zero most of the time, and only at certain depths, where the earth properties
change drastically, will the local reflection coefficients assume significant values 16]-
[18]; as will be shown in this paper, this a priori information can be used to advantage

* Received by the editors August 14, 1984, and in revised form August 9, 1985. This work was supported
in part by the Air Force Office of Scientific Research, Air Force Systems Command under contract
AFOSR-83-0228 and by the U.S. Army Research Office, under contract DAAG 29-83-K-0028.

f Information Systems Laboratory, Stanford University, Stanford, California 94305.
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(the same point has recently been made by Arsene et al. [9], though on more qualitative
grounds).

In 2 we discuss the general layer-peeling inversion process. The next section
provides the basic conditioning and error accumulation results. We show that, if the
data are perturbed by errors bounded in magnitude by e, then the error in estimating
the pth reflection coefficient is bounded by

(1.1) Ikp pl <- MePI 1 + Ik
1-1k. +O(e)

where ki’s are previous reflection coefficient estimates, and M is a constant depending
on the type of scattering data given. This is an important result, since it provides error
bounds in terms of the estimated medium parameters, and therefore it can be readily
used to make decisions about the usefulness of the results as the inversion algorithm
proceeds. Then 4 presents simulation results confirming the error propagation results,
and discusses several practical ways to implement layer-peeling algorithms with noisy
data that also exploit prior information on the medium.

2. Inverse scattering via layer-peeling methods. Suppose we are given that the signal
propagation through a layered medium is modeled by the following set of waveform
transfer equations (Fig. 1)

V(n+ , t)
=O(k+,)

V(n, t)

where A stands for a time delay operator defined by Af(t)=f(t-1) and O(k) is a
static "gain" matrix parametrized by a number k. Such propagation equations arise
naturally in geophysics, transmission-line theory, optical propagation and linear predic-
tion with lattice filters (see e.g. [3]-[8], [16]-[22]). In the above model, if we are given
the parametric form of O(k), the sequence of parameters { k,} and the initial conditions
U(0, t) and V(0, t), the propagating signals are completely determined. Thus it is
rather straightforward to solve the direct scattering problem. Suppose however that we
are given the same data, and we make the causality assumption (see Fig. 1) that

(2.2) U(n, t) 0 for <.n.

Then with the parametric model (2.1) for the signal transfer, it turns out that the given
data in fact determine the medium, i.e. the sequence {k, }, under very general conditions.
The process of recovering the medium from the signals at n 0 specifies an inverse
scattering algorithm.

To see this, let us first consider an equivalent scattering representation of the
propagation model. The scattering representation relates U(n + 1, t) and V(n, t) to

v(n, t) - L__ A
O(k.+,)

U(n+l,t)

-- V(n+l,t)

FIG. 1. The transmission model of the scattering medium.
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U(n, t)

V(n, t)

[ -------U(n+l, t)

V(n+l t)

X(k.+,)

FIG. 2. Equivalent wave-scattering representation of the medium.

U(n, t) and V(n + 1, t) (see Fig. 2). The equations describing the scattering model are

V(n, t)
(kn+,)

V(n+ 1, t).J"

In this domain we think of U(0, t) as a probing signal sent into a quiescent (zero
initial conditions) medium and of V(0, t) as the causally returning response. The
relationship between the scattering and transfer representation of the gain matrix that
describes the interaction between U and V can easily be recognized to be the following
"Mason exchange rule." If the transfer representation is

[0,1(k) O2(k)](2.4) O(k)=
02,(k)

then the corresponding scattering representation

(2.5) (k)=[tr’’(k) tr’2(k)] =[O’’(k)-O’2(k)O(k)O2(k) 0,2(k)O(k)]cr2,(k) cr22(k) O-21(k) 02, (k) 0-2 (k)
In the development that follows we shall assume that the propagation models are
lossless, i.e., energy is conserved when the right and left propagating waves pass through
the layers of the medium. In this case the transfer and scattering gain matrices have
the form

(2.6) O(k)
(1 k-) -1/2 -k

and

(2.7) E(k) [(1- k2)-1/ -k ]k (1- k2)-/2

Note that the lossless propagation model is entirely parametrized in terms of the local
"left reflection coefficient" of the scattering representation, i.e., that k cr21(k). This
observation underlies a very simple procedure for the recovery of the medium, given
the data U(0, t) and V(0, t).

Let us show that, given U(0, t) and V(0, t) we can recursively determine the
parameters of the medium that causally generated these scattering data. Indeed, kl is
simply given by

V(O, 1)
(2.8) k U(0, 0)’
since no returns from the initially quiescent medium could influence the first nonzero
lag of the response V(0, t). But, once the first reflection coefficient is known we can
use the exchange rule (2.5) to determine O(kl) and then equation (2.1) to "forward
propagate" the data and obtain U(1, t) and V(1, t). Now, we are facing a similar
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situation as before, except that the medium to be identified starts at depth 1. Thus we
are able to recover k2 next and propagate the scattering data further, and so on.

Algorithms that successively identify and then effectively remove or "peel off"
layer after layer from the given medium by operating on the given data sequences are
called, for historical reasons, Schur-type algorithms [9]-[12].

THE SCHUR/LAYER-PEELING ALGORITHM.
(a) initialize vectors U, V with scattering data

U=[uo, u,,...][U(0,0), U(0, 1),..-]

V= [Vo, v,,...][V(0, 0), V(0, 1),...]

(b) left shift V (delay U w.r.t. V by one time unit)

v,-[v,, v,. .]

(c) compute the reflection coefficient

/)o

(d) propagate U, V through 19(k)

(e) goto step (b).

The complexity of this algorithm is O(N2), i.e., the count of elementary operations
(multiplications and additions) that are required to obtain the first N medium param-
eters is proportional to N2.

We note that the above layer-peeling algorithm will solve the inverse scattering
problem for any propagation model of the type (2.1) that is entirely parametrized in
terms of the local left reflection coefficient (k o21 (k)) of the scattering representation.
If the medium model is given via the scattering representation, we only have to assume
that the functional dependence of the oi,j’s on k are given, and that o2(k) is always
invertible.

3. Conditioning and noise propagation. Throughout this section we shall assume
that the computations are all performed with arbitrary precision and thus analyze only
the propagating ettect of perturbations in the scattering data. To evaluate the cumulation
of errors in a layer-peeling algorithm it is helpful to rewrite the algorithm as a sequence
of matrix operations acting on the data vector pair { U, V}. Suppose we are given N
data points for U and V. Then the Schur, or layer-peeling, procedure for recovering
N-1 layers of the medium can be conveniently expressed as a product of operators
Q and K(ki) acting on the data vector U, V], where the operator

0 1 0 0
0 0 1 0

0 0 0 1
1 0 0 0
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describes a cyclic shifting of the V sequence in the vector [ U, V], and the gain matrix

K(k)=
02,(k)I 022(k)IJ

=(R)(k)(R)
I

generates the vectors that would result by passing the sequences U and V through a
transition layer O(k) as given by (2.6).

To determine the pth reflection coefficient we have to apply Sp defined as

(3.3) Sp K(kp_l)QK(kp_2)Q’" K(k)Q

to the scattering data pair { U, V}, and form kp as the ratio of v by Uo that appear as
appropriate entries of the resulting vector pair. In forming Sp we have to use the
estimates of the reflection coefficients k, k2, , kp-1. Suppose now that the first p 1
reflection coefficients are known precisely, i.e., that Sp is given. Then recovering kp
involves first computing

Ur

and then performing one more division. It is well-known that if we have a "perturbed"
operator Sp eFp ( > 0) acting on a data set "perturbed" by efp, then the relative
error in the resulting vector pair { Up, Vp} is bounded by the number

(3.5) ec(Sp) K Ils ll
where c(Sp)= Ils ll IIs  ll is the condition number of the operator Sp (see e.g. [23]). In
our case this number can be bounded (using 1]. norms) as follows. We have for

that

p--1

(3.6) IIS ll--< I-I (max

and a similar expression holds for S-ll, with 0ij’s replaced by the entries of the inverse
of O. For the symmetric and lossless case, where O(k) is given by (2.6), we have
O-l(k) O(-k) providing the bound

(3.7) c(Sp) -<
1 + Ik,
1-1k,

Note that the above bound on the condition number is expressed in terms of the
unknown reflection coefficient sequence {kl, k2, ", kp_}. Furthermore, we can show
that the expression (3.7) also bounds the error of getting kp, since by modifying the
normalization of the transfer matrices in a trivial way one can force the leading term
in Up, Uo, to always be 1, thus setting kp equal to the corresponding vl, one of the
entries of Vp.

The number c(Sp) has the following significance: even with perfect knowledge of
all previous reflection coefficients the relative error in computing kp may be c(Sp) times
the relative perturbation in the data. We may therefore define that a portion of a given
medium has an inherent conditioning determined by the reflection coefficients via (3.7).
If this value is high, there can be no guarantee for a reliable identification of the
medium parametrization from noisy data by any procedure. The conditioning of the
problem will be high if reflection coefficients are close to one in absolute value. Note
also the important fact that the conditioning formula (3.7) is physically meaningful,
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since a reflection coefficient close to one would imply that most of the energy of the
probing wave is reflected at that point, leaving very little energy for probing farther.
In this case we can not expect to get reliable results beyond the depth at which such
high reflection occurs and this is exactly the behavior predicted by the condition
number formula. Fortunately, in many practical cases we have some prior information
regarding the domains in which the medium parameters lie. If, from this knowledge,
we can conclude that the problem is well-conditioned we may proceed and search for
algorithms for its solution and a numerically stable procedure will yield answers in
which we can believe.

Expression (3.7) was obtained by Cybenko as the condition number of a symmetric
Toeplitz matrix parametrized by reflection coefficients 15]. The layer-peeling process,
when applied to a particular type of scattering data, is in fact closely related to the
Levinson recursions that provide the factorization of the inverse of a given Toeplitz
matrix (see Appendix).

In practice we are given the e-perturbed data and suppose we apply the layer-
peeling algorithm to recover estimates of the reflection coefficients, ki. The question
arises: can we, from the estimates obtained, infer the conditioning of the medium,
assuming the algorithm is propagated with infinite precision? If this is possible then
after obtaining the results we can decide how meaningful they are. We shall see that,
for the symmetric and lossless case, the numbers

p-11/ I/,1
(3.8) II 1-1k,

are also "amplification factors" that measure the error accumulation with depth when
estimating reflection coefficients from noisy data. This is an important result showing
that a straightforward estimate of the medium conditioning also provides a measure
of the actual performance of the inverse scattering algorithm.

In order to prove this result we have to rely on a particular set of scattering data
that often arises in practical situations. It is the data set defined as follows:

(3.9) U(0,0)=I and V(0, t)=U(0, t)=r, for allt>O.

This set of data corresponds to a special way of probing the medium" a unit impulse
is launched into it and the returns are reflected back into the medium. In geophysics
this type of data corresponds to the so-called reflection or "marine" seismogram [2],
[5]. In this case it can be shown that the inverse scattering process is equivalent to
solving a nested set of matrix equations, with positive definite and symmetric matrices
having Toeplitz structure [3], [5], [12]. This structure yields recursive solutions that
enable a rather straightforward error propagation analysis. The main result of this
analysis is the following (see Appendix for the proof).

Suppose that the scattering data is e-perturbed, i.e., that we are given the numbers

(3.10) t rt+ e, with I,1 <

and the inversion process yields a sequence of reflection coefficient estimates ki that are
all bounded by one in absolute value. Then the error in evaluating the pth reflection
coefficient is bounded by

(3.11) Ikp -/pl -< 2e
1 -l k,I + O( e=).
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The above result shows that the medium conditioning indeed provides an estimate
ofthe error accumulation; however, a more surprising fact follows from it. By symmetry,
we can regard the unknown "true scattering data" as an e-perturbation of the noisy
data, and then we have that

(3.12) Ikp kpl <-_ 2e
-1 1 +

1

This is a remarkable result, providing error bounds in terms of quantities obtained
while propagating the layer-peeling algorithm.

It would be important to know whether similar results hold for the general case,
in which the returning response of the medium is measured with e accuracy. It turns
out that if V(0, t) is corrupted by noise bounded in absolute value by e then the above
error bounds indeed hold within an amplification factor M( U, V) that can be evaluated
(see Appendix). It is given by

(3.13) M(U, v)- IIu-’ll

where U and V are lower triangular Toeplitz matrices with first columns determined
by the scattering data sequences U and V respectively. We note, however, that in all
simulations performed, the experimentally obtained "amplification" factor was always
unity (see 4).

To summarize these results, we have obtained evaluations on the rate of error
growth with depth in a layer-peeling algorithm, in terms of the reflection coefficient
estimates that are obtained. Note that the error accumulation is a result of noisy data
only, and it is assumed that no numerical errors are introduced by finite-precision
arithmetic.

4. Experimental results. The previous sections described the recursive inverse
scattering procedure and, for the symmetric lossless case, also provided error propaga-
tion bounds when the given data are perturbed within a priori known bounds. This
section presents some simulation results supporting the theoretical error-propagation
analysis while also indicating that it yields rather pessimistic error bounds in many
practical cases. Then the error propagation results are used together with simple ways
to incorporate some available prior information on the reflection coefficient sequence
to derive practical inversion algorithms. Those exhibit better medium recovery than a
straightforward application of layer-peeling to the noisy data and, for moderate noise
levels, are similar in performance to the continuous-case maximum likelihood methods
that were proposed by Mendel and his coworkers [18], [24].

Error propagation results. We tested error propagation in layer-peeling algorithms
as follows. First the scattering data were generated by passing a given probing sequence
U through a 200-layer medium, and obtaining the medium response sequence V.. Then
pseudo-random white noise sequences with either uniform or Gaussian distribution
were added to the medium response V and the inversion methods were applied to the
noisy data. The error in recovering the reflection coefficients was computed and the
logarithm of the mean absolute error over 50 runs was plotted as a function of depth
(from 1 to 200). The underlying medium for the error propagation results was set to
have one of the following reflection coefficient profiles:

(a) a step function, i.e., ki- B for i< 100 and ki- 2B for i> 100, with B =0.01,
0.02, 0.03, 0.04, 0.05;

(b) a "randomly modulated" step function, i.e., the previous profile multiplied
by a Bernoulli (1/2) sequence of +/-l’s;
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FIG. 3. A probing sequence U used in numerical experiments.

(c) a sequence of reflection coefficients uniformly distributed between (0, B) for
i< 100 and in the range (0, 2B) for i> 100, for B =0.05, 0.1, 0.15, 0.2, 0.25;

(d) a sequence of reflection coefficients uniformly distributed between (-B, B)
for i< 100 and in the range (-2B, 2B) for i> 100, for B =0.05, 0.1, 0.15, 0.2,
0.25.

In all these cases a "noise-free" run was also performed to check the propagation
of the round-off errors. The given probing sequence U was either a unit impulse at

0 or the function plotted in Fig. 3. In some cases, however we also tested reconstruc-
tion with noisy reflection seismogram data as in (3.10). The results for the first type
of profile are given in Fig. 4. We can conclude that the error propagation is, in this
case, very well described by the formula

(4.1) Ike- kpl ecCSp)= e

for both general scattering data and the reflection seismogram or "marine" (Toeplitz)
case. For the cases of the randomly modulated step profiles, however, we see in Fig. 5
that the error bounds are extremely pessimistic. The error does increase exponentially
with depth, although at a much slower rate than in the previous case. This is quite
important to note since the error propagation bound here is the same as for the
nonmodulated profile. From this experimental result one can conclude that the slope
of error increase on the logarithmic scale is, in most practical cases not even closely
as steep as predicted by the formula (4.1). In case the profile consists of uniformly
distributed reflection coefficients in the ranges (0, B) or (-B, B), the predicted average
slope is given by

(4.2) El! +x] =In
1

Ll xJ- e(1-B)-/"

A comparison of experimental error accumulation obtained for various values of B,
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(b)

FIG. 4. Error propagation results for step k-profiles. (a) Unit impulse probing sequence. (b) The marine,
or reflection probing, case. Lower set of curves shows error propagation due to roundoff, the upper set describes

identification error accumulation with added uniform noise of span (+ 10-9).

when propagating the inverse scattering algorithm is given in Fig. 6. From these results
we can see that, again, the bounds are good for the all positive reflection coefficients
but are extremely pessimistic for the case in which they assume both positive and
negative values.
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FIG. 5. Error propagation resultsfor randomly modulated step k-profiles. Note the significant improvement
in error accumulation rate.

Incorporating prior information. In many cases of practical importance, such as
reconstructing the impedance profile Zx of a layered-earth structure from acoustic
sounding experiments [16]-[18], we may have some prior information about the
medium to be identified. In the case of impedance reconstruction, the continuous
propagation equations are discretized and provide a lossless discrete model as described
by (2.1). The connection between the reflection coefficients and the (discretized)
impedance profile is given by the formula

(4.3) k.+ Z,.I + Z,

which immediately provides

Here, Z, corresponds to the impedance of the nth layer obtained after discretization
of the continuous propagation mode (Zo is assumed to be 1). For slowly varying
impedance profiles and a fine discretization, we have that all ofthe reflection coefficients
will be small by virtue of the formula (4.3). Thus the problem will be quite well
conditioned in this case. Suppose, however, that the error bound for a certain discretized
impedance profile becomes large for some n N. The effective depth to which the
inversion procedure will work is therefore N3x where 3x is the discretization step. By
increasing the spacing in the discretization we will make the reflection coefficients
larger and therefore the critical point for the error accumulation will be a smaller value
of n. This shows that given a continuous profile there is an "inherent depth" in x to
which one can expect good reconstruction with noisy data. This depth will be a function
of the profile itself and could be defined as the conditioning of the inversion problem.
Comparing the formula for the conditioning of an inversion problem expressed in
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FiG. 6. Error propagation results for uniformly distributed k-profiles. (a) Positive reflection coefficients
only: equaion (3.2) holds. (b) Positive and negative reflection coefficients: the error accumulation is much
slower than in previous case.

terms of reflection coefficients, (3.7), with the expression (4.4) for the impedance in
terms ofthe same variables we realize that, for monotone increasing impedance profiles,
the impedance itself provides the conditioning. However, when a decrease in impedance
occurs the condition number will increase as seen from (3.7).
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The type of prior information that we can have in a geophysical problem is, for
example, that the medium has a relatively small number of layers, each with roughly
constant impedance. Also we might have some information regarding the domain to
which the impedance can belong, yielding upper bounds (lower than 1) on the absolute
values of the reflection coefficient. A fine discretization will result in a reflection
coefficient sequence that is practically zero everywhere, except at the jumps between
layers. Thus we end up with a quite well-conditioned discrete problem in which we
have the prior knowledge that most of the reflection coefficients are zero, and perhaps
some more information about the distribution of the points at which the nonzero values
occur (i.e., some information about the distribution of layer-width). This information
should also be incorporated in the inversion process, in order to improve the
identification.

An adaptive-windowing reconstruction method. We implemented an improved
inversion procedure as follows. From the error propagation results we have a bound
on the error in estimating kp. If the value that the algorithm provided is close to zero
within this bound then we set the reflection coefficient to zero, and proceed. Also if
the reflection coefficient provided by the algorithm at some stage is outside the a priori
range we set it to be equal to the nearest point within the allowed domain. Figure 7
provides a series of impedance reconstruction examples with various amounts of
uniform noise, comparing the performance of the modified algorithm with the straight-
forward one. We can see from those results that the performance of the modified
algorithm is very good, however at higher noise levels the thresholding process leaves
some of the small impedance jumps undetected. In the algorithms with thresholding
we have an obvious tradeott between detection of small impedance jumps and the
number of "false alarms" due to noise. In Fig. 8 we plotted the impedance error bound
as predicted by the rather conservative reflection coefficient error range (3.12), compara-
tively for the two algorithms.

A further step in incorporating prior information could be taken if we knew
something about the distribution of layer width. If, for example, we know that the
layers have a minimal width, of say L discretized sections, then by a causality argument,
we can deduce that prior to any impedance jump point, the response sequence
V Vo, vl, v2," will have, in a noise-free case, vi kpui for i= 0, 1, 2,. ., L, where
u are the initiallags of the U-sequence. This information can be used to both detect
the point at which an impedance jump occurs and estimate the corresponding nonzero
reflection coefficient.

For a practical implementation of such a procedure one can propagate the usual
layer peeling process, in conjunction with, say, a maximum likelihood search. The
search for the next impedance jump point and the corresponding reflection coefficient
could be restricted to the neighborhood of a depth at which the usual layer-peeling
procedure provided a significant reflection coefficient estimate.

We note that an inversion method based on maximum likelihood principles was
proposed and analyzed by Mendel and Habibi-Ashrafi [18], [24] in the continuous
case context and a slightly different propagation model. It is a very nice theoretical
result of theirs that, by taking the maximum likelihood principle as a starting point
one can argue that the procedure for inversion should in fact be the equivalent of a
layer-peeling algorithm. The method developed in [24] is different from the one
described above in the technique used for detecting the impedance jump points, in
reflection coefficient identification and the use of estimates of error propagation. Our
approach starts from the layer-peeling algorithm, which is the method that applies in
the noise-free case, and combines it with error propagation results and some simple
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FIG. 7. Impedance profile reconstruction (with the probing sequence ofFig. 3). (a) The standard algorithm.
(b) The improved version with "adaptive windowing." Uniform noise levels were B =0.001, 0.005, 0.01, 0.05.

local processing aimed at incorporating and exploiting prior information. We do not
treat the continuous case and the discretization process, conceptually done at the
medium model level, induces an inherent limitation to the accuracy of the layer-width
determination. In Fig. 9 we present several simulation results using our algorithm on
a discretized profile corresponding to the inversion example treated in [24]. At low
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FiG. 8. Impedance domains predicted by error bound (3.12), or the standard algorithm, with noise level
0.005 (a) and for the modified version with noise level 0.01 (b).

and moderate levels of additive Gaussian noise the inversion results obtained by our
simple algorithm are similar in both the precision of reflection coefficient estimates
and layer-width determination to the algorithm described in [24]. For very low signal-to-
noise ratios, none of the algorithms for inversion performs well, and this is due to the
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FIG. 9. Impedance reconstruction example with Gaussian noise, and probing sequence of Fig. 3. The
adaptive windowing algorithm was used and the noise standard deviations were 0.0005, 0.001, 0.005, and, 0.01.

fact that the error accumulation curve hits an unacceptable level at an early stage of
the recursive medium identification.

We note that numerical experiments with layer-peeling type algorithms applied
to noisy and bandlimited data, for various wave propagation models were also carried
out by Symes and Corones and their coworkers, see e.g. [25]-[27]. In [25], an inversion
procedure is described calling for the propagation of a Riccati recursion which is an
equivalent description of the layer-peeling process (see 10]-[ 12]). At successive stages
of the inversion algorithm this method provides the impulse response data for a portion
of the medium starting at a deeper level. This process is mathematically equivalent to
the Schur algorithm, however the implicit deconvolution involved at each step leads
to an unnecessary complexity increase (O(N3) VS. O(N2)), which is not expected to
provide any improvement in recovery performance with noisy data.

5. Conclusions. Several issues concerning inverse scattering with noisy da{a arc
discussed in this paper. An error propagation analysis is provided which shows that
we can obtain bounds on the performance of inverse scattering algorithms which are
expressed in terms ofthe recursively computed reflection coefficients. The error propaga-
tion result, together with the established backwards numerical stability of this type of
algorithm 13]-[ 15], provide a useful method for monitoring identification performance
while propagating inversion algorithms.

We then discussed a variety of ways to incorporate prior information on the
reflection coefficient profile into the layer-peeling algorithms. This led to significant
improvements in the results obtained for an impedance profile reconstruction problem,
on which these algorithms were tested.

Appendix. It is well known that one can compute the reflection coefficients corre-
sponding to the "marine data": 1, r], r2,"" ", rN in the following way. Construct a
nested set of symmetric (positive definite) Toeplitz matrices Rp with first row
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[1 rl r2

(A1)

rp_l]. Solve the set of "normal equations"

R,

for p 1, 2,. ., N. Then the reflection coefficient kp is given by the inner product

p--1

(A2) k,
j=0

However, as we saw in 1, the reflection coefficients can also be computed in a recursive
manner, without inner products, by propagating the Schur algorithm. By a suitable
extension of the matrices Rp we can avoid the inner product computations and identify
the reflection coefficients recursively from solutions of the equations

(A3) Rp or Rpb eo.

Here the extended matrix Rp is an (2N+2-p)x (2N+ 2-p) matrix defined by

(A4) Rp= 0 Rp 0

O R’ I

where

and Rp rp+l r2Rp
rE rp+
r rp_! LrN rN-+

are nonsquare Toeplitz matrices. Note that the matrix lp is invertible if and only if
Rp is invertible.

It is easy to see that the reflection coefficients kp equal to the bpp entries of the
vectors bp which can be computed recursively via

1
(A5) 6p+ (I + kpJ) TpCkp

1- kEp

where J is the "rotation" matrix and Tp is a matrix that sets the b entry to zero and
eliminates the first entry of bp, b-N-1. The above formulation allows us to obtain
bounds for the error propagation.

Suppose the scattering data, r, rE’’’, is corrupted by noise uniformly bounded
in absolute value by e > 0. Assume that e is small enough so that the perturbed Toeplitz
matrices Rp remain positive definite. Denote by Rp +Ep the extended matrix corre-
sponding to the perturbed data 1, rl / el," ". Applying the inversion process to the
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perturbed scattering data is equivalent to recursively solving the sets of equations

(A6) (Rl,+Ep)OP=eo

and the estimates of the reflection coefficients will be

(A7) kp O-
In order to compute error bounds we have to evaluate the magnitude of the

difference between bp and ffP. Clearly

(A8)
p bp [R -(Rp + Ep)-]eo

[R (I +R-Ep)-R]eo
and hence

(A9) P-P=R-IEpR-leo+(RIEp)2R-leo+.
Since for a fixed depth N the norms of R are bounded, we get for small e that

(A10) IbVp [ I(REpRleo, ep)l-I- O(e2).
Now, it follows from (A3) that

+1 0
(All)

Rp rp_ qb ,_

0’’" 0 1 4 ’+ 6o+

and using the definition (A4), we can expand (A11) to read

1(A12) R_Tep b+l

Thus we have

(A13)

p+l

P

p+l
p-1

0

0

1p+l /.,p+l

From (A3) it follows that

(A14)

and we also have

(A15)

p 1

s= l-k
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By induction, from (A3) we obtain

(A16)

Finally

(A17)

which yields the desired estimate (2.11).
In order to evaluate error bounds for the general case, i.e., for noise corrupting

the scattering data sequence V, we have to realize that we can compute the
equivalent "marine data" and in evaluating the error amplification introduced in this
process. The equivalent marine data is related to a general input-response pair via a

deconvolution, since clearly, both pairs of sequences I + R 1 rl.r2" "], R [0rl rE" "]
and U, V characterize the same linear system. Writing out in matricial notation that
V/U- R/(I/ R) yields that R=V(U-V)-1, where R, U and V are lower-triangular
Toeplitz matrices defined by R, U and V respectively. Now assume that the scattering
data V are e-perturbed. The perturbation in R that corresponds to this noise can be
bounded, after some algebra, by the norm of eU-(I-U-V)-2 up to O(e2) terms.
Since U-Iv is a nilpotent matrix (recall that V is strictly lower triangular) we obtain
that the amplification factor is bounded by

(A18) M( U, V)=
(1- IIu-’vll)

The losslessness of the scattering medium ensures that IIU-V[I is always smaller than
unity..
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Abstract. The Random Choice Method for single scalar conservation laws is examined, and an approxi-
mate Riemann solver is constructed. The construction is accomplished using a result of Dafermos regarding
the solution of a single conservation law with a general convection term. The algorithm is described and
numerical results for the Random Choice Method with the approximate Riemann solver are compared to
those using an exact solution to the Riemann problem. The approximate Riemann solver gives results similar
to those obtained with the exact Riemann solver. It is easier to implement with a general convection term
but does require more cpu time.

Key words, gas dynamics, numerical analysis, Random Choice Method
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1. Introduction. Chorin (1976) has introduced an effective computational method,
called the Random Choice Method (RCM), for nonlinear hyperbolic partial differential
equations. He first considered the one-space-dimensional equations arising in the flow
of an ideal inert gas, and then extended the method to the situation of a reacting gas.
The technique produces sharp fronts (in one dimension), correct reaction zone speeds
and approaches first-order accuracy.

The RCM, as a numerical scheme for computing the solutions of nonlinear systems
of hyperbolic partial differential equations, is based on a fundamental result of Glimm
(1965) concerning convergence in the large of approximations to nonlinear hyperbolic
conservation laws. Chorin (1976), (1977) appears to have been the first to construct a
significant computational scheme based on the work of Glimm. (Earlier, Moler and
Smoller (1970) had implemented Glimm’s method, but had concluded, at that time,
that it did not possess significant computational value.) The problems treated with the
RCM (or Glimm’s) method involve Burgers’ equation (Colella (1979)), porous flow
(Albright et al. (1980), Albright and Concus (1980), Concus and Proskurowski (1979)),
and the previously mentioned gas dynamical problems dealt with by Chorin.

The significant feature of the RCM from our point of view is that it is not a
difference method, i.e. does not employ difference approximations to derivatives.
Instead, the RCM employs a probabilistically sampled value chosen from the exact
solution of an elementary wave pattern constructed as a local Riemann problem. The
main problem in studying the RCM is the difficulty associated with constructing the
Riemann solver which is needed to advance in time. This appears to be the major
stumbling block to easy and clear implementation of the RCM in practical situations.
Thus, an analysis ofapproximate Riemann solvers and their utility is essential. However,
there is a substantial gap between the theoretical analysis suggested by several research-
ers (see Harten, Lax and van Leer (1983) for a discussion of these points) and workable
algorithms.

The RCM has also been employed in situations which, while still complex and
physically significant, lend themselves to less cumbersome numerical experimentation.
Initiated by Concus and Proskurowski (1979) and continued by Concus and his
co-workers, a series of papers on the application of the RCM to two-phase reservoir
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flow has appeared. Here, the RCM is used to compute the solutions of the Buckley-
Leverett (B-L) equation, the principal wavelike component in an otherwise elliptic
setting. In the simplest case, the B-L equation has a convection term with an S-shaped
function f(u). With the addition of gravity, however, a nonconvex function of greater
complexity appears. In other words, the strict nonlinearity of the equation is violated.
The B-L equation is one of a general class of nonconvex equations which is of physical
interest. In particular, there is application to two-phase immiscible flow of petroleum
in underground reservoirs.

In order to apply the RCM to the B-L equation, or to any equation for that matter,
the solution of some particular Riemann problem has to be found. In the previously
mentioned examples, the Riemann problem was solved exactly, and this solution was
employed where needed. This Riemann solution was, in fact, a major part of the
analytical work, and also appears to be a significant portion of the algorithmic
development and the computational cost. Thus, recent attempts have been made to
reduce the computational complexity of the method by introducing approximate
solutions to the Riemann problem. Harten and Lax (1981) have discussed this issue
and presented some results for scalar equations. The application and use ofapproximate
methods remains, however, inconclusive.

In this paper the authors examine another approach suited to the limited, but
important, special case of the scalar conservation law. The approach which seems to
have several advantages is based on a method developed by Dafermos (1972). As
described below in more detail, Dafermos constructed the solution to the scalar
conservation law

ou f(u)
-I- --0
Ot Ox

under mild conditions on f(u) which do not involve convexity requirements. His
method involves approximation off(u) by piecewise linear functions, thereby simplify-
ing the complicated wave interactions.

By combining the solution structure of Dafermos with the elements of the RCM,
and by testing it against some known results, we hope to uncover strengths and
weaknesses of a more easily implemented Riemann solver. Clearly, a method which
employs specific properties of a particular form of the advection term is expected to
run better, or at least faster, in that situation. However, the simplicity and clarity of
a general method could present advantages in situations where an analytic representa-
tion of the Riemann solver is very cumbersome to program and debug.

2. The Random Choice Technique with discrete solver. Consider the single hyper-
bolic equation

(2.1)
Ou Of(u)

]- -’0o
at ax

The RCM is a numerical technique for finding approximate solutions to systems of
hyperbolic conservation laws. The description given here is a two-step version of the
scheme for a single equation (2.1). The technique approximates the solution at time
t, (n 1, 2, .) for space points x Ax(i O, 1, 2,. , L). The value t,+ is chosen
so that At t,+-t, satisfies the Courant-Friedrichs-Lewy (CFL) condition

(2.2) (Axt) max la(u)l<lu
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where a(u)=f’(u). Let u’ be an approximation to u(i Ax, tn), the exact solution of
n+l/2(2.1). The value -i+1/2 at t=tn+At/2 and x=(i+1/2)Ax is obtained by solving the.

Riemann problem for (2.1) with initial data

f u’, x <-(i +1/2) Ax,
(2.3) U(X, O)

i"+, x > (i +1/2) Ax.

Let v(x, t) be the solution to this Riemann problem and let % [0, 1] be an equidis-
tributed sequence of real numbers. An approximation to u((i+1/2)Ax, (n+1/2)At) is
given by

Ui+I/2 /) (i 4- aj) Ax,

The values /,/7+1 are obtained in a similar fashion by solving the Riemann problem
with initial data

n+l/2 <
(2.4) u(x, O) Ui--1/2’ X iAx,

n+1/2
Ui+l/2 X > iAx.

The % values are chosen using the van der Corput sequence (see Colella (1982)). A
new value % is chosen for each sequence of Riemann problems at each half-time step.

The RCM requires the solution to a sequence of Riemann problems at each
half-time step. A detailed solution for the Riemann problem

ou of(u)
-t- =0,

u(x,O)={u, x<=O,
tlR, X> 0

given by Proskurowski (1981) is summarized below. Using the Rankine-Hugoniot
jump condition and the Oleinik E-condition, one obtains the following solution

Case I. (uL <= UR). Consider the set

(2.6) M {(u, v): uL <- u <-_ UR, V >=f(u)}

and let H be the convex hull of M. The set H is bounded below by h(u), the largest
concave up function less than or equal to f(u). In order to describe h(u), one must
find the set of intermediate values u= u <... < un UR which are endpoints of
subintervals over which f(u) coincides with h(u). On each subinterval (Uk, Uk+), h(u)
either coincides withf(u) or it is given by the straight line between the points (Uk, f(Uk))
and (Uk+l,f(Uk+l)). If over the interval (Uk, Uk/l), f(u) equals h(u), Uk is connected
to Uk+ by an expansion wave centered at the origin which satisfies the equation
a(u) x/t. Conversely, if over the given interval f(u) # h(u), Uk is connected to Uk+
by a shock wave centered at the origin with speed

f(Uk+l)--f(Uk)
Uk+l- Uk

Case II. (UR < U). Consider the set

(2.7) M {(u, v): ue =< u =< u., v =<f(u)}

and let H be the convex hull of M. The set H is bounded above by the smallest
concave (down) function h(u) greater than or equal to f(u). The description of h(u)
and the corresponding solution to the Riemann problem proceeds as in Case I.
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For functions f(u) with at most two inflection points, the computer algorithms
for the above solution to the Riemann problem are straightforward but tedious to
implement (see Concus and Proskurowski (1979), LaVita (1981), Proskurowski (1981)).
Finding the interior points Uk often means finding line segments which are tangent to
f(u) at one or two endpoints. To develop an algorithm, one must consider numerous
different cases which depend on the relationships between u. and UR and the inflection
points off(u). An algorithm along these lines for general f(u) would be quite complex.

An alternative approach is to use a polygonal approximation to f(u) and compute
the convex hulls using an algorithm for discrete point sets. A solution of this type to
(2.5) for piecewise linear functions f(u) has been given by Dafermos (1972). In this
case an admissible weak solution to (2.5) consists of a finite number of constant states
separated by shocks centered at the origin. Suppose f(u) is piecewise linear and is
defined on an interval [a, b]. The graph of f(u) is a collection of straight lines with
vertices at the points a =/,/1 < //2 <’’" < Um--b. Assume for now that uL and /,/R are
vertices of f(u). The solution to the Riemann problem is divided into two cases"

Case I. (a <-uL <= UR <= b). Let M be defined by (2.6) and let H be the convex
hull of M. The lower boundary of H is a polygonal line h(u) whose vertices u vl <
v2 <"" < Vh UR are a subset of the vertices which define f(u). Since H is convex,
the slopes satisfy

(2.8)
f(/3k)--f(Vk-1) f(/3k+l) f(Vk).

/3k /3k- /3k4-1 m/3k

The Riemann problem solution is given by

x f(v2) -f(vl)
uL for -<--<

/32 /31

v2 for
f(v2) -f(vl) <-x=<f(/33) -f(v2),

/32- /31 /33- /32

(2.9) u(x, t)=

x f(Oh) --f(
Vh-1 for

f(vh-2) f(Vh-)
<-- <=.

Vh-2 Vh-1 Vh Vh-,

f(Vh-1) --f(Vh) X
UR for <-<.

/3h-1 /3h

Case II. (a-< UR UL b). Let M be defined by (2.7) and let H be the convex
hull of M. The upper boundary of H is a polygonal line h(u) whose vertices UR =/3h

Vh-1 <’’" < Vl- U are a subset of the vertices which define f(u). Since H is convex
the slopes satisfy (2.8) and the Riemann problem solution is again given by (2.9).

3. Implementing the discrete Riemann solver. The advantages of the discrete
Riemann solver (DRS) are its generality and simplicity. In fact, the actual algorithm
does not utilize any specific features (such as inflection points) of a given f(u). For
this reason the approach has the potential of being more time-consuming than other
more involved approaches which utilize specific features of a given function f(u).
There are a number of different ways to implement the DRS. One must select an
algorithm which is sufficiently accurate and time competitive with other approaches
to solving the Riemann problem. Listed below are the prominent features of the DRS
algorithm"
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1. A discretization a u <//2 <" <( Urn b with Au Uk- tlk-1 for all k is fixed
at the beginning of a run. All function evaluations f(ttk) and derivative evaluations
a(tlk) (for the Courant-Friedrichs-Lewy condition) are computed and stored at this
time. A solution to (2.5) (and (2.1)) is now restricted to values from the vertex set {Uk}.

2. An approximation to the initial guess u(x, 0)-f(x) is obtained by rounding
f(x) at each grid point to the closest value in the vertex set {Uk}.

3. The RCM is implemented in the usual fashion. The Riemann problem initial
data in (2.5) now consists of initial data from the vertex set {Uk}.

4. Consider the Riemann problem with initial data

(3.1) u(x, 0) [ Umin’ x ’ 0,
( Umax, X > 0

where /,/rain < Urea belong to the vertex set {Uk}. The convex hull required by the
Dafermos solution is obtained using an algorithm similar to the one given by Akl and
Toussaint (1978). Since the original vertex set is already sorted, the algorithm computes
the convex hull in O(max-min) operations.

5. A binary search algorithm is used to locate the appropriate vertex value in (2.9).

4. Examples. Certainly, for very small values of Au, the RCM using the DRS will
give nearly the same result as the RCM with an exact Riemann solver (ERS). However,
the DRS solution requires approximately O(1/Au) operations and is therefore
extremely slow for very small values of Au. In practice, an exact Riemann solver also
involves some degree of numerical approximation. For complicated functions f(u),
the exact solution to the Riemann problem often involves finding line segments which
are tangent to f(u) at one or two endpoints. All such approximations are done to a
given level e. However, for the examples below, the ERS algorithms involve relatively
little e dependent iteration. For this reason, the cpu times are not very sensitive to
changes in e and one can choose extremely small values of epsilon and obtain accurate
solutions to the Riemann problem.

Since it is not practical to use small values of Au when using the DRS solution,
it is important to observe the relationship between error norms and the size of Au. In
the experiments discussed below, accurate solutions are obtained for relatively coarse
values of Au.

Example I. Consider Burgers’ equation

Ou O(uZ/2)+=O, u(x, O) 2+sin (x), x[-m r]
Ot

with periodic boundary conditions. This example has been used by Harten and Lax
(1981) for testing a Random Choice finite difference scheme. The solution is smooth
for t<_-1. At t- 1 a shock forms which first grows in strength and then decays.
Experiments were performed with Ax- 7r/10 for a number of different values for Au.
To facilitate the comparsion of different solutions, a fixed time step At- 0.09 (which
satisfies the CFL condition) is used. For Au =0.01, the DRS solution is virtually
indistinguishable from ERS solution. For 50 time steps the L norm between the DRS
solution and the ERS solution is always less than 0.0048. The DRS solution tracked
the shock as accurately as the ERS solution. For both solutions, the position of the
shock is occasionally off by one grid position. Figure 1 is a plot of the DRS solution
(Au=0.01) and the exact solution at t=2.25 (25 time steps). For larger values of
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FIG. 1. DRS solution (DELTA =0.01) and exact solution for Burgers’ equation at 2.25.

Au _<--0.08, the DRS solution is nearly as accurate as the ERS solution; however, there
is a greater tendency for the shock position to be off by one grid position. Since the
solution values are restricted to values in the vertex set (Uk}, there is also a tendency
for the solution to have more of a steplike structure. Figure 2 is a plot of the DRS
solution (Au =0.08) and the exact solution at 2.25. Although the shock position is
off by one grid position, the solution away from the shock is still as accurate as the
ERS solution.

Example II. Consider the Buckley-Leverett equation with gravity forces

ou f(u)
m4- O,
Ot x

2

f(u
1 + a 1 u2) 1 Au2),

0.1
u(x, O)=, x6 [0, 1],

(0.1 + x)

u(O, t)= 1.0, u(1, t)= u(1, O)

where a 0.5 and A 10. This equation was considered by Proskurowski (1981) as a
test case for the RCM technique. Since f(u) has two inflection points, the ERS solution
is more involved in this case. The experiments were run with Ax .05 and At =0.005
for various values of Au. At each time step comparisons were made between the DRS
solution, the ERS solution and a simulated exact solution which consists of an ERS
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FIG. 2. DRS solution (DELTA U =0.08) and exact solution for Burgers’ equation at 2.25.

solution with Ax .00625 and At =.000625. Fixed time steps which satisfy the CFL
condition (2.2) are used to facilitate the comparison of solutions. Since the exact
solution to the Riemann problem for this equation is rather involved, the example
provides a reasonable benchmark for time comparisons. Again, good results were
obtained for relatively coarse values of Au. The solution in this case includes a shock
which grows as time progresses. For Au--<_ .02, the DRS solution tracked the simulated
exact solution as well as the ERS solution. For both the DRS solution and ERS
solution, the observed shocks were off by one grid point for the most of the run. At
grid points away from the shock, the DRS solution exhibited the same order of accuracy
as the ERS solution. Figure 3 is a plot of the DRSsolution Au -0.02 and the simulated
exact solution at 0.1 (20 time steps). Figure 4 is the corresponding plot for Au 0.01
and Figure 5 is a plot of the ERS solution and exact solution. For Au--0.01, the ERS
solution and the DRS solution are virtually identical. Since the DRS solution does not
use specific properties off(u), execution times are slower than the corresponding ERS
solution. For example, with Au =0.01, the DRS solution took about twice as much
execution time as the corresponding ERS solution. For Au- 0.005, the DRS solution
took about three times as much execution time.

These experiments suggest that it is possible to obtain accurate Random Choice
solutions to (2.1) using the DRS. The DRS is easy to implement and is applicable to
general f(u) with appropriate Au. The method is potentially useful in situations where
time considerations are not of utmost importance and the exact Riemann solution is
tedious to implement.
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FIG. 3. DRS solution (DELTA U =0.02) and exact solution for Buckley-Leverett with gravity equation
at =0.1.

LEGEND
DRS
Extract

FIG. 4. DRS solution (DELTA U 0.01) and exact solution for Buckely-Leverett with gravity equation
at 0.1.
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FIG. 5. ERS solution and exact solution for BucMey-Leverett equation at 0.1.

Acknowledgment. The authors would like to thank Howard Pomerantz for produc-
ing the graphs lin Figs. 1-5.

REFERENCES

S. AKL AND G. TOUSSAINT, A fast convex hull algorithm, Inform. Process. Lett., 7 (1978), pp. 219-222.
N. ALBRIGHT, C. ANDERSON AND P. CONCUS, The random choice methodfor calculatingfluid displacement

in a porous medium, in Boundary and Interior Layers, Computational and Asymptotic Methods,
J. J. H. Miller, ed., Boole Press, Dublin, 1980, pp. 3-13.

N. ALBRIGHT AND P. CONCUS, On calculatingflows with sharpfronts in a porous medium, in Fluid Mechanics
and Energy Conservation, J. D. Buckmaster, ed., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1980, pp. 172-184.

A. J. CHORIN, Random choice solution of hyperbolic systems, J. Comput. Phys., 22 (1976), pp. 517-533.
,Random choice methods with applications to reacting gasflow, J. Comput. Phys., 25 (1977), pp. 253-272.
P. COLELLA, An analysis of the effect of operator splitting and of the sampling procedure on the accuracy of

Glimm’s method, Ph.D. dissertation, Mathematics Department, University of California, Berkeley,
CA, 1979.
Glimm’s method for gas dynamics, this Journal, 3 (1982), pp. 76-110.

P. CONCUS AND W. PROSKUROWSKI, Numerical solution ofa nonlinear hyperbolic equation by the random
choice method, J. Comput. Phys., 30 (1979), pp. 153-166.

C. M. DAFERMOS, Polygonal approximations ofsolutions of the initial value problems for a conservation law,
J. Math. Anal. Appl., 38 (1972), pp. 33-41.

J. GLIMM, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18
(1965), pp. 697-715.

A. HARTEN AND P. O. LAX, A random choicefinite difference schemefor hyperbolic conservation laws, SIAM
J. Numer. Anal., 18 (1981), pp. 289-315.

A. HARTEN, P. LAX AND B. VAN LEER, On upstream differencing and Godunov-type schemes for hyperbolic
conservation laws, SIAM Rev., 25 (1983), pp. 35-61.



RANDOM CHOICE METHOD FOR SCALAR CONSERVATION LAWS 1359

J. LAVITA, Some remarks on the comparison of methods for computing discontinuous solutions of conservation
laws, Fourth International Association for Mathematics and Computers in Simulation, Proceedings
of International Symposium on Computer Methods in Partial Differential Equations, Lehigh
University, Bethlehem, PA, June 30-July 2, 1981.

C. MOLER AND J. SMOLLER, Elementary interactions in quasi-linear hyperbolic systems, Arch. Rational Mech.
Anal., 37 (1970), pp. 309-322.

W. PROSKUROWSKI, A note on solving the Buckley-Leverett equation in the presence of gravity, J. Comput.
Phys., 41 (1981), pp. 136-141.



SIAM J. ScI. STAT. COMPUT.
Vol. 7, No. 4, October 1986

1986 Society for Industrial and Applied Mathematics
018

A MONTE CARLO METHOD FOR SCALAR REACTION
DIFFUSION EQUATIONS*

ARTHUR S. SHERMANt AND CHARLES S. PESKINf

Abstract. A probabilistic method is presented to solve reaction diffusion equations. A random walk is
combined with creation and destruction ofelements. The method is applied to Nagumo’s equation. Numerical
results are given demonstrating convergence of the method. The stochastic process also gives a direct
probability interpretation of the equation which may be useful for analysis.

Key words. Monte Carlo, random walk, reaction diffusion, stochastic processes, Nagumo’s equation

1. Introduction. In this paper we present an original stochastic method for solving
nonlinear initial value problems of the type

(1.1a) u,=u,,+f(u), -oo< x <oo,

(1.1b) u(x,O)=g(x).

It is well known that the heat equation

1.2)
ut u,,, -oo < x <

u(x,O)=g(x)

can be solved up to time T by sampling a Gaussian distribution of mean 0 and variance
2T [3, pp. 113-117].

Equation (1.1) has been solved by fractional step methods in which the random
walk principle is used to model the diffusion term and an ordinary differential equation
is solved, analytically or numerically, to account for the nonlinearity [5]. The advantages
of stochastic methods are that they are grid free, stable independent of time step size,
and give high resolution near sharp wave fronts without excessive effort.

We also use a fractional step method, but both steps are stochastic. Our method
thus gives a probabilistic interpretation directly for (1.1).

We work with v ux which satisfies the equation

vt=v,,x+f’(u)v, -oo<x <oo,
(1.3)

v(x,O)=g’(x).

We model this by letting discrete computational elements undergo a Gaussian random
walk in T/At time steps of size At in which, at each time step, an element at position
x has a probability per unit time If’(u(x, t)) of

(a) being destroyed iff’(u(x, t))<0,
(b) splitting into two elements if f’(u(x, t))> O.

The values of u are then obtained by integrating v.

2. The method.
2.1. Discrete representation of functions. We consider the case where u is a

monotonically increasing function ofx, with limx__o u(x, t) 0 and limx_,+o u(x, t) 1.
Then v(x, t) > 0 for -oo < x < +oo, _-> 0 and limx_.+oo v(x, t) O. u(x, t) is approximated

* Received by the editors October 29, 1984, and in revised form July 15, 1985. This work was supported
by the Department of Energy under contract DE-AC02-76ER03077 at New York University.

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
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by a step function

(2.1)

which has N= N(t

(2.2)

uN(x, tt), t= lAt, l= 1, 2," ’’, T/ At

equal jumps of size 1/NO located at

X’i=Xi(t’), i= 1,..., N’.

No is a convenient number of initial computational elements, and N is a random
variable which fluctuates around N. For i= 1, 2,. ., N

(2.3) Xi(t’) =Xi(t’*)+ , 77

!*where r/7’ is a Gaussian random variable and is the time at which the ith element
was created. The stochastic process by which these random variables are chosen is
described in 2.2 below.

v(x, t) is approximated by vN(x, ) (O/Ox)ut(x, t). Thus, vt is a sum of 6-
functions

(2.4)
N, 1

V(x, t’) i -- 6(x Xi( t’)).

uN can be recovered from vN by integrating. This is accomplished by counting
the number of elements to the left of a given point x:

1 v, 1
1.(2.5) uv(x,

At the jumps, x Xi, utv is defined to be the average of the left- and right-hand
limits:

t) 1/2 lim {ur(Xl + e, ) + uv(X’ t’)}.(2.6) u(Xi, o

We sort the list of elements in order of position whenever we need to compute u,
so that the actual evaluation step can be done by stepping through the list once. We
used quicksort [1, pp. 92-97]. See 4.5 for some remarks on sorting technique.

One could use variable sized jumps. However, then one would have to keep track
of the sizes of the jumps as well as their positions. Furthermore, using equal jumps
automatically concentrates more elements where the function u is increasing more
rapidly. In all further discussion we assume that the jumps are of equal size, 1/N.

2.2. The stochastic process. To solve (1.1) up to a specified time T, we proceed
as follows.

(a) Initialization
Pick NO arbitrarily
Divide the range of g (in our case .the interval [0, 1]) into NO equal sub-
divisions:
For i= 1,. ., NO set

(2.7) X,- Xi(0) g-((i-1/2)/N)
Divide the time interval [0, T] into L equal subdivisions of size At T/L.
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(For accuracy At should be chosen so that maxo__<u [f’(u)Atl is small com-
pared to 1. Further discussion of the choice of At is given in 4.5)
For 1, 2,. , L we proceed from time (l- 1)At to IAt as follows:

(b) Random walk step.
For 1, 2,.-., Nt-

(2.8)

where r/i are Gaussian random variables, independent in and with mean
0 and variance 2At.

(c) Sort the N- elements by position.
(d) Create and destroy elements.

For i= 1, 2,. ., N-(i) Compute uN(Xti, ) by "integrating" vN as described in 2.1
=f’(us(Xl)). (We do this by formula since f is a cubic(ii) Compute Pi

polynomial in our model problem.)
1. If pl> 0, create a new element at XI with probability Pl=pi At.
2. Ifpi< 0, delete ith element with probability Pi -pl At. (See 4.5 for

details of indexing of elements.)
(e) Set N N1-1 + (# created) (# deleted).
(f) Return to (b).

3. The model problem. With an eye toward future applications we considered the
Fitzhugh-Nagumo equations [2, p. 370]:

(3.1) u,=uxx+u(u-a)(1-u)+z, z,=eu.

These equations are a simplification of the Hodgkin-Huxley equations for conduc-
tion of nerve impulses. We further simplified to the case z 0 for which there is a
steady traveling wavefront solution [2, p. 373, pp. 392-395]:

(3.2) u(x, t)= ()=

where

1 + exp (-/x/)

(3.3) x + Ot,

(3.4) 0 x/(1/2- a).

We shall refer to this as the "steady solution."
If the initial data, g(x), is monotonic, the solution will remain monotonic in x.

Since this holds, the numerical method described in 2 can be applied. (By construction,
the method generates monotonic solutions.)

There are several features of (3.1) in the case z =0 which we used to test the
numerical method.

(a) General initial data rising monotonically from 0 to 1 as x goes from -oo to
+oo evolve in time to the steady solution (3.2) [6].

In our tests we found that if we took the steady profile as initial data

(3.5) gl(x) t(x)

then the profile remained approximately unchanged except for statistical fluctuations.
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We also tested

(3.6)

and

O, x<=-b, b>0,

g2(x) .x + b
_b < x < b

2b
O, x>b

0, x<0,
(3.7) g3(x) H(x)

1, x >= O,

and found that the profiles evolved into the steady profiles. See 4.1.
(b) If we view u as a probability distribution with density v, then the total "mass"

m(t) is given by

(3.8) m(t) [oo v(x, t) dx u(o, t)- u(-o, t).

Therefore

(3.9)
dt - (x, t) dx

(3.10) I,-oo --0X2021) (X t) dx + f’(u(x, t))-x (x, t) dx

(3.11) =f(u(, t))-f(u(-, t)).

Now f(0)= 0 and, by our construction u(-c, t)= 0 so

(3.12)
dm
dt

f(u(o, t)) f(m).

This O.D.E. has a stable equilibrium at m 1 since f(1)= 0 and f’(1)< 0. In the
continuous equation m(0) 1 and therefore m(t) 1 for all t. In the discrete computa-
tional model m fluctuates because of the random creation and destruction of elements.
The stability of the solution m 1 of (3.11) suggests, however, that such fluctuations
will be self-correcting and that m will be continually driven towards the correct value
m=l.

We tested this numerically by adjusting the jump size, or mass per element, to be
1/N at each step. When this is done,

(3.13) u(oo, ) -uv(-oo, ) -= 1

and the method does not "know" whether there is a surplus or deficit of elements. We
observed that in this case the fluctuation in Nt/N increases substantially. This
demonstrates that the stability property regulates the number of elements above and
beyond the effect of the law of large numbers. See 4.2 for numerical results.

(c) The final criterion for testing the numerical method is the wavespeed of the
computed traveling wave solution. For the steady solution, the wavespeed can be
interpreted as the rate of translation,/z, of the center of mass, (t) of the probability
density represented by v at time t:

(3.14) g(t) [oo xv(x, t) dx,
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(3.15) /x =--.
The center of mass of the discrete distribution of computational elements is

1 N!
(3.16) :fv(t’) =--- ’. XI

i=1

and the average wavespeed over a time interval kAt is

(3.17)
kAt

We observed that in the steady case (u(x, 0) gl(x)), the average wavespeed over
long periods of time agreed well with (3.4), with large fluctuations over short time
intervals.

In the nonsteady cases (u(x, 0)= g2(x) and u(x, 0)= g3(x)), the wavespeed is not
defined since the profiles are deforming as they move. However, the rate of translation
of the center of mass is a well-defined quantity, and we found that the average rates
of translation converged with increasing time to the theoretical steady wavespeed as
the profiles converged to the steady profile. See 4.3 for numerical results.

The above is an instance of the fact that the speed of the center of mass is
determined by the profile:

d ffxOV (x, t) dx(3.18) = Ot

(3.19) x(x, ) &+ xf’(u(x, )) (x, ) dx
Ox

(3.20) =x--(x, ) (x, ) &+xf(u(x, )) f(u(a )) &.

If we assume that u(x, t) 0(1) as x-(+) sufficiently rapidly this reduces to

dt- f(u(x, t)) dx.

For the three criteria, profile, mass conseation, and wavespeed, our goal was to
demonstrate the improvement in the approximations as the initial number of elements,
N, is increased and At is decreased. The numerical results in 4 confirm this, and
suggest the convergence of the computed solution to the actual solution as N
and A 0.

4. Numerical results.
4.1. Overview. The numerical tests were carried out in double precision (epsmch

2.78E-17) on a VAX 11/780. Three sets of initial data were used: gl, g2, and g3 as
described in 3.

Figure 1 shows g(x) (see (3.5)) and the computed solutions at times 5.0 and
10.0 for NO= 250 and 1000. a =0.1 giving 0 .566 and At 0.1. Evidently there is

variation in the shape, height (mass conservation), and location (wavespeed) of the
profiles. We measure the errors in these three quantities separately below. It is clear,
however, that the NO= 1000 curves are smoother and are better approximations to the
steady profile than the NO= 250 curves.
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FIG. 1. Steady solution.

Figure 2 shows g3(x) (see (3.6)) and the computed solutions at successive times,
demonstrating the evolution to the steady state. NO 1000, At 0.1, and a 0.1. Similar
results were obtained for g2(x).

4.2. Mass conservation. To check whether the numerical method conserves mass
the program was run for 10.0 time units with At 0.1 and with various values of N.
Nt/NO was computed every 1.0 time units. Table 1 displays the average of the 10
values of N/N, the standard deviations, and for ease of comparison, the error
(difference from 1.0).

The left-hand columns give the results for the standard case in which the size of
the jumps is set at 1/NO and left unchanged. The right-hand columns show the effect
of setting the size of the jumps at 1/N at the/th time step. This disables the stability
mechanism as discussed in 3. The errors are evidently much larger, but they tend to
decrease as NO increases, suggesting that the law of large numbers is driving the total
mass towards 1 as Noo. Note also that the variation as measured by the standard
deviation tends to decrease as NO increases in this case.

Figure 3 shows the variation over time of the mass for NO= 800 in the stable and
nonstable cases. Note that in the nonstable case the total mass drifts and that the error
increases with time.

It is interesting to observe that the data are independent of the choice of g(x).
Since we use equal sized jumps, the only property that distinguishes different profiles,
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FIG. 2. Nonsteady case.

TABLE
Mass conservation At 0.1.

Stable case Stability disabled

N Mean NtNO + S.D. Mean error Mean NtN + S.D. Mean error

200 1.0060 + .0258 .0060 1.0910 + .0344 .0910
400 1.0940 + .0099 -.0152 1.0155 +/- .0164 .0155
600 0.9987 +/- .0155 -.0013 0.9877 +.0149 -.0123
800 0.9987 +/- .0098 -.0013 1.0325 +/- .0186 .0325
1000 1.0026 +/- .0148 .0026 0.9896 +/- .0129 -.0104

S.D. standard deviation.

given N, is the locations on the x-axis corresponding to the values of u. But the
probabilities of element creation and destruction depend only on u, so if two profiles
begin with the same. N, they will have the same N1, hence the same N2, etc.

4.3. Wavesleed. For the steady case we checked the wavespeed by plotting the
location of the center of mass every 1.0 time units against time and comparing that
with a straight line of slope -0. For the runs in Fig. 4, a 0.25 and 0 .354. The
average velocity over 10.0 time units for NO= 250 was -.350, and for No‘ 1000, -.345.
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Over short time intervals (say 0.1 time units) the velocity fluctuated widely and was
even observed to have the wrong sign.

Again, increasing NO reduces the fluctuation and reduces the root mean square
error in center of mass location. Reducing At also improves the approximation, but
the effect is much smaller. We analyze the relative contributions quantitatively for the
profile error in 4.4.

Figure 5 is the center of mass vs. time plot using u(x, t) g3(x). After 5.0 the
profile appeared to have stabilized at approximately the steady profile. We superimpose
a straight line of slope -0 -.354 on the center of mass trajectory from that time on.
Note that the center of mass speed approaches the steady wavespeed from below.
Similar results were obtained for the case u(x, 0) g2(x), with b 5.0 (see (3.6)) except
that the center of mass speed decreases to the steady speed.

4.4. Profile. In this section we .discuss the error in the shape of the profile, and
give a tentative formula for the dependence of the error on N and At, where N is the
average number of computational elements.

We computed the solution up to t= 2.0 using u(x, 0)= gl(x). To separate the
profile error from the mass error we normalized the profile for output purposes so that
u(oo, t) 1 by setting the jump size to 1/N. To eliminate the effect of wavespeed error,
we calculated the center of mass and translated the computed profile so that the center
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FIG. 4. Wavespeed--steady case.

of mass was at x O. We then calculated by explicit formula the norm of the difference
between the solution and the steady profile:

(4.1) all= r)- = ax

We hypothesized an error of the form

(4.2) e=AN"+B(At).
To compute A and a, we fixed At and varied N. We then computed the best

straight line fit to

(4.3) log e log A+ a log N, A A 1 +AN"]
for a sequence of At values 0. Table 2 gives the results, and suggests that a -.5.

To compute B and/3, we fixed NO and varied At. Table 3 shows the best straight
line fits to

( A/V(4.4) log e=log B+flAt, B= B 1 +BATS],
for various values of No These results are less clear-cut because NO evidently must
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FIG. 5. Wavespeed--nonsteady case.

TABLE 2
Best least squares fit.

At , a

.1 .87 -.53

.05 .79 -.52
0.25 .88 -.53

N ranges from 2 to 250, T 2.0.

TABLE 3
Best least squares fit.

N

2000 .035 .37
4000 .037 .47
8000 .039 .72
16000 .036 .65
32000 .034 .87
64000 .040 .89

At ranges from 1.0 to 0.1, T 2.0.



1370 A.S. SHERMAN AND C. S. PESKIN

A AT 1.0

RCTUFIL ERROR

PREDICTED ERRBR

N
FIG. 6

be taken extremely large for the At error to dominate. We concluded that the computed
values for fl were tending towards 1.0 as N- oo.

Finally we recalculated A and B by assuming a--.5 and fl- 1.0, and finding
the best multiple linear fit to

(4.5) e AN-5 + BAt.

Various data sets yielded values of A ranging from 0.49 to 0.83 and values of B ranging
from .012 to .036, in reasonably good agreement with Tables 1 and 2.

Figure 6 shows the log of the actual error and the predicted error plotted against
log N for several values of At. A--0.76 and B- 0.023 for the set of data chosen.

4.5. Sorting and other algorithmic considerations. In this section we discuss the
data structures and space and time complexity of the algorithm.

The bulk of the storage is a one-dimensional array to record the jump locations.
Initially the list consists of No jumps and a free list of unused spaces at the end. When
an element is created, its location is recorded in the first available free space. It is
sorted into its proper position prior to evaluating u(x, t). When an element is destroyed,
its location is set to a large flag value. It is stepped over in the random walk and is
automatically sorted into the free list before evaluating u. An array of length (1.2)N
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was sufficient in practice to allow for these fluctuations. A small stack of length
O(log N) is needed for sorting. Thus the storage requirements are approximately
O(N).

All the steps of the algorithm as described in 2 require one pass through the
jump array per time step, except for the sorting step. Experiment confirms that the
CPU time exclusive of sorting is O(LN), where L is the number of time steps and N
is the average number of elements.

For the sorting, we used a nonrecursive version of quicksort since the program is
in Fortran. This method has an average time complexity of O(k log k) over random
lists of length k, with the smallest constant in practice of O(k log k) methods [1].
However, the performance can be as bad as O(k) for special lists, so we checked the
time for sorting empirically. It was O(LN log N). There are improved versions of
quicksort which guard against the worst case performance, but there is still the
problem that the percentage of time spent sorting grows with N. Some results are given
in Table 4. A faster method could perhaps be developed to take advantage of the fact
that the list is approximately sorted in the large, since, on average, the elements do
not move far in one time step.

We can use the above results to derive a guideline for choosing NO and At. Let
us, assume for simplicity that the time complexity is O(LN). If we want to solve up
to time T with an error e most efficiently, then we must minimize

CN/At, C constant

subject to the constraint

This yields

e A(N) -1/2 + B(At).

A2

4B2(At)2"

Unfortunately, A and B are not known sufficiently precisely to give a meaningful
choice for N(At)E, but casual experimentation suggests a value of about 100 to 300.

5. Conclusions and future directions. We believe that the numerical results given
demonstrate that the algorithm does in fact solve Nagumo’s equation. The performance
could perhaps be improved by applying variance reduction techniques.

The algorithm is presently suited for solving scalar, one-dimensional reaction
diffusion equations. One desirable extension would be to systems of equations, such
as the Hodgkin-Huxley equations. A further possible extension is to problems in more
than one space dimension, such as the several variants of Hodgkin-Huxley for heart

TABLE 4
CPU time sec.).

N L Sorting Other Percentage sorting

250 10 .54 .96 36
500 10 1.19 1.99 37
1000 2 .52 .81 39
1000 10 2.55 3.81 40
4000 10 12.08 15.02 45
8000 10 26.50 31.57 46
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tissue. The linear storage requirements and nearly linear time dependence on the
number of computational elements offer hope that this method may be superior to
finite difference methods on these more elaborate problems.

On the theoretical side it is hoped that probabilists will be challenged to prove
that the stochastic process described in 2 is a model for Nagumo’s equation, and to
prove convergence. Especially interesting would be a proof of the error law in 4.4,
or ofan alternative law. Such work might also give new insights into Nagumo’s equation
itself, in particular to the question of global stability of the traveling wave solutions.
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CONVERGENCE OF A RANDOM METHOD WITH CREATION
OF VORTICITY*
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Abstract. A system of diffusion equations modeling free convection near a wall is solved by a grid free
random walk method that involves creation of the vorticity at the boundary. We prove that the pointwise
error and the least squares error of the computed solution tend to zero in probability as the time step tends
to zero and the number of particles in the random walk increases.
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Introduction. The purpose of this paper is to prove the convergence of a random
method for solving a coupled system of diffusion equations. The equations describe
free convection of an incompressible fluid. The flow is parallel to a hot vertical wall
and is caused by the uneven heating of the fluid. This problem is of interest because
it involves creation of vorticity at the boundary. The mathematical solution can be
written down explicitly and this fact allows us to estimate the rate of convergence for
the random method, both for the expected value and for the variance.

The algorithm was presented by Ghoniem and Sherman in their survey paper on
random methods as an illustration of the basic approach, (see [11]). We regard the
free convection problem as a model for more complicated problems in fluid dynamics.
In increasing order of complexity we have random methods for the reaction-diffusion
equation, the Prandtl boundary layer equations and the Navier-Stokes equations, (see
Chorin [6], [5], [4]). The basic idea in all three cases is to use a fractional step method.
In the first step we solve the nonlinear part of the equations by a deterministic method
and in the second step we simulate the diffusion part of the equations by a random
walk technique. If the problem involves boundaries we must also satisfy the boundary
conditions. This is done in an intermediate step by creating vorticity at the boundary.

The analysis of the convergence of random methods is less advanced than the
understanding of the underlying differential equations. In addition, the methods have
been applied to physical problems that are so complicated that they, at present, defy
analysis. A good example is turbulent combustion, (see Ghoniem, Chorin and
Oppenheim [9]). However, Marchioro and Pulvirenti [16] have proved that in two
dimensions the random vortex method converges weakly to a weak solution of the
Navier-Stokes equations. A similar statement for the Prandtl boundary layer equations
can be found in Benefatto and Pulvirenti [ 1 ]. For the reaction-diffusion equation Hald
[12] has proved convergence of an inefficient version of Chorin’s method, whereas
Brenier [3] has generalized Chorin’s method to nonlinear advection-diffusion equations
and proved the convergence of a deterministic version ofthe algorithm. The convergence
of the random methods is not really in doubt but because of the statistical error it is
difficult to check the dependence on the various parameters carefully, (see Milinazzo
and Saffman [17] and Roberts [18]).
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This paper is organized as follows. In 1 we discuss the physical problem, give
the differential equations and write the solution down explicitly. One of the terms in
the solution can be interpreted as coming from the creation of vorticity at the boundary.
In 2 we present the numerical method. Since the ordering of the intermediate steps
in a fractional step method is arbitrary we have several choices. Here we follow
Ghoniem and Sherman [11] as their choice leads to a simple proof, but the other
versions have similar accuracies. To prove that the random method converges we must
establish two facts. First that the expected value of the computed solution tends to the
exact solution as the time step tends to zero, and secondly that the variance goes to
zero as we use more and more particles. By approximating the gradient of the solution
by a finite number of particles (or vortex sheets) and following these we in effect
reduce the variance of the computed solution, which we obtain via integration. This
idea is due to Chorin. It is stated in [6], but used implicitly in the random vortex
method [4].

In 3 we will prove the convergence of the method, but only pointwise. Our
estimates are very crude, but uniform in space and time as long as our final time is
bounded. In the proof we use only elementary probability theory. Two interesting
questions remain, namely: "Is the estimate of the variance of the correct order of
magnitude?" and "What happens as the viscosity and the thermal diffusivity tend to
zero?" In 4 we will show that the variance of the solution does not go to zero just
because the time step goes to zero, even though the number of computational elements
at a fixed time increases. This is not as surprising as it sounds. It corresponds to the
fact that a finite difference scheme will not converge unless both the mesh length and
the time step tend to zero. Finally in 5 we use nonuniform bounds for the expected
value and for the variance to estimate the global error of the computed solution in a
least squares sense. We can then study the effect of the viscosity and diffusivity. Our
techniques can also be used to prove convergence for some of the algorithms in
Ghoniem and Oppenheim [10] and Ghoniem and Sherman [11].

1. The differential equations. In this section we will present the differential
equations for a one-dimensional model of free convection and give the mathematical
solution. We consider an incompressible fluid in the half space x > 0 and assume that
the velocity u and the temperature T depend only on the distance x to the wall (at
x 0). Our differential equations are (see [11])

(1.1) ut vU:x + gfl T,

(1.2) Tt=aT,,,.

Here v is the kinematic viscosity, g is the acceleration due to gravity, fl’ is the coefficient
of thermal expansion of the fluid and a is the coefficient of thermal diffusivity. The
first equation is derived from the Navier-Stokes equations for a fluid in a gravitational
field while the second is a simplified version of the equation for heat transfer, (see
[15, p. 189 and p. 213]). To complete the description of (1.1) and (1.2) we need the
initial conditions

u(x, o) --- o, 7’(x, o) =- o

for 0 < x < oo. For > 0 we adopt the boundary conditions

u(O, t) O, u(x, t) --> 0 as x --> o,

T(O, t) 1, T(x, t) --> 0 as x -> c.
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Throughout this paper we assume that g/3’= 1. This simplifies the writing. The
solution of the heat equation (1.2) with the appropriate initial and boundary conditions
is

(1.3) T(x, t)= [ 2 e-y2/4at

We can now find the solution ofthe inhomogeneous equation (1.1). By using Duhamel’s
principle and the Green’s function for the heat equation on a half line and with a
Dirichlet boundary condition at the origin (see Hellwig [13, p. 25 and p. 53]), we obtain

j IoX(e-(x-y)2/4v(t-s) e-(X+y)2/4v(t.-?)I(1.4) u(x, t) x/4rv(t i x/4rv(t S) ]
T(y, s) dy ds.

This formula shows that the velocity u is positive throughout the fluid. To analyze the
solution further we introduce the vorticity sr and the heat flux q by

u(x, t)= (y, t) dy T(x, t)= q(y, t) dy.

Thus -: and -q are the gradients of u and T. Let t0(x, tr2) be the normal density with
mean 0 and variance tr2, i.e. to=(27rtr2)-l/2exp(-x2/2tr2). Since

--Oyto(x--y) it follows from (1.4) that

,(x, )= o,[(x-y, 2,(t-s))+o(x+y, 2v(t-s))]r(y,s) dyds.

After integrating by parts we arrive at

(.5) (x,)=- 2(x,2(t-s)) ds+ 2(x,s+(t-s)) as.

Here we have used the identity

(1.6)
to(x z, a + b) + to(x + z, a + b)

[to(x-y, a)+to(x+y, a)][to(y-z, b)+to(y+z, b)] dy

with z 0. This follows from the fact that the convolution of two normal densities
with means x, z and variances a, b is the normal density with mean x + z and variance
a + b, (see [8, p. 45]). Finally, by integrating both sides in equation (1.5) with respect
to x we get

(1.7) ll(X,t)=--IO!Ix2e-y2/4v(t-s) fOfx 2e-Y2/(4as+4v(t-s))
/47rv( s)

dy ds +
x/4ras + 4Try( s)

dyds.

It turns out that the expected value of the computed velocity is a discretized
version of the right-hand side of (1.7). Moreover, the numerical method reveals that
the first term in the solution is due to the creation of vorticity at the boundary. After
several changes of variables in (1.7) we find that u(x, t)= tf(x/x/at, v/a), where f
can be given explicitly. This result is close but not identical to Illingworth’s form of
the solution, (see [14]). It shows that the maximum of u is a linear function of time
and depends only on the Prandtl number v/a.

2. The random method. In this section we present the numerical method following
Ghoniem and Sherman [11]. The basic idea is to approximate the gradients of u and
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T by a finite number of particles and let these particles undergo random walk. Thus
we solve the differential equations

(2.1) s v) + q,

(2.2) q,=aqx,.

We begin with the heat equation (2.2). At time 0 we place N particles at the
origin. We assume that each particle has mass 1/N. In each step we let the particles
jump by an amount which is drawn from a Gaussian distribution with mean 0 and
variance 2aAt. If a particle lands at a point x < 0 we reflect it across the wall to Ix[.
In probability language this is called a reflecting barrier and corresponds to a Neumann
boundary condition for the differential equations. To describe the process mathemati-
cally we let X; be the position of the jth particle at time nat. Let {X} be a collection
of independent normally distributed random variables with mean 0 and variance 2aAt.
Then

(2.3) x;. -Ixy-’+xl
with X 0 for j 1,-.., N. We denote the approximations to the heat flux and the
temperature by Q and O(Oeptxrl heat). To express these approximations we let fi be
the Dirac delta function and let H be the Heaviside function. Here H(x)= 1 if x_-> 0
and 0 otherwise. At nat we set

N1
2 6(X-x),Q(x, t)=---
j=,

1 rq

(2.4) O(x, t)=- Y. H(X.-x).
j----1

Thus for each (x, t), Q is a random measure and (R) is a random variable. The temperature
at a point x is the number of particles to the right of x times the mass of a single
particle. Note that our definition ofthe Heaviside function ensures that the approximate
temperature distribution satisfies the boundary condition at x- 0 exactly.

The complete fractional step method for (2.1) and (2.2) consists of four intermedi-
ate steps

qt=aq), t=us%, t=q, =0.

We have already discussed the first step. The last three constitute a fractional step
method for solving (2.1). Here Io : 0 is shorthand for the creation of vorticity at the
boundary. At time nat we approximate the vorticity by nN vortex sheets of
strength At/N and an equal number of strength -At/N. Here a vortex sheet of strength
s is a plane parallel to the wall such that the velocity decreases by the amount s when
we cross the sheet in the direction of increasing values of x. The velocity u(x, t) is
approximated by the total strength of the vortex sheets in the interval [x, oo). Thus
u(0, t)= 0. Note the change in language: We use particles to calculate the temperature
and sheets to calculate the velocity. We simulate the diffusion :t Vx by a random
walk. The displacements are drawn from a Gaussian distribution with mean 0 and
variance 2uAt. If a vortex sheet lands at x < 0 we reflect it back into the fluid. Next
we solve srt =q by Euler’s method, i.e.

:(x, + At) (x, t) + Atq(x, t).

At the position of each heat particle we introduce a vortex sheet of strength At/N.



RANDOM METHOD WITH CREATION OF VORTICITY 1377

The velocity u at x 0 will therefore be At. To satisfy the boundary condition u o :
0 we create N vortex sheets of strength -At/N at the wall. This completes the
description of the algorithm. Note that we have no sheets in the beginning of the first
step and in the end of the last step we have N sheets at the origin.

To describe the solution of (2.1) more precisely we let Y"’" be the position at
time n At of one of the N vortex sheets that were created at the origin at time
m At. Similarly we let Zj be the positions at time n At of one of the N vortex sheets
that were introduced into the flow at time m At. Thus Y"’" 0 and we set
for j 1,. ., N and m 1,..., n. Let { Y} be a collection of independent normally
distributed random variables with mean 0 and variances 2v At. Then

(2.5) y,,
(2.6)

for n > m. Let n be fixed. Since the Y’s are independent we conclude that all the Y’"
are independent. Moreover, the class {Y"’"} is independent of the class {Z’"}.
However, two random variables Z’’" with the same j but different m’s are not
independent, because the two vortex sheets were spawned by the same heat particle,
albeit at dierent times. We illustrate the dependence in Fig. 1. On the other hand,
the classes {Z’"},..., {Z’"} are mutually independent. If and U denote our
approximations to the voicity and the velocity then

(x,t)= -At ( Y?’" x) + At E (Zj x
j=l m=l m=l

+
j=l m=l m=l

This shows that the computed velocity U at (x, t) is really the number of vortex
sheets to the right of x times the strength of a single vortex sheet. Here the vortex
sheets are counted as + 1 if they were introduced into the flow and as -1 if they were
created at the origin. Since the random variables with a fixed n but different j’s are
independent we see that U is an average of N independent, identically distributed
random variables. Thus instead of using N heat particles with mass 1/N we may as
well use one particle with unit mass and average over N trials. We can therefore
assume that N 1 and this simplifies our analysis considerably.

3. Pointwise convergence. In this section we will prove the convergence of the
random method for the temperature and for the velocity. Because of the dependence
between some of the particles we shall be satisfied with very crude estimates for the
expected value and for the variance (here denoted by E and var).

X Z1’2 Z 1,3_c- O ,,-oZl,4

X 2---0- oZ 2,4

X3 OZ 3,4

Z4,4

FIG. 1. Dependence between the vortex sheets that are introduced into the flow.
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THEOREM 1. Let u(x, t) and T(x, t) be the solution of (1.1) and (1.2) with gfl’= 1.
Let U(x, t) and (R)(x, t) be the random solutions given by (2.7) and (2.4). If (x, t) is

fixed and n A > 0 then

I O- rl=o, ]EU-uIAt,
1 2

var 19 =< var U =<4N’ 3N"

Remark. The factor 2 in the variance corresponds to a factor in the standard
deviation. Since the maximum velocity is a linear function of we expect that the error
bound is at least proportional to t. By using Chebyshev’s inequality (see [8, p. 149])
we can estimate the error in probability For each k > 1 and each (x, t) each of the
inequalities

k
IO(x, t)- T(x, t)l-x/-,
U(x, t) u(x, t)l -< At+.

kt

is satisfied with a probability greater than 1- k-2. If k 3 the bounds should hold in
roughly 8 out of 9 trials. Note that our estimates do not depend upon the viscosity or
the dittusivity. A similar phenomenon has been observed by Sethian [19] in his
simulation oftwo-dimensional viscous incompressible flow over a half step. The amount
of work for our algorithm is roughly NtE/At-. Thus we get the smallest error bound
for the computed velocity if N is proportional to t-/At2. To obtain high accuracy in
a particular run we need that N is large. If we only have a few particles then there is
no point in taking small time steps.

Proof. We begin with the convergence for the temperature. This is the easiest part
of the proof. We assume that N- 1 and drop the subscript j. We will show that the
probability that a heat particle lies in the interval [0, x] at time m At is

(3.1) P(X <= x) 2c(y, 2am At) dy.

This is proved by induction. For m 1 X IX[. Thus (3.1) follows from the symmetry
of the density function for X. We assume next that (3.1) holds for some m _-> 1. It
follows from (2.3) that the density for X"/1 is h(x)+ h(-x), where h is the density
for Xm+ X. Since X and X" are independent we have

h(x) q(x-y, a)2q(y, b) dy

where a 2a At and b 2am At, (see [8, p. 7]). By using (1.6) with z =0 we see that
the density function for X"+1 is 2q(x, a + b). This completes the induction.

We can now prove that the temperature converges. Let t n At be fixed and
consider the random variable H(X" x). It is one if X" _-> x and zero otherwise. Thus

(3.2) EH(X"-x)=P(X">_x), var H(X" x) P(X" >= x)P(X" < x).

Since 19 consists of N independent random variables and the variance of H(X"-x)



RANDOM METHOD WITH CREATION OF VORTICITY 1379

is always less than we conclude from (2.4), (3.1) and (1.3) that

1 N o 2 e-y2/aat
EO(x, t)=-j=l Jx --at dy T(x, t),

lIxX2e-y2/4atfoC2e-y2/4at 1
(3.3) var O(x, t) =i= 4at

dy #4at dy .4N
Our estimate for the variance is the best possible uniform bound. In fact we have
equality at the point x where P(X x) P(X < x). On the other hand it is a severe
overestimate if x/at is either very small or very large.

We will now discuss the approximation of the velocity. We obsee first that it is
not essential in the derivation of (3.1) that all X’s have the same density. What matters
is that the X’s are independent and normally distributed. Under this assumption the
variances are additive. By using this obseation we conclude from (2.5) and (2.6) that

(3.4) P( Y’ x) 2(y, 2(n m) t) dy,

(3.5) P(Z’Nx) 2(y, 2m t+2(n-m) t) dy.

Here we have suppressed the subscript j as the distributions do not depend on j. The
first result holds for m 1, , n 1, the second for m 1, , n. In addition Y’ O.
We can now calculate the expected value of the velocity. Let x > 0 and n t where
n 2. By using (2.7) and (3.2) with Y’ and Z’ instead of X we conclude from
(3.4) and (3.5) that

f 2 e-y/(4v(n-m)at)
EU(x, t)=-at dy

m=l #4(n m) At
(3.6)

+At
2 e-ya/(4m+4(n-m)t)

= 4mt+4(n m) t

The sums in (3.6) approximate the integrals in the exact solution (1.7). Since the Y’
are created at the origin we can now understand why the first term in (1.7) must be
regarded as due to the creation of voicity at the boundary. To estimate the error in
the expected value of U we let f(s) and g(s) be the integrals in (3.6) as functions of
s m . Note that we suppress the dependence on x. By using a change of variables
we see that

f(s)

(3.7) g(s)
2 e-’/

/-+
dy.

We consider the two cases N and > separately. In the first case f is a decreasing
function of s while g is increasing. This implies that the first sum in (3.6) is a lower
emann sum for the integral Iof(s)ds while the second sum is an upper emann
sum for the integral Io g(s) ds. We remember now that the error in approximating an
integral by a emann sum is less than the mesh length times the total variation of the
function. But our functions are monotone. Hence

0U- u g(0l +(g(t g(0) g()
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where we have used that f(0) g(0). If u > a then g is a decreasing function of s. The
second sum in (3.6) is therefore a lower Riemann sum for o g(s) ds. Consequently

-Atg(0) < -At(g(0) g( t)) <-_ EU- u <= A tf(0).

By combining our estimates and using that 0 < g < 1 we conclude that

(3.8) IEU(x, t) u(x, t)l-<- At max (g(0), g(t)) < At.

To complete the proof we must estimate the variance of the computed velocity.
For simplicity we set N 1 and drop the index j. Since the ym, are mutually
independent and independent of the Z"’" it follows from (2.7) and Cauchy-Schwarz
inequality that if x > 0 then

var U(x, t) var-A H( Y’’" x) + var At H(Z"’" x)
(3.9)

N t 2 var H( Y’ x) +tn var H(Z’ x).

By using that the variance of a zero-one random variable is less than we conclude
that var U N 5t/16 if N 1. If N > 1 then U consists of N independent, identically
distributed random variables and in this case var U(x, t) is less than 5t/(16N). The
proof simplifies if n 1. Note that our estimates also hold at x 0 because the computed
temperature and the computed velocity satisfy the boundary conditions exactly. This
completes the prooK

4. lreets ltfis. Our bound for the variance of the random
velocity does not tend to zero as the time step tends to zero. This is not due to an
imperfect technique. In this section we will show that all the covariances of the Z’
are positive and this excludes cancellation in the expression for the variance. The
problem can be circumvented by modifying the algorithm, but the modification is not
in the spirit of random solution of differential equations.

We begin with a reexamination of (3.9). The variance of the sum of the dependent
random variables in (3.9) is equal to

n--1

(4.1) AtE var H(Z’-x)+2At cov(H(Z’-x)H(Z’-x)),
m=l !=1 m=l+l

(see [7, p. 216]). We denote the covariances by C’’. Let r At, s m At and n At.
We will show that

c’’ C(r, 2(t- r), (s r) + 2(t- s))

where C is a continuous positive function. This implies that the double sum in (4.1)
tends to the double integral

(42) C(r, (t- r), (s r) +(t s)) as r.

This expression is positive. Since the first sum in (3.9) and the first sum in (4.1) are
O(t) we conclude that the variance of the computed velocity tends to the expression
in (4.2) times 1IN as the mesh length tends to zero. We are therefore led to the
following obseation.
OsvAo 1. e bounds for the variances in eorem 1 have the correc

dependence on the number of particles.
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The calculation of the covariances C ’’’" can best be understood by an example.
Let

z’-IIx/ Y]+ Y], zm--iiX+ V,I+ V)_l

where the Y and the V are independent normally distributed random variables with
mean 0 and variances ai and bi. We assume that X has density 2(x, c) for x 0. If
al a b2 2 At and 2b c =43 At then we have the situation indicated in Fig. 1
with Z1= Z2" and Z=Z3’4. Finally we introduce the functions

(4.3) F(z) EH(IIz+ g,]+ r2l-x),

F(z) EH(llz+ V,l+ Vl-x),

which we shall evaluate explicitly. Note that Ft and F are positive. Since X, and
are independent it follows from the definition of the covariance that

io io ioC’’"= 2(Z)Fl(z)F(z) dz- 2(y)F,(y) dy 2(z)F(z) dz

(4.4) 2 (y)()[F(y)- F()][F(y)- F(z)] dy dz.

Here we have suppressed c in (z, c). We will show that F and F are increasing
functions of . The product [..-][... in (4.4) is therefore positive and this implies
that C’’ > 0 as claimed. Since the Y’s are independent we can compute the expected
value in (4.3) as

f/(z) ff ff g(llz+yl[+y2[-x)(yl, al)(y2, a2)dyl dy2.

We attack the innermost variable first. Let z +Yl . By splitting the integral into
> 0 and < 0 we find after a change of variables that

(z)= H(Inl+yl-x)[(nl-Z, al)+ (n+z, a)](y2, a2) dn dy.

Next we interchange the order of integration, set + Y2 2, split the integral into
2> 0 and 2< 0 and get

( (n-x[(n-n, a)+(n+ n, a)]

x [(n-, a)+(n+ , a)] n n,-
By interchanging the order of integration, using the definition of the Heaviside function
and (1.6), we obtain

(4.5) F(z) [(n -z, a)+(n+z, a)] dn

where a a + a. Since x and z are positive (4.5) implies that F(z) is an increasing
function of z. The same result holds for F(z). Equation (4.5) gives the general result.
If we return to the original variables then it follows from (2.3) and (2.6) that Z’ and
Z’ depend on X if < m. Consequently F(z) is given by (4.5) with a 2(n-l) t.
For F(z) the variance a is replaced by b=2(m-l) t+2(n-m) t. Finally (3.1)
shows that c 2I t. By combining these obseations we can interpret the double
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integral in (4.4) as the evaluation of a positive function at the grid points of a two
dimensional grid. This completes the proof of Observation 1.

Our analysis shows that the variance of the computed velocity would be of the
order At/N if the vortex sheets were independent. This can be arranged. At the mth
time step we let the particles start at the origin and jump according to a Gaussian
distribution with mean 0 and variance 2am At. Those that land at x < 0 are reflected
across the boundary. The costs for the two algorithms are identical. The modified
version of the algorithm uses the fact that we can simulate the solution of the heat
equation by taking one large step instead of many small. However, to take one large
step is contrary to the spirit of numerical solution of differential equations. We will
therefore not discuss this variant any further.

5. Convergence in L2. Our estimates in Theorem 1 say nothing about what happens
at several points at the same time. From a practical point of view we would like to
know that the maximum error in the computed solution tends to zero in probability.
it is possible, by using Kolmogorov’s theory for empirical distribution functions, to
estimate the error in the maximum norm asymptotically, as the number of particles
tend to infinity (cf. Billingsley [2, p. 104]). However, I have been unable to find explicit
upper bounds for a finite number of particles. In this section we will show that it is
unlikely that the computed solution differs from the exact solution by a moderate
amount on a large set or by a large amount on a moderate set. The error may still be
large on a small set. This is the content of the next theorem.

THEOREM 2. Let u(x, t) and T(x, t) be the solutions of (1.1) and (1.2) with gfl’- 1.
Let U(x, t) and O(x, t) be the random solutions given by (2.7) and (2.4). Set fl- u/a.
If n A > O and k > l then

1 IIO- TII1-5----< P IITll
1 (ll U-ullilul

Remark. The factor that depends on the Prandtl number /3 is an increasing
function. It is always greater than 2 and less than 5 if/3 -<_ 1. It is less than 20 if/3 -<_ 7.75.
If At=t/n, N=n4, k=n and/3_-<lthenwehave

P(llU-ull> lOllull/n) 1In2.

It is surprising that our bound improves as increases. If At is small and is comparable
to At then the absolute error is small with high probability, but the relative error could
be large. To prove Theorem 2 we need two technical lemmas.

LEMMA 1. If a > 0 and b > 0 then

fo’fx 2e-y/2 (x/’A2e-y/2
/

dy
ao

dy dx= x/(/a + b-x/-)

IoIx 2e-y/: Ix 2e-y/:

/
@ @dx=(+-(a+b).

Proof. Let I1 denote the first integral. Change the variable x to x zx/- and set
f(z) o exp (-y2/2) dy where/3 ax/--/b. By interchanging the order of integration
in 11 we get

4x/-d e_y2/2 e_yZ/2 YI " f(z) dz dy e_,2/ dq +-- e-2y2/2- dy.
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To compute the double integral we integrate by parts. This yields

I e-y2/2fl e-2y2/2 dy +1 _(1+2)y2/2 1 e_y2/2e dy-- dy.

The value of I1 can now be computed. To evaluate the second integral in Lemma 1
,/-

we note that x/ 2p 1-o 2q and use the value of 11. This completes the proof.
In Theorem 2 we estimate the relative error in the computed solution. We must

therefore find lower bounds for the L2 norm of the temperature and of the velocity.
Since T and t-lu are functions ofx/ it follows that the L2 norms of T and u are
proportional to (2at) 1/4 and t(2at) TM. This simple argument does not give the value
of the constants nor does it indicate the dependence on the Prandtl number v/a. By
using Lemma 1 we can calculate the L- norms explicitly.

LEMMA 2. Let u(x, t) and T(x, t) be the solution of (1.1) and (1.2) with gfl’= 1. Then

TII = 2(x/- 1) x/t,

32t5/2 2(x/-l)(v/-+v/-)E+x/(v/-+x/)x/a+ v+x/(a+ v)
15v/-

a
(4-++/a + v)2(/-+)2(/--+/-+//a + )"

Proof We begin with the temperature. By using (1.3) and Lemma 1 with a b 2at
we find that

TI,_ io. (fxo 2 e-y2/2 )2/,/-,
dy dx 4--(224d-42.2at)

from which the first statement follows. Let next u--A+ B where A and B are the
integrals in (1.7). We replace the variable t-s in A by s and shall compute [lull 2 as
A2 + B2- 2AB. Fubini’s theorem and Lemma 1 yield

Io Io Io’ Io I, 2e-r2/: I, 2e-r2/2
A2 dx ds dtr dx

2.,/y
dy dy

as + s +

A similar calculation can be carried out for I B and 12AB and by combining the
results we get

= as a[(s+(-l+l/-(s+l/

-((- s++( +t/]
at/ [ (+)/-/-()/+/ ()/_s/

(_
It is not obvious from this formula what happens as - tends to zero or even that
u is positive. The rest of the proof therefore consists in transforming the expression

into a form which we can work with. Since -+(- )-=-( )- it follows that

15 ( ) -
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By writing (a+v)2 as (a-v)2+4au and using that a-v is equal to (x/-d-x/-) x
(v/-d+) we obtain

ilull= 16t5/2[ 2av 1 ++v]
We can now put all terms in [... over a common denominator. Since 2( equals
(+)-((a +) we can express the numerator as (a + ) times a fouh order
polynomial in y (+)/(a + . After factoring this polynomial we have

(5.1)
1)y2+y+a( + v(y- 1

5 2(+)

The formula in Lemma 2 can now be derived from (5.1) by rationalizing the numerator
in (y-1)2. This completes the proof.

The expression for Ilull 2 in Lemma 2 is too complicated to be useful. It is better
to have a simple approximation. Since 1 < y <=/ it follows that the last quotient in
(5.1) is greater than and less than 1/2(7-4,/). We can therefore estimate the L2 norm
of u by

=(at + ut(1 + )-2 1 +] u 2 2. the lower bound.(5.2)

Here fl v/a is the Prandtl number and we have simplified -(y 1)2 by rationalizing
the numerator. The lower bound in (5.2) is best possible because we have equality for

Proofofeorem 2. We begin with the temperature. Since T EO it follows from
Chebyshev’s inequality (see [8, p. 149]) that

P(IIO-TII >kllTII) E(IIO-EOII2)
k2llTll2N-1

To compute the expected value we use Fubini’s Theorem, (3.3) and Lemma 1 with
a b 2t. This yields

E(IIO- EOII=) varO dx= (-1)

IITII =
-N"

Here we have used Lemma 2. Since the probability of an event is one minus the
probability of the complementary event we have proved the first claim in the theorem.
We will now study the velocity. Let 6 be a constant such that [IEU- u u II. Then

{ u u > + u } { U EU >

Thus it follows from Chebyshev’s inequality that

(5.3) 1-P
IIg-ull IIU-EUII>

Ilull
+ P

Ilull =
We will choose the value of e such that the right-hand side is less than 1/k:. To
estimate the expected value we use Fubini’s theorem and (3.9) with the extra factor
1/N. By combining (3.2) with the distributions in (3.4) and (3.5) and using Lemma 1
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we get
1 2 nlE(ll U- EUll 2) _-<-- A x/2x/(x/- 1)x/2v(n m) At
N m=l

1 t2 2x/-/(v/ 1)x/2am At4-2v(n m) At+mA n
N m=l

<5t2 2
=4N /-(x/- 1)/max (a, v)t.

By inserting this result in (5.3) and using our lower bound (5.2) for Ilull = it follows
that the last term in (5.3) is less than k-2 if

1 + x/- _ke=(l+/3) 1+lx/T-]/-.
To find a convenient choice of 15 we use the inequality (3.8). From definition (3.7) and
Lemma 1 with a b 2 max (c, v)t we conclude that

,,EU_ull2<=At2fo,(Ix 2 e-y2/2 )2/,
ay ax

-<_ Ax//-(2-,)/2 max (a,

Combining this result with the lower bound for Ilull we obtain

liEU- ull=_< (1 +/3)2( 1 +1 +x/- 2At2= t2.
u = 14i-] --This completes the proof.

A typical numerical analysis statement is as follows: If the time step is sufficiently
small and if we use a sufficiently large number of particles then the error in the
computed solution is small. In this paper we have proved something similar, namely
that if the time step is small and if we use a large number of particles then the error
in the computed solution is small--with high probability. This does not mean that the
error is small in any particular experimentonly that it is unlikely to be large.

There is another concept of convergence, namely convergence almost everywhere
(or almost surely). It says, that if we take an infinite sequence of experiments in which
the time steps tend to zero and the number of particles increase sufficiently quickly,
then for any e > 0, the error in the computed solutions will be less than e in all, but
a finite number of experimentswith probability one. The trouble with this formulation
is that we must order the experiments in advance and that we get no information about
the rate of convergence for a finite number of particles. If we set At t/n and N n
and make one experiment for each n then the remarks following Theorems 1 and 2
together with the Borel-Cantelli lemma imply that the computed solutions converge
almost surely, both pointwise and in the L sense. For the proof use k n. On the
other hand, by repeating the experiments an increasing number of times, we can
construct a probability space such that the method diverges almost surely. (If anything
can go wrong, it will eventually.) The proper concept for numerical work is therefore
convergence in probability and not convergence almost everywhere.

Acknowledgments. The problem was suggested by Ahmed Ghoniem. In addition
the author thanks Alexandre J. Chorin, Phillip Colella and James Sethian for helpful
discussions.
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CANCELLATION ERRORS IN QUASI-NEWTON METHODS*

R. FLETCHERf

Abstract. It is shown that the effect of cancellation errors in a quasi-Newton method can be predicted
with reasonable accuracy on the basis of simple formulae derived by using probabilistic arguments. Errors
induced by cancellation are shown to have the potential to increase without bound as the method converges.
They are shown to be one of the dominant factors affecting attainable accuracy in the variables of a problem.

Key words, quasi-Newton method, cancellation error, expectation, BFGS method

1. Introduction. The effect of cancellation errors on the performance of quasi-
Newton methods has not been studied in any great detail. This paper shows that these
effects can be predicted quite accurately (to within a factor of 10 or so) from simple
formulae derived by using probabilistic arguments and a Euclidean norm. For variable
metric methods in minimization, and in particular the BFGS method, use of the
variational weighted Euclidean norm is most suitable. The resulting formulae enable
the size of cancellation errors to be assessed in relation to both the size of the low
rank corrections and the size of the Hessian or Jacobian matrix itself. In all cases it
is seen that errors induced by cancellation have the potential to increase without
bounds as the iteration converges. Practical examples are described in which cancella-
tion errors cause all significant figures in the Hessian to be lost. These observations
are clearly important when the Hessian is to be used for other purposes, for example,
significance analysis. Cancellation errors in the Hessian or Jacobian are also shown
to be one of the dominant factors affecting the attainable accuracy in the variables of
a problem.

In 2 the BFGS method is described and it is shown that the size of the low rank
correction can be measured in an invariant norm. It is argued that cancellation errors
form the dominant source of errors in the Hessian approximation. An appropriate
probabilistic model is used to analyse cancellation errors, leading to a realistic estimate
that is easily calculated. Some numerical experiments are described in which cancella-
tion errors are measured, and a summary of their effect is given. The termination
criterion in use, and also whether or not the minimum function value is zero, are both
observed to be critical factors. In 3 the propagation of cancellation errors in the
BFGS method is considered when the gradient is estimated by finite differences. An
equivalent probabilistic formula is described which indicates that in this case the effect
of cancellation errors is more serious.

In 4 it is shown that a similar analysis can be carried out in the case of a
quasi-Newton method for solving nonlinear equations, although without the use of a
weighted norm. The influence of cancellation errors on the attainable accuracy in the
variables is considered. A general model for error propagation is described which can
be used to analyse both iterative refinement for linear systems, Newton’s method for
nonlinear systems and quasi-Newton methods for nonlinear systems. It is shown that
rounding errors in the residual vector are dominant in limiting the attainable accuracy
in the variables of the problem, either directly or through the effect of cancellation in
the Jacobian matrix. A probabilistic estimate of attainable accuracy is given on the
basis of the rounding errors that arise on a single iteration.

* Received by the editors September 25, 1984 and in revised form May 15, 1985.

" Department of Mathematical Sciences, The University of Dundee, Dundee, Scotland.
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2. The BFGS method. The BFGS method (for example, Fletcher (1980)) aims to
find a local solution x* of the problem

(2.1) minimize f(x ), x "
when the first derivative vector g(x)(= Vf(x)) is explicitly available. The method is a
variable metric line search method: an iterative sequence x(k), k 1, 2,... is deter-
mined, and on iteration k a search direction s(k) is calculated which satisfies the equation

(2.2) B(k)s(k) _g(k)
(g(k) denotes g(x(k))). B(k) is a symmetric positive definite matrix which approximates
the Hessian matrix G(x(k)( V2f(x(k)). B1 is user supplied and for k> 1, B(k is
obtained from B(k-l) by means of an updating formula. The vector s (k) is used in a
line search; that is, a step a (k) is calculated which approximately solves the subproblem

(2.3) minimize f(x(k + as(k), a

ina certain sense. Then the next iterate is defined by

(2.4) X(k+l)
X

(k) -J" ol(k)s (k).

Finally the difference vectors

(2.5) () X(k+l)
X(k)

and

(2.6) y(k) g(k+l) g(k)
are determined, and used in an updating formula to calculate B(k+l).

The BFGS method uses the updating formula

B66 7-B 3’3’7-(2.7) B+= B

where superscript + is henceforth used to denote the successor iterate. This formula
has the property (for example, Dennis and Schnabel (1983)) that it solves the variational
problem

(2.8) minimize H+ H w
H

(2.9) subject to H/ 7- H/,

(2.10) H+y=6

where H refers throughout to B-, and where the norm is defined by

(2.11) I1., (tr EWET-W)/2.

W is any positive definite symmetric matrix for which W6 3’. In practice the choice
W B+ can be made and AI-Baali and Fletcher (1983) show that the minimum value
of the norm is given by

(2.12)

say, where

(2.13)

iiH+ Hll (a__ 2b + 1),/2 __a A,

yrHy
ry
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and

(2.14) b

Equation (2.12) can be interpreted as giving a scalar measure ofthe size ofthe correction
to B in the BFGS update. This measure is independent of linear transformations in
the variables x which is useful invariance property. A feature of (2.8) is that it is the
norm of the change to H (that is B-’) which is minimized. This suggests that in
measuring other errors in B, we should first find the corresponding error in H, and
then measure this error using I1" I1+. This measure is then directly comparable with
the quantity A. This approach is used below to assess the effect of cancellation errors
incurred in forming B/. Furthermore the size of the matrix H(k) can also be measured
in this norm because

(2.5) nll’’- H* *- 4-.
Thus the relative effect of errors can also be readily assessed.

There are various ways in which rounding errors can affect the matrix B. For
example if B is represented by factors B LDLT then there will be rounding errors
associated with the substitution processes in solving (2.2), and also in updating the
factors to account for the two successive rank one changes defined by (2.7). These
errors can be bounded in a satisfactory manner (see Wilkinson (1965) and Fletcher
and Powell (1974), respectively). The dominant rounding errors are likely to be
cancellation errors arising in forming the vector 3’ in (2.6), and it is solely these errors
that are considered in this paper. To analyse them, it is assumed that the error in 3’ is
e and /= 3’ + e. The consequent error in B+ is

--T T

(2.16) EB

To first order

(2.17) (6T/)-’ (6T3’ + 6%)-’= 6T3"-l--6Te/6T3"2,

and hence, also to first order,

eyT + 3"e
T Te TTT(2.18) EB+ 8 T3’ 6 T3" 8 T3’’

Now denote the corresponding error in H+ by Eri+. It follows from B+H+= I that to
first order

(2.19) EH -H+En/H+.
Thus the required measure is given from (2.11) by

(2.20) EH + tr H+E+H+E+.
Substituting (2.18) and using H/3’= 8 it follows that

(2.21) iiE.+ll
2eTH+e ( Sre2 2

e TIFIe

where

/ H+ 1/288 T/
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It is easy to show that is positive definite from the form of the DFP formula and
the fact that + +HBFGS HDFP.

The cancellation errors in 3’ arise due to errors in g and it is necessary to make
some assumption about how the latter errors arise. Let hi denote the error in gi, arising
from the use of floating point arithmetic of relative precision e. If g- Gx-b were
linear, then Ihilpie would be a good estimate of the error, where pi is the largest
absolute partial sum in forming Yq Goxj- bi. For nonlinear g(x) the stationary point
condition gi(x)-0 is likely to come about in a similar way by the cancellation of a
number of terms, and so the assumption is made that there exists a vector p such that

(2.23) hi eipi

where ei is an independent random error from a uniform distribution in [-e, e]. Then
the error in 3’i is

(2.24) e,=hT-hi=(eT-ei)p,.

The mean of ei is (ei)--0 ( denotes expectation) and so (ei)= 0 and the variance
is

(ef) p2 (eT- ei)2

p2((e-2) + (e2))

(2.25) =]pe

using independence and the result that the uniform distribution has variance e
Fuhermore

(2.26) ’(eie)=pip((e--ei)(ef -e))=O, ij

by independence. Therefore from (2.21)

2 4e2

r piHu(2.27) (11"+11+) 6r3’ t2I’(eiej)
36 3"

:

and hence

4 ) 1/2

P Hii(2.28) (g(IIEH+[[2+)) ’/2 e 36r3’ 2

It can be shown (Fletcher (1983)) that (Tg(z2)) /2 is an upper bound for (Izl) and
that a realistic estimate is

(2.29) ([zl) -’0.8((Z2)) 1/2.

Thus (2.28) gives a close upper bound for the likely effect of cancellation errors in 3’
for the update.

Assuming that p is known, (2.28) is convenient for computation (if necessary the
diagonal elements H, can be recurred separately), and therefore can be used in an
algorithm to assess cancellation error effects. Approximately it has the form
(IIEH+II.+) ,/11,11 showing that the errors induced by cancellation increase without
bound as the iteration converges. The expression (2.12) for A is invariant under a
nonsingular linear transformation of the variables x; however the way in which
rounding errors arise depends on the coordinate system, so that (2.28) is not invariant
under a linear transformation. Nonetheless it is invariant under diagonal scaling of
the x variables, assuming that the vector p transforms correspondingly, which is the
most that can be expected.
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To measure the effect of rounding errors in practice, numerical experiments on
some standard test problems (see Fletcher (1980)) are reported. A DEC10 computer
with e 2-27-" 7.451o-9 is used and Pi is estimated by the quantity

(2.30) pk= max IgJl.
j<-k

This is likely to be reasonable when x(1 is not close to x* but the magnitudes of the
elements x1 and x* for any are similar. The results of the experiment are shown in
the main part of Table 1; each row corresponds to a problem and each column to one
of the last five iterations (with iteration count increasing from left to right). Each entry
contains two numbers; the upper one is A in (2.12) and the lower one is ((11E,,+ll ,+))/=
in (2.28), both for that iteration. The BFGS method is run until no further improvement
in f(x) can be obtained. Because all the test problems are least squares problems, with

f* 0 except for Chebyquad n 8, high precision in f can be obtained. This allows
the iteration to continue to higher accuracy than would be the case whenf* 0 (because
each iteration requires f to decrease). The termination criterion that I would normally
use for these problems isf-f+ <= 10-8. This criterion gives an indication ofthe maximum
accuracy that can be obtained on a problem for which f* 0 and is indicated by an
asterisk in the table. In the two rightmost columns of the table, the measure H H* .
of the difference between the final H matrix and the true H* matrix is given (for both
termination criteria). Finally all these measures can be compared with that of H* itself
using the fact that H*

The behaviour of these measures is very much as the theory predicts. The estimate
((IIE,+II+)) 1/= of cancellation errors in B is negligible on early iterations (---10-7 or
so). Near the solution a rapid increase in magnitude is observed (see Table 1) in
accordance with the ---e/llli behaviour, reaching a final value of---1 in some cases.
(Since equation (2.28) is based on first order approximations, not too much attention
should be paid to values of---1, but they do indicate that cancellation errors are
substantial.) The quantity A which measures the size of the rank 2 correction is initially
large (B(1) I is taken) but drops sharply after about n iterations, presumably indicating
that a good estimate of the Hessian matrix has been built up. Changes then stay at
about the same level with random fluctuations, but start to decay in the neighbourhood
of x*, reflecting the result that A 0 as B- G* in exact arithmetic. However in many
cases A is observed to rise again before termination. This only occurs when A and
(c,(I[EH+[[+))I/2 are comparable and would appear to indicate that changes from
cancellation errors are becoming dominant in B.

Normally when f* # 0 the iteration would be expected to obtain an accuracy
f(k)_f,.., e, with IIx x*ll- and IIg- g*ll El/2. This observation follows
because the iteration terminates when f can no longer be improved, and by virtue of
Taylor series expansions. Table 1 indicates that at this stage cancellation errors are
not dominantsee the * termination point and the Chebyquad n 8 case. Thus for
general use it can be concluded that cancellation errors are not significant in affecting
the asymptotic behaviour of the BFGS method and the resulting Hessian approxima-
tions are not significantly contaminated by cancellation. Another feature to observe is
that the size of the corrections A is an underestimate of the true error in H, but not
grossly so. Also the true error is not much less than x/if, which is the measure of H
itself. Thus at normal termination H may only be accurate to one or two significant
figures.

When f* 0 a different picture emerges, because of the higher accuracy that can
be attained in f. The trigonometric n- 2 example is atypical in that finite termination
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occurs with f gl g2 0 and the limiting ef[ect is not seen. In all other cases when
f* 0 in Table 1 and extended termination is allowed, cancellation errors are seen to
play a major part. These errors rise to the same level as the correction measure A,
indicating significant contamination due to cancellation. In some cases both measures
continue to increase, and the true error H- H*]]. is seen to deteriorate to an extent
that the error in H is greater than the size of H itself. Thus cancellation errors can
lead to a complete loss of significance in these circumstances and it would be prudent
to cease to continue updating H before this situation is attained. These observations
can also be expected to apply to quasi-Newton methods for solving equations (see 4).

3. The no-derivative BFGS method. In this section the ettect of cancellation errors
is considered when the gradient vector gk) in (2.2) is estimated by finite ditterence
techniques. The VA10A program of Fletcher (1972) (modified to implement only the
BFGS update) is followed in which the user is asked to supply a vector (t > 0) such
that ti is the typical magnitude of xi, and a scalar ditterencing increment h. Then the
forward ditierence estimate of g) is

(3.1) k) (f(x(k) + ht,ei) f(k))/ hti)

(ei is a coordinate vector), and the central difference estimate is

(3.2) ffk)= (f(xk) + htie,)-f(xk)- htiei))/(Ehti).

In VA10A it is assumed that and h are fixed for all k. Also the algorithm makes as
much progress as possible with forward differences before switching to central differ-
ences for the remaining iterations. Only the central difference phase is analysed here
but similar remarks hold when forward ditterences are used.

To estimate the effect of errors, it is assumed for differences taken about xk) that
the error in f(x) is

(3.3) f(x) f(x) pk)e
(f indicates the computed value) where e is independently and uniformly distributed
in I-e, e] and p(k) is some known constant. Using (3.3) and a Taylor series, the
computed estimate of ffk) in (3.2) is given by

(3.4) k) p(k)( eli_ e2i)
t- gk) +-goiiil(k)(hti)2 + O(h4)

2hti

where ,i=oaf/cgx, and eli and eEi denote two errors typified by (3.3). Thus if
,(k) (k+l)__ (k) is computed then the error e(k) in ,(k) is given by

(3.5) ek) pk+l)(e3i- e4,)--pk)(eli e2,) + O(k)h2) + O(h4).
2hti

Observe that a consequence of using a fixed value of h is that the third derivative
terms cancel and the leading truncation errors come from fourth derivative terms. In
view of this these terms are ignored and it is assumed that ek) is dominated by rounding
errors. In a similar manner to 2, g’(e) 0, (ee) 0 and

(3.6) g’(e,2-) e2(p(k)E+p(k+)E)/(6h2ti).
Therefore it follows from (2.21) that

(3.7) ((,,EH+ll2+))l/2 e(p(k)2+pk+l)2i )1/2/--/,,/tf
33 ’3’
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As for (2.28) this measures the effect that cancellation errors have on the B matrix.
Like (2.28) it is readily calculated, and it also has the same invariance properties.
Asymptotically it suggests that (ll E,+II+)- /(hllll) showing not only that cancella-
tion errors increase without bound but also that they are magnified by a factor h -1

from the differencing interval. Therefore cancellation effects are likely to be more
severe when a no-derivative method is used.

The numerical experiments described in 2 are repeated for the no-derivative
BFGS method. Whether or not f* 0 is again an important consideration. If f* 0
then the estimation of pk) in (3.3) is likely to need careful consideration, perhaps
involving some elementary error analysis. However most practical applications of the
no-derivative BFGS method are expected to arise when f* # 0. In this case there will
certainly be one rounding error which is realistically described by (3.3) with p(k) If(k)[.
If we assume that this is dominant, and that we are interested in using (3.7) close to
the solution so that p(k) p(k+l), then the estimate

(3.8)
elf(kl 2

r ,,/t

suggests itself. Now the test problems referred to in 2 are almost all least squares
problems with f* 0; to make f* 0 so as to provide a realistic test of (3.8), the fixed
nonzero quantity ] is added to each of the objective functions. The differencing interval
h 10-3 is used in all cases. The results of these experiments are shown in Table 2;
as before the iteration is continued until no further improvement in f can be obtained.
The quantity A which measures the size of the rank 2 correction in (2.7) behaves very
similarly to the case when analytical first derivatives are available. The estimate

TABLE 2
Cancellation errors for the no-derivative BFGS method.

Problem Last five iterations

Rosenbrock

Chebyquad
n=2

n=4

n=6

n=8

f6.6771o 3.641 lO 1.4221o-t 5.337 lO
-2* 1.1421o

5.3321o 1.47910 4.2101o 4.713 lO 2.091 lo-2

1.6371o 2.321 lO 6.1741o-3 5.83010 8.16510-3*
6.95010 1.3811o 3.94610 2.25010 4.88210
2.334100 3.491 lO 3.4331o 1.6881o-t* 9.9491o-2
1.712lO 2.0491o 7.286o-4 2.117 lO-3 1.4181o-2
7.378 lO 9.108 lO-t 5.088 lO-t 2.889lO

-1. 1.877 lO-t
1.2901o 2.36710 2.22910 3.79910 1.501 lO

2.8021o 5.8471o 2.3831o-I* 3.4841o-t 1.595o
2.386o-4 6.386o 1.927o 1.260o 2.781 to-2

Trigonometric
n 2 1.3691o 9.73410 2.03910 5.3711o 9.297 o-4

3.028 lO 4.08810 3.7581o-8 6.1741o 1.55210
n 4 2.5231o 9.7411o 5.8421o-t 2.60310-2 2.3951ot*

6.70010 2.097 lO-6 2.54310-6 1.281 lO-5 4.653 lO

n 6 7.15410-2* 5.4751o 6.67310 8.1951o- 5.3951o
6.439lO 2.4131o 6.37010 7.862lO-5 6.573

n 8 5.5851o 4.9751o 2.8931o 2.6081o 2.1891o-t*
1.84210 2.9141o 5.54810 2.1921o 1.011 lO

n 10 3.05610 3.4531o 9.557 lO 2.9921o-t* 1.204o-t
6.48810 3.676o 8.169lO 6.592o 1.86610

* Previous iteration satisfied f-f+ <= 11o-6.
t Upper figure is A and lower figure is ((llE,+ll+))/ from (3.8).
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((IIEn+II+))/2 is again seen to be negligible initially and to increase close to the
solution. However it shows a higher level of cancellation errors than in 2. For the
Rosenbrock and Chebyquad problems cancellation errors are seen to reach a magnitude
comparable to the changes A in B. This contracts with the situation in 2 that for this
level of precision in jr,, cancellation effects are negligible. The results for the
Trigonometric problems show the result less clearly. Nonetheless there is evidence that
here also cancellation errors are significant; the n 4 and n 6 problems are only
solved to a relative precision of 10-6 or less, and the values of A show significant
increases close to the solution. A likely explanation is that the level of rounding errors
in the calculation of f is much greater than ---ef’) for the Trigonometric problems,
and hence that a larger value of pk) would have been appropriate. Overall there seems
to be plenty of evidence for a no-derivative BFGS method that the maximum accuracy
in f*(f* # 0) can only be obtained at the cost of severely polluting B with cancellation
errors.

There are various ideas for a no-derivative method that might be pursued as a
consequence of these results. One is that when the cancellation error is seen to reach
a certain level, then no further changes in B are made. Another is the well known idea
(for example, Stewart (1967)) of attempting to choose h to balance truncation and
cancellation effects. There are advantages in keeping h fixed (see (3.5) ff.) so this would
only be done intermittently and possibly with limits to the variation allowed in h.
However it may well be worth reconsidering this idea in the light of formulae of the
type described here.

4. Quasi-Newton methods. This last section deals with the problem of solving a

system of nonlinear equations

(4.1) r(x) =0

(r:R Rn) when the (nonsymmetric) Jacobian matrix A Vrr is not available but is
estimated by a matrix J. J is updated after each iteration on the basis of differences

(4.2) 3 r+- r

and

(4.3) =x+-x.
A rank one correction formula which satisfies j+7-8 Y can be written

w(-j)
(4.4) J/=J+ w;
for some vector w. Two well known such formulae are Barnes and Broyden’s formulae,
the latter corresponding to w 15 (see, for example, Fletcher (1980) for details). The
main difference between here and 2 is that here there is no invariant norm that can

be used to measure the size of the errors. Accordingly much more importance is placed
on the problem of equilibrating the matrix A before a common norm is used. The
recent technique of Fletcher (1983) might be useful here. However if the Euclidean
norm defined by

(4.5) Ilxll /tr XrX
is used, then analogous formulae to those in 2 may be developed. The size of the
rank one correction is seen to be

(4.6) A= ii1-vii Ilwll/Iwl
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or in the case of Broyden’s formula

(4.7) A IIJTa 11/Ilall.
To assess cancellation errors in J, errors in r are assumed to obey the model

(4.8) i- ri eiPi

where a bar denotes a computed quantity. The motivation for this is the same as for
(2.23). Following (2.24) and (2.25) the error in 3/i is

(4.9) ei p,( e- e,),

with ’(ei) 0, (eej) 0 and ’(e,2.) 2 2 e2.=p This error in 3/induces a change

(4.10) Ej/ weT/ wT5

in J+. Using the expected values above it follows that

(IIE,+II) wrw(ere)/wr,(4.11)

which gives

(4.12)

or for Broyden’s formula

((IIE,+II’))’/’

(4.13) (11E+ I1=)) ’/= IIp 114
I111

The main conclusion as for the BFGS method is that cancellation errors increase
without bound as the iteration converges. If x* is obtained to full precision, IIll e IIx*ll
and cancellation errors are ---1 and are therefore dominant in the estimate of J. As in
3 it may be prudent to discontinue updating J when the quantity ((IIE+II=)) 1/= in

(4.13) reaches a certain level.
It is also possible to say something about the effect of the above cancellation

errors on the attainable accuracy of quasi-Newton methods. A unit step iteration of a
Newton-like method can be written along the lines of Moler (1967) as

(4.14) = r+f,

(4.15) (J+ F)g= -e,
(4.16) + x + g+ g,

where f, F and g account for the different rounding errors that arise at each stage. If
h x-x* denotes the total error in x and /+ g+-x*, then it follows using the
identity (J+ F)-T= J-T-j-TFT(j+ F)-r that

(4.17) += h--j-rr--j-rf--J-rFrg+ g.

If x+ represents the result of (4.14), (4.15) and (4.16) without error, and h+= x+-x*
then

(4.18) )7+- x+ +--h+=--J-rf--J-TFT+g.
This expression gives the contribution of rounding errors to x+ and is applicable in
all the various situations of interest. For a linear system ATx b, then to analyse
iterative refinement we can set J A. If f is the result of single precision rounding
errors (i.e. it satisfies (4.8) for some pi which is related to the maximum modulus
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partial sum in forming ri) then the term -A-Tf has magnitude --IIA-II Ilpll. We can
assume Ilgll--Ilhll and so the term -J-rFrg is seen to be of lower order. Thus the
term -A-rf limits the attainable accuracy in x/. Only if higher precision is used in
the calculation of r can iterative refinement be used to reduce the attainable accuracy
to the level of g(llgll llx*ll).

Similar conclusions hold for a nonlinear system (with A A<k), J jk) etc.).
Taking J A gives Newton’s method with unit step, and if we make the same assump-
tions (4.8) about how errors in r arise, then (4.18) is again valid. However the term
-A-7"f only gives a lower limit on attainable accuracy. A Taylor series for r(x) about
X(k) gives

(4.19) 0= r*= r(k--A(k’h(k+ O(llh(ll =)

and if a Lipschitz condition IlA(y)-A(x)ll<-xlly-xll holds for all x,y in some
neighbourhood of x* then the bound O(llh(ll=)<-_AIIh(ll is valid. It follows from
(4.17) with A= J, and (4.19) that

(4.20) /+= O(llhll=)-A-f-A-Fg+ g

where the bound O(llh I1’)--< x IIa-ll Ilhll’ is now valid. It may be that the O(lihll =) term
is significant relative to -A-7"f in which case it may not be possible to reach the lower
limit of attainable accuracy referred to above. However if h is such that

(4.21) A Ila-’ll’ll pll < 1

then for any h such that Ilhll- IIa-’ll IIPlI it follows that O(llhll =) <_- xlla-ll Ilhll = < Ilhll
and so Newton’s method contracts h at this level of accuracy. Thus if the nonlinearity
of the equations is sufficiently small in the sense of (4.21) then the level of attainable
accuracy is the same as that deduced above from (4.18).

It is now possible to analyse a unit step quasi-Newton method in the same spirit.
It follows from (4.17) using J-r=A-’-A-7"(J-A)’J-7" that

/+= h A-’r- A-’(J- A) 7"6 J-7"f J-7"Frg+ g
(4.22)

O(llhll2)-a-7"(j-A)7"6-j-7f-j-Fg+ g.

Again _j-7-f gives a lower limit on attainable accuracy as (4.18) is still valid, but we
must additionally assume that the extra term -A-7"(J-A)7" becomes negligible at
this level of accuracy. This will depend on the properties of the quasi-Newton method.
In addition to this there are cancellation errors given by Ej in (4.10) which contribute
to the error matrix F and in fact form the dominant contribution. (For iterative
refinement and Newton’s method there are no cancellation errors and F is the error
in solving AT6 =-r and is bounded by a multiple of e.) From (4.10) it follows that
II/-Fll IIJ-’ll Ilpll and so we have the interesting result that cancellation errors
in J contribute to/+-h/ a term of the same magnitude as that arising directly from
-J-’f The sum of these terms gives the limit of attainable accuracy.

In fact it is possible to be more precise about the level of attainable accuracy. Let
J- (that is jk-1)) and x be regarded as exact. For the process of updating J- and
then forming x/, the dominant rounding error is

d --J--Tf--J--TEy6
(4.23)

--J-Tf J-Te-w-T6/ w-’-
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Using (4.8) it follows that

(4.24) di -. jrpj((1 + a)e. aef)
J

where a w-r,/w-r,-. Assuming the ej are independently taken from a uniform
distribution in [-e, e] it follows that (di)= 0 and

(4.25) ’(d) E (JT)2p]be
where b (1 + 2a + 2a)/3. Using the notation of Fletcher (1983) that square brackets
round any matrix or vector denote the operation of squaring each element, it is possible
to write

(4.26) (lldll)<-((lldll=))’/==((eT[d]))’/= e(beT[j-r][p]) ’/-

(here e denotes the vector (1, 1,..., 1)T). Expressions (4.25) and (4.26) give the
expectation of the uncertainty in x/ of the rounding errors on a single iteration, and
hence a useful practical measure of attainable accuracy.

Some other recent work on the effect of errors in quasi-Newton methods is given
by Dennis and Walker (1983). They assume that a bounded deterioration property
holds only for the ideal updates jk which would be used if no rounding error were
present. They then consider a model in which the updates actually used are allowed
to differ from the ideal updates by terms which incorporate the effects of round-off
errors. Their results are phrased so that certain "improvement" properties hold only
as long as these terms satisfy certain conditions. However the observation in (4.11)
that cancellation errors can potentially increase without bound indicates that these
conditions will inevitably fail as k becomes large, and this should be taken into account
when assessing their theoretical results. The thesis of this paper is that rounding errors
in r (either directly or as cancellation errors in J) cause a limit of attainable accuracy
of --II1-’11 Ilplle, and the only way to get higher accuracy is to evaluate r to higher
precision (i.e. reduce p) as for iterative refinement. Alternatively there are certain types
of problems (for example, those requiring the numerical solution of a differential
equation) in which time can be saved by evaluating r to less than single precision. In
such cases a higher limit of attainable accuracy could be tolerated by allowing p to
increase on earlier iterations. Equations (4.25) and (4.26) would again be useful in
relating the accuracy in r and x. Superficially the idea is similar to the inexact Newton
approach of Dembo et al. (1982).

Acknowledgments. I am indeed grateful for the constructive comments both of the
referee and of John Dennis, for pointing out some errors and misconceptions in an
earlier version of this paper.
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Abstract. Two p-variate normal populations Np(Ixi, X), Np(l,2, X2) with parameters known and tit # 2,, ,2 are considered. A method is given to calculate, to a desired accuracy, the probabilities of mis-

classification (PM’s) for quadratic discrimination by using Davies [1980]. Monte Carlo studies, assuming
equal priors and equal costs, are conducted.

These studies demonstrate the dependence of the overall PM on a measure m of separation between
the populations, used by Marks 1970], Marks and Dunn [1974], and a measure p of the divergence between

t and 2, discussed by Rao [1977]. Tables for dimensions p 10, 25, and 40 displaying the dependence
are constructed from these studies. An iterative algorithm for the calculation of m is given. Application of
the above results in the large sample situation is discussed.

Key words, multivariate normal populations, Mahalanobis distance, best linear discriminant hyperplane,
simultaneous diagonalization, noncentral chi-square distribution, divergence measure

AMS(MOS) subject classification. 62H

1. Introduction. In this paper we consider two p-variate normal populations
ri N,(Ix, E), where p-i, Ei, i= 1, 2, are the means and covariance matrices of the
given populations. It is assumed that [1 [tl,2, E ’2 and all parameters are known.

It has been noticed by several authors, including Bayne and Tan [1981], that the
PM’s are not easy to calculate in the case of unequal covariance matrices because
percentile points for linear combinations of noncentral chi-square random variables
must be calculated. As a result, most researchers have examined the special case

E2 dX (Gilbert 1969], Clark et al. [ 1979]) by using Patnaik’s approximation (Patnaik
[1949]), which has limited application, to approximate the PM’s. Marks and Dunn
[1974] consider slightly more general cases, but approximate the PM’s using Monte
Carlo methods. Bayne and Tan [1981] approximated the PM’s only for the bivariate
case (p=2). In this paper, a method for the calculation of the PM’s to a desired
accuracy is given which places no restrictions on the covariance matrices or the
dimension p. It uses an algorithm of Davies [1980], and is presented in 2.

In 3, Monte Carlo studies, for equal priors and equal costs, are described. The
main finding is that the overall PM is dependent within narrow bounds on quantities
m and p to be defined shortly. In 4, an iterative algorithm for the calculation of m
is given. Section 5 describes how these results can be applied to actual data in large
sample situations. An Appendix addresses certain technical aspects of the Monte Carlo
studies.

The following notation and definitions will be used, unless otherwise specified,
throughout this paper: pi =prior probability for zri, i--1,2; p +P2--1; c(ilj) is the
cost of classifying a member of 7rj to r, ij; P(ilj is the probability of classifying
a member of zrj to 7r,, i#j; P=pP(211)+pEP(I[2); P(211), P(112), and P were referred
to as PM’s above. U[1, u] denotes the uniform distribution on the interval [1, u].

DEFINITION 1.1. The parameter m is the Euclidean distance from the mean
of zrl to the best linear discriminant hyperplane when PL(2]I)= PL(ll2), where

* Received by the editors September 18, 1984, and in revised form July 8, 1985.

" Department of Mathematics, University of Maine, Orono, Maine 04469.
$ Biomathematics Modeling Branch, USAF School of Aerospace Medicine, Brooks Air Force Base,

Texas 78235.
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Pnt(ilj) denotes the probability of misclassifying a member of zr to r for best linear
discrimination (Marks [1970, p. 48]). In 2 we discuss the transformation by the
method of simultaneous diagonalization of Np(p, El), Np(p.2, E2) into the canonical
form

(1.1) Np(O, I), Np(v, D),

where v (v,..., Vp), d (d,..., dp), and D Diag [d] is the diagonal matrix with
diagonal entries given by d (d,..., dp). For this form, m is the Euclidean distance
from 0 to the point a (a,..., ap) satisfying

(1.2) vg=ak 1+
\xL, a,a2]

for k 1,..-, p; see Marks [1970, p. 132]. When El X2, then m T/2, where T is
the Mahalanobis distance between the two populations.

Now we will define p, which was introduced by Hellinger [1909] and discussed
by Rao [1977] and several other authors. It is also a multiple of a term in the
Bhattacharya distance (Fukunaga [1972]).

DEVlNITION 1.2. Define p, which measures the divergence in the covariance
matrices 5;1 and X2, by

(1.3) p In
levi. IX=If

where X (El + X2)/2. The above expression transforms to

(1.4) 0=2 -pln2+2 In +
i=1

for "’1 Np(0, [), 2 Np(,
DEFINITION 1.3. The Mahalanobis distance T between two populations

N(, ), N(,) is defined by

T2= (-2)tx-l(l

where X=PlXl +p2E2. In case Np(0, I) and 2 Np(v, D), T2 is given by
2P

T2= X= p+pdi
2. Derivations of expressions for P(211) and P(112). In this section we will express

the quadratic discriminant function (QDF) as a linear combination of noncentral X
variables and a standard normal variable, which is the required form in order to use
Davies [ 1980]. It may again be emphasized here that the elements of2 are not restricted
in any way.

Let Np(I, X) and Np(2, X2), where # 2 and X # X2. Let Z(x) be
the density function associated with , i= 1, 2. The QDF is given by

Ix,I 1,Q(x)=lnA(X) lln+ x(X;
(2.1)

fl(x) 2

1
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The allocation rule is to allocate x to 7r2 if

,c(211)
(2.2) Q(x) > In pC(12)
and otherwise to allocate it to G. Using the method of simultaneous diagonalization,
we can find a transformation A’E-/2, where A is orthogonal, which simultaneously

-/2converts E into the identity matrix and 2 into a diagonal matrix D. A’E can be
taken as the transpose of the matrix of eigenvectors of -2. More explicitly, let
=[a,a2," ",ap] where the ai’s are unit eigenvectors of E, A=
Diag [A1, A2,’’ ", Ap], where the Ai’s are the associated eigenvalues of E, and xI
[1, 12," ", Ip], where the I’s are unit eigenvectors of A-/2’E2cI)A-/2, which is a
positive definite matrix since E2 is positive definite and A-1/2 is nonsingular. It can

--1/2be easily seen that xlt’A-1/2’=xlt’’E-1/2 (xtt)’E-/2 A’{1/2, say. Here E
Y.P (1/v-)ca’; for more detail see Johnson and Wichern [1982, pp. 52-53]. Thisi=1

transforms E into I and E2 into a diagonal matrix D. Let Y A’E-l/2(x- p.). Under
this transformation, r--- Np(O, I) and r2"" Np(A’E-(1/2(Ix2-1xl), D) Np(v, D), which
is the canonical form (1.1).

Under the above transformation the allocation rule (2.2) becomes: Allocate x to

w2 if

P(1:di-1 2 )i 1 I)/ 1 p plC(2ll)
,1 \2 di

x +xi >= Y In di h-Ind,---1 - pC(ll2)i=1

or

1 +1_ plC(2ll
>=’ lndi

2
lndi+ln p).C(ll2)

d di

Rewriting, we have

(2.3)

y d,-l(,x,+ v’ )
2

( 1 )+ Z v, x,--v,2di di- 1
d d

>
1 v + +In= lnd+di(di_l) [J

di #1

p,C(211)

The LHS of (2.3) equals

d,-l( v, )2 ( / V)(/ v)- v,.i 2di Xi+di=i + vixi 4
1

2

d d d d d

Under .rrl, (x + v/(d- 1))2 is noncentral X
2 with 1 degree offreedom and noncentrality

parameter 82 (v,/(d, 1))2 and
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The LHS of (2.3) can also be written as

d d d d d

Under r2, (xi+vi/(di-1)/vr)2 is noncentral X
2 with 1 degree of freedom and

noncentrality parameter 82 div2/(di 1)2 and

2 o,(x,-v,) 4
di

Therefore,

(2.4)

( d,-l( v, )
2

P(211) P 2di Xi +
di 1

dil

(1) )+ E o, x, v, _->/lx ,
d

d 1 vi 2

dil

where (x, + v/(di- 1))2- t’2(1, (vi/(d- 1))2) and

Also,

P(112) P(
dil

(2.5)

where

and

Here

/ Vi N(0, 1).
d d

2di X’+d’’l] + Ei v, x,-’v, <Klxr2
d

di di di di

xi + vi/(di- 1) 2 2

---X
2 1,

(d,_l)2

( )/ 2 N(0’I)"
d d

1 vi + + InK= lnd,/
d,(di-1) -J

dil

p,C(211)
pC(ll2)

1 vi p,C(2ll)= lndi+di_’i +1np2C(112)"
di#l



1404 ,. L. GUPTA, J. T. RILEY AND T. J. WHITE



MISCLASSIFICATION IN QUADRATIC DETERMINATION 1405



1406 1. L. GUPTA, J. T. RILEY AND T. J. WHITE



MISCLASSIFICATION IN QUADRATIC DETERMINATION 1407



1408 P.L. GUPTA, J. T. RILEY AND T. J. WHITE



MISCLASSIFICATION IN QUADRATIC DETERMINATION 1409



1410 P.L. GUPTA, J. T. RILEY AND T. J. WHITE



MISCLASSIFICATION IN QUADRATIC DETERMINATION 1411



1412 P.L. GUPTA, J. T. RILEY AND T. J. WHITE

Therefore P(211) and P(ll2) given by (2.4) and (2.5), respectively, are in the form
required by Davies [1980].

3. Monte Carlo exlerimeat. In this section we describe a Monte Carlo experiment,
the main objective of which was to study the dependence of P on p in combination
with either m or T. Equal priors and equal costs are assumed. After describing the
structure of the experiment, we discuss the results for two cases:

Case 1. Using p and m, the results are given in Tables 1, 2, and 3 for p 10, 25
and 40, respectively; P varies within rather narrow bounds for given p and m.

Case 2. Using p and T, the results are given in Table 4 for p 10; P varies much
more widely, rendering the table less useful than the previous ones. Finally, we return
to Case 1 and discuss the behaviour of P(211) and ,(112).

The Monte Carlo experiment is conducted under the canonical conditions of (1.1).
We first describe Case 1 and then the modification necessary for Case 2. po and mo
assume the values .5, 1.0, , 5.0 and .25, .50, , 1.75, respectively. For each (Po, mo),
P=pP(211)+p2P(I[2) is computed using Davies’ algorithm with (in his notation)
LIM 10,000 and accuracy ACC =.001 for each of 100 pairs (d, v) generated in a
manner to be described shortly. Then the mean P, standard deviation Sp, minimum
Pmin, maximum Pmax, range Rp Pmax--,0min, and sample correlation coefficient r for
P(2[1) and P(l[2) are computed.

tl is generated as follows:
Step 1. Randomly generate d, , dp_l such that di U[ 1, u] for 1,. , p 1.

(The choice of u is described in the Appendix.)
Step 2. Determine dp algebraically by the requirement p po.
Step 3. Take the reciprocal of each di with probability 1/2. (Note that this step

does not change the value of p, since (1.4) is invariant under d 1/d. Since P is not
invariant, the experiment is lent greater generality.) Note that if the condition

k

2 Y In (x/-+ 1/x/-d-) =< po + 2(p 1)(In 2)
i=1

is not met for some k in Step 1, the equation p po cannot be satisfied. Thus this
condition is checked each time a d is generated, and if it is not met, Step 1 is repeated
beginning with a new d.

After tl is obtained, a is determined by generating a vector w (wl,’", Wp) such
that w,---U[0,1] for i=l,...,p, and then taking a=(mo/llwll)w, where Ilwll=

P
(Yi=l w,2) 1/2 Then v is determined from a using (1.2).

For Case 2, T plays the role of m with these changes" (1) To assumes the values
.5, 1.0,..., 3.5. (2) v is determined from u= (1/llll)w by the requirement v= Tu and
the use of (1.5) with pl P2 1/2.

For Case 1, inspection of Tables 1, 2 and 3 shows that the variability in P for
any (po, mo) small enough so that P can be predicted within rather narrow bounds
with reasonable confidence. Note that P decreases across each row and down each
column; if this were not the case, the use of p and m in combination would be
questionable.

A comparison of Tables 1, 2 and 3 with one another shows that corresponding
values of P in the tables differ very little; one notes a very slight downward trend,
most noticeable for the smaller values of po and too, as p increases. The variability
also decreases slightly for the smaller values of Po and mo as p increases. By using
these tables, one can estimate values for P for the given values of po and mo for
10-<_p <_-40.
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.05

.04

.03

.02

.01

.25 .50 .75 1.00 1.25 1.50 1.’75
(.50) (1.00) (1.50) (2.00) (2.50) (3.00) (a.25)(T)

FIG. 1. Po .5. --(mo, Rp), ,--( To, Rp).

For Case 2, T might seem a more "natural" measure of separation than m to use
with the QDF. However, the results given in Table 4 for p 10 show that because of
the increased variability it is much less useful in combination with p for the prediction
of P. This increased variability is depicted in Fig. 1 for the case of Po .5.

Does the dependence of P within narrow bounds on p and m in Case 1 result
from a similar dependence of P(211) and P(112)? It does not. Tables for P(211) and
P(ll2) for p= 10, 25 and 40 were also computed. The mean values P(211) and P(l]2)
were generally close to P, but the variability was much greater for the smaller values
of po and mo. For example, when po=.5, mo=.25 and p= 10, /5(211)=.288 with
s.d. .027, minimum .244 and maximum .351. The much smaller variability for P
results from the pronounced negative correlation between P(2[1) and P(l]2); sample
values for this correlation are given in Tables 1-3.

It should be realized that the results shown in the Tables 1-4 are dependent on
the choice of method of generating the vector d.

4. Computation of m. In order to use Tables 1-3, it is necessary to compute m
and p. For m this requires that one first perform the simultaneous diagonalization
described in 2. Once this is done, rn can be computed by following a simple iterative
algorithm, given here as a FORTRAN subroutine; see Fig. 2.

Testing the performance of the subroutine. As part of the Monte Carlo experiment,
this routine was employed to compute an estimate r of m for each point a generated
for Tables 1-3 (a total of 7,000 per table). Let e tfi m be the error and let n be the
number of iterations used in the computation of n. The summary statistics given in
Tables 5 and 6 indicate the excellent performance of the algorithm.

5. Applications. Under the assumptions of 2, the QDF is the optimal discrimina-
tion algorithm. Suppose, however, that these assumptions are not met but rather that

The referee has suggested that the slight dependence of/5 on p might be due to the way of generating
the di.
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10

2O

30

40

100

SUBROUTINE COMPM (V,DIAG,A,P,NIT,NFLAG)
IMPLICIT REAL*8(A- H,O Z)
INTEGER P
DIMENSION V(1),DIAG(1),A(1),AT(40)
NFLAG 0
DO 10 I 1,P
A(I) V(I)/E.DO
NIT 0
NIT- NIT/ 1
SUM1 =0.DO
SUM2 -0.DO
DO 30 I 1,P
AI A(I)
AT(I) AI
AI AI*AI
SUM1 SUM1 + AI
SUM2 SUM2/ DIAG(I)*AI
ERR- 0.DO
DO 40 I- 1,P
AI V(I)/(1.DO/ DIAG(I)*DSQRT(SUM1/SUM2))
ERR- DMAX1(ERR,DABS(AI/AT(I) 1.DO))
A(I)- AI
IF(NIT.GT.50) GO TO 100
IF(ERR.GT.1.D-3) GO TO 20
CONTINUE
IF(NIT.GT.50)NFLAG 1
RETURN
END

FIG. 2

TABLE 5

p Mean error* Mean square errorf Maximum error

10 6.0x 10-s 4.3 10-9 5.5 10-4

25 3.0 x 10-s 9.0 x 10- 3.2 10-4

40 2.0 x 10-5 4.0 x 10- 2.2 10-4

* Mean error= (Y’. e)/7,000.
t Mean square error= ( e2)/7,000.

TABLE 6

p Mean for n s.d. for n Maximum for n

10 5.46 1.34 16
25 4.39 .79 11
40 3.98 .64 8
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large samples are available from each population, permitting good estimation of t,
pL2, E1 and E2 and also supporting the claim that the populations are approximately
multivariate normal. Various studies indicate that the QDF is more sensitive than the
linear discriminant function (LDF) to departures from normality and inaccuracy in
the estimation of parameters.

One can compute the LDF and QDF misclassification rates for the two methods
as though the estimates were the true parameters and multivariate normality were
perfectly met; if the computed rates differ little, the LDF may perform at least as well
as the QDF on the actual data, and then the LDF is preferred because of its smaller
computational and storage requirements (especially for large p) and also because of
its greater ease of geometrical interpretation. Thus one turns to the QDF only if its
computed misclassification rate is markedly lower.

The computations of the rate for the LDF is straightforward and well known
(Gilbert [1969]). The rate for the QDF can be computed to any desired accuracy by
the method of 2; or it can be approximated using Tables 1-3 of 3 if 10 -<p-<40.
Each approach requires the performance of simultaneous diagonalization; one then
either applies Davies’ algorithm or computes m by the method of 4 and consults the
tables. As an example of the latter, if 10<p<25, one would consult both Tables 1
and 2; interpolation might be necessary. The result would only be approximate, but
if the rate was far better than the computed rate for the LDF, this would be an adequate
basis for the choice of the QDF.

Appendix. The values for u used in the generation of dl,"" ", dp_ in the Monte
Carlo experiment were determined by a separate program. Let p- (.5)i, and let u be
the value used in Step 1 for a given p, 1, 2,. , 10. Since the values of u depend
on p as well as on p, Ul, u2,’’ ", Uo were determined as follows for p 10, 25 and
40: u was assigned the values 1.5, 1.6, , 9.0. For each value, 1,000 vectors d, where
d- U[1, u] for all i, were generated. For each such d, p was computed, and for the
resulting 1,000 values, the mean/ was computed, u is the first value of u such that
_->p, i= 1, 2,..., 10.

Tables A1-A3 give the values for u, 1, 2,. ., 10, for p 10, 25 and 40. Since
dp is not drawn from a uniform distribution, descriptive statistics are provided for the
set of dp’s exceeding u, i- 1, 2,. ., 10, for the runs which generate Tables 1-3.

TABLE A1
p=10.

Pi ui Q*
dpt

MEAN SD MIN MAX

0.500 2.100 0.329 2.443 0.258 2.104 3.326
1.000 2.700 0.410 3.498 0.654 2.714 6.501
1.500 3.400 0.367 4.629 1.039 3.401 9.231
2.000 4.000 0.409 6.049 1.842 4.030 13.069
2.500 4.600 0.424 7.362 2.505 4.602 16.916
3.000 5.200 0.409 9.280 4.373 5.209 44.170
3.500 5.900 0.437 10.949 5.861 5.905 48.860
4.000 6.700 0.394 13.578 8.430 6.729 59.071
4.500 7.400 0.420 15.056 8.658 7.410 67.990
5.000 8.200 0.423 18.335 12.485 8.212 128.184

* Q Proposition of cases such that dp > ui.
f Statistics computed only for those cases such that dp > ui.
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TABLE A2
p=25.

Pi ui Q*
MEAN SD MIN MAX

0.500 1.600 0.530 1.919 0.252 1.600 2.986
1.000 2.000 0.340 2.492 0.409 2.003 4.539
1.500 2.200 0.567 3.075 0.710 2.201 5.558
2.000 2.500 0.507 3.536 0.941 2.504 7.529
2.500 2.700 0.569 4.304 1.495 2.701 11.459
3.000 3.000 0.539 4.799 1.654 3.002 15.122
3.500 3.200 0.553 5.897 2.738 3.202 23.314
4.000 3.500 0.539 6.444 3.014 3.500 20.592
4.500 3.700 0.561 7.300 3.883 3.704 29.346
5.000 4.000 0.510 7.866 4.760 4.003 53.915

* Q Proposition of cases such that dp > ui.
Statistics computed only for those cases such that dr > ui.

TABLE A3
p 40.

pi ui Q*
dpt

MEAN SD MIN MAX

0.500 1.500 0.373 1.702 0.166 1.500 2.411

1.000 1.700 0.540 2.155 0.355 1.701 3.307
1.500 1.900 0.571 2.532 0.546 1.900 4.648
2.000 2.100 0.539 3.024 0.832 2.102 6.002
2.500 2.300 0.494 3.345 1.016 2.304 8.272
3.000 2.400 0.644 3.877 1.331 2.402 9.413
3.500 2.600 0.556 4.255 1.618 2.603 14.864
4.000 2.700 0.677 4.965 2.198 2.701 14.292
4.500 2.900 0.606 5.’150 2.372 2.901 19.165
5.000 3.100 0.563 5.732 2.970 3.102 34.710

* Q Proposition of cases such that dp > ui.
? Statistics computed only for those cases such that dp > u.

Note. Davies’ algorithm appeared in ALGOL. We had to translate it into
FORTRAN for our Monte Carlo work.
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